GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion
Significance Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating diseases. The steps in the final stages of autophagy that culminate in autophagosome:lysosome fusion are not well understood. The γ-aminobut...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 22; pp. 7015 - 7020 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.06.2015
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Significance Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating diseases. The steps in the final stages of autophagy that culminate in autophagosome:lysosome fusion are not well understood. The γ-aminobutyric acid receptor-associated protein (GABARAP) family of Atg8 (autophagy-related 8) proteins has been implicated in autophagosome maturation. Here we report that phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, is recruited to autophagosomes by GABARAPs. Furthermore, PI4P generation by PI4KIIα, but not by PI4KIIIβ, another major mammalian PI4K, promotes autophagosome fusion with lysosomes. Our results establish for the first time to our knowledge that PI4KIIα is a specific downstream effector of GABARAP and that PI4P has a key role in the final stage of autophagy.
The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs’ previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through “PI4P shuttling.” Importantly, PI4KIIα’s role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP ₂) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome’s fusion machinery. |
---|---|
AbstractList | Significance Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating diseases. The steps in the final stages of autophagy that culminate in autophagosome:lysosome fusion are not well understood. The γ-aminobutyric acid receptor-associated protein (GABARAP) family of Atg8 (autophagy-related 8) proteins has been implicated in autophagosome maturation. Here we report that phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, is recruited to autophagosomes by GABARAPs. Furthermore, PI4P generation by PI4KIIα, but not by PI4KIIIβ, another major mammalian PI4K, promotes autophagosome fusion with lysosomes. Our results establish for the first time to our knowledge that PI4KIIα is a specific downstream effector of GABARAP and that PI4P has a key role in the final stage of autophagy.
The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs’ previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through “PI4P shuttling.” Importantly, PI4KIIα’s role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP ₂) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome’s fusion machinery. The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs' previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KII..., a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KII... mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KII... or by restoring intracellular PI4P through "PI4P shuttling." Importantly, PI4KIIα's role in autophagy is distinct from that of PI4KIII... and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP...) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome's fusion machinery. (ProQuest: ... denotes formulae/symbols omitted.) Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating diseases. The steps in the final stages of autophagy that culminate in autophagosome:lysosome fusion are not well understood. The γ-aminobutyric acid receptor-associated protein (GABARAP) family of Atg8 (autophagy-related 8) proteins has been implicated in autophagosome maturation. Here we report that phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, is recruited to autophagosomes by GABARAPs. Furthermore, PI4P generation by PI4KIIα, but not by PI4KIIIβ, another major mammalian PI4K, promotes autophagosome fusion with lysosomes. Our results establish for the first time to our knowledge