Mechanisms Underlying Selective Neuronal Tracking of Attended Speech at a “Cocktail Party”

The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 77; no. 5; pp. 980 - 991
Main Authors Zion Golumbic, Elana M., Ding, Nai, Bickel, Stephan, Lakatos, Peter, Schevon, Catherine A., McKhann, Guy M., Goodman, Robert R., Emerson, Ronald, Mehta, Ashesh D., Simon, Jonathan Z., Poeppel, David, Schroeder, Charles E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.03.2013
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain’s representation of speech using a “Cocktail Party” paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low-frequency phase and high-frequency amplitude fluctuations and that optimal encoding likely combines the two. In and near low-level auditory cortices, attention “modulates” the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher-order regions, the representation appears to become more “selective,” in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds. ► Both low-frequency phase and high-gamma power preferentially track attended speech ► Near auditory cortex attention modulates response to attended and ignored speakers ► Selective tracking of only the attended talker increases in higher-order regions ► Selectivity for the attended speaker increases over time Zion Golumbic et al. use direct brain recordings in surgical epilepsy patients to investigate how people attend one speaker in noisy social environments. Neuronal activity dynamically tracks an attended speaker, with increasing selectivity in higher-order regions, as a sentence unfolds.
AbstractList The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain’s representation of speech using a ‘Cocktail Party’ Paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low frequency phase and high frequency amplitude fluctuations, and that optimal encoding likely combines the two. In and near low level auditory cortices, attention ‘modulates’ the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher order regions, the representation appears to become more ‘selective,’ in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds.
The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain’s representation of speech using a “Cocktail Party” paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low-frequency phase and high-frequency amplitude fluctuations and that optimal encoding likely combines the two. In and near low-level auditory cortices, attention “modulates” the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher-order regions, the representation appears to become more “selective,” in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds. ► Both low-frequency phase and high-gamma power preferentially track attended speech ► Near auditory cortex attention modulates response to attended and ignored speakers ► Selective tracking of only the attended talker increases in higher-order regions ► Selectivity for the attended speaker increases over time Zion Golumbic et al. use direct brain recordings in surgical epilepsy patients to investigate how people attend one speaker in noisy social environments. Neuronal activity dynamically tracks an attended speaker, with increasing selectivity in higher-order regions, as a sentence unfolds.
The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain's representation of speech using a "Cocktail Party" paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low-frequency phase and high-frequency amplitude fluctuations and that optimal encoding likely combines the two. In and near low-level auditory cortices, attention "modulates" the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher-order regions, the representation appears to become more "selective," in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds.The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain's representation of speech using a "Cocktail Party" paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low-frequency phase and high-frequency amplitude fluctuations and that optimal encoding likely combines the two. In and near low-level auditory cortices, attention "modulates" the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher-order regions, the representation appears to become more "selective," in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds.
Author Schevon, Catherine A.
Mehta, Ashesh D.
Ding, Nai
Bickel, Stephan
Simon, Jonathan Z.
Zion Golumbic, Elana M.
McKhann, Guy M.
Goodman, Robert R.
Schroeder, Charles E.
Lakatos, Peter
Emerson, Ronald
Poeppel, David
AuthorAffiliation 2 Department of Neurology, Columbia University College of Physicians and Surgeons New York, NY, USA
3 Department of Neurological Surgery, Columbia University College of Physicians and Surgeons New York, NY, USA
7 Departments of Neurology and Neurosurgery, North Shore Long Island Jewish Health System New Hyde Park, NY, USA
4 Cognitive Neuroscience and Schizophrenia Program Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, USA
5 Department of Electrical and Computer Engineering, University of Maryland, College Park College Park, MD, USA
8 Feinstein Institute for Medical Research Hofstra University School of Medicine Manhasset, NY, USA
6 Department of Biology, University of Maryland, College Park College Park, MD, USA
9 Department of Psychology New York University, NY, USA
1 Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA
AuthorAffiliation_xml – name: 6 Department of Biology, University of Maryland, College Park College Park, MD, USA
– name: 9 Department of Psychology New York University, NY, USA
– name: 1 Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA
– name: 4 Cognitive Neuroscience and Schizophrenia Program Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, USA
– name: 2 Department of Neurology, Columbia University College of Physicians and Surgeons New York, NY, USA
– name: 5 Department of Electrical and Computer Engineering, University of Maryland, College Park College Park, MD, USA
– name: 8 Feinstein Institute for Medical Research Hofstra University School of Medicine Manhasset, NY, USA
– name: 3 Department of Neurological Surgery, Columbia University College of Physicians and Surgeons New York, NY, USA
– name: 7 Departments of Neurology and Neurosurgery, North Shore Long Island Jewish Health System New Hyde Park, NY, USA
Author_xml – sequence: 1
  givenname: Elana M.
  surname: Zion Golumbic
  fullname: Zion Golumbic, Elana M.
  organization: Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
– sequence: 2
  givenname: Nai
  surname: Ding
  fullname: Ding, Nai
  organization: Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, MD 20740, USA
– sequence: 3
  givenname: Stephan
  surname: Bickel
  fullname: Bickel, Stephan
  organization: Departments of Neurology and Neurosurgery, North Shore Long Island Jewish Health System, New Hyde Park, NY 11040, USA
– sequence: 4
  givenname: Peter
  surname: Lakatos
  fullname: Lakatos, Peter
  organization: Cognitive Neuroscience and Schizophrenia Program, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
– sequence: 5
  givenname: Catherine A.
  surname: Schevon
  fullname: Schevon, Catherine A.
  organization: Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
– sequence: 6
  givenname: Guy M.
  surname: McKhann
  fullname: McKhann, Guy M.
  organization: Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
– sequence: 7
  givenname: Robert R.
  surname: Goodman
  fullname: Goodman, Robert R.
  organization: Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
– sequence: 8
  givenname: Ronald
  surname: Emerson
  fullname: Emerson, Ronald
  organization: Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
– sequence: 9
  givenname: Ashesh D.
  surname: Mehta
  fullname: Mehta, Ashesh D.
  organization: Departments of Neurology and Neurosurgery, North Shore Long Island Jewish Health System, New Hyde Park, NY 11040, USA
– sequence: 10
  givenname: Jonathan Z.
  surname: Simon
  fullname: Simon, Jonathan Z.
  organization: Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, MD 20740, USA
– sequence: 11
  givenname: David
  surname: Poeppel
  fullname: Poeppel, David
  organization: Department of Psychology, New York University, NY 10003, USA
– sequence: 12
  givenname: Charles E.
  surname: Schroeder
  fullname: Schroeder, Charles E.
  email: schrod@nki.rfmh.org
  organization: Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23473326$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuEzEUtVARTQt_gJAlNmwS7PFjxiyQqggKUnlIbbdYjuemdTqxg-2JlF0_pPxcvwRPEyrogkpX8uKec3x07jlAez54QOglJRNKqHy7mHjoY_CTitBqUoaw-gkaUaLqMadK7aERaZQcy6pm--ggpQUhlAtFn6H9ivGasUqO0I8vYC-Nd2mZ8LlvIXYb5y_wKXRgs1sD_nr3ienwWTT2atiFOT7KGQq4xacrKHxsMjb49vpmGuxVNq7D303Mm9vrX8_R07npErzYvYfo_OOHs-mn8cm348_To5OxFYrkccNIywi1UIvGSgmczqDmwqhZY5hs51xRObNKVZVqqLTCCAVUGkKMsJYQzg7R-63uqp8tobXgczSdXkW3NHGjg3H63413l_oirDVrFOV1UwTe7ARi-NlDynrpkoWuMx5CnzQVgitREpSPQxmVRDDekAJ9_QC6CH0saQ6CrCKiqu_Mv_rb_L3rP1cqAL4F2BhSijC_h1CihzLohd6WQQ9l0GVKGQrt3QOaddlkF4YIXPcYeZcolLOtHUSdrANvoXWxVEO3wf1f4DepotOi
