GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion

Significance Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating diseases. The steps in the final stages of autophagy that culminate in autophagosome:lysosome fusion are not well understood. The γ-aminobut...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 22; pp. 7015 - 7020
Main Authors Wang, Hanzhi, Sun, Hui-Qiao, Zhu, Xiaohui, Zhang, Li, Albanesi, Joseph, Levine, Beth, Yin, Helen
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.06.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Significance Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating diseases. The steps in the final stages of autophagy that culminate in autophagosome:lysosome fusion are not well understood. The γ-aminobutyric acid receptor-associated protein (GABARAP) family of Atg8 (autophagy-related 8) proteins has been implicated in autophagosome maturation. Here we report that phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, is recruited to autophagosomes by GABARAPs. Furthermore, PI4P generation by PI4KIIα, but not by PI4KIIIβ, another major mammalian PI4K, promotes autophagosome fusion with lysosomes. Our results establish for the first time to our knowledge that PI4KIIα is a specific downstream effector of GABARAP and that PI4P has a key role in the final stage of autophagy. The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs’ previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through “PI4P shuttling.” Importantly, PI4KIIα’s role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP ₂) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome’s fusion machinery.
AbstractList Significance Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating diseases. The steps in the final stages of autophagy that culminate in autophagosome:lysosome fusion are not well understood. The γ-aminobutyric acid receptor-associated protein (GABARAP) family of Atg8 (autophagy-related 8) proteins has been implicated in autophagosome maturation. Here we report that phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, is recruited to autophagosomes by GABARAPs. Furthermore, PI4P generation by PI4KIIα, but not by PI4KIIIβ, another major mammalian PI4K, promotes autophagosome fusion with lysosomes. Our results establish for the first time to our knowledge that PI4KIIα is a specific downstream effector of GABARAP and that PI4P has a key role in the final stage of autophagy. The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs’ previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through “PI4P shuttling.” Importantly, PI4KIIα’s role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP ₂) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome’s fusion machinery.
The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs' previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KII..., a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KII... mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KII... or by restoring intracellular PI4P through "PI4P shuttling." Importantly, PI4KIIα's role in autophagy is distinct from that of PI4KIII... and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP...) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome's fusion machinery. (ProQuest: ... denotes formulae/symbols omitted.)
Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating diseases. The steps in the final stages of autophagy that culminate in autophagosome:lysosome fusion are not well understood. The γ-aminobutyric acid receptor-associated protein (GABARAP) family of Atg8 (autophagy-related 8) proteins has been implicated in autophagosome maturation. Here we report that phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, is recruited to autophagosomes by GABARAPs. Furthermore, PI4P generation by PI4KIIα, but not by PI4KIIIβ, another major mammalian PI4K, promotes autophagosome fusion with lysosomes. Our results establish for the first time to our knowledge that PI4KIIα is a specific downstream effector of GABARAP and that PI4P has a key role in the final stage of autophagy. The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs’ previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through “PI4P shuttling.” Importantly, PI4KIIα’s role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP 2 ) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome’s fusion machinery.
The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs' previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through "PI4P shuttling." Importantly, PI4KIIα's role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP2) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome's fusion machinery.
The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs' previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through "PI4P shuttling." Importantly, PI4KIIα's role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP2) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome's fusion machinery.The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs' previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through "PI4P shuttling." Importantly, PI4KIIα's role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP2) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome's fusion machinery.
The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs’ previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through “PI4P shuttling.” Importantly, PI4KIIα’s role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP ₂) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome’s fusion machinery.
