GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state

The GroEL/GroES reaction cycle involves steps of ATP and polypeptide binding to an open GroEL ring before the GroES encapsulation step that triggers productive folding in a sequestered chamber. The physiological order of addition of ATP and nonnative polypeptide, typically to the open trans ring of...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 48; pp. 20264 - 20269
Main Authors Tyagi, Navneet K, Fenton, Wayne A, Horwich, Arthur L
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 01.12.2009
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The GroEL/GroES reaction cycle involves steps of ATP and polypeptide binding to an open GroEL ring before the GroES encapsulation step that triggers productive folding in a sequestered chamber. The physiological order of addition of ATP and nonnative polypeptide, typically to the open trans ring of an asymmetrical GroEL/GroES/ADP complex, has been unknown, although there have been assumptions that polypeptide binds first, allowing subsequent ATP-mediated movement of the GroEL apical domains to exert an action of forceful unfolding on the nonnative polypeptide. Here, using fluorescence measurements, we show that the physiological order of addition is the opposite, involving rapid binding of ATP, accompanied by nearly as rapid apical domain movements, followed by slower binding of nonnative polypeptide. In order-of-addition experiments, approximately twice as much Rubisco activity was recovered when nonnative substrate protein was added after ATP compared with it being added before ATP, associated with twice as much Rubisco protein recovered with the chaperonin. Furthermore, the rate of Rubisco binding to an ATP-exposed ring was twice that observed in the absence of nucleotide. Finally, when both ATP and Rubisco were added simultaneously to a GroEL ring, simulating the physiological situation, the rate of Rubisco binding corresponded to that observed when ATP had been added first. We conclude that the physiological order, ATP binding before polypeptide, enables more efficient capture of nonnative substrate proteins, and thus allows greater recovery of the native state for any given round of the chaperonin cycle.
AbstractList The GroEL/GroES reaction cycle involves steps of ATP and polypeptide binding to an open GroEL ring before the GroES encapsulation step that triggers productive folding in a sequestered chamber. The physiological order of addition of ATP and nonnative polypeptide, typically to the open trans ring of an asymmetrical GroEL/GroES/ADP complex, has been unknown, although there have been assumptions that polypeptide binds first, allowing subsequent ATP-mediated movement of the GroEL apical domains to exert an action of forceful unfolding on the nonnative polypeptide. Here, using fluorescence measurements, we show that the physiological order of addition is the opposite, involving rapid binding of ATP, accompanied by nearly as rapid apical domain movements, followed by slower binding of nonnative polypeptide. In order-of-addition experiments, approximately twice as much Rubisco activity was recovered when nonnative substrate protein was added after ATP compared with it being added before ATP, associated with twice as much Rubisco protein recovered with the chaperonin. Furthermore, the rate of Rubisco binding to an ATP-exposed ring was twice that observed in the absence of nucleotide. Finally, when both ATP and Rubisco were added simultaneously to a GroEL ring, simulating the physiological situation, the rate of Rubisco binding corresponded to that observed when ATP had been added first. We conclude that the physiological order, ATP binding before polypeptide, enables more efficient capture of nonnative substrate proteins, and thus allows greater recovery of the native state for any given round of the chaperonin cycle.
The GroEL/GroES reaction cycle involves steps of ATP and polypeptide binding to an open GroEL ring before the GroES encapsulation step that triggers productive folding in a sequestered chamber. The physiological order of addition of ATP and nonnative polypeptide, typically to the open trans ring of an asymmetrical GroEL/GroES/ADP complex, has been unknown, although there have been assumptions that polypeptide binds first, allowing subsequent ATP-mediated movement of the GroEL apical domains to exert an action of forceful unfolding on the nonnative polypeptide. Here, using fluorescence measurements, we show that the physiological order of addition is the opposite, involving rapid binding of ATP, accompanied by nearly as rapid apical domain movements, followed by slower binding of nonnative polypeptide. In order-of-addition experiments, approximately twice as much Rubisco activity was recovered when nonnative substrate protein was added after ATP compared with it being added before ATP, associated with twice as much Rubisco protein recovered with the chaperonin. Furthermore, the rate of Rubisco binding to an ATP-exposed ring was twice that observed in the absence of nucleotide. Finally, when both ATP and Rubisco were added simultaneously to a GroEL ring, simulating the physiological situation, the rate of Rubisco binding corresponded to that observed when ATP had been added first. We conclude that the physiological order, ATP binding before polypeptide, enables more efficient capture of nonnative substrate proteins, and thus allows greater recovery of the native state for any given round of the chaperonin cycle.