CitedBy_id crossref_primary_10_1523_JNEUROSCI_1157_23_2023
crossref_primary_10_3389_fpsyg_2022_892416
crossref_primary_10_1038_s41598_017_17063_0
crossref_primary_10_3390_brainsci15010003
crossref_primary_10_1016_j_heares_2023_108770
crossref_primary_10_1038_s41598_018_24535_4
crossref_primary_10_3389_fnins_2020_00436
crossref_primary_10_1016_j_neuron_2018_07_032
crossref_primary_10_1016_j_neuron_2017_05_019
crossref_primary_10_1080_23273798_2016_1262051
crossref_primary_10_1016_j_neuroimage_2017_02_014
crossref_primary_10_1371_journal_pone_0313274
crossref_primary_10_1007_s11571_017_9425_5
crossref_primary_10_1523_JNEUROSCI_2539_19_2020
crossref_primary_10_1523_ENEURO_0130_23_2023
crossref_primary_10_1016_j_cortex_2014_12_014
crossref_primary_10_1051_e3sconf_202016410015
crossref_primary_10_1016_j_bandl_2020_104891
crossref_primary_10_1016_j_neubiorev_2016_07_016
crossref_primary_10_1162_jocn_a_01295
crossref_primary_10_1007_s10162_015_0540_x
crossref_primary_10_1121_1_4890198
crossref_primary_10_1371_journal_pcbi_1004643
crossref_primary_10_1523_JNEUROSCI_0238_24_2024
crossref_primary_10_1016_j_neuroimage_2020_117699
crossref_primary_10_1016_j_dcn_2023_101297
crossref_primary_10_1093_cercor_bhac502
crossref_primary_10_1002_hbm_25415
crossref_primary_10_1002_hbm_23398
crossref_primary_10_1016_j_cub_2017_12_005
crossref_primary_10_1088_1741_2560_13_5_056014
crossref_primary_10_1523_JNEUROSCI_1387_13_2013
crossref_primary_10_1016_j_neuroimage_2021_117958
crossref_primary_10_1088_1741_2552_aba6f8
crossref_primary_10_1016_j_jneumeth_2014_03_007
crossref_primary_10_1016_j_apacoust_2023_109519
crossref_primary_10_1073_pnas_1523357113
crossref_primary_10_1016_j_cub_2017_04_002
crossref_primary_10_1016_j_ijpsycho_2014_05_005
crossref_primary_10_1016_j_cub_2015_08_030
crossref_primary_10_1016_j_neuroimage_2023_120143
crossref_primary_10_1016_j_neuroscience_2024_10_013
crossref_primary_10_1523_JNEUROSCI_0220_22_2023
crossref_primary_10_7554_eLife_48116
crossref_primary_10_1016_j_neuroimage_2017_11_037
crossref_primary_10_1016_j_neuroimage_2015_05_001
crossref_primary_10_1016_j_neuroimage_2021_117969
crossref_primary_10_1002_lio2_73
crossref_primary_10_1162_jocn_a_02249
crossref_primary_10_1523_JNEUROSCI_1732_18_2019
crossref_primary_10_1038_s41467_019_11710_y
crossref_primary_10_1016_j_bandl_2014_05_003
crossref_primary_10_1016_j_brainres_2025_149503
crossref_primary_10_1016_j_bandl_2021_104967
crossref_primary_10_1016_j_bandl_2018_05_004
crossref_primary_10_1523_JNEUROSCI_0583_21_2021
crossref_primary_10_3389_fnins_2021_635126
crossref_primary_10_3389_fpsyg_2019_02078
crossref_primary_10_1016_j_cognition_2022_105313
crossref_primary_10_1111_ejn_13935
crossref_primary_10_1016_j_neuroimage_2022_119049
crossref_primary_10_3389_fnhum_2021_676992
crossref_primary_10_1523_JNEUROSCI_0555_20_2020
crossref_primary_10_1523_JNEUROSCI_0938_17_2017
crossref_primary_10_1371_journal_pbio_3000491
crossref_primary_10_1016_j_neuroimage_2020_117427
crossref_primary_10_1016_j_celrep_2024_114081
crossref_primary_10_1038_s42003_025_07601_2
crossref_primary_10_1523_ENEURO_0489_21_2022
crossref_primary_10_1016_j_heares_2023_108856
crossref_primary_10_1016_j_neuroimage_2013_10_054
crossref_primary_10_7554_eLife_16747
crossref_primary_10_1016_j_neuron_2019_10_019
crossref_primary_10_1523_JNEUROSCI_0514_21_2021
crossref_primary_10_3389_fnins_2018_00095
crossref_primary_10_1016_j_neuroimage_2022_119395
crossref_primary_10_1523_JNEUROSCI_1455_20_2021
crossref_primary_10_1371_journal_pone_0292330
crossref_primary_10_1111_ejn_14912
crossref_primary_10_7554_eLife_94509_3
crossref_primary_10_3758_s13414_020_02064_5
crossref_primary_10_1371_journal_pbio_3002534
crossref_primary_10_1016_j_bandl_2015_06_005
crossref_primary_10_7554_eLife_94198
crossref_primary_10_1016_j_cortex_2015_05_001
crossref_primary_10_1088_1741_2552_ad0e7b
crossref_primary_10_7554_eLife_87820_3
crossref_primary_10_1016_j_neuroimage_2017_12_051
crossref_primary_10_1523_JNEUROSCI_0302_20_2020
crossref_primary_10_1016_j_ynirp_2022_100093
crossref_primary_10_1093_schbul_sbx078
crossref_primary_10_1177_23312165241287622
crossref_primary_10_1038_srep11628
crossref_primary_10_1016_j_neuroimage_2015_08_064
crossref_primary_10_1016_j_plrev_2016_01_008
crossref_primary_10_1016_j_bandl_2018_12_005
crossref_primary_10_1073_pnas_1321487111
crossref_primary_10_1523_JNEUROSCI_0447_17_2017
crossref_primary_10_1038_srep37647
crossref_primary_10_1162_jocn_a_01581
crossref_primary_10_1093_cercor_bht355
crossref_primary_10_1038_s41467_019_10611_4
crossref_primary_10_3389_fnhum_2016_00274
crossref_primary_10_1371_journal_pbio_2000812
crossref_primary_10_1371_journal_pbio_3001234
crossref_primary_10_1016_j_brainres_2023_148246
crossref_primary_10_3389_fnins_2021_678029
crossref_primary_10_1162_jocn_a_01467
crossref_primary_10_1371_journal_pcbi_1012376
crossref_primary_10_7554_eLife_92079_3
crossref_primary_10_1371_journal_pbio_1002577
crossref_primary_10_1523_JNEUROSCI_0268_15_2015
crossref_primary_10_1523_ENEURO_0065_21_2021
crossref_primary_10_1016_j_cortex_2017_11_011
crossref_primary_10_1152_jn_00356_2022
crossref_primary_10_1002_hbm_24310
crossref_primary_10_7554_eLife_60433
crossref_primary_10_1016_j_cub_2022_07_047
crossref_primary_10_1523_JNEUROSCI_1515_17_2017
crossref_primary_10_1152_physrev_00011_2022
crossref_primary_10_1523_JNEUROSCI_3484_14_2015
crossref_primary_10_1016_j_neuroimage_2020_116788
crossref_primary_10_1016_j_heares_2023_108767
crossref_primary_10_1111_2041_210X_14118
crossref_primary_10_1016_j_neuroimage_2024_120875
crossref_primary_10_1080_13546805_2019_1665994
crossref_primary_10_7554_eLife_90735
crossref_primary_10_1093_cercor_bhaa153
crossref_primary_10_1111_ejn_13855
crossref_primary_10_1002_advs_202401379
crossref_primary_10_1016_j_cortex_2025_02_015
crossref_primary_10_1523_JNEUROSCI_1247_23_2023
crossref_primary_10_1162_jocn_a_01205
crossref_primary_10_1016_j_dcn_2022_101181
crossref_primary_10_1371_journal_pbio_3001142
crossref_primary_10_1016_j_neuropsychologia_2015_06_025
crossref_primary_10_1093_cercor_bhad549
crossref_primary_10_3389_fpsyg_2018_00034
crossref_primary_10_1016_j_bandl_2022_105128
crossref_primary_10_1523_JNEUROSCI_1652_20_2020
crossref_primary_10_3389_fnins_2021_685774
crossref_primary_10_1371_journal_pone_0304027
crossref_primary_10_1016_j_dcn_2021_100915
crossref_primary_10_3390_children7110219
crossref_primary_10_1111_ejn_13742
crossref_primary_10_3389_fnins_2020_00846
crossref_primary_10_3389_fnins_2020_00603
crossref_primary_10_1523_JNEUROSCI_1007_17_2017
crossref_primary_10_1002_brb3_2869
crossref_primary_10_1038_s41598_020_63103_7
crossref_primary_10_1016_j_tics_2019_08_004
crossref_primary_10_1038_s41598_017_11981_9
crossref_primary_10_1016_j_neubiorev_2025_106111
crossref_primary_10_1044_2017_JSLHR_H_17_0080
crossref_primary_10_1093_cercor_bhab256
crossref_primary_10_1093_cercor_bhab136
crossref_primary_10_1016_j_conb_2014_07_005
crossref_primary_10_3917_enf2_201_0089
crossref_primary_10_1371_journal_pbio_3002128
crossref_primary_10_1523_JNEUROSCI_1468_18_2019
crossref_primary_10_1093_cercor_bhy282
crossref_primary_10_1038_s41598_018_32150_6
crossref_primary_10_1111_ejn_13992
crossref_primary_10_3389_fnins_2019_00720
crossref_primary_10_1109_TNNLS_2023_3303308
crossref_primary_10_3758_s13415_024_01260_2
crossref_primary_10_1162_jocn_a_01303
crossref_primary_10_3389_fpsyg_2017_01497
crossref_primary_10_1016_j_heares_2022_108552
crossref_primary_10_1016_j_tics_2014_02_005
crossref_primary_10_1152_jn_00401_2019
crossref_primary_10_3389_fnhum_2019_00386
crossref_primary_10_7554_eLife_65096
crossref_primary_10_1016_j_cub_2024_06_072
crossref_primary_10_1098_rspb_2020_2419
crossref_primary_10_3389_fnagi_2018_00201
crossref_primary_10_3390_e20070512
crossref_primary_10_1016_j_heares_2013_08_003
crossref_primary_10_1142_S0219843620500231
crossref_primary_10_1016_j_neuroimage_2020_117282
crossref_primary_10_3390_brainsci13091314
crossref_primary_10_3758_s13414_021_02298_x
crossref_primary_10_1016_j_cub_2019_07_075
crossref_primary_10_1038_nn_4186
crossref_primary_10_1016_j_conb_2014_01_011
crossref_primary_10_1016_j_brainres_2021_147720
crossref_primary_10_1016_j_neubiorev_2021_12_029
crossref_primary_10_1093_brain_awaa429
crossref_primary_10_1016_j_dcn_2022_101093
crossref_primary_10_1080_23273798_2016_1238495
crossref_primary_10_1016_j_neuroimage_2021_118544
crossref_primary_10_1080_23273798_2020_1758335
crossref_primary_10_1523_JNEUROSCI_2606_17_2017
crossref_primary_10_1038_srep28073
crossref_primary_10_1093_braincomms_fcab186
crossref_primary_10_1187_cbe_19_11_0258