Author Zhu, Xiaohui
Albanesi, Joseph
Zhang, Li
Yin, Helen
Wang, Hanzhi
Sun, Hui-Qiao
Levine, Beth
Author_xml – sequence: 1
  givenname: Hanzhi
  surname: Wang
  fullname: Wang, Hanzhi
  organization: Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
– sequence: 2
  givenname: Hui-Qiao
  surname: Sun
  fullname: Sun, Hui-Qiao
  organization: Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
– sequence: 3
  givenname: Xiaohui
  surname: Zhu
  fullname: Zhu, Xiaohui
  organization: Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
– sequence: 4
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  organization: Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
– sequence: 5
  givenname: Joseph
  surname: Albanesi
  fullname: Albanesi, Joseph
  organization: Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
– sequence: 6
  givenname: Beth
  surname: Levine
  fullname: Levine, Beth
  organization: Department of Internal Medicine, Center for Autophagy Research, and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
– sequence: 7
  givenname: Helen
  surname: Yin
  fullname: Yin, Helen
  organization: Department of Physiology,University of Texas Southwestern Medical Center, Dallas, TX 75390
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26038556$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1vEzEQxS1URNPAmRMQiQuXbWf8tV4OlUIFpVIlIqBny9mdpBtt1ou9i9T_Hi8JaekBTrY8v3nzxu-EHbW-JcZeIpwi5OKsa108RQU51wKRP2EThAIzLQs4YhMAnmdGcnnMTmLcAEChDDxjx1yDMErpCTu_nH-Yf50v4izQemhcT7PFlVxkFXXUVtT2Mzf0vrt1ax_9lt43d_H3ZbYaYu3b5-zpyjWRXuzPKbv59PH7xefs-svl1cX8OitVAX1mTCUFldVKLJcCqhIqR4jGuBy1Iy4rleOS60KC4RodES-5JkzvSEAoxJSd73S7YbmlqkzGgmtsF-qtC3fWu9r-XWnrW7v2P62UGqTiSeDdXiD4HwPF3m7rWFLTuJb8EC0aEKi4FMX_UW00aG3y0dbbR-jGD6FNPzFSRmshEzZlrx-aP7j-k0ICznZAGXyMgVYHBMGOOdsxZ3ufc-pQjzrKund9SiRtXzf_6HuztzIWDlOQW85tDqgS8WpHbGLvwwOvMi1T4L3Cynnr1qGO9uYbB9QAKFUuC_EL9DzICA
CitedBy_id crossref_primary_10_1016_j_cotox_2017_10_006
crossref_primary_10_1091_mbc_e16_06_0451
crossref_primary_10_1016_j_plantsci_2019_01_017
crossref_primary_10_1038_s41565_024_01826_8
crossref_primary_10_1080_15548627_2020_1823124
crossref_primary_10_1080_15548627_2021_1909407
crossref_primary_10_1242_jcs_251835
crossref_primary_10_3390_biom13091297
crossref_primary_10_1080_15548627_2019_1606636
crossref_primary_10_7554_eLife_92189_3
crossref_primary_10_1080_15548627_2023_2222556
crossref_primary_10_1080_21505594_2018_1551010
crossref_primary_10_1042_BSR20240200
crossref_primary_10_3389_fmicb_2019_02032
crossref_primary_10_1083_jcb_201901115
crossref_primary_10_1016_j_jbc_2024_107908
crossref_primary_10_1093_carcin_bgz161
crossref_primary_10_1016_j_jmb_2020_01_024
crossref_primary_10_1038_s41467_020_16689_5
crossref_primary_10_1016_j_celrep_2019_04_070
crossref_primary_10_1080_15548627_2020_1796292
crossref_primary_10_1083_jcb_201607039
crossref_primary_10_3389_fmolb_2022_1074701
crossref_primary_10_1016_j_bbalip_2019_05_004
crossref_primary_10_1002_1873_3468_12286
crossref_primary_10_1039_D3CB00232B
crossref_primary_10_3390_pathogens13030266
crossref_primary_10_1016_j_semcdb_2015_11_002
crossref_primary_10_3389_fimmu_2021_636078
crossref_primary_10_1038_s41422_023_00916_x
crossref_primary_10_1042_BST20190158
crossref_primary_10_3389_fcell_2023_1234204
crossref_primary_10_3390_ijms18010227
crossref_primary_10_1242_jcs_228114
crossref_primary_10_1007_s12672_021_00427_4
crossref_primary_10_1016_j_celrep_2021_109434
crossref_primary_10_1080_15548627_2017_1378838
crossref_primary_10_1242_jcs_196352
crossref_primary_10_1016_j_cub_2023_07_038
crossref_primary_10_1016_j_molcel_2017_02_010