The GroEL/GroES reaction cycle involves steps of ATP and polypeptide binding to an open GroEL ring before the GroES encapsulation step that triggers productive folding in a sequestered chamber. The physiological order of addition of ATP and nonnative polypeptide, typically to the open trans ring of an asymmetrical GroEL/GroES/ADP complex, has been unknown, although there have been assumptions that polypeptide binds first, allowing subsequent ATP-mediated movement of the GroEL apical domains to exert an action of forceful unfolding on the nonnative polypeptide. Here, using fluorescence measurements, we show that the physiological order of addition is the opposite, involving rapid binding of ATP, accompanied by nearly as rapid apical domain movements, followed by slower binding of nonnative polypeptide. In order-of-addition experiments, approximately twice as much Rubisco activity was recovered when nonnative substrate protein was added after ATP compared with it being added before ATP, associated with twice as much Rubisco protein recovered with the chaperonin. Furthermore, the rate of Rubisco binding to an ATP-exposed ring was twice that observed in the absence of nucleotide. Finally, when both ATP and Rubisco were added simultaneously to a GroEL ring, simulating the physiological situation, the rate of Rubisco binding corresponded to that observed when ATP had been added first. We conclude that the physiological order, ATP binding before polypeptide, enables more efficient capture of nonnative substrate proteins, and thus allows greater recovery of the native state for any given round of the chaperonin cycle. [PUBLICATION ABSTRACT]
Author Tyagi, Navneet K
Fenton, Wayne A
Horwich, Arthur L
Author_xml – sequence: 1
  fullname: Tyagi, Navneet K
– sequence: 2
  fullname: Fenton, Wayne A
– sequence: 3
  fullname: Horwich, Arthur L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19915138$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1vEzEQxS1URNPAmRNgcUEcthmv1-s1B6SqKgUpEkhtz5bXsdONNnZqeyN67j9eLwkNcOHij3m_efbTnKAj551B6DWBUwKczjZOxVMQhDBWE6ifoQnJt6KuBByhCUDJi6Yqq2N0EuMKAARr4AU6JkIQRmgzQQ-XwV_MZ-N6hfW97ju3_ITPrn_gtnOLiJPHymG_MQ6HLOHWWB8MjkMbU1DJ4E3wyXQOW7X1v4jfhbF_vCu3GGuLQafOZyuL063BTqVum31S9niJnlvVR_Nqv0_RzZeL6_Ovxfz75bfzs3mhmYBUNKxkNS2ZaVulSJlzCmHBVFozQ20tmFZacOC2zYdcZwBt01rDAUhDuaFT9HnnuxnatVlo43KEXm5Ct1bhXnrVyb8V193Kpd_KknNOGp4NPuwNgr8bTExy3UVt-l4544coOa1I3dB6JN__Q678EFxOJ0sgtKzGKFM020E6-BiDsU9fISDH8cpxvPIw3tzx9s8EB34_zwx83ANj58GullWTXy7rStqh75P5mTKL_8Nm5M0OWcXkwxNTMiYorWnW3-10q7xUy9BFeXM1BgTCCTQM6CPqAc_T
CitedBy_id crossref_primary_10_1016_j_febslet_2010_01_021
crossref_primary_10_1186_1471_2180_13_48
crossref_primary_10_1099_jmm_0_000811
crossref_primary_10_1016_j_molliq_2017_03_030
crossref_primary_10_1016_j_cell_2012_02_047
crossref_primary_10_1021_acs_jpcb_7b01992
crossref_primary_10_1126_science_1250494
crossref_primary_10_1007_s00203_024_04019_y
crossref_primary_10_1038_s41467_023_38962_z
crossref_primary_10_1073_pnas_1317702110
crossref_primary_10_1016_j_bpj_2014_11_002
crossref_primary_10_1074_jbc_M113_480178
crossref_primary_10_1074_mcp_M110_003764
crossref_primary_10_1371_journal_pone_0078135
crossref_primary_10_1073_pnas_1412922111
crossref_primary_10_1098_rstb_2013_0091
crossref_primary_10_1371_journal_pgen_1003306
crossref_primary_10_1038_srep01247