crossref_primary_10_1044_2024_JSLHR_24_00404
crossref_primary_10_1016_j_brainres_2021_147739
crossref_primary_10_1038_s41598_019_47643_1
crossref_primary_10_1097_AUD_0000000000000923
crossref_primary_10_1177_2331216518816600
crossref_primary_10_1016_j_ymeth_2022_04_009
crossref_primary_10_1111_ejn_14986
crossref_primary_10_1002_brb3_1635
crossref_primary_10_1007_s00426_014_0555_7
crossref_primary_10_1109_LSP_2021_3134563
crossref_primary_10_3389_fnsys_2018_00056
crossref_primary_10_1121_1_5024404
crossref_primary_10_1371_journal_pcbi_1009358
crossref_primary_10_1016_j_cortex_2015_03_006
crossref_primary_10_1016_j_neuroimage_2019_116152
crossref_primary_10_1093_cercor_bhab446
crossref_primary_10_1152_jn_00074_2016
crossref_primary_10_1111_desc_13420
crossref_primary_10_1016_j_jml_2016_12_002
crossref_primary_10_12688_f1000research_15580_1
crossref_primary_10_3389_fnhum_2023_1168108
crossref_primary_10_1007_s11571_020_09594_6
crossref_primary_10_3389_fncom_2016_00047
crossref_primary_10_1088_1741_2552_aae0a6
crossref_primary_10_1162_neco_a_01007
crossref_primary_10_1016_j_neuroimage_2023_120040
crossref_primary_10_1093_cercor_bhy052
crossref_primary_10_1371_journal_pbio_3002498
crossref_primary_10_1016_j_neuroimage_2015_11_016
crossref_primary_10_3389_fnins_2022_963629
crossref_primary_10_3389_fnins_2021_636060
crossref_primary_10_1523_JNEUROSCI_3658_16_2017
crossref_primary_10_1016_j_neuroscience_2017_07_021
crossref_primary_10_3390_audiolres11010012
crossref_primary_10_1016_j_neuroimage_2019_02_047
crossref_primary_10_1093_cercor_bhac424
crossref_primary_10_3389_fnins_2022_872600
crossref_primary_10_1016_j_neuroimage_2018_02_065
crossref_primary_10_1093_cercor_bhac302
crossref_primary_10_1093_cercor_bhaa245
crossref_primary_10_1016_j_procs_2018_11_089
crossref_primary_10_1016_j_ijpsycho_2014_06_010
crossref_primary_10_1111_ejn_15616
crossref_primary_10_1016_j_neuroimage_2018_01_033
crossref_primary_10_1371_journal_pone_0212754
crossref_primary_10_1152_jn_00652_2015
crossref_primary_10_1016_j_neuroimage_2020_117365
crossref_primary_10_1007_s10548_014_0365_7
crossref_primary_10_1016_j_neurobiolaging_2017_04_003
crossref_primary_10_1093_cercor_bhab469
crossref_primary_10_1016_j_neuropsychologia_2015_08_011
crossref_primary_10_1016_j_ijpsycho_2019_05_005
crossref_primary_10_1523_JNEUROSCI_2243_15_2015
crossref_primary_10_1523_JNEUROSCI_2313_20_2021
crossref_primary_10_1055_s_0041_1735134
crossref_primary_10_1111_psyp_12815
crossref_primary_10_3758_s13414_015_0882_9
crossref_primary_10_1038_nn_4386
crossref_primary_10_1111_ejn_15504
crossref_primary_10_1111_ejn_15503
crossref_primary_10_1371_journal_pone_0172480
crossref_primary_10_1093_cercor_bhy193
crossref_primary_10_7554_eLife_24763
crossref_primary_10_1016_j_neuropsychologia_2023_108660
crossref_primary_10_1088_1741_2552_ac975c
crossref_primary_10_3389_fnins_2022_869426
crossref_primary_10_1016_j_cub_2015_07_043
crossref_primary_10_1523_JNEUROSCI_0025_14_2014
crossref_primary_10_1016_j_neuropsychologia_2018_10_019
crossref_primary_10_1016_j_neuroimage_2018_09_006
crossref_primary_10_1016_j_tics_2018_08_003
crossref_primary_10_1121_1_5065392
crossref_primary_10_5909_JBE_2015_20_1_68
crossref_primary_10_1044_2018_JSLHR_S_ASTM_18_0244
crossref_primary_10_1016_j_ijporl_2017_08_010
crossref_primary_10_1038_s42005_024_01818_z
crossref_primary_10_1093_cercor_bhac203
crossref_primary_10_1111_nyas_12629
crossref_primary_10_1371_journal_pone_0085819
crossref_primary_10_1093_cercor_bhae472
crossref_primary_10_1016_j_heares_2015_11_002
crossref_primary_10_1111_ejn_14425
crossref_primary_10_1016_j_biopsycho_2023_108651
crossref_primary_10_1016_j_brs_2015_04_004
crossref_primary_10_3389_fncir_2014_00094
crossref_primary_10_1007_s11571_021_09711_z
crossref_primary_10_1111_ejn_70009
crossref_primary_10_3390_brainsci9030070
crossref_primary_10_3389_fnhum_2015_00171
crossref_primary_10_1016_j_dcn_2022_101102
crossref_primary_10_3389_fncir_2021_721186
crossref_primary_10_7554_eLife_90735_4
crossref_primary_10_3389_fpsyg_2019_00786
crossref_primary_10_1113_jphysiol_2014_274886
crossref_primary_10_1109_TBME_2023_3294242
crossref_primary_10_1109_TBME_2016_2587382
crossref_primary_10_1088_1741_2552_ad867c
crossref_primary_10_3389_fnsys_2017_00061
crossref_primary_10_3389_fnint_2017_00001
crossref_primary_10_1177_23312165241266316
crossref_primary_10_1038_s41598_020_62613_8
crossref_primary_10_1093_cercor_bhx235
crossref_primary_10_3389_fnins_2016_00361
crossref_primary_10_1371_journal_pone_0219744
crossref_primary_10_1088_1741_2552_ab4340
crossref_primary_10_1080_2326263X_2015_1063363
crossref_primary_10_1126_sciadv_ado8915
crossref_primary_10_1109_TBME_2022_3140246
crossref_primary_10_1152_jn_00758_2018
crossref_primary_10_1016_j_neubiorev_2023_105438
crossref_primary_10_7554_eLife_94509
crossref_primary_10_1152_jn_00329_2024
crossref_primary_10_1523_ENEURO_0275_24_2025
crossref_primary_10_1523_ENEURO_0071_16_2016
crossref_primary_10_1121_1_5123391
crossref_primary_10_1016_j_bandl_2016_06_003
crossref_primary_10_1523_ENEURO_0057_19_2019
crossref_primary_10_1016_j_neuroimage_2022_119770
crossref_primary_10_1088_1741_2560_12_4_046007
crossref_primary_10_3389_fnint_2020_00010
crossref_primary_10_3389_fpsyg_2016_00844
crossref_primary_10_3389_fnins_2022_799787
crossref_primary_10_1016_j_cortex_2022_09_011
crossref_primary_10_3389_fnins_2016_00254
crossref_primary_10_1044_2015_JSLHR_H_15_0014
crossref_primary_10_1016_j_bandl_2016_06_006
crossref_primary_10_1111_ejn_14573
crossref_primary_10_1038_s41598_017_11295_w
crossref_primary_10_1038_s41467_018_07773_y
crossref_primary_10_3389_fnhum_2023_1174720
crossref_primary_10_1523_JNEUROSCI_1101_19_2019
crossref_primary_10_1016_j_neubiorev_2017_12_002
crossref_primary_10_1111_nyas_13317
crossref_primary_10_1371_journal_pbio_1001710
crossref_primary_10_3389_fnins_2016_00349
crossref_primary_10_1038_s41598_017_04464_4
crossref_primary_10_1371_journal_pone_0308554
crossref_primary_10_1016_j_neuroimage_2017_05_037
crossref_primary_10_1016_j_tics_2016_07_006
crossref_primary_10_1016_j_neuroimage_2022_119724
crossref_primary_10_1098_rspa_2015_0309
crossref_primary_10_1162_neco_a_01537
crossref_primary_10_1007_s10162_021_00789_0
crossref_primary_10_1016_j_neuroimage_2018_10_057
crossref_primary_10_21848_asr_210004
crossref_primary_10_3389_fpsyg_2017_00265
crossref_primary_10_3389_fnins_2018_00531
crossref_primary_10_1088_1741_2552_ab07fe
crossref_primary_10_1073_pnas_1816414116
crossref_primary_10_1016_j_neuron_2019_04_023
crossref_primary_10_1162_jocn_a_00719
crossref_primary_10_1093_cercor_bhac376
crossref_primary_10_1093_cercor_bhad347
crossref_primary_10_3389_fnhum_2016_00604
crossref_primary_10_1016_j_copsyc_2018_12_016
crossref_primary_10_1093_cercor_bhad475
crossref_primary_10_3389_fpsyg_2015_00597
crossref_primary_10_1016_j_cortex_2017_05_001
crossref_primary_10_1016_j_neuroimage_2017_07_056
crossref_primary_10_3389_fcomp_2021_661178
crossref_primary_10_3389_fnhum_2022_1027335
crossref_primary_10_3389_fnins_2016_00472
crossref_primary_10_1088_1741_2560_11_4_046015
crossref_primary_10_1121_10_0021301
crossref_primary_10_1016_j_cortex_2023_11_018
crossref_primary_10_1016_j_clinph_2018_03_042
crossref_primary_10_1038_s41583_020_0304_4
crossref_primary_10_3389_fnhum_2017_00034
crossref_primary_10_1016_j_ijpsycho_2014_03_004
crossref_primary_10_1146_annurev_neuro_100120_085519
crossref_primary_10_1371_journal_pone_0114427
crossref_primary_10_3389_fnint_2019_00028
crossref_primary_10_1073_pnas_1620350114
crossref_primary_10_1016_j_neuroscience_2020_05_018
crossref_primary_10_1044_2021_JSLHR_20_00608
crossref_primary_10_1016_j_neuroimage_2016_11_043
crossref_primary_10_1038_s41598_019_39166_6
crossref_primary_10_1002_acn3_470
crossref_primary_10_1080_23273798_2018_1518534
crossref_primary_10_1016_j_cognition_2019_05_019
crossref_primary_10_1080_1357650X_2019_1606820
crossref_primary_10_1016_j_yebeh_2021_108164
crossref_primary_10_1016_j_heares_2019_107808
crossref_primary_10_1088_1741_2552_aa7ab4
crossref_primary_10_1016_j_neuroimage_2021_118578
crossref_primary_10_1016_j_neuropsychologia_2021_108106
crossref_primary_10_1121_10_0000646
crossref_primary_10_1016_j_heares_2024_109007
crossref_primary_10_3390_brainsci10110810
crossref_primary_10_1016_j_neuroimage_2021_118698
crossref_primary_10_1111_mbe_12373
crossref_primary_10_1098_rstb_2013_0393
crossref_primary_10_1162_imag_a_00148
crossref_primary_10_1016_j_bandl_2022_105221
crossref_primary_10_1093_cercor_bhae338
crossref_primary_10_1016_j_neuroimage_2019_116211
crossref_primary_10_1093_cercor_bhac277
crossref_primary_10_1016_j_neuron_2013_02_015
crossref_primary_10_3389_fnins_2020_00904
crossref_primary_10_1523_JNEUROSCI_4274_13_2013
crossref_primary_10_1016_j_neuron_2015_12_041
crossref_primary_10_1111_desc_12947
crossref_primary_10_1109_TNSRE_2016_2571900