that PI4KIIα is a specific downstream effector of GABARAP and that PI4P has a key role in the final stage of autophagy. The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs’ previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through “PI4P shuttling.” Importantly, PI4KIIα’s role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP 2 ) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome’s fusion machinery. The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs' previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through "PI4P shuttling." Importantly, PI4KIIα's role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP2) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome's fusion machinery. The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs' previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through "PI4P shuttling." Importantly, PI4KIIα's role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP2) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome's fusion machinery.The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs' previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through "PI4P shuttling." Importantly, PI4KIIα's role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP2) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome's fusion machinery. The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs’ previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through “PI4P shuttling.” Importantly, PI4KIIα’s role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP ₂) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome’s fusion machinery. |
Author | Zhu, Xiaohui Albanesi, Joseph Zhang, Li Yin, Helen Wang, Hanzhi Sun, Hui-Qiao Levine, Beth |
Author_xml | – sequence: 1 givenname: Hanzhi surname: Wang fullname: Wang, Hanzhi organization: Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 – sequence: 2 givenname: Hui-Qiao surname: Sun fullname: Sun, Hui-Qiao organization: Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 – sequence: 3 givenname: Xiaohui surname: Zhu fullname: Zhu, Xiaohui organization: Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 – sequence: 4 givenname: Li surname: Zhang fullname: Zhang, Li organization: Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 – sequence: 5 givenname: Joseph surname: Albanesi fullname: Albanesi, Joseph organization: Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390 – sequence: 6 givenname: Beth surname: Levine fullname: Levine, Beth organization: Department of Internal Medicine, Center for Autophagy Research, and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 – sequence: 7 givenname: Helen surname: Yin fullname: Yin, Helen organization: Department of Physiology,University of Texas Southwestern Medical Center, Dallas, TX 75390 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26038556$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1vEzEQxS1URNPAmRMQiQuXbWf8tV4OlUIFpVIlIqBny9mdpBtt1ou9i9T_Hi8JaekBTrY8v3nzxu-EHbW-JcZeIpwi5OKsa108RQU51wKRP2EThAIzLQs4YhMAnmdGcnnMTmLcAEChDDxjx1yDMErpCTu_nH-Yf50v4izQemhcT7PFlVxkFXXUVtT2Mzf0vrt1ax_9lt43d_H3ZbYaYu3b5-zpyjWRXuzPKbv59PH7xefs-svl1cX8OitVAX1mTCUFldVKLJcCqhIqR4jGuBy1Iy4rleOS60KC4RodES-5JkzvSEAoxJSd73S7YbmlqkzGgmtsF-qtC3fWu9r-XWnrW7v2P62UGqTiSeDdXiD4HwPF3m7rWFLTuJb8EC0aEKi4FMX_UW00aG3y0dbbR-jGD6FNPzFSRmshEzZlrx-aP7j-k0ICznZAGXyMgVYHBMGOOdsxZ3ufc-pQjzrKund9SiRtXzf_6HuztzIWDlOQW85tDqgS8WpHbGLvwwOvMi1T4L3Cynnr1qGO9uYbB9QAKFUuC_EL9DzICA |