crossref_primary_10_1016_j_jmb_2011_05_018
crossref_primary_10_3390_biom12010059
crossref_primary_10_1007_s10529_015_1860_y
crossref_primary_10_1002_bip_22361
crossref_primary_10_1007_s11274_024_03970_8
crossref_primary_10_1016_j_saa_2017_12_071
crossref_primary_10_1016_j_bbapap_2011_08_006
crossref_primary_10_1007_s12192_015_0660_6
crossref_primary_10_1016_j_celrep_2012_02_011
crossref_primary_10_1016_j_febslet_2015_06_019
crossref_primary_10_1126_sciadv_1500905
Cites_doi 10.1016/j.febslet.2005.01.013
10.1073/pnas.93.9.4030
10.1016/S0092-8674(01)00617-1
10.1074/jbc.M311806200
10.1073/pnas.0809794105
10.1146/annurev.biophys.30.1.245
10.1038/41944
10.1074/jbc.M601605200
10.1006/jmbi.1996.0815
10.1016/j.molcel.2007.04.004
10.1016/S0092-8674(00)80742-4
10.1017/S0033583509004764
10.1038/42047
10.1016/j.molcel.2004.09.003
10.1002/anie.200800298
10.1073/pnas.0710042105
10.1016/S0092-8674(00)81293-3
10.1093/emboj/cdg477
10.1021/bi980370o
10.1038/nsmb.1394
10.1073/pnas.0505642102
10.1073/pnas.0406132101
10.1126/science.1068408
10.1016/j.cell.2008.01.048
ContentType Journal Article
Copyright Copyright National Academy of Sciences Dec 1, 2009
Copyright_xml – notice: Copyright National Academy of Sciences Dec 1, 2009
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0911556106
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

Virology and AIDS Abstracts

CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 20269
ExternalDocumentID 1914709561
10_1073_pnas_0911556106
19915138
106_48_20264
25593363
US201301710850
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Howard Hughes Medical Institute
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADQXQ
5PM
ID FETCH-LOGICAL-c590t-85256325ebbaa1209199f0e4cc5e3f695cac9707fbcac0e4500b8bfe7001837e3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:21:23 EDT 2024
Fri Aug 16 04:11:35 EDT 2024
Fri Sep 13 06:08:41 EDT 2024
Fri Aug 23 00:41:29 EDT 2024
Sat Sep 28 07:45:38 EDT 2024
Wed Nov 11 00:29:25 EST 2020
Thu May 30 08:49:32 EDT 2019
Fri Feb 02 07:05:58 EST 2024
Wed Dec 27 19:24:20 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-85256325ebbaa1209199f0e4cc5e3f695cac9707fbcac0e4500b8bfe7001837e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: N.K.T., W.A.F., and A.L.H. designed research; N.K.T., W.A.F., and A.L.H. performed research; N.K.T., W.A.F., and A.L.H. analyzed data; and N.K.T., W.A.F., and A.L.H. wrote the paper.
Contributed by Arthur L. Horwich, October 7, 2009
OpenAccessLink https://www.pnas.org/content/pnas/106/48/20264.full.pdf
PMID 19915138
PQID 201324256
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2777187
proquest_journals_201324256
pubmed_primary_19915138
crossref_primary_10_1073_pnas_0911556106
jstor_primary_25593363
pnas_primary_106_48_20264_fulltext
proquest_miscellaneous_734168367
pnas_primary_106_48_20264
fao_agris_US201301710850
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 11884745 - Science. 2002 Mar 8;295(5561):1852-8
8633011 - Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4030-5
11779463 - Cell. 2001 Dec 28;107(7):869-79
14734563 - J Biol Chem. 2004 Apr 16;279(16):16368-76
16116078 - Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12748-53
8608602 - Cell. 1996 Feb 9;84(3):481-90
10319813 - Cell. 1999 Apr 30;97(3):325-38
18987317 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17351-5