crossref_primary_10_1016_j_neuroimage_2022_119613
crossref_primary_10_1038_s41598_019_47795_0
crossref_primary_10_1038_s41598_023_37173_2
crossref_primary_10_1126_sciadv_aav6134
crossref_primary_10_1109_TNNLS_2018_2830119
crossref_primary_10_1162_nol_a_00141
crossref_primary_10_3389_fnins_2018_00422
crossref_primary_10_3758_s13414_023_02815_0
crossref_primary_10_3389_fncom_2015_00005
crossref_primary_10_1162_imag_a_00035
crossref_primary_10_1016_j_bandl_2019_104700
crossref_primary_10_1016_j_neuron_2014_04_031
crossref_primary_10_1371_journal_pbio_1001752
crossref_primary_10_1016_j_cophys_2020_07_014
crossref_primary_10_1080_23273798_2016_1247970
crossref_primary_10_1371_journal_pbio_3000840
crossref_primary_10_1093_scan_nsab103
crossref_primary_10_1007_s10162_021_00787_2
crossref_primary_10_1109_TNSRE_2019_2952724
crossref_primary_10_1523_JNEUROSCI_3318_14_2015
crossref_primary_10_1038_s41598_019_44782_3
crossref_primary_10_3389_fnins_2021_652058
crossref_primary_10_1016_j_neuroimage_2017_04_026
crossref_primary_10_1086_714914
crossref_primary_10_1177_09567976241243367
crossref_primary_10_1016_j_tins_2016_05_001
crossref_primary_10_1162_jocn_a_00913
crossref_primary_10_1109_THMS_2021_3125283
crossref_primary_10_1523_JNEUROSCI_1889_18_2018
crossref_primary_10_1016_j_neuroimage_2015_08_054
crossref_primary_10_1523_JNEUROSCI_0588_18_2019
crossref_primary_10_3389_fnins_2021_717572
crossref_primary_10_3389_fnins_2014_00137
crossref_primary_10_3389_fnins_2019_00153
crossref_primary_10_1016_j_neuroimage_2023_119894
crossref_primary_10_1038_s41598_019_41752_7
crossref_primary_10_1016_j_conb_2014_12_005
crossref_primary_10_1073_pnas_2122481120
crossref_primary_10_1080_23273798_2018_1492002
crossref_primary_10_1111_psyp_13487
crossref_primary_10_1177_23312165211013242
crossref_primary_10_1111_ejn_15367
crossref_primary_10_1016_j_isci_2023_106849
crossref_primary_10_1016_j_neuroimage_2020_116882
crossref_primary_10_1163_22134808_bja10001
crossref_primary_10_1016_j_dcn_2023_101330
crossref_primary_10_1038_srep08662
crossref_primary_10_1016_j_bandl_2015_05_008
crossref_primary_10_1016_j_bandl_2016_04_004
crossref_primary_10_1016_j_neuroimage_2022_119024
crossref_primary_10_1111_nyas_15315
crossref_primary_10_1371_journal_pbio_3001713
crossref_primary_10_1016_j_neuroimage_2014_06_018
crossref_primary_10_1121_1_4879667
crossref_primary_10_1162_jocn_a_02079
crossref_primary_10_12677_AP_2023_133124
crossref_primary_10_1038_s41598_022_09989_x
crossref_primary_10_1038_s41598_025_90301_y
crossref_primary_10_1002_wcs_1610
crossref_primary_10_1111_ejn_16221
crossref_primary_10_3389_fnhum_2020_00130
crossref_primary_10_3758_s13414_020_02091_2
crossref_primary_10_3389_fnins_2022_842447
crossref_primary_10_1016_j_cub_2018_01_080
crossref_primary_10_1016_j_neuroimage_2023_120404
crossref_primary_10_1016_j_cub_2017_11_033
crossref_primary_10_7554_eLife_31640
crossref_primary_10_1155_2014_869726
crossref_primary_10_1016_j_neuroimage_2018_10_037
crossref_primary_10_1093_scan_nsaa142
crossref_primary_10_1016_j_cognition_2018_06_001
crossref_primary_10_1016_j_cub_2015_10_045
crossref_primary_10_1080_0163853X_2017_1330031
crossref_primary_10_1093_scan_nsaa024
crossref_primary_10_1016_j_neuroimage_2018_07_052
crossref_primary_10_1016_j_cub_2015_10_040
crossref_primary_10_1163_22134808_20181327
crossref_primary_10_1038_ncomms15801
crossref_primary_10_1007_s10548_017_0560_4
crossref_primary_10_1152_jn_00950_2016
crossref_primary_10_1016_j_dcn_2023_101313
crossref_primary_10_3389_fnins_2021_596478
crossref_primary_10_1121_1_4963902
crossref_primary_10_3389_fnhum_2014_00311
crossref_primary_10_1016_j_heares_2014_04_008
crossref_primary_10_1371_journal_pone_0073590
crossref_primary_10_3389_fnhum_2014_00798
crossref_primary_10_1098_rstb_2021_0488
crossref_primary_10_1016_j_neuroimage_2018_11_026
crossref_primary_10_1371_journal_pbio_3000883
crossref_primary_10_3389_fnins_2016_00183
crossref_primary_10_1038_s41467_018_04819_z
crossref_primary_10_1098_rstb_2013_0214
crossref_primary_10_3389_fpsyg_2017_00781
crossref_primary_10_1177_2331216520915110
crossref_primary_10_1038_s42003_024_06913_z
crossref_primary_10_3389_fnins_2023_1268591
crossref_primary_10_3389_fnins_2021_646543
crossref_primary_10_7554_eLife_94198_3
crossref_primary_10_1038_s41467_021_24771_9
crossref_primary_10_7554_eLife_87820
crossref_primary_10_1016_j_neuropsychologia_2019_01_009
crossref_primary_10_1016_j_nic_2020_01_004
crossref_primary_10_1016_j_neuron_2017_06_032
crossref_primary_10_3389_fpsyg_2015_00751
crossref_primary_10_1016_j_tics_2024_11_012
crossref_primary_10_1523_JNEUROSCI_1936_19_2020
crossref_primary_10_3389_fnhum_2015_00651
crossref_primary_10_1016_j_brainres_2016_05_029
crossref_primary_10_1016_j_tics_2014_05_001
crossref_primary_10_1007_s00429_016_1348_0
crossref_primary_10_1016_j_neuroimage_2020_116717
crossref_primary_10_1523_JNEUROSCI_2805_13_2014
crossref_primary_10_1016_j_jneumeth_2017_01_022
crossref_primary_10_1016_j_neuroimage_2022_119438
crossref_primary_10_1016_j_neuron_2019_09_007
crossref_primary_10_1162_jocn_a_02067
crossref_primary_10_3389_fnins_2017_00296
crossref_primary_10_1016_j_cortex_2020_06_007
crossref_primary_10_1016_j_neubiorev_2017_02_011
crossref_primary_10_1038_s41598_018_20824_0
crossref_primary_10_1111_ejn_16492
crossref_primary_10_1088_1741_2552_aa66dd
crossref_primary_10_1016_j_neuroimage_2016_02_064
crossref_primary_10_1038_s41598_022_17401_x
crossref_primary_10_1371_journal_pone_0108045
crossref_primary_10_1016_j_brainres_2020_146821
crossref_primary_10_1016_j_neuroimage_2023_119984
crossref_primary_10_1038_ncomms6255
crossref_primary_10_1016_j_cortex_2018_11_026
crossref_primary_10_1016_j_cub_2018_07_023
crossref_primary_10_1088_1741_2552_ad5403
crossref_primary_10_1111_ejn_16140
crossref_primary_10_1007_s11571_022_09924_w
crossref_primary_10_1024_1016_264X_a000386
crossref_primary_10_1073_pnas_1408741111
crossref_primary_10_1523_JNEUROSCI_1310_22_2023
crossref_primary_10_1016_j_nicl_2015_08_015
crossref_primary_10_1016_j_neuroimage_2022_119698
crossref_primary_10_1038_ncomms5059
crossref_primary_10_1016_j_neuroimage_2016_03_074
crossref_primary_10_3389_fnhum_2015_00436
crossref_primary_10_7554_eLife_92079
crossref_primary_10_3389_fnins_2018_00262
crossref_primary_10_1523_JNEUROSCI_1730_15_2016
crossref_primary_10_1016_j_neuron_2014_02_044
crossref_primary_10_1016_j_psychsport_2024_102728
crossref_primary_10_1016_j_neuropsychologia_2021_107888
crossref_primary_10_3109_21695717_2013_821756
crossref_primary_10_1016_j_crneur_2022_100043
crossref_primary_10_1152_jn_00545_2015
crossref_primary_10_1162_NECO_a_00862
Cites_doi 10.1121/1.1907309
10.1016/j.neuron.2009.08.016
10.1016/j.neuroimage.2004.10.020
10.1152/jn.00251.2010
10.1007/s10827-010-0230-y
10.1523/JNEUROSCI.3065-09.2009
10.1152/jn.00263.2005
10.1016/j.tins.2008.09.012
10.1126/science.182.4108.177
10.1007/s10548-009-0080-y
10.1037/0033-295X.106.1.119
10.1038/nature11020
10.1523/JNEUROSCI.0703-10.2010
10.1523/JNEUROSCI.4518-10.2011
10.1038/nn.3063
10.1016/S0167-8760(00)00172-0
10.1016/j.conb.2007.07.011
10.1016/j.conb.2010.02.010
10.1016/j.neuron.2007.06.004
10.1088/0954-898X/12/3/304
10.1371/journal.pcbi.1000436
10.1126/science.1154735
10.1126/science.270.5234.303
10.1080/09548980701609235
10.1016/j.neuron.2009.10.014
10.1073/pnas.1205381109
10.1097/00001756-200506210-00011
10.1371/journal.pbio.1000129
10.1523/JNEUROSCI.3675-12.2013
10.1016/j.bandl.2011.12.010
10.1016/j.neuron.2009.01.008
10.1121/1.1288668
10.1016/0959-4388(95)80012-3
10.1162/jocn.2009.21118
10.1037/0278-7393.21.1.255
10.1371/journal.pbio.1001251
10.1016/j.tics.2010.09.001
10.1073/pnas.1016134108
10.1152/jn.00297.2011
10.1073/pnas.90.18.8722
10.1523/JNEUROSCI.0827-10.2010
10.1523/JNEUROSCI.3825-03.2004
10.1152/jn.00358.2007
10.1523/JNEUROSCI.3631-09.2010
10.1098/rstb.1992.0070
10.1016/j.cub.2007.06.066
10.3389/fpsyg.2011.00130
10.1121/1.1907229
10.1016/j.neuroimage.2009.12.040
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Mar 6, 2013
2013 Elsevier Inc. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Mar 6, 2013
– notice: 2013 Elsevier Inc. All rights reserved. 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2012.12.037
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

Neurosciences Abstracts
Nursing & Allied Health Premium
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 991
ExternalDocumentID PMC3891478
3324273991
23473326
10_1016_j_neuron_2012_12_037
S0896627313000457
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH60358
– fundername: NIDCD NIH HHS
  grantid: DC05660
– fundername: NIMH NIH HHS
  grantid: P50 MH086385
– fundername: NIDCD NIH HHS
  grantid: R56 DC005660
– fundername: NIMH NIH HHS
  grantid: MH086385
– fundername: NIDCD NIH HHS
  grantid: DC008342
– fundername: NIDCD NIH HHS
  grantid: R01 DC008342
– fundername: NIMH NIH HHS