CitedBy_id | crossref_primary_10_1016_j_cotox_2017_10_006 crossref_primary_10_1091_mbc_e16_06_0451 crossref_primary_10_1016_j_plantsci_2019_01_017 crossref_primary_10_1038_s41565_024_01826_8 crossref_primary_10_1080_15548627_2020_1823124 crossref_primary_10_1080_15548627_2021_1909407 crossref_primary_10_1242_jcs_251835 crossref_primary_10_3390_biom13091297 crossref_primary_10_1080_15548627_2019_1606636 crossref_primary_10_7554_eLife_92189_3 crossref_primary_10_1080_15548627_2023_2222556 crossref_primary_10_1080_21505594_2018_1551010 crossref_primary_10_1042_BSR20240200 crossref_primary_10_3389_fmicb_2019_02032 crossref_primary_10_1083_jcb_201901115 crossref_primary_10_1016_j_jbc_2024_107908 crossref_primary_10_1093_carcin_bgz161 crossref_primary_10_1016_j_jmb_2020_01_024 crossref_primary_10_1038_s41467_020_16689_5 crossref_primary_10_1016_j_celrep_2019_04_070 crossref_primary_10_1080_15548627_2020_1796292 crossref_primary_10_1083_jcb_201607039 crossref_primary_10_3389_fmolb_2022_1074701 crossref_primary_10_1016_j_bbalip_2019_05_004 crossref_primary_10_1002_1873_3468_12286 crossref_primary_10_1039_D3CB00232B crossref_primary_10_3390_pathogens13030266 crossref_primary_10_1016_j_semcdb_2015_11_002 crossref_primary_10_3389_fimmu_2021_636078 crossref_primary_10_1038_s41422_023_00916_x crossref_primary_10_1042_BST20190158 crossref_primary_10_3389_fcell_2023_1234204 crossref_primary_10_3390_ijms18010227 crossref_primary_10_1242_jcs_228114 crossref_primary_10_1007_s12672_021_00427_4 crossref_primary_10_1016_j_celrep_2021_109434 crossref_primary_10_1080_15548627_2017_1378838 crossref_primary_10_1242_jcs_196352 crossref_primary_10_1016_j_cub_2023_07_038 crossref_primary_10_1016_j_molcel_2017_02_010 crossref_primary_10_1016_j_isci_2025_112052 crossref_primary_10_15252_embj_2018100312 crossref_primary_10_3390_ijms161125990 crossref_primary_10_1002_1873_3468_14352 crossref_primary_10_1007_s13105_019_00708_1 crossref_primary_10_1186_s13578_020_00503_2 crossref_primary_10_1111_tra_12554 crossref_primary_10_1016_j_aquaculture_2024_741644 crossref_primary_10_1007_s00018_016_2224_z crossref_primary_10_3389_fcell_2020_00343 crossref_primary_10_1016_j_ceb_2019_03_011 crossref_primary_10_1016_j_apsb_2023_03_008 crossref_primary_10_3390_cells12101411 crossref_primary_10_1016_j_cub_2018_02_034 crossref_primary_10_1080_15548627_2021_1891848 crossref_primary_10_1002_jimd_12255 crossref_primary_10_3390_cells11050780 crossref_primary_10_1007_s13105_020_00746_0 crossref_primary_10_3389_fcell_2021_664788 crossref_primary_10_1242_jcs_175208 crossref_primary_10_1128_MCB_00389_20 crossref_primary_10_3390_ijms22010085 crossref_primary_10_1038_s41598_023_49089_y crossref_primary_10_1080_15548627_2020_1749367 crossref_primary_10_1128_MCB_00392_17 crossref_primary_10_1016_j_jmb_2019_07_016 crossref_primary_10_1093_jb_mvaa089 crossref_primary_10_1016_j_ijbiomac_2025_139823 crossref_primary_10_1248_bpb_b23_00865 crossref_primary_10_7554_eLife_58281 crossref_primary_10_1016_j_ymgme_2019_11_005 crossref_primary_10_3389_fcell_2023_1163574 crossref_primary_10_1098_rsfs_2018_0025 crossref_primary_10_1146_annurev_biochem_060815_014556 crossref_primary_10_1523_JNEUROSCI_3498_17_2019 crossref_primary_10_1007_s11010_023_04800_5 crossref_primary_10_1016_j_molcel_2019_10_035 crossref_primary_10_1016_j_jmb_2019_05_051 crossref_primary_10_1083_jcb_202205128 crossref_primary_10_33073_pjm_2023_022 crossref_primary_10_1016_j_antiviral_2017_01_016 crossref_primary_10_1002_hon_2948 crossref_primary_10_1016_j_tcb_2016_03_006 crossref_primary_10_3390_cancers11081209 crossref_primary_10_1038_s41421_020_0141_7 crossref_primary_10_1021_acs_biochem_1c00775 crossref_primary_10_1016_j_chembiol_2022_06_005 crossref_primary_10_1111_febs_15127 crossref_primary_10_1016_j_cellin_2024_100152 crossref_primary_10_15252_embj_201695063 crossref_primary_10_7554_eLife_92189 crossref_primary_10_1038_s41467_022_32109_2 crossref_primary_10_1080_15548627_2023_2249794 crossref_primary_10_3389_fmed_2018_00032 crossref_primary_10_1242_jcs_223792 crossref_primary_10_3390_genes14040825 crossref_primary_10_1128_mbio_01020_23 crossref_primary_10_1016_j_bbalip_2022_159184 crossref_primary_10_15252_embr_201948317 crossref_primary_10_1002_advs_201903323 crossref_primary_10_1007_s12272_016_0777_x crossref_primary_10_1080_19420889_2016_1174798 