crossref_primary_10_1016_j_isci_2025_112052
crossref_primary_10_15252_embj_2018100312
crossref_primary_10_3390_ijms161125990
crossref_primary_10_1002_1873_3468_14352
crossref_primary_10_1007_s13105_019_00708_1
crossref_primary_10_1186_s13578_020_00503_2
crossref_primary_10_1111_tra_12554
crossref_primary_10_1016_j_aquaculture_2024_741644
crossref_primary_10_1007_s00018_016_2224_z
crossref_primary_10_3389_fcell_2020_00343
crossref_primary_10_1016_j_ceb_2019_03_011
crossref_primary_10_1016_j_apsb_2023_03_008
crossref_primary_10_3390_cells12101411
crossref_primary_10_1016_j_cub_2018_02_034
crossref_primary_10_1080_15548627_2021_1891848
crossref_primary_10_1002_jimd_12255
crossref_primary_10_3390_cells11050780
crossref_primary_10_1007_s13105_020_00746_0
crossref_primary_10_3389_fcell_2021_664788
crossref_primary_10_1242_jcs_175208
crossref_primary_10_1128_MCB_00389_20
crossref_primary_10_3390_ijms22010085
crossref_primary_10_1038_s41598_023_49089_y
crossref_primary_10_1080_15548627_2020_1749367
crossref_primary_10_1128_MCB_00392_17
crossref_primary_10_1016_j_jmb_2019_07_016
crossref_primary_10_1093_jb_mvaa089
crossref_primary_10_1016_j_ijbiomac_2025_139823
crossref_primary_10_1248_bpb_b23_00865
crossref_primary_10_7554_eLife_58281
crossref_primary_10_1016_j_ymgme_2019_11_005
crossref_primary_10_3389_fcell_2023_1163574
crossref_primary_10_1098_rsfs_2018_0025
crossref_primary_10_1146_annurev_biochem_060815_014556
crossref_primary_10_1523_JNEUROSCI_3498_17_2019
crossref_primary_10_1007_s11010_023_04800_5
crossref_primary_10_1016_j_molcel_2019_10_035
crossref_primary_10_1016_j_jmb_2019_05_051
crossref_primary_10_1083_jcb_202205128
crossref_primary_10_33073_pjm_2023_022
crossref_primary_10_1016_j_antiviral_2017_01_016
crossref_primary_10_1002_hon_2948
crossref_primary_10_1016_j_tcb_2016_03_006
crossref_primary_10_3390_cancers11081209
crossref_primary_10_1038_s41421_020_0141_7
crossref_primary_10_1021_acs_biochem_1c00775
crossref_primary_10_1016_j_chembiol_2022_06_005
crossref_primary_10_1111_febs_15127
crossref_primary_10_1016_j_cellin_2024_100152
crossref_primary_10_15252_embj_201695063
crossref_primary_10_7554_eLife_92189
crossref_primary_10_1038_s41467_022_32109_2
crossref_primary_10_1080_15548627_2023_2249794
crossref_primary_10_3389_fmed_2018_00032
crossref_primary_10_1242_jcs_223792
crossref_primary_10_3390_genes14040825
crossref_primary_10_1128_mbio_01020_23
crossref_primary_10_1016_j_bbalip_2022_159184
crossref_primary_10_15252_embr_201948317
crossref_primary_10_1002_advs_201903323
crossref_primary_10_1007_s12272_016_0777_x
crossref_primary_10_1080_19420889_2016_1174798
crossref_primary_10_1080_15548627_2024_2322493
crossref_primary_10_3390_ijms23020711
crossref_primary_10_3390_cells13060500
crossref_primary_10_1111_febs_15873
crossref_primary_10_1016_j_celrep_2024_114131
crossref_primary_10_18632_oncotarget_19639
crossref_primary_10_1111_imr_12775
crossref_primary_10_3390_v8020032
crossref_primary_10_1007_s00210_018_1575_4
crossref_primary_10_1021_acschemneuro_8b00390
crossref_primary_10_1002_bies_201700145
crossref_primary_10_1016_j_neuropharm_2020_107948
crossref_primary_10_1080_15548627_2023_2259732
crossref_primary_10_1080_15548627_2022_2062111
crossref_primary_10_1038_s41421_020_0161_3
crossref_primary_10_1038_s41580_021_00392_4
crossref_primary_10_1038_s41422_025_01085_9
crossref_primary_10_1016_j_jmb_2019_10_028
crossref_primary_10_1016_j_jbior_2015_09_007
crossref_primary_10_1016_j_tcb_2018_07_001
crossref_primary_10_1111_jnc_15194
crossref_primary_10_1083_jcb_201909073
crossref_primary_10_1016_j_jmb_2016_10_029