  grantid: R01 MH060358
– fundername: NIDCD NIH HHS
  grantid: R01 DC012947
– fundername: NIMH NIH HHS
  grantid: F32 MH093061
– fundername: National Institute on Deafness and Other Communication Disorders : NIDCD
  grantid: R01 DC008342 || DC
– fundername: National Institute of Mental Health : NIMH
  grantid: F32 MH093061 || MH
– fundername: National Institute on Deafness and Other Communication Disorders : NIDCD
  grantid: R01 DC005660 || DC
– fundername: National Institute of Mental Health : NIMH
  grantid: P50 MH086385 || MH
– fundername: National Institute of Mental Health : NIMH
  grantid: R01 MH060358 || MH
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
AAFWJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c590t-830d301ce758c66e41be745a9b8a36df4916bc99229816c5a59e16a00a5cc0043
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 18:35:08 EDT 2025
Fri Jul 11 04:17:54 EDT 2025
Tue Aug 05 11:19:34 EDT 2025
Fri Jul 25 11:09:33 EDT 2025
Mon Jul 21 05:50:20 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Tue Jul 01 01:16:05 EDT 2025
Fri Feb 23 02:11:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-830d301ce758c66e41be745a9b8a36df4916bc99229816c5a59e16a00a5cc0043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627313000457
PMID 23473326
PQID 1532052704
PQPubID 2031076
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891478
proquest_miscellaneous_1554950016
proquest_miscellaneous_1316053480
proquest_journals_1532052704
pubmed_primary_23473326
crossref_primary_10_1016_j_neuron_2012_12_037
crossref_citationtrail_10_1016_j_neuron_2012_12_037
elsevier_sciencedirect_doi_10_1016_j_neuron_2012_12_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-06
PublicationDateYYYYMMDD 2013-03-06
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2013
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Nir, Fisch, Mukamel, Gelbard-Sagiv, Arieli, Fried, Malach (bib35) 2007; 17
Ding, Simon (bib12) 2012; 109
Stefanics, Hangya, Hernádi, Winkler, Lakatos, Ulbert (bib43) 2010; 30
Lakatos, Karmos, Mehta, Ulbert, Schroeder (bib28) 2008; 320
Schroeder, Lakatos (bib40) 2009; 32
Elhilali, Xiang, Shamma, Simon (bib15) 2009; 7
Schroeder, Wilson, Radman, Scharfman, Lakatos (bib41) 2010; 20
Zion Golumbic, Poeppel, Schroeder (bib51) 2012; 122
Buzsaki (bib6) 2006
Pasley, David, Mesgarani, Flinker, Shamma, Crone, Knight, Chang (bib37) 2012; 10
Buzsáki, Chrobak (bib7) 1995; 5
Schroeder, Lakatos (bib39) 2009; 22
Canolty, Knight (bib8) 2010; 14
Belitski, Panzeri, Magri, Logothetis, Kayser (bib3) 2010; 29
Bishop, Miller (bib5) 2009; 21
Elhilali, Fritz, Klein, Simon, Shamma (bib14) 2004; 24
Large, Jones (bib30) 1999; 106
Woldorff, Gallen, Hampson, Hillyard, Pantev, Sobel, Bloom (bib48) 1993; 90
Kerlin, Shahin, Miller (bib25) 2010; 30
Whittingstall, Logothetis (bib47) 2009; 64
Luo, Poeppel (bib31) 2007; 54
Lakatos, O’Connell, Barczak, Mills, Javitt, Schroeder (bib29) 2009; 64
Ahissar, Ahissar (bib1) 2005
Rosen (bib38) 1992; 336
Ahveninen, Hämäläinen, Jääskeläinen, Ahlfors, Huang, Lin, Raij, Sams, Vasios, Belliveau (bib2) 2011; 108
Mazzoni, Whittingstall, Brunel, Logothetis, Panzeri (bib33) 2010; 52
Chandrasekaran, Trubanova, Stillittano, Caplier, Ghazanfar (bib9) 2009; 5
Besle, Schevon, Mehta, Lakatos, Goodman, McKhann, Emerson, Schroeder (bib4) 2011; 31
Mesgarani, Chang (bib34) 2012; 485
Giraud, Poeppel (bib18) 2012; 15
Lakatos, Pincze, Fu, Javitt, Karmos, Schroeder (bib26) 2005; 16
Sumby, Pollack (bib44) 1954; 26
Cherry (bib10) 1953; 25
Hillyard, Hink, Schwent, Picton (bib21) 1973; 182
Shannon, Zeng, Kamath, Wygonski, Ekelid (bib42) 1995; 270
Xiang, Simon, Elhilali (bib50) 2010; 30
Ding, Simon (bib13) 2012; 107
David, Mesgarani, Shamma (bib11) 2007; 18
Nourski, Reale, Oya, Kawasaki, Kovach, Chen, Howard, Brugge (bib36) 2009; 29
Howard, Poeppel (bib22) 2010; 104
Zion Golumbic, Cogan, Schroeder, Poeppel (bib52) 2013; 33
Greenberg, Ainsworth (bib20) 2006
Kayser, Petkov, Logothetis (bib23) 2007; 98
von Stein, Sarnthein (bib46) 2000; 38
Wood, Cowan (bib49) 1995; 21
Mäkinen, Tiitinen, May (bib32) 2005; 24
Lakatos, Shah, Knuth, Ulbert, Karmos, Schroeder (bib27) 2005; 94
Grant, Seitz (bib19) 2000; 108
Kayser, Montemurro, Logothetis, Panzeri (bib24) 2009; 61
Theunissen, David, Singh, Hsu, Vinje, Gallant (bib45) 2001; 12
Fritz, Elhilali, David, Shamma (bib16) 2007; 17
Ghitza (bib17) 2011; 2
Schroeder (10.1016/j.neuron.2012.12.037_bib40) 2009; 32
Greenberg (10.1016/j.neuron.2012.12.037_bib20) 2006
Pasley (10.1016/j.neuron.2012.12.037_bib37) 2012; 10
Besle (10.1016/j.neuron.2012.12.037_bib4) 2011; 31
Kerlin (10.1016/j.neuron.2012.12.037_bib25) 2010; 30
Lakatos (10.1016/j.neuron.2012.12.037_bib28) 2008; 320
Kayser (10.1016/j.neuron.2012.12.037_bib24) 2009; 61
Canolty (10.1016/j.neuron.2012.12.037_bib8) 2010; 14
Chandrasekaran (10.1016/j.neuron.2012.12.037_bib9) 2009; 5
Wood (10.1016/j.neuron.2012.12.037_bib49) 1995; 21
Buzsáki (10.1016/j.neuron.2012.12.037_bib7) 1995; 5
Zion Golumbic (10.1016/j.neuron.2012.12.037_bib51) 2012; 122
Grant (10.1016/j.neuron.2012.12.037_bib19) 2000; 108
Schroeder (10.1016/j.neuron.2012.12.037_bib39) 2009; 22
Bishop (10.1016/j.neuron.2012.12.037_bib5) 2009; 21
Luo (10.1016/j.neuron.2012.12.037_bib31) 2007; 54
Elhilali (10.1016/j.neuron.2012.12.037_bib14) 2004; 24
Ghitza (10.1016/j.neuron.2012.12.037_bib17) 2011; 2
Ding (10.1016/j.neuron.2012.12.037_bib13) 2012; 107
Mazzoni (10.1016/j.neuron.2012.12.037_bib33) 2010; 52
Ahveninen (10.1016/j.neuron.2012.12.037_bib2) 2011; 108
Hillyard (10.1016/j.neuron.2012.12.037_bib21) 1973; 182
Large (10.1016/j.neuron.2012.12.037_bib30) 1999; 106
Lakatos (10.1016/j.neuron.2012.12.037_bib29) 2009; 64
Ahissar (10.1016/j.neuron.2012.12.037_bib1) 2005
Elhilali (10.1016/j.neuron.2012.12.037_bib15) 2009; 7
Ding (10.1016/j.neuron.2012.12.037_bib12) 2012; 109
Whittingstall (10.1016/j.neuron.2012.12.037_bib47) 2009; 64
Lakatos (10.1016/j.neuron.2012.12.037_bib27) 2005; 94
Nourski (10.1016/j.neuron.2012.12.037_bib36) 2009; 29
Woldorff (10.1016/j.neuron.2012.12.037_bib48) 1993; 90
Xiang (10.1016/j.neuron.2012.12.037_bib50) 2010; 30
Mesgarani (10.1016/j.neuron.2012.12.037_bib34) 2012; 485
Sumby (10.1016/j.neuron.2012.12.037_bib44) 1954; 26
Giraud (10.1016/j.neuron.2012.12.037_bib18) 2012; 15
Howard (10.1016/j.neuron.2012.12.037_bib22) 2010; 104
Nir (10.1016/j.neuron.2012.12.037_bib35) 2007; 17
Zion Golumbic (10.1016/j.neuron.2012.12.037_bib52) 2013; 33
Cherry (10.1016/j.neuron.2012.12.037_bib10) 1953; 25
David (10.1016/j.neuron.2012.12.037_bib11) 2007; 18
Kayser (10.1016/j.neuron.2012.12.037_bib23) 2007; 98
Schroeder (10.1016/j.neuron.2012.12.037_bib41) 2010; 20
von Stein (10.1016/j.neuron.2012.12.037_bib46) 2000; 38
Stefanics (10.1016/j.neuron.2012.12.037_bib43) 2010; 30
Rosen (10.1016/j.neuron.2012.12.037_bib38) 1992; 336
Belitski (10.1016/j.neuron.2012.12.037_bib3) 2010; 29
Lakatos (10.1016/j.neuron.2012.12.037_bib26) 2005; 16
Buzsaki (10.1016/j.neuron.2012.12.037_bib6) 2006
Fritz (10.1016/j.neuron.2012.12.037_bib16) 2007; 17
Shannon (10.1016/j.neuron.2012.12.037_bib42) 1995; 270
Mäkinen (10.1016/j.neuron.2012.12.037_bib32) 2005; 24
Theunissen (10.1016/j.neuron.2012.12.037_bib45) 2001; 12
19249279 - Neuron. 2009 Feb 26;61(4):597-608
7876773 - J Exp Psychol Learn Mem Cogn. 1995 Jan;21(1):255-60
18823249 - J Cogn Neurosci. 2009 Sep;21(9):1790-805
17686438 - Curr Biol. 2007 Aug 7;17(15):1275-85
22522927 - Nature. 2012 May 10;485(7397):233-6
7569981 - Science. 1995 Oct 13;270(5234):303-4
19205863 - Brain Topogr. 2009 Jun;22(1):24-6
20307966 - Curr Opin Neurobiol. 2010 Apr;20(2):172-6
1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73
4730062 - Science. 1973 Oct 12;182(4108):177-80
17714933 - Curr Opin Neurobiol. 2007 Aug;17(4):437-55
20232128 - J Comput Neurosci. 2010 Dec;29(3):533-45
23473312 - Neuron. 2013 Mar 6;77(5):806-9
21743809 - Front Psychol. 2011 Jun 27;2:130
19609344 - PLoS Comput Biol. 2009 Jul;5(7):e1000436
15901760 - J Neurophysiol. 2005 Sep;94(3):1904-11
20932795 - Trends Cogn Sci. 2010 Nov;14(11):506-15
22285024 - Brain Lang. 2012 Sep;122(3):151-61
22753470 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11854-9
20007480 - J Neurosci. 2009 Dec 9;29(49):15564-74
17582338 - Neuron. 2007 Jun 21;54(6):1001-10
19529760 - PLoS Biol. 2009 Jun;7(6):e1000129
14762134 - J Neurosci. 2004 Feb 4;24(5):1159-72
21368107 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7
20943899 - J Neurosci. 2010 Oct 13;30(41):13578-85
19914189 - Neuron. 2009 Nov 12;64(3):419-30
22303281 - PLoS Biol. 2012 Jan;10(1):e1001251
8378354 - Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8722-6
20071526 - J Neurosci. 2010 Jan 13;30(2):620-8
23345218 - J Neurosci. 2013 Jan 23;33(4):1417-26
11563531 - Network. 2001 Aug;12(3):289-316
18388295 - Science. 2008 Apr 4;320(5872):110-3
11102669 - Int J Psychophysiol. 2000 Dec 1;38(3):301-13