14517228 - EMBO J. 2003 Oct 1;22(19):4877-87
9585518 - Biochemistry. 1998 May 19;37(20):7083-8
15710410 - FEBS Lett. 2005 Feb 14;579(5):1183-6
11340060 - Annu Rev Biophys Biomol Struct. 2001;30:245-69
18394994 - Cell. 2008 Apr 4;133(1):142-53
9102459 - J Mol Biol. 1997 Mar 7;266(4):656-64
9285593 - Nature. 1997 Aug 21;388(6644):792-8
18311152 - Nat Struct Mol Biol. 2008 Mar;15(3):303-11
19638247 - Q Rev Biophys. 2009 May;42(2):83-116
15479763 - Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15005-12
16684774 - J Biol Chem. 2006 Jul 28;281(30):21266-75
9285585 - Nature. 1997 Aug 21;388(6644):741-50
15469819 - Mol Cell. 2004 Oct 8;16(1):23-34
18618555 - Angew Chem Int Ed Engl. 2008;47(33):6184-8
18093916 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20788-92
17499047 - Mol Cell. 2007 May 11;26(3):415-26
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_17_2
e_1_3_3_9_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_24_2
e_1_3_3_12_2
e_1_3_3_23_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_11_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_10_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_6_2
  doi: 10.1016/j.febslet.2005.01.013
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.93.9.4030
– ident: e_1_3_3_15_2
  doi: 10.1016/S0092-8674(01)00617-1
– ident: e_1_3_3_17_2
  doi: 10.1074/jbc.M311806200
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.0809794105
– ident: e_1_3_3_1_2
  doi: 10.1146/annurev.biophys.30.1.245
– ident: e_1_3_3_12_2
  doi: 10.1038/41944
– ident: e_1_3_3_18_2
  doi: 10.1074/jbc.M601605200
– ident: e_1_3_3_19_2
  doi: 10.1006/jmbi.1996.0815
– ident: e_1_3_3_21_2
  doi: 10.1016/j.molcel.2007.04.004
– ident: e_1_3_3_20_2
  doi: 10.1016/S0092-8674(00)80742-4
– ident: e_1_3_3_3_2
  doi: 10.1017/S0033583509004764
– ident: e_1_3_3_11_2
  doi: 10.1038/42047
– ident: e_1_3_3_5_2
  doi: 10.1016/j.molcel.2004.09.003
– ident: e_1_3_3_22_2
  doi: 10.1002/anie.200800298
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.0710042105
– ident: e_1_3_3_10_2
  doi: 10.1016/S0092-8674(00)81293-3
– ident: e_1_3_3_24_2
  doi: 10.1093/emboj/cdg477
– ident: e_1_3_3_16_2
  doi: 10.1021/bi980370o
– ident: e_1_3_3_8_2
  doi: 10.1038/nsmb.1394
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.0505642102
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.0406132101
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1068408
– ident: e_1_3_3_9_2
  doi: 10.1016/j.cell.2008.01.048
SSID ssj0009580
Score 2.178585
Snippet The GroEL/GroES reaction cycle involves steps of ATP and polypeptide binding to an open GroEL ring before the GroES encapsulation step that triggers productive...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20264
SubjectTerms Adenosine triphosphatase
Adenosine Triphosphate - metabolism
Aggregation
Binding sites
Biological Sciences
Carboxylic Acids
Chaperonin 10 - metabolism
Chaperonin 60 - metabolism
Chaperonins
Emission spectra
Encapsulating
Encapsulation
Fluorescence
Fluorescence Resonance Energy Transfer
Kinetics
Mathematical rings
Models, Molecular
Protein Binding
Protein Folding
Protein refolding
Proteins
Ribulose-Bisphosphate Carboxylase - metabolism
Title GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state
URI https://www.jstor.org/stable/25593363