crossref_primary_10_1080_15548627_2024_2322493 crossref_primary_10_3390_ijms23020711 crossref_primary_10_3390_cells13060500 crossref_primary_10_1111_febs_15873 crossref_primary_10_1016_j_celrep_2024_114131 crossref_primary_10_18632_oncotarget_19639 crossref_primary_10_1111_imr_12775 crossref_primary_10_3390_v8020032 crossref_primary_10_1007_s00210_018_1575_4 crossref_primary_10_1021_acschemneuro_8b00390 crossref_primary_10_1002_bies_201700145 crossref_primary_10_1016_j_neuropharm_2020_107948 crossref_primary_10_1080_15548627_2023_2259732 crossref_primary_10_1080_15548627_2022_2062111 crossref_primary_10_1038_s41421_020_0161_3 crossref_primary_10_1038_s41580_021_00392_4 crossref_primary_10_1038_s41422_025_01085_9 crossref_primary_10_1016_j_jmb_2019_10_028 crossref_primary_10_1016_j_jbior_2015_09_007 crossref_primary_10_1016_j_tcb_2018_07_001 crossref_primary_10_1111_jnc_15194 crossref_primary_10_1083_jcb_201909073 crossref_primary_10_1016_j_jmb_2016_10_029 crossref_primary_10_1172_JCI135124 crossref_primary_10_1016_j_bbalip_2021_158903 crossref_primary_10_1083_jcb_201904063 crossref_primary_10_1021_acs_biochem_8b00224 crossref_primary_10_1016_j_tibs_2020_03_010 crossref_primary_10_1371_journal_ppat_1010350 crossref_primary_10_1016_j_molcel_2018_09_017 crossref_primary_10_1042_BCJ20210314 crossref_primary_10_1177_13872877241307403 crossref_primary_10_3390_cells10113071 crossref_primary_10_1111_tra_12623 crossref_primary_10_1083_jcb_201810099 crossref_primary_10_1038_s41598_019_45917_2 crossref_primary_10_1371_journal_pbio_3002165 crossref_primary_10_1016_j_tibs_2016_08_001 crossref_primary_10_1038_s41422_022_00731_w crossref_primary_10_3390_microorganisms12071458 crossref_primary_10_1371_journal_ppat_1010629 crossref_primary_10_1002_advs_202102568 crossref_primary_10_1002_bies_201700121 crossref_primary_10_1016_j_jbc_2024_107911 |
Cites_doi | 10.1074/jbc.M112.348094 10.1074/jbc.M112.371591 10.1111/j.1600-0854.2008.00701.x 10.1091/mbc.e11-06-0553 10.4161/auto.4451 10.1038/emboj.2012.341 10.1083/jcb.201110114 10.1074/jbc.M109.036509 10.1016/j.tibs.2013.12.001 10.1074/jbc.M900724200 10.1091/mbc.e06-10-0897 10.1038/cr.2013.159 10.1038/emboj.2010.74 10.1038/ncb2557 10.1074/jbc.M805991200 10.1042/BJ20090428 10.1038/nature10546 10.1038/nature09204 10.1152/physrev.00028.2012 10.1038/cddis.2010.84 10.1523/JNEUROSCI.3355-04.2004 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jun 2, 2015 |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jun 2, 2015 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1507263112 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | GABARAPs and PI4P in autophagosomal maturation |
EISSN | 1091-6490 |
EndPage | 7020 |
ExternalDocumentID | PMC4460452 3716527061 26038556 10_1073_pnas_1507263112 112_22_7015 26463491 US201600145749 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA109618 – fundername: NCI NIH HHS grantid: CA118487 – fundername: NIMH NIH HHS grantid: MH096066 – fundername: NCI NIH HHS grantid: R01 CA084254 – fundername: NCI NIH HHS grantid: P30 CA142543 – fundername: NIGMS NIH HHS grantid: R01 GM066110 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM66110 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: CA84254 – fundername: American Heart Association (AHA) grantid: 13GRNT14650022 – fundername: Cancer Prevention Research Institute of Texas grantid: RP120718 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: CA109618 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c590t-88d43ecdf3bb30dc0dae1188a716ae24d571b269408261aee2c26e14d51e0e133 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:57:38 EDT 2025 Thu Jul 10 19:32:43 EDT 2025 Fri Jul 11 10:05:16 EDT 2025 Mon Jun 30 08:09:14 EDT 2025 Thu Apr 03 07:07:59 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Tue Jul 01 01:53:27 EDT 2025 Wed Nov 11 00:29:43 EST 2020 Fri May 30 12:01:28 EDT 2025 Thu Apr 03 09:45:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | PI4P autophagy autophagosome:lysosome fusion PI4KIIα GABARAP |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c590t-88d43ecdf3bb30dc0dae1188a716ae24d571b269408261aee2c26e14d51e0e133 |