crossref_primary_10_1172_JCI135124
crossref_primary_10_1016_j_bbalip_2021_158903
crossref_primary_10_1083_jcb_201904063
crossref_primary_10_1021_acs_biochem_8b00224
crossref_primary_10_1016_j_tibs_2020_03_010
crossref_primary_10_1371_journal_ppat_1010350
crossref_primary_10_1016_j_molcel_2018_09_017
crossref_primary_10_1042_BCJ20210314
crossref_primary_10_1177_13872877241307403
crossref_primary_10_3390_cells10113071
crossref_primary_10_1111_tra_12623
crossref_primary_10_1083_jcb_201810099
crossref_primary_10_1038_s41598_019_45917_2
crossref_primary_10_1371_journal_pbio_3002165
crossref_primary_10_1016_j_tibs_2016_08_001
crossref_primary_10_1038_s41422_022_00731_w
crossref_primary_10_3390_microorganisms12071458
crossref_primary_10_1371_journal_ppat_1010629
crossref_primary_10_1002_advs_202102568
crossref_primary_10_1002_bies_201700121
crossref_primary_10_1016_j_jbc_2024_107911
Cites_doi 10.1074/jbc.M112.348094
10.1074/jbc.M112.371591
10.1111/j.1600-0854.2008.00701.x
10.1091/mbc.e11-06-0553
10.4161/auto.4451
10.1038/emboj.2012.341
10.1083/jcb.201110114
10.1074/jbc.M109.036509
10.1016/j.tibs.2013.12.001
10.1074/jbc.M900724200
10.1091/mbc.e06-10-0897
10.1038/cr.2013.159
10.1038/emboj.2010.74
10.1038/ncb2557
10.1074/jbc.M805991200
10.1042/BJ20090428
10.1038/nature10546
10.1038/nature09204
10.1152/physrev.00028.2012
10.1038/cddis.2010.84
10.1523/JNEUROSCI.3355-04.2004
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jun 2, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jun 2, 2015
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1507263112
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Virology and AIDS Abstracts
CrossRef
MEDLINE
MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate GABARAPs and PI4P in autophagosomal maturation
EISSN 1091-6490
EndPage 7020
ExternalDocumentID PMC4460452
3716527061
26038556
10_1073_pnas_1507263112
112_22_7015
26463491
US201600145749
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA109618
– fundername: NCI NIH HHS
  grantid: CA118487
– fundername: NIMH NIH HHS
  grantid: MH096066
– fundername: NCI NIH HHS
  grantid: R01 CA084254
– fundername: NCI NIH HHS
  grantid: P30 CA142543
– fundername: NIGMS NIH HHS
  grantid: R01 GM066110
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM66110
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: CA84254
– fundername: American Heart Association (AHA)
  grantid: 13GRNT14650022
– fundername: Cancer Prevention Research Institute of Texas
  grantid: RP120718
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: CA109618
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c590t-88d43ecdf3bb30dc0dae1188a716ae24d571b269408261aee2c26e14d51e0e133
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:57:38 EDT 2025
Thu Jul 10 19:32:43 EDT 2025
Fri Jul 11 10:05:16 EDT 2025
Mon Jun 30 08:09:14 EDT 2025
Thu Apr 03 07:07:59 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Tue Jul 01 01:53:27 EDT 2025
Wed Nov 11 00:29:43 EST 2020
Fri May 30 12:01:28 EDT 2025
Thu Apr 03 09:45:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords PI4P
autophagy
autophagosome:lysosome fusion
PI4KIIα
GABARAP
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c590t-88d43ecdf3bb30dc0dae1188a716ae24d571b269408261aee2c26e14d51e0e133
Notes http://dx.doi.org/10.1073/pnas.1507263112
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: H.W., H.-Q.S., X.Z., L.Z., J.A., B.L., and H.Y. designed research; H.W., H.-Q.S., X.Z., and L.Z. performed research; H.W., H.-Q.S., X.Z., L.Z., J.A., B.L., and H.Y. analyzed data; and H.Y. wrote the paper.
Reviewers included: A.S., University of Oslo.