22426255 - Nat Neurosci. 2012 Apr;15(4):511-7
15931064 - Neuroreport. 2005 Jun 21;16(9):933-7
21975452 - J Neurophysiol. 2012 Jan;107(1):78-89
20826671 - J Neurosci. 2010 Sep 8;30(36):12084-93
11008820 - J Acoust Soc Am. 2000 Sep;108(3 Pt 1):1197-208
7488853 - Curr Opin Neurobiol. 1995 Aug;5(4):504-10
20026218 - Neuroimage. 2010 Sep;52(3):956-72
17596418 - J Neurophysiol. 2007 Sep;98(3):1806-9
19012975 - Trends Neurosci. 2009 Jan;32(1):9-18
20484530 - J Neurophysiol. 2010 Nov;104(5):2500-11
17852750 - Network. 2007 Sep;18(3):191-212
19874794 - Neuron. 2009 Oct 29;64(2):281-9
15670673 - Neuroimage. 2005 Feb 15;24(4):961-8
21368029 - J Neurosci. 2011 Mar 2;31(9):3176-85
References_xml – volume: 22
  start-page: 24
  year: 2009
  end-page: 26
  ident: bib39
  article-title: The gamma oscillation: master or slave?
  publication-title: Brain Topogr.
– volume: 25
  start-page: 975
  year: 1953
  end-page: 979
  ident: bib10
  article-title: Some experiments on the recognition of speech, with one and two ears
  publication-title: J. Acoust. Soc. Am.
– volume: 21
  start-page: 255
  year: 1995
  end-page: 260
  ident: bib49
  article-title: The cocktail party phenomenon revisited: how frequent are attention shifts to one’s name in an irrelevant auditory channel?
  publication-title: J. Exp. Psychol. Learn. Mem. Cogn.
– volume: 94
  start-page: 1904
  year: 2005
  end-page: 1911
  ident: bib27
  article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex
  publication-title: J. Neurophysiol.
– volume: 29
  start-page: 15564
  year: 2009
  end-page: 15574
  ident: bib36
  article-title: Temporal envelope of time-compressed speech represented in the human auditory cortex
  publication-title: J. Neurosci.
– volume: 7
  start-page: e1000129
  year: 2009
  ident: bib15
  article-title: Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene
  publication-title: PLoS Biol.
– volume: 2
  start-page: 130
  year: 2011
  ident: bib17
  article-title: Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm
  publication-title: Front. Psychol.
– volume: 30
  start-page: 620
  year: 2010
  end-page: 628
  ident: bib25
  article-title: Attentional gain control of ongoing cortical speech representations in a “cocktail party”
  publication-title: J. Neurosci.
– volume: 64
  start-page: 419
  year: 2009
  end-page: 430
  ident: bib29
  article-title: The leading sense: supramodal control of neurophysiological context by attention
  publication-title: Neuron
– volume: 24
  start-page: 1159
  year: 2004
  end-page: 1172
  ident: bib14
  article-title: Dynamics of precise spike timing in primary auditory cortex
  publication-title: J. Neurosci.
– volume: 122
  start-page: 151
  year: 2012
  end-page: 161
  ident: bib51
  article-title: Temporal context in speech processing and attentional stream selection: a behavioral and neural perspective
  publication-title: Brain Lang.
– year: 2006
  ident: bib20
  article-title: Listening to Speech: An Auditory Perspective
– volume: 90
  start-page: 8722
  year: 1993
  end-page: 8726
  ident: bib48
  article-title: Modulation of early sensory processing in human auditory cortex during auditory selective attention
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 64
  start-page: 281
  year: 2009
  end-page: 289
  ident: bib47
  article-title: Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex
  publication-title: Neuron
– volume: 54
  start-page: 1001
  year: 2007
  end-page: 1010
  ident: bib31
  article-title: Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex
  publication-title: Neuron
– volume: 108
  start-page: 4182
  year: 2011
  end-page: 4187
  ident: bib2
  article-title: Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 295
  year: 2005
  end-page: 313
  ident: bib1
  article-title: Processing of the temporal envelope of speech
  publication-title: The Auditory Cortex: A Synthesis of Human and Animal Research
– volume: 21
  start-page: 1790
  year: 2009
  end-page: 1805
  ident: bib5
  article-title: A multisensory cortical network for understanding speech in noise
  publication-title: J. Cogn. Neurosci.
– volume: 29
  start-page: 533
  year: 2010
  end-page: 545
  ident: bib3
  article-title: Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands
  publication-title: J. Comput. Neurosci.
– volume: 107
  start-page: 78
  year: 2012
  end-page: 89
  ident: bib13
  article-title: Neural coding of continuous speech in auditory cortex during monaural and dichotic listening
  publication-title: J. Neurophysiol.
– volume: 17
  start-page: 437
  year: 2007
  end-page: 455
  ident: bib16
  article-title: Auditory attention—focusing the searchlight on sound
  publication-title: Curr. Opin. Neurobiol.
– volume: 33
  start-page: 1417
  year: 2013
  end-page: 1426
  ident: bib52
  article-title: Visual input enhances selective speech envelope tracking in auditory cortex at a “cocktail party”
  publication-title: J. Neurosci.
– volume: 320
  start-page: 110
  year: 2008
  end-page: 113
  ident: bib28
  article-title: Entrainment of neuronal oscillations as a mechanism of attentional selection
  publication-title: Science
– volume: 109
  start-page: 11854
  year: 2012
  end-page: 11859
  ident: bib12
  article-title: Emergence of neural encoding of auditory objects while listening to competing speakers
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 289
  year: 2001
  end-page: 316
  ident: bib45
  article-title: Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli
  publication-title: Network
– volume: 17
  start-page: 1275
  year: 2007
  end-page: 1285
  ident: bib35
  article-title: Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations
  publication-title: Curr. Biol.
– volume: 336
  start-page: 367
  year: 1992
  end-page: 373
  ident: bib38
  article-title: Temporal information in speech: acoustic, auditory and linguistic aspects
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 182
  start-page: 177
  year: 1973
  end-page: 180
  ident: bib21
  article-title: Electrical signs of selective attention in the human brain
  publication-title: Science
– volume: 5
  start-page: e1000436
  year: 2009
  ident: bib9
  article-title: The natural statistics of audiovisual speech
  publication-title: PLoS Comput. Biol.
– volume: 31
  start-page: 3176
  year: 2011
  end-page: 3185
  ident: bib4
  article-title: Tuning of the human neocortex to the temporal dynamics of attended events
  publication-title: J. Neurosci.
– volume: 104
  start-page: 2500
  year: 2010
  end-page: 2511
  ident: bib22
  article-title: Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension
  publication-title: J. Neurophysiol.
– volume: 98
  start-page: 1806
  year: 2007
  end-page: 1809
  ident: bib23
  article-title: Tuning to sound frequency in auditory field potentials
  publication-title: J. Neurophysiol.
– volume: 16
  start-page: 933
  year: 2005
  end-page: 937
  ident: bib26
  article-title: Timing of pure tone and noise-evoked responses in macaque auditory cortex
  publication-title: Neuroreport
– volume: 30
  start-page: 13578
  year: 2010
  end-page: 13585
  ident: bib43
  article-title: Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed
  publication-title: J. Neurosci.
– volume: 10
  start-page: e1001251
  year: 2012
  ident: bib37
  article-title: Reconstructing speech from human auditory cortex
  publication-title: PLoS Biol.
– volume: 108
  start-page: 1197
  year: 2000
  end-page: 1208
  ident: bib19
  article-title: The use of visible speech cues for improving auditory detection of spoken sentences
  publication-title: J. Acoust. Soc. Am.
– year: 2006
  ident: bib6
  article-title: Rhythms of the Brain
– volume: 24
  start-page: 961
  year: 2005
  end-page: 968
  ident: bib32
  article-title: Auditory event-related responses are generated independently of ongoing brain activity
  publication-title: Neuroimage
– volume: 61
  start-page: 597
  year: 2009
  end-page: 608
  ident: bib24
  article-title: Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns
  publication-title: Neuron
– volume: 5
  start-page: 504
  year: 1995
  end-page: 510
  ident: bib7
  article-title: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks
  publication-title: Curr. Opin. Neurobiol.
– volume: 18
  start-page: 191
  year: 2007
  end-page: 212
  ident: bib11
  article-title: Estimating sparse spectro-temporal receptive fields with natural stimuli
  publication-title: Network
– volume: 52
  start-page: 956
  year: 2010
  end-page: 972
  ident: bib33
  article-title: Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local cortical network model
  publication-title: Neuroimage
– volume: 26
  start-page: 212
  year: 1954
  end-page: 215
  ident: bib44
  article-title: Visual contribution to speech intelligibility in noise
  publication-title: J. Acoust. Soc. Am.