Notes | http://dx.doi.org/10.1073/pnas.1507263112 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: H.W., H.-Q.S., X.Z., L.Z., J.A., B.L., and H.Y. designed research; H.W., H.-Q.S., X.Z., and L.Z. performed research; H.W., H.-Q.S., X.Z., L.Z., J.A., B.L., and H.Y. analyzed data; and H.Y. wrote the paper. Reviewers included: A.S., University of Oslo. Contributed by Beth Levine, April 17, 2015 (sent for review December 12, 2014; reviewed by Anne Simonsen) 1H.W. and H.-Q.S. contributed equally to this work. |
OpenAccessLink | https://www.pnas.org/content/pnas/112/22/7015.full.pdf |
PMID | 26038556 |
PQID | 1688663487 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1803152439 crossref_citationtrail_10_1073_pnas_1507263112 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4460452 proquest_miscellaneous_1686066873 proquest_journals_1688663487 jstor_primary_26463491 crossref_primary_10_1073_pnas_1507263112 fao_agris_US201600145749 pnas_primary_112_22_7015 pubmed_primary_26038556 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-02 |
PublicationDateYYYYMMDD | 2015-06-02 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_17_2 e_1_3_3_9_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_11_2 e_1_3_3_3_2 e_1_3_3_10_2 e_1_3_3_21_2 18182013 - Traffic. 2008 Apr;9(4):574-87 20562859 - Nature. 2010 Jul 1;466(7302):68-76 23899561 - Physiol Rev. 2013 Jul;93(3):1019-137 24296784 - Cell Res. 2014 Jan;24(1):58-68 15601949 - J Neurosci. 2004 Dec 15;24(50):11429-38 24369758 - Trends Biochem Sci. 2014 Feb;39(2):61-71 23258225 - EMBO J. 2013 Feb 6;32(3):324-39 22977244 - J Biol Chem. 2012 Nov 2;287(45):37964-72 22885770 - Nat Cell Biol. 2012 Sep;14(9):924-34 22351926 - J Cell Biol. 2012 Feb 20;196(4):483-96 22020285 - Nature. 2011 Dec 1;480(7375):113-7 17534139 - Autophagy. 2007 Sep-Oct;3(5):452-60 17494868 - Mol Biol Cell. 2007 Jul;18(7):2646-55 22535966 - J Biol Chem. 2012 Jun 22;287(26):21856-65 21218173 - Cell Death Dis. 2010;1:e106 19211550 - J Biol Chem. 2009 Apr 10;284(15):9994-10003 20418806 - EMBO J. 2010 Jun 2;29(11):1792-802 22337770 - Mol Biol Cell. 2012 Apr;23(8):1533-45 19508231 - Biochem J. 2009 Aug 15;422(1):23-35 19010779 - J Biol Chem. 2009 Jan 16;284(3):1790-802 19553680 - J Biol Chem. 2009 Aug 28;284(35):23743-53 |
References_xml | – ident: e_1_3_3_9_2 doi: 10.1074/jbc.M112.348094 – ident: e_1_3_3_17_2 doi: 10.1074/jbc.M112.371591 – ident: e_1_3_3_12_2 doi: 10.1111/j.1600-0854.2008.00701.x – ident: e_1_3_3_16_2 doi: 10.1091/mbc.e11-06-0553 – ident: e_1_3_3_11_2 doi: 10.4161/auto.4451 – ident: e_1_3_3_13_2 doi: 10.1038/emboj.2012.341 – ident: e_1_3_3_18_2 doi: 10.1083/jcb.201110114 – ident: e_1_3_3_19_2 doi: 10.1074/jbc.M109.036509 – ident: e_1_3_3_10_2 doi: 10.1016/j.tibs.2013.12.001 – ident: e_1_3_3_8_2 doi: 10.1074/jbc.M900724200 – ident: e_1_3_3_6_2 doi: 10.1091/mbc.e06-10-0897 – ident: e_1_3_3_1_2 doi: 10.1038/cr.2013.159 – ident: e_1_3_3_3_2 doi: 10.1038/emboj.2010.74 – ident: e_1_3_3_14_2 doi: 10.1038/ncb2557 – ident: e_1_3_3_15_2 doi: 10.1074/jbc.M805991200 – ident: e_1_3_3_7_2 doi: 10.1042/BJ20090428 – ident: e_1_3_3_21_2 doi: 10.1038/nature10546 – ident: e_1_3_3_4_2 doi: 10.1038/nature09204 – ident: e_1_3_3_5_2 doi: 10.1152/physrev.00028.2012 – ident: e_1_3_3_20_2 doi: 10.1038/cddis.2010.84 – ident: e_1_3_3_2_2 doi: 10.1523/JNEUROSCI.3355-04.2004 – reference: 24369758 - Trends Biochem Sci. 2014 Feb;39(2):61-71 – reference: 22977244 - J Biol Chem. 2012 Nov 2;287(45):37964-72 – reference: 23258225 - EMBO J. 2013 Feb 6;32(3):324-39 – reference: 22351926 - J Cell Biol. 2012 Feb 20;196(4):483-96 – reference: 19211550 - J Biol Chem. 2009 Apr 10;284(15):9994-10003 – reference: 23899561 - Physiol Rev. 2013 Jul;93(3):1019-137 – reference: 19553680 - J Biol Chem. 2009 Aug 28;284(35):23743-53 – reference: 19508231 - Biochem J. 2009 Aug 15;422(1):23-35 – reference: 15601949 - J Neurosci. 