Contributed by Beth Levine, April 17, 2015 (sent for review December 12, 2014; reviewed by Anne Simonsen)
1H.W. and H.-Q.S. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/112/22/7015.full.pdf
PMID 26038556
PQID 1688663487
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1803152439
crossref_citationtrail_10_1073_pnas_1507263112
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4460452
proquest_miscellaneous_1686066873
proquest_journals_1688663487
jstor_primary_26463491
crossref_primary_10_1073_pnas_1507263112
fao_agris_US201600145749
pnas_primary_112_22_7015
pubmed_primary_26038556
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-02
PublicationDateYYYYMMDD 2015-06-02
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_17_2
e_1_3_3_9_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_11_2
e_1_3_3_3_2
e_1_3_3_10_2
e_1_3_3_21_2
18182013 - Traffic. 2008 Apr;9(4):574-87
20562859 - Nature. 2010 Jul 1;466(7302):68-76
23899561 - Physiol Rev. 2013 Jul;93(3):1019-137
24296784 - Cell Res. 2014 Jan;24(1):58-68
15601949 - J Neurosci. 2004 Dec 15;24(50):11429-38
24369758 - Trends Biochem Sci. 2014 Feb;39(2):61-71
23258225 - EMBO J. 2013 Feb 6;32(3):324-39
22977244 - J Biol Chem. 2012 Nov 2;287(45):37964-72
22885770 - Nat Cell Biol. 2012 Sep;14(9):924-34
22351926 - J Cell Biol. 2012 Feb 20;196(4):483-96
22020285 - Nature. 2011 Dec 1;480(7375):113-7
17534139 - Autophagy. 2007 Sep-Oct;3(5):452-60
17494868 - Mol Biol Cell. 2007 Jul;18(7):2646-55
22535966 - J Biol Chem. 2012 Jun 22;287(26):21856-65
21218173 - Cell Death Dis. 2010;1:e106
19211550 - J Biol Chem. 2009 Apr 10;284(15):9994-10003
20418806 - EMBO J. 2010 Jun 2;29(11):1792-802
22337770 - Mol Biol Cell. 2012 Apr;23(8):1533-45
19508231 - Biochem J. 2009 Aug 15;422(1):23-35
19010779 - J Biol Chem. 2009 Jan 16;284(3):1790-802
19553680 - J Biol Chem. 2009 Aug 28;284(35):23743-53
References_xml – ident: e_1_3_3_9_2
  doi: 10.1074/jbc.M112.348094
– ident: e_1_3_3_17_2
  doi: 10.1074/jbc.M112.371591
– ident: e_1_3_3_12_2
  doi: 10.1111/j.1600-0854.2008.00701.x
– ident: e_1_3_3_16_2
  doi: 10.1091/mbc.e11-06-0553
– ident: e_1_3_3_11_2
  doi: 10.4161/auto.4451
– ident: e_1_3_3_13_2
  doi: 10.1038/emboj.2012.341
– ident: e_1_3_3_18_2
  doi: 10.1083/jcb.201110114
– ident: e_1_3_3_19_2
  doi: 10.1074/jbc.M109.036509
– ident: e_1_3_3_10_2
  doi: 10.1016/j.tibs.2013.12.001
– ident: e_1_3_3_8_2
  doi: 10.1074/jbc.M900724200
– ident: e_1_3_3_6_2
  doi: 10.1091/mbc.e06-10-0897
– ident: e_1_3_3_1_2
  doi: 10.1038/cr.2013.159
– ident: e_1_3_3_3_2
  doi: 10.1038/emboj.2010.74
– ident: e_1_3_3_14_2
  doi: 10.1038/ncb2557
– ident: e_1_3_3_15_2
  doi: 10.1074/jbc.M805991200
– ident: e_1_3_3_7_2
  doi: 10.1042/BJ20090428
– ident: e_1_3_3_21_2
  doi: 10.1038/nature10546
– ident: e_1_3_3_4_2
  doi: 10.1038/nature09204
– ident: e_1_3_3_5_2
  doi: 10.1152/physrev.00028.2012
– ident: e_1_3_3_20_2
  doi: 10.1038/cddis.2010.84
– ident: e_1_3_3_2_2
  doi: 10.1523/JNEUROSCI.3355-04.2004
– reference: 24369758 - Trends Biochem Sci. 2014 Feb;39(2):61-71
– reference: 22977244 - J Biol Chem. 2012 Nov 2;287(45):37964-72
– reference: 23258225 - EMBO J. 2013 Feb 6;32(3):324-39
– reference: 22351926 - J Cell Biol. 2012 Feb 20;196(4):483-96
– reference: 19211550 - J Biol Chem. 2009 Apr 10;284(15):9994-10003
– reference: 23899561 - Physiol Rev. 2013 Jul;93(3):1019-137
– reference: 19553680 - J Biol Chem. 2009 Aug 28;284(35):23743-53
– reference: 19508231 - Biochem J. 2009 Aug 15;422(1):23-35
– reference: 15601949 - J Neurosci. 2004 Dec 15;24(50):11429-38
– reference: 19010779 - J Biol Chem. 2009 Jan 16;284(3):1790-802
– reference: 17534139 - Autophagy. 2007 Sep-Oct;3(5):452-60
– reference: 18182013 - Traffic. 2008 Apr;9(4):574-87
– reference: 20418806 - EMBO J. 2010 Jun 2;29(11):1792-802
– reference: 22337770 - Mol Biol Cell. 2012 Apr;23(8):1533-45
– reference: 22020285 - Nature. 2011 Dec 1;480(7375):113-7
– reference: 17494868 - Mol Biol Cell. 2007 Jul;18(7):2646-55
– reference: 22535966 - J Biol Chem. 2012 Jun 22;287(26):21856-65
– reference: 24296784 - Cell Res. 2014 Jan;24(1):58-68
– reference: 21218173 - Cell Death Dis. 2010;1:e106
– reference: 22885770 - Nat Cell Biol. 2012 Sep;14(9):924-34
– reference: 20562859 - Nature. 2010 Jul 1;466(7302):68-76
SSID ssj0009580
Score 2.5480547
Snippet Significance Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating...