http://www.pnas.org/content/106/48/20264.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19915138
https://www.proquest.com/docview/201324256/abstract/
https://search.proquest.com/docview/734168367
https://pubmed.ncbi.nlm.nih.gov/PMC2777187
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZYTr1UpS0lpUVW1QM9ZOPESZztDSEofVAhwUrcLNux6UrFWZEFiXP_eGecx0LVXnqJEjt2oozHni-e-YaQ91pXTJVGxZURSKrNDZwpHWc6LQ2rcu4CUDz9Xp7M8y-XxeUGKYZYmOC0b_Ri6n9eT_3iR_CtXF6bZPATS85ODzMhYEoVyYRMBOcDRB-Zdqsu7iSD6TfP8oHPR_Bk6VU7hQUyxZyQLGQvAvOoSDE45cGqNHGqGdwTkfMUWv3N_vzTjfLBunT8jDztDUp60L34Ftmw_jnZ6lW2pfs9r_SHF-TXp5vm6FuCx3Nq7jEm8uojPbg4o4CO65auGqo8xXRaFH_2UW3BoLW0haklUNjSwOmw8NSpu-C2NxZge7xWvsayumOkpY2jYF5SH7jFaQhdeknmx0cXhydxn4MhNsWMreKqAJuIZ4XVWimMs4Uv5pjNjSksd-WsMMrMBBNOwwmUF4zpSjuL29mAfS3fJpu-8XaHUONUnrEa8J_jeVkYrVxuhajZrAbYpFlE9gcZyGVHtSHDFrngEmUg15KLyA7ISKormAjl_DzD7ddUYCAF9LIdBDd2gZiJ85JHJAq9rLsuZV7JDEBoHpF3_6yTrvfCicjuMAZkr-itxEcjaoNXomMtaChuuyhvm9tWCjAUyoqXIiKvugGzfk4__CIiHg2l8QYk_35cAzoRSMB7HXj93y13yZOsz4XB0jdkc3Vza9-CgbXSewAtPn_dC2r1GzCCIyA
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7axgEuwICxMH5YiMM4tHXjJE65TdNGgXaatBbtZtmOPSqYUy0tElz5x3l2knab4ACXKLFjJ5Gfn98Xv_c9gDdK5VRmWnZyzT2pNtN4JlUnVv1M0zxhNgDF8Uk2nCYfz9PzDUjbWJjgtK_VrOu-XXbd7EvwrZxf6l7rJ9Y7HR_GnKNK5b1NuIPzNeYtSF9x7eZ15EmMCjiJk5bRh7Pe3Mmqi0tk32eFpCF_ERpIad-Hp1xblzatLFsHRc96iq3-ZIHedqS8tjIdP4DP7TfVDilfu8uF6uqft-ge__mjH8L9xlYlB3X1NmwY9wi2G21Qkf2GsvrtY_j1_qo8GvX88YzoHz7c8uIdOZicEgTeRUUWJZGO-ExdxP9HJMqgrWxIhVorsOOSQBcxc8TK78EjcFXg2_tr6QpfVtRkt6S0BC1X4gJtOQlRUU9genw0ORx2mvQOHZ0O6KKTp2husTg1SknpQ3hxKCw1idapYTYbpFrqAafcKjzB8pRSlStr_E45wmrDdmDLlc7sAtFWJjEtEFpalmSpVtImhvOCDgpEZIpGsN8OrpjXLB4i7L5zJvzgirVIRLCLgy_kBepYMT2L_c5un_sYDexlJ0jEqgsPxxjLWARR6GXddSaSXMSIb5MIXv-1TtjGwSeCvVa4RKNDKuEf7QEhvhJZ1eLk9zs60plyWQmONkiWs4xH8LSWxPVzGrmOgN-Q0dUNnlf8Zg1KXuAXbyTt2X-3fAV3h5PxSIw-nHzag3txk3KD9p_D1uJqaV6gHbdQL8Os_Q1co0Qm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH5iQ0JcgAFjYfywEIdxaOPGSZxym8bKgG2qtE2auFi2Y48K5lRLiwRX_nGenaTtJrjsEiV2bCfyy_P74ve-B_BWqYLKXMteobkn1WYaz6TqJWqQa1qkzAageHScH5yln8-z85VUX8FpX6tJ3_247LvJt-BbOb3UcecnFo-P9hLOUaXyeFraeA3u4jebDDugvuDbLZrokwSVcJqkHasPZ_HUybqPy-TAZ4akIYcRGknZwIeorKxNa1ZWnZOiZz7FVv-yQm86U66sTqOH8LV7r8Yp5Xt_PlN9_fsG5eOtXvwRPGhtVrLb3LIBd4x7DButVqjJTktd_e4J_Pl4Ve0fxv54QvQvH3Z58Z7sno4JAvCyJrOKSEd8xi7i_ycSZdBmNqRG7RVYckmgjZg4YuXP4Bm4KPDt_bV0pS8rG9JbUlmCFixxgb6chOiop3A22j_dO-i1aR56OhvSWa_I0OxiSWaUktKH8uJ0WGpSrTPDbD7MtNRDTrlVeILlGaWqUNb4HXOE14ZtwrqrnNkCoq1ME1oixLQszTOtpE0N5yUdlojMFI1gp5tgMW3YPETYhedM-AkWS7GIYAsFQMgL1LXi7CTxO7wD7mM1sJfNIBWLLjwsYyxnEUShl2XXuUgLkSDOTSN48986YVtHnwi2OwETrS6phR_aA0N8JLKoRSXgd3akM9W8FhxtkbxgOY_gWSONy3Fa2Y6AX5PTxQ2eX_x6DUpf4Blvpe35rVu-hnvjDyNx-On4yzbcT9rMG3TwAtZnV3PzEs25mXoVPty_hVBGpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GroEL%2FGroES+cycling%3A+ATP+binds+to+an+open+ring+before+substrate+protein+favoring+protein+binding+and+production+of+the+native+state&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tyagi%2C+Navneet+K.&rft.au=Fenton%2C+Wayne+A.&rft.au=Horwich%2C+Arthur+L.&rft.date=2009-12-01&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=106&rft.issue=48&rft.spage=20264&rft.epage=20269&rft_id=info:doi/10.1073%2Fpnas.0911556106&rft_id=info%3Apmid%2F19915138&rft.externalDBID=PMC2777187
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F48.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F48.cover.gif