2004 Dec 15;24(50):11429-38 – reference: 19010779 - J Biol Chem. 2009 Jan 16;284(3):1790-802 – reference: 17534139 - Autophagy. 2007 Sep-Oct;3(5):452-60 – reference: 18182013 - Traffic. 2008 Apr;9(4):574-87 – reference: 20418806 - EMBO J. 2010 Jun 2;29(11):1792-802 – reference: 22337770 - Mol Biol Cell. 2012 Apr;23(8):1533-45 – reference: 22020285 - Nature. 2011 Dec 1;480(7375):113-7 – reference: 17494868 - Mol Biol Cell. 2007 Jul;18(7):2646-55 – reference: 22535966 - J Biol Chem. 2012 Jun 22;287(26):21856-65 – reference: 24296784 - Cell Res. 2014 Jan;24(1):58-68 – reference: 21218173 - Cell Death Dis. 2010;1:e106 – reference: 22885770 - Nat Cell Biol. 2012 Sep;14(9):924-34 – reference: 20562859 - Nature. 2010 Jul 1;466(7302):68-76 |
SSID | ssj0009580 |
Score | 2.5480547 |
Snippet | Significance Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating... The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8... Autophagy is an essential homeostatic process that is critically important for maintaining health and that is dysregulated in multiple devastating diseases.... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7015 |
SubjectTerms | 1-phosphatidylinositol 4-kinase Adaptor Proteins, Signal Transducing - metabolism autophagy Biological Sciences Biosynthesis Cell Fusion Cells Fusion gamma-aminobutyric acid Gene expression HeLa Cells Humans Immunoprecipitation lipids lysosomes Lysosomes - metabolism mammals Maturation Membranes Microscopy, Confocal Microscopy, Electron Microtubule-Associated Proteins - metabolism Minor Histocompatibility Antigens Phagosomes - metabolism Phosphatidylinositol Phosphates - metabolism Phosphotransferases (Alcohol Group Acceptor) - metabolism Proteins RNA, Small Interfering - genetics |
Title | GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion |
URI | https://www.jstor.org/stable/26463491 http://www.pnas.org/content/112/22/7015.abstract https://www.ncbi.nlm.nih.gov/pubmed/26038556 https://www.proquest.com/docview/1688663487 https://www.proquest.com/docview/1686066873 https://www.proquest.com/docview/1803152439 https://pubmed.ncbi.nlm.nih.gov/PMC4460452 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dj5NAcFPPF1-Mp57HeRpMfDjTUGFZWPDBBM2d1dRatY19IwssV5ILNVIe9I_4d50Blo_zvKgvhO4uw3ZnmJ2ZnQ9Cnvo-9VIrTQ2ZxI7BRJoYXupj3ls_ijhLLZqiveP93J2u2Lu1sx6Nfva8lspdNIl_XBlX8j9YhTbAK0bJ_gNmW6DQAPeAX7gChuH6Vzh-E7wKPgULtPxXFeXlePGWLQxV2HY3FiXmDRDn2wKrodvBxfeiuh2nZaEQ0kimi3YnK5TfwFwZCoMu7KThBcXYGC_mXRHjL43ZeQqi5ibrTpoqnjYtM-NjJradkbrE5jU0bcqsa21gzLK-KcJyKpepTnG9blZ9HkxhX2R15PRE1mwXpBbDZXXh0JYvW7RHgHX0csNmuVnHgP7G_4FhYdHiXBQTlHSpaysog0zb8w_h2Wo2C5en6-Wwt97ZQYl0KDdRrb5JQf-oPEan_WzOXh3b1PwVlTOK288vvXsg7txIxVb5vWIyXRh6lWJz2T-3J_As75DbjaaiBzXZ7ZORzO-SfbXS-kmTsPzZPfJS0aGu6FAf0qE-oMMXigr1mgrvk9XZ6fL11Gjqchix45s7w_MSZss4Se0oss0kNhMhQU_1BCybkJQlDrcijJAG8dK1hJQ0pq60oN2SprRs-4Ds5dtcHhKdc5HYieUIV4A4JdwIj7Glb5rw00851chELV8YN0nrsXbKRVg5T3A7xEUMu_XWyEn7wNc6X8ufhx4CPkJxDrtpuPpMMdciHrJz5mvkoEJSCwLUBhdmZMEzFZQWtEVDSkOkR40cK0yGDY-At7meBzI987hGnrTdwMHxWE7kcltWY9CK4HH7mjEeVmOhoD1o5EFNHL254em-42qED8imHYAZ5Ic9ebapMskz5mJJhaPrp_6Q3Oq-9mOyt_tWykcgiu-ix9Vn8QuzadlB |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GABARAPs+regulate+PI4P-dependent+autophagosome%3Alysosome+fusion&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Hanzhi&rft.au=Sun%2C+Hui-Qiao&rft.au=Zhu%2C+Xiaohui&rft.au=Zhang%2C+Li&rft.date=2015-06-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=22&rft.spage=7015&rft_id=info:doi/10.1073%2Fpnas.1507263112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3716527061 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F22.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F22.cover.gif |