The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8...
Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating diseases....
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7015
SubjectTerms 1-phosphatidylinositol 4-kinase
Adaptor Proteins, Signal Transducing - metabolism
autophagy
Biological Sciences
Biosynthesis
Cell Fusion
Cells
Fusion
gamma-aminobutyric acid
Gene expression
HeLa Cells
Humans
Immunoprecipitation
lipids
lysosomes
Lysosomes - metabolism
mammals
Maturation
Membranes
Microscopy, Confocal
Microscopy, Electron
Microtubule-Associated Proteins - metabolism
Minor Histocompatibility Antigens
Phagosomes - metabolism
Phosphatidylinositol Phosphates - metabolism
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Proteins
RNA, Small Interfering - genetics
Title GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion
URI https://www.jstor.org/stable/26463491
http://www.pnas.org/content/112/22/7015.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26038556
https://www.proquest.com/docview/1688663487
https://www.proquest.com/docview/1686066873
https://www.proquest.com/docview/1803152439
https://pubmed.ncbi.nlm.nih.gov/PMC4460452
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dj5NAcFPPF1-Mp57HeRpMfDjTUGFZWPDBBM2d1dRatY19IwssV5ILNVIe9I_4d50Blo_zvKgvhO4uw3ZnmJ2ZnQ9Cnvo-9VIrTQ2ZxI7BRJoYXupj3ls_ijhLLZqiveP93J2u2Lu1sx6Nfva8lspdNIl_XBlX8j9YhTbAK0bJ_gNmW6DQAPeAX7gChuH6Vzh-E7wKPgULtPxXFeXlePGWLQxV2HY3FiXmDRDn2wKrodvBxfeiuh2nZaEQ0kimi3YnK5TfwFwZCoMu7KThBcXYGC_mXRHjL43ZeQqi5ibrTpoqnjYtM-NjJradkbrE5jU0bcqsa21gzLK-KcJyKpepTnG9blZ9HkxhX2R15PRE1mwXpBbDZXXh0JYvW7RHgHX0csNmuVnHgP7G_4FhYdHiXBQTlHSpaysog0zb8w_h2Wo2C5en6-Wwt97ZQYl0KDdRrb5JQf-oPEan_WzOXh3b1PwVlTOK288vvXsg7txIxVb5vWIyXRh6lWJz2T-3J_As75DbjaaiBzXZ7ZORzO-SfbXS-kmTsPzZPfJS0aGu6FAf0qE-oMMXigr1mgrvk9XZ6fL11Gjqchix45s7w_MSZss4Se0oss0kNhMhQU_1BCybkJQlDrcijJAG8dK1hJQ0pq60oN2SprRs-4Ds5dtcHhKdc5HYieUIV4A4JdwIj7Glb5rw00851chELV8YN0nrsXbKRVg5T3A7xEUMu_XWyEn7wNc6X8ufhx4CPkJxDrtpuPpMMdciHrJz5mvkoEJSCwLUBhdmZMEzFZQWtEVDSkOkR40cK0yGDY-At7meBzI987hGnrTdwMHxWE7kcltWY9CK4HH7mjEeVmOhoD1o5EFNHL254em-42qED8imHYAZ5Ic9ebapMskz5mJJhaPrp_6Q3Oq-9mOyt_tWykcgiu-ix9Vn8QuzadlB
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GABARAPs+regulate+PI4P-dependent+autophagosome%3Alysosome+fusion&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Hanzhi&rft.au=Sun%2C+Hui-Qiao&rft.au=Zhu%2C+Xiaohui&rft.au=Zhang%2C+Li&rft.date=2015-06-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=22&rft.spage=7015&rft_id=info:doi/10.1073%2Fpnas.1507263112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3716527061
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F22.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F22.cover.gif