– volume: 106
  start-page: 119
  year: 1999
  end-page: 159
  ident: bib30
  article-title: The dynamics of attending: How people track time-varying events
  publication-title: Psychol. Rev.
– volume: 38
  start-page: 301
  year: 2000
  end-page: 313
  ident: bib46
  article-title: Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization
  publication-title: Int. J. Psychophysiol.
– volume: 32
  start-page: 9
  year: 2009
  end-page: 18
  ident: bib40
  article-title: Low-frequency neuronal oscillations as instruments of sensory selection
  publication-title: Trends Neurosci.
– volume: 270
  start-page: 303
  year: 1995
  end-page: 304
  ident: bib42
  article-title: Speech recognition with primarily temporal cues
  publication-title: Science
– volume: 14
  start-page: 506
  year: 2010
  end-page: 515
  ident: bib8
  article-title: The functional role of cross-frequency coupling
  publication-title: Trends Cogn. Sci.
– volume: 15
  start-page: 511
  year: 2012
  end-page: 517
  ident: bib18
  article-title: Cortical oscillations and speech processing: emerging computational principles and operations
  publication-title: Nat. Neurosci.
– volume: 20
  start-page: 172
  year: 2010
  end-page: 176
  ident: bib41
  article-title: Dynamics of Active Sensing and perceptual selection
  publication-title: Curr. Opin. Neurobiol.
– volume: 485
  start-page: 233
  year: 2012
  end-page: 236
  ident: bib34
  article-title: Selective cortical representation of attended speaker in multi-talker speech perception
  publication-title: Nature
– volume: 30
  start-page: 12084
  year: 2010
  end-page: 12093
  ident: bib50
  article-title: Competing streams at the cocktail party: exploring the mechanisms of attention and temporal integration
  publication-title: J. Neurosci.
– volume: 26
  start-page: 212
  year: 1954
  ident: 10.1016/j.neuron.2012.12.037_bib44
  article-title: Visual contribution to speech intelligibility in noise
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1907309
– volume: 64
  start-page: 281
  year: 2009
  ident: 10.1016/j.neuron.2012.12.037_bib47
  article-title: Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.08.016
– volume: 24
  start-page: 961
  year: 2005
  ident: 10.1016/j.neuron.2012.12.037_bib32
  article-title: Auditory event-related responses are generated independently of ongoing brain activity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.10.020
– volume: 104
  start-page: 2500
  year: 2010
  ident: 10.1016/j.neuron.2012.12.037_bib22
  article-title: Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00251.2010
– volume: 29
  start-page: 533
  year: 2010
  ident: 10.1016/j.neuron.2012.12.037_bib3
  article-title: Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-010-0230-y
– volume: 29
  start-page: 15564
  year: 2009
  ident: 10.1016/j.neuron.2012.12.037_bib36
  article-title: Temporal envelope of time-compressed speech represented in the human auditory cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3065-09.2009
– volume: 94
  start-page: 1904
  year: 2005
  ident: 10.1016/j.neuron.2012.12.037_bib27
  article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00263.2005
– volume: 32
  start-page: 9
  year: 2009
  ident: 10.1016/j.neuron.2012.12.037_bib40
  article-title: Low-frequency neuronal oscillations as instruments of sensory selection
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2008.09.012
– volume: 182
  start-page: 177
  year: 1973
  ident: 10.1016/j.neuron.2012.12.037_bib21
  article-title: Electrical signs of selective attention in the human brain
  publication-title: Science
  doi: 10.1126/science.182.4108.177
– volume: 22
  start-page: 24
  year: 2009
  ident: 10.1016/j.neuron.2012.12.037_bib39
  article-title: The gamma oscillation: master or slave?
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-009-0080-y
– volume: 106
  start-page: 119
  year: 1999
  ident: 10.1016/j.neuron.2012.12.037_bib30
  article-title: The dynamics of attending: How people track time-varying events
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.106.1.119
– year: 2006
  ident: 10.1016/j.neuron.2012.12.037_bib6
– volume: 485
  start-page: 233
  year: 2012
  ident: 10.1016/j.neuron.2012.12.037_bib34
  article-title: Selective cortical representation of attended speaker in multi-talker speech perception
  publication-title: Nature
  doi: 10.1038/nature11020
– volume: 30
  start-page: 13578
  year: 2010
  ident: 10.1016/j.neuron.2012.12.037_bib43
  article-title: Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0703-10.2010
– volume: 31
  start-page: 3176
  year: 2011
  ident: 10.1016/j.neuron.2012.12.037_bib4
  article-title: Tuning of the human neocortex to the temporal dynamics of attended events
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4518-10.2011
– volume: 15
  start-page: 511
  year: 2012
  ident: 10.1016/j.neuron.2012.12.037_bib18
  article-title: Cortical oscillations and speech processing: emerging computational principles and operations
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3063
– volume: 38
  start-page: 301
  year: 2000
  ident: 10.1016/j.neuron.2012.12.037_bib46
  article-title: Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(00)00172-0
– volume: 17
  start-page: 437
  year: 2007
  ident: 10.1016/j.neuron.2012.12.037_bib16
  article-title: Auditory attention—focusing the searchlight on sound
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2007.07.011
– volume: 20
  start-page: 172
  year: 2010
  ident: 10.1016/j.neuron.2012.12.037_bib41
  article-title: Dynamics of Active Sensing and perceptual selection
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2010.02.010
– volume: 54
  start-page: 1001
  year: 2007
  ident: 10.1016/j.neuron.2012.12.037_bib31
  article-title: Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.06.004
– volume: 12
  start-page: 289
  year: 2001
  ident: 10.1016/j.neuron.2012.12.037_bib45
  article-title: Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli
  publication-title: Network
  doi: 10.1088/0954-898X/12/3/304
– year: 2006
  ident: 10.1016/j.neuron.2012.12.037_bib20
– volume: 5
  start-page: e1000436
  year: 2009
  ident: 10.1016/j.neuron.2012.12.037_bib9
  article-title: The natural statistics of audiovisual speech
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000436
– volume: 320
  start-page: 110
  year: 2008
  ident: 10.1016/j.neuron.2012.12.037_bib28
  article-title: Entrainment of neuronal oscillations as a mechanism of attentional selection
  publication-title: Science
  doi: 10.1126/science.1154735
– volume: 270
  start-page: 303
  year: 1995
  ident: 10.1016/j.neuron.2012.12.037_bib42
  article-title: Speech recognition with primarily temporal cues
  publication-title: Science
  doi: 10.1126/science.270.5234.303
– volume: 18
  start-page: 191
  year: 2007
  ident: 10.1016/j.neuron.2012.12.037_bib11
  article-title: Estimating sparse spectro-temporal receptive fields with natural stimuli
  publication-title: Network
  doi: 10.1080/09548980701609235
– start-page: 295
  year: 2005
  ident: 10.1016/j.neuron.2012.12.037_bib1
  article-title: Processing of the temporal envelope of speech
– volume: 64
  start-page: 419
  year: 2009
  ident: 10.1016/j.neuron.2012.12.037_bib29
  article-title: The leading sense: supramodal control of neurophysiological context by attention
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.10.014
– volume: 109
  start-page: 11854
  year: 2012
  ident: 10.1016/j.neuron.2012.12.037_bib12
  article-title: Emergence of neural encoding of auditory objects while listening to competing speakers
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1205381109
– volume: 16
  start-page: 933
  year: 2005
  ident: 10.1016/j.neuron.2012.12.037_bib26
  article-title: Timing of pure tone and noise-evoked responses in macaque auditory cortex
  publication-title: Neuroreport
  doi: 10.1097/00001756-200506210-00011
– volume: 7
  start-page: e1000129
  year: 2009
  ident: 10.1016/j.neuron.2012.12.037_bib15
  article-title: Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000129
– volume: 33
  start-page: 1417
  year: 2013
  ident: 10.1016/j.neuron.2012.12.037_bib52
  article-title: Visual input enhances selective speech envelope tracking in auditory cortex at a “cocktail party”
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3675-12.2013
– volume: 122
  start-page: 151
  year: 2012
  ident: 10.1016/j.neuron.2012.12.037_bib51
  article-title: Temporal context in speech processing and attentional stream selection: a behavioral and neural perspective
  publication-title: Brain Lang.
  doi: 10.1016/j.bandl.2011.12.010
– volume: 61
  start-page: 597
  year: 2009
  ident: 10.1016/j.neuron.2012.12.037_bib24
  article-title: Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.01.008
– volume: 108
  start-page: 1197
  year: 2000
  ident: 10.1016/j.neuron.2012.12.037_bib19
  article-title: The use of visible speech cues for improving auditory detection of spoken sentences
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1288668
– volume: 5
  start-page: 504
  year: 1995
  ident: 10.1016/j.neuron.2012.12.037_bib7
  article-title: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/0959-4388(95)80012-3
– volume: 21
  start-page: 1790
  year: 2009
  ident: 10.1016/j.neuron.2012.12.037_bib5
  article-title: A multisensory cortical network for understanding speech in noise
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2009.21118
– volume: 21
  start-page: 255
  year: 1995
  ident: 10.1016/j.neuron.2012.12.037_bib49
  article-title: The cocktail party phenomenon revisited: how frequent are attention shifts to one’s name in an irrelevant auditory channel?
  publication-title: J. Exp. Psychol. Learn. Mem. Cogn.
  doi: 10.1037/0278-7393.21.1.255
– volume: 10
  start-page: e1001251
  year: 2012
  ident: 10.1016/j.neuron.2012.12.037_bib37
  article-title: Reconstructing speech from human auditory cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001251
– volume: 14
  start-page: 506
  year: 2010
  ident: 10.1016/j.neuron.2012.12.037_bib8
  article-title: The functional role of cross-frequency coupling
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2010.09.001
– volume: 108
  start-page: 4182
  year: 2011
  ident: 10.1016/j.neuron.2012.12.037_bib2
  article-title: Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1016134108
– volume: 107
  start-page: 78
  year: 2012
  ident: 10.1016/j.neuron.2012.12.037_bib13
  article-title: Neural coding of continuous speech in auditory cortex during monaural and dichotic listening
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00297.2011
– volume: 90
  start-page: 8722
  year: 1993
  ident: 10.1016/j.neuron.2012.12.037_bib48
  article-title: Modulation of early sensory processing in human auditory cortex during auditory selective attention
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.18.8722
– volume: 30
  start-page: 12084
  year: 2010
  ident: 10.1016/j.neuron.2012.12.037_bib50
  article-title: Competing streams at the cocktail party: exploring the mechanisms of attention and temporal integration
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0827-10.2010
– volume: 24
  start-page: 1159
  year: 2004
  ident: 10.1016/j.neuron.2012.12.037_bib14
  article-title: Dynamics of precise spike timing in primary auditory cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3825-03.2004
– volume: 98
  start-page: 1806
  year: 2007
  ident: 10.1016/j.neuron.2012.12.037_bib23
  article-title: Tuning to sound frequency in auditory field potentials
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00358.2007
– volume: 30
  start-page: 620
  year: 2010
  ident: 10.1016/j.neuron.2012.12.037_bib25
  article-title: Attentional gain control of ongoing cortical speech representations in a “cocktail party”
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3631-09.2010
– volume: 336
  start-page: 367
  year: 1992
  ident: 10.1016/j.neuron.2012.12.037_bib38
  article-title: Temporal information in speech: acoustic, auditory and linguistic aspects
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.1992.0070
– volume: 17
  start-page: 1275
  year: 2007
  ident: 10.1016/j.neuron.2012.12.037_bib35
  article-title: Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.06.066
– volume: 2
  start-page: 130
  year: 2011
  ident: 10.1016/j.neuron.2012.12.037_bib17
  article-title: Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2011.00130
– volume: 25
  start-page: 975
  year: 1953
  ident: 10.1016/j.neuron.2012.12.037_bib10
  article-title: Some experiments on the recognition of speech, with one and two ears
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1907229
– volume: 52
  start-page: 956
  year: 2010
  ident: 10.1016/j.neuron.2012.12.037_bib33
  article-title: Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local cortical network model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.040
– reference: 17686438 - Curr Biol. 2007 Aug 7;17(15):1275-85
– reference: 20943899 - J Neurosci. 2010 Oct 13;30(41):13578-85
– reference: 4730062 - Science. 1973 Oct 12;182(4108):177-80
– reference: 22426255 - Nat Neurosci. 2012 Apr;15(4):511-7
– reference: 20826671 - J Neurosci. 2010 Sep 8;30(36):12084-93
– reference: 22303281 - PLoS Biol. 2012 Jan;10(1):e1001251
– reference: 20307966 - Curr Opin Neurobiol. 2010 Apr;20(2):172-6
– reference: 22522927 - Nature. 2012 May 10;485(7397):233-6
– reference: 19529760 - PLoS Biol. 2009 Jun;7(6):e1000129
– reference: 20232128 - J Comput Neurosci. 2010 Dec;29(3):533-45
– reference: 22753470 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11854-9
– reference: 11008820 - J Acoust Soc Am. 2000 Sep;108(3 Pt 1):1197-208
– reference: 23345218 - J Neurosci. 2013 Jan 23;33(4):1417-26
– reference: 7876773 - J Exp Psychol Learn Mem Cogn. 1995 Jan;21(1):255-60
– reference: 19249279 - Neuron. 2009 Feb 26;61(4):597-608
– reference: 19205863 - Brain Topogr. 2009 Jun;22(1):24-6
– reference: 15670673 - Neuroimage. 2005 Feb 15;24(4):961-8
– reference: 21743809 - Front Psychol. 2011 Jun 27;2:130
– reference: 23473312 - Neuron. 2013 Mar 6;77(5):806-9
– reference: 17852750 - Network. 2007 Sep;18(3):191-212
– reference: 20071526 - J Neurosci. 2010 Jan 13;30(2):620-8
– reference: 7488853 - Curr Opin Neurobiol. 1995 Aug;5(4):504-10
– reference: 20932795 - Trends Cogn Sci. 2010 Nov;14(11):506-15
– reference: 14762134 - J Neurosci. 2004 Feb 4;24(5):1159-72
– reference: 19874794 - Neuron. 2009 Oct 29;64(2):281-9
– reference: 8378354 - Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8722-6
– reference: 11102669 - Int J Psychophysiol. 2000 Dec 1;38(3):301-13
– reference: 17582338 - Neuron. 2007 Jun 21;54(6):1001-10
– reference: 1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73
– reference: 20484530 - J Neurophysiol. 2010 Nov;104(5):2500-11
– reference: 7569981 - Science. 1995 Oct 13;270(5234):303-4
– reference: 18388295 - Science. 2008 Apr 4;320(5872):110-3
– reference: 21368107 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7
– reference: 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18
– reference: 20026218 - Neuroimage. 2010 Sep;52(3):956-72
– reference: 19609344 - PLoS Comput Biol. 2009 Jul;5(7):e1000436
– reference: 19914189 - Neuron. 2009 Nov 12;64(3):419-30
– reference: 22285024 - Brain Lang. 2012 Sep;122(3):151-61
– reference: 18823249 - J Cogn Neurosci. 2009 Sep;21(9):1790-805
– reference: 17714933 - Curr Opin Neurobiol. 2007 Aug;17(4):437-55
– reference: 21368029 - J Neurosci. 2011 Mar 2;31(9):3176-85
– reference: 21975452 - J Neurophysiol. 2012 Jan;107(1):78-89
– reference: 15931064 - Neuroreport. 2005 Jun 21;16(9):933-7
– reference: 15901760 - J Neurophysiol. 2005 Sep;94(3):1904-11
– reference: 11563531 - Network. 2001 Aug;12(3):289-316
– reference: 17596418 - J Neurophysiol. 2007 Sep;98(3):1806-9
– reference: 20007480 - J Neurosci. 2009 Dec 9;29(49):15564-74
SSID ssj0014591
Score 2.6001613
Snippet The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 980
SubjectTerms Adult
Algorithms
Attention - physiology
Brain
Brain - physiology
Data Interpretation, Statistical
Electrodes
Electrodes, Implanted
Electroencephalography
Epilepsy - physiopathology
Epilepsy - psychology
Epilepsy - surgery
Humans
Hypotheses
Middle Aged
Nerve Net - physiology
Neurons - physiology
Reproducibility of Results
Sensory Gating - physiology
Social Environment
Social Perception
Speech
Speech Perception - physiology
Young Adult
Title Mechanisms Underlying Selective Neuronal Tracking of Attended Speech at a “Cocktail Party”
URI https://dx.doi.org/10.1016/j.neuron.2012.12.037
https://www.ncbi.nlm.nih.gov/pubmed/23473326
https://www.proquest.com/docview/1532052704
https://www.proquest.com/docview/1316053480
https://www.proquest.com/docview/1554950016
https://pubmed.ncbi.nlm.nih.gov/PMC3891478
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED9Kx6AvY2u7LWtXNCh9M7EsybEes7BSVjbG0tI8VciKzDJaJyzuQ976Qbov10-yO_kPyzZaGPjJPhlbp9Pd6e5-B3AoUevwNLGRRF8jkpyLKBM-jxKCSsnRIStcQPv8nJ6cy48TNdmAUVsLQ2mVzd5f7-lht27u9JvZ7C9ms_44zjShlwsKyKBhQhXlQmahiG_yvoskSFV3zUPiiKjb8rmQ4xUwIwkFlSfhUJC6of9bPf1tfv6ZRfmbWjp-Ds8ae5IN609-ARu-3IadYYm-9PWKHbGQ4RmOzrfhad14crUDl588VfzOltdLFjofXVG1ExuHpji4_7GA2UEvRl3m6DSdzQs2rOoDczZeeBzPbMUsu7-9G-GeSomo7AvO3Or-9ucunB9_OBudRE2nhcgpHVfInniKku48eg8uTT2yyQ-ksjrPrEinhUQjMncEYasznjpllfY8tXFslXMUTHwJm-W89K-BoYPiUN9ZrnUuU17kohC88Da3iZZymvRAtBNsXANDTt0wrkybb_bd1GwxxBaDF7KlB1E3alHDcDxCP2h5Z9aWk0FN8cjI_ZbVphHnpeHUPkMlg1j24F33GAWRoiu29PMbpBEcXUNcgfEDNGi8aUVmdg9e1aun-51EyIFAYxo_fW1ddQQEBL7-pJx9C4DgFGtGoXvz3z-9B1tJaPNBnT72YbP6cePforFV5QfwZHj69eL0IEjVL-AmKu8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEeKEaAt0SwtGQtysjeNHkuOyotpCWyFtK-0Jy_E66lZtdsWmh731h5Q_11_CjPMQC4hKSDkl4yjxeDxPf0PIewlah-vYMgm-BpOcC5YKn7MYoVJycMgKF9A-T_XoXH6eqMkGGbZnYbCsstn76z097NbNnX4zm_3FbNYfR2mG6OUCEzJgmCSPyGOwBhKUzqPJxy6VIFXdNg-oGZK35-dCkVcAjUQYVB6HqCC2Q_-7fvrT_vy9jPIXvXT4nDxrDEo6qL95i2z4cpvsDEpwpq9X9AMNJZ4hdr5NntSdJ1c75NuJxyO_s-X1kobWR1d43ImOQ1cc2ABpAO3AF4MycxhOp_OCDqo6Yk7HCw_jqa2opfe3d0PYVLESlX6FqVvd3_54Qc4PP50NR6xptcCcyqIK-BNNQdSdB_fBae2BTz6RymZ5aoWeFhKsyNwhhm2Wcu2UVZnn2kaRVc5hNvEl2Sznpd8lFDwUBwrP8izLpeZFLgrBC29zG2dSTuMeEe0EG9fgkGM7jCvTFpxdmpotBtli4AK29AjrRi1qHI4H6JOWd2ZtPRlQFQ-M3G9ZbRp5XhqO_TNUnESyR951j0ESMb1iSz-_ARrBwTcUMo3-QQPWW6bQzu6RV_Xq6X4nFjIRYE3Dp6-tq44AkcDXn5Szi4AIjslmkLq9__7pt-Tp6Ozk2BwfnX55jbELjDMpFul9sll9v_EHYHlV-ZsgWT8BeF0sbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+Underlying+Selective+Neuronal+Tracking+of+Attended+Speech+at+a+%E2%80%9CCocktail+Party%E2%80%9D&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Zion%C2%A0Golumbic%2C+Elana%C2%A0M.&rft.au=Ding%2C+Nai&rft.au=Bickel%2C+Stephan&rft.au=Lakatos%2C+Peter&rft.date=2013-03-06&rft.issn=0896-6273&rft.volume=77&rft.issue=5&rft.spage=980&rft.epage=991&rft_id=info:doi/10.1016%2Fj.neuron.2012.12.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuron_2012_12_037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon