Mechanisms Underlying Selective Neuronal Tracking of Attended Speech at a “Cocktail Party”
The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 77; no. 5; pp. 980 - 991 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.03.2013
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain’s representation of speech using a “Cocktail Party” paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low-frequency phase and high-frequency amplitude fluctuations and that optimal encoding likely combines the two. In and near low-level auditory cortices, attention “modulates” the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher-order regions, the representation appears to become more “selective,” in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds.
► Both low-frequency phase and high-gamma power preferentially track attended speech ► Near auditory cortex attention modulates response to attended and ignored speakers ► Selective tracking of only the attended talker increases in higher-order regions ► Selectivity for the attended speaker increases over time
Zion Golumbic et al. use direct brain recordings in surgical epilepsy patients to investigate how people attend one speaker in noisy social environments. Neuronal activity dynamically tracks an attended speaker, with increasing selectivity in higher-order regions, as a sentence unfolds. |
---|---|
AbstractList | The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain’s representation of speech using a ‘Cocktail Party’ Paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low frequency phase and high frequency amplitude fluctuations, and that optimal encoding likely combines the two. In and near low level auditory cortices, attention ‘modulates’ the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher order regions, the representation appears to become more ‘selective,’ in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds. The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain’s representation of speech using a “Cocktail Party” paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low-frequency phase and high-frequency amplitude fluctuations and that optimal encoding likely combines the two. In and near low-level auditory cortices, attention “modulates” the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher-order regions, the representation appears to become more “selective,” in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds. ► Both low-frequency phase and high-gamma power preferentially track attended speech ► Near auditory cortex attention modulates response to attended and ignored speakers ► Selective tracking of only the attended talker increases in higher-order regions ► Selectivity for the attended speaker increases over time Zion Golumbic et al. use direct brain recordings in surgical epilepsy patients to investigate how people attend one speaker in noisy social environments. Neuronal activity dynamically tracks an attended speaker, with increasing selectivity in higher-order regions, as a sentence unfolds. The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain's representation of speech using a "Cocktail Party" paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low-frequency phase and high-frequency amplitude fluctuations and that optimal encoding likely combines the two. In and near low-level auditory cortices, attention "modulates" the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher-order regions, the representation appears to become more "selective," in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds.The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain's representation of speech using a "Cocktail Party" paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low-frequency phase and high-frequency amplitude fluctuations and that optimal encoding likely combines the two. In and near low-level auditory cortices, attention "modulates" the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher-order regions, the representation appears to become more "selective," in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds. |
Author | Schevon, Catherine A. Mehta, Ashesh D. Ding, Nai Bickel, Stephan Simon, Jonathan Z. Zion Golumbic, Elana M. McKhann, Guy M. Goodman, Robert R. Schroeder, Charles E. Lakatos, Peter Emerson, Ronald Poeppel, David |
AuthorAffiliation | 2 Department of Neurology, Columbia University College of Physicians and Surgeons New York, NY, USA 3 Department of Neurological Surgery, Columbia University College of Physicians and Surgeons New York, NY, USA 7 Departments of Neurology and Neurosurgery, North Shore Long Island Jewish Health System New Hyde Park, NY, USA 4 Cognitive Neuroscience and Schizophrenia Program Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, USA 5 Department of Electrical and Computer Engineering, University of Maryland, College Park College Park, MD, USA 8 Feinstein Institute for Medical Research Hofstra University School of Medicine Manhasset, NY, USA 6 Department of Biology, University of Maryland, College Park College Park, MD, USA 9 Department of Psychology New York University, NY, USA 1 Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA |
AuthorAffiliation_xml | – name: 6 Department of Biology, University of Maryland, College Park College Park, MD, USA – name: 9 Department of Psychology New York University, NY, USA – name: 1 Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA – name: 4 Cognitive Neuroscience and Schizophrenia Program Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, USA – name: 2 Department of Neurology, Columbia University College of Physicians and Surgeons New York, NY, USA – name: 5 Department of Electrical and Computer Engineering, University of Maryland, College Park College Park, MD, USA – name: 8 Feinstein Institute for Medical Research Hofstra University School of Medicine Manhasset, NY, USA – name: 3 Department of Neurological Surgery, Columbia University College of Physicians and Surgeons New York, NY, USA – name: 7 Departments of Neurology and Neurosurgery, North Shore Long Island Jewish Health System New Hyde Park, NY, USA |
Author_xml | – sequence: 1 givenname: Elana M. surname: Zion Golumbic fullname: Zion Golumbic, Elana M. organization: Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA – sequence: 2 givenname: Nai surname: Ding fullname: Ding, Nai organization: Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, MD 20740, USA – sequence: 3 givenname: Stephan surname: Bickel fullname: Bickel, Stephan organization: Departments of Neurology and Neurosurgery, North Shore Long Island Jewish Health System, New Hyde Park, NY 11040, USA – sequence: 4 givenname: Peter surname: Lakatos fullname: Lakatos, Peter organization: Cognitive Neuroscience and Schizophrenia Program, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA – sequence: 5 givenname: Catherine A. surname: Schevon fullname: Schevon, Catherine A. organization: Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA – sequence: 6 givenname: Guy M. surname: McKhann fullname: McKhann, Guy M. organization: Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA – sequence: 7 givenname: Robert R. surname: Goodman fullname: Goodman, Robert R. organization: Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA – sequence: 8 givenname: Ronald surname: Emerson fullname: Emerson, Ronald organization: Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA – sequence: 9 givenname: Ashesh D. surname: Mehta fullname: Mehta, Ashesh D. organization: Departments of Neurology and Neurosurgery, North Shore Long Island Jewish Health System, New Hyde Park, NY 11040, USA – sequence: 10 givenname: Jonathan Z. surname: Simon fullname: Simon, Jonathan Z. organization: Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, MD 20740, USA – sequence: 11 givenname: David surname: Poeppel fullname: Poeppel, David organization: Department of Psychology, New York University, NY 10003, USA – sequence: 12 givenname: Charles E. surname: Schroeder fullname: Schroeder, Charles E. email: schrod@nki.rfmh.org organization: Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23473326$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstuEzEUtVARTQt_gJAlNmwS7PFjxiyQqggKUnlIbbdYjuemdTqxg-2JlF0_pPxcvwRPEyrogkpX8uKec3x07jlAez54QOglJRNKqHy7mHjoY_CTitBqUoaw-gkaUaLqMadK7aERaZQcy6pm--ggpQUhlAtFn6H9ivGasUqO0I8vYC-Nd2mZ8LlvIXYb5y_wKXRgs1sD_nr3ienwWTT2atiFOT7KGQq4xacrKHxsMjb49vpmGuxVNq7D303Mm9vrX8_R07npErzYvYfo_OOHs-mn8cm348_To5OxFYrkccNIywi1UIvGSgmczqDmwqhZY5hs51xRObNKVZVqqLTCCAVUGkKMsJYQzg7R-63uqp8tobXgczSdXkW3NHGjg3H63413l_oirDVrFOV1UwTe7ARi-NlDynrpkoWuMx5CnzQVgitREpSPQxmVRDDekAJ9_QC6CH0saQ6CrCKiqu_Mv_rb_L3rP1cqAL4F2BhSijC_h1CihzLohd6WQQ9l0GVKGQrt3QOaddlkF4YIXPcYeZcolLOtHUSdrANvoXWxVEO3wf1f4DepotOi |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_1157_23_2023 crossref_primary_10_3389_fpsyg_2022_892416 crossref_primary_10_1038_s41598_017_17063_0 crossref_primary_10_3390_brainsci15010003 crossref_primary_10_1016_j_heares_2023_108770 crossref_primary_10_1038_s41598_018_24535_4 crossref_primary_10_3389_fnins_2020_00436 crossref_primary_10_1016_j_neuron_2018_07_032 crossref_primary_10_1016_j_neuron_2017_05_019 crossref_primary_10_1080_23273798_2016_1262051 crossref_primary_10_1016_j_neuroimage_2017_02_014 crossref_primary_10_1371_journal_pone_0313274 crossref_primary_10_1007_s11571_017_9425_5 crossref_primary_10_1523_JNEUROSCI_2539_19_2020 crossref_primary_10_1523_ENEURO_0130_23_2023 crossref_primary_10_1016_j_cortex_2014_12_014 crossref_primary_10_1051_e3sconf_202016410015 crossref_primary_10_1016_j_bandl_2020_104891 crossref_primary_10_1016_j_neubiorev_2016_07_016 crossref_primary_10_1162_jocn_a_01295 crossref_primary_10_1007_s10162_015_0540_x crossref_primary_10_1121_1_4890198 crossref_primary_10_1371_journal_pcbi_1004643 crossref_primary_10_1523_JNEUROSCI_0238_24_2024 crossref_primary_10_1016_j_neuroimage_2020_117699 crossref_primary_10_1016_j_dcn_2023_101297 crossref_primary_10_1093_cercor_bhac502 crossref_primary_10_1002_hbm_25415 crossref_primary_10_1002_hbm_23398 crossref_primary_10_1016_j_cub_2017_12_005 crossref_primary_10_1088_1741_2560_13_5_056014 crossref_primary_10_1523_JNEUROSCI_1387_13_2013 crossref_primary_10_1016_j_neuroimage_2021_117958 crossref_primary_10_1088_1741_2552_aba6f8 crossref_primary_10_1016_j_jneumeth_2014_03_007 crossref_primary_10_1016_j_apacoust_2023_109519 crossref_primary_10_1073_pnas_1523357113 crossref_primary_10_1016_j_cub_2017_04_002 crossref_primary_10_1016_j_ijpsycho_2014_05_005 crossref_primary_10_1016_j_cub_2015_08_030 crossref_primary_10_1016_j_neuroimage_2023_120143 crossref_primary_10_1016_j_neuroscience_2024_10_013 crossref_primary_10_1523_JNEUROSCI_0220_22_2023 crossref_primary_10_7554_eLife_48116 crossref_primary_10_1016_j_neuroimage_2017_11_037 crossref_primary_10_1016_j_neuroimage_2015_05_001 crossref_primary_10_1016_j_neuroimage_2021_117969 crossref_primary_10_1002_lio2_73 crossref_primary_10_1162_jocn_a_02249 crossref_primary_10_1523_JNEUROSCI_1732_18_2019 crossref_primary_10_1038_s41467_019_11710_y crossref_primary_10_1016_j_bandl_2014_05_003 crossref_primary_10_1016_j_brainres_2025_149503 crossref_primary_10_1016_j_bandl_2021_104967 crossref_primary_10_1016_j_bandl_2018_05_004 crossref_primary_10_1523_JNEUROSCI_0583_21_2021 crossref_primary_10_3389_fnins_2021_635126 crossref_primary_10_3389_fpsyg_2019_02078 crossref_primary_10_1016_j_cognition_2022_105313 crossref_primary_10_1111_ejn_13935 crossref_primary_10_1016_j_neuroimage_2022_119049 crossref_primary_10_3389_fnhum_2021_676992 crossref_primary_10_1523_JNEUROSCI_0555_20_2020 crossref_primary_10_1523_JNEUROSCI_0938_17_2017 crossref_primary_10_1371_journal_pbio_3000491 crossref_primary_10_1016_j_neuroimage_2020_117427 crossref_primary_10_1016_j_celrep_2024_114081 crossref_primary_10_1038_s42003_025_07601_2 crossref_primary_10_1523_ENEURO_0489_21_2022 crossref_primary_10_1016_j_heares_2023_108856 crossref_primary_10_1016_j_neuroimage_2013_10_054 crossref_primary_10_7554_eLife_16747 crossref_primary_10_1016_j_neuron_2019_10_019 crossref_primary_10_1523_JNEUROSCI_0514_21_2021 crossref_primary_10_3389_fnins_2018_00095 crossref_primary_10_1016_j_neuroimage_2022_119395 crossref_primary_10_1523_JNEUROSCI_1455_20_2021 crossref_primary_10_1371_journal_pone_0292330 crossref_primary_10_1111_ejn_14912 crossref_primary_10_7554_eLife_94509_3 crossref_primary_10_3758_s13414_020_02064_5 crossref_primary_10_1371_journal_pbio_3002534 crossref_primary_10_1016_j_bandl_2015_06_005 crossref_primary_10_7554_eLife_94198 crossref_primary_10_1016_j_cortex_2015_05_001 crossref_primary_10_1088_1741_2552_ad0e7b crossref_primary_10_7554_eLife_87820_3 crossref_primary_10_1016_j_neuroimage_2017_12_051 crossref_primary_10_1523_JNEUROSCI_0302_20_2020 crossref_primary_10_1016_j_ynirp_2022_100093 crossref_primary_10_1093_schbul_sbx078 crossref_primary_10_1177_23312165241287622 crossref_primary_10_1038_srep11628 crossref_primary_10_1016_j_neuroimage_2015_08_064 crossref_primary_10_1016_j_plrev_2016_01_008 crossref_primary_10_1016_j_bandl_2018_12_005 crossref_primary_10_1073_pnas_1321487111 crossref_primary_10_1523_JNEUROSCI_0447_17_2017 crossref_primary_10_1038_srep37647 crossref_primary_10_1162_jocn_a_01581 crossref_primary_10_1093_cercor_bht355 crossref_primary_10_1038_s41467_019_10611_4 crossref_primary_10_3389_fnhum_2016_00274 crossref_primary_10_1371_journal_pbio_2000812 crossref_primary_10_1371_journal_pbio_3001234 crossref_primary_10_1016_j_brainres_2023_148246 crossref_primary_10_3389_fnins_2021_678029 crossref_primary_10_1162_jocn_a_01467 crossref_primary_10_1371_journal_pcbi_1012376 crossref_primary_10_7554_eLife_92079_3 crossref_primary_10_1371_journal_pbio_1002577 crossref_primary_10_1523_JNEUROSCI_0268_15_2015 crossref_primary_10_1523_ENEURO_0065_21_2021 crossref_primary_10_1016_j_cortex_2017_11_011 crossref_primary_10_1152_jn_00356_2022 crossref_primary_10_1002_hbm_24310 crossref_primary_10_7554_eLife_60433 crossref_primary_10_1016_j_cub_2022_07_047 crossref_primary_10_1523_JNEUROSCI_1515_17_2017 crossref_primary_10_1152_physrev_00011_2022 crossref_primary_10_1523_JNEUROSCI_3484_14_2015 crossref_primary_10_1016_j_neuroimage_2020_116788 crossref_primary_10_1016_j_heares_2023_108767 crossref_primary_10_1111_2041_210X_14118 crossref_primary_10_1016_j_neuroimage_2024_120875 crossref_primary_10_1080_13546805_2019_1665994 crossref_primary_10_7554_eLife_90735 crossref_primary_10_1093_cercor_bhaa153 crossref_primary_10_1111_ejn_13855 crossref_primary_10_1002_advs_202401379 crossref_primary_10_1016_j_cortex_2025_02_015 crossref_primary_10_1523_JNEUROSCI_1247_23_2023 crossref_primary_10_1162_jocn_a_01205 crossref_primary_10_1016_j_dcn_2022_101181 crossref_primary_10_1371_journal_pbio_3001142 crossref_primary_10_1016_j_neuropsychologia_2015_06_025 crossref_primary_10_1093_cercor_bhad549 crossref_primary_10_3389_fpsyg_2018_00034 crossref_primary_10_1016_j_bandl_2022_105128 crossref_primary_10_1523_JNEUROSCI_1652_20_2020 crossref_primary_10_3389_fnins_2021_685774 crossref_primary_10_1371_journal_pone_0304027 crossref_primary_10_1016_j_dcn_2021_100915 crossref_primary_10_3390_children7110219 crossref_primary_10_1111_ejn_13742 crossref_primary_10_3389_fnins_2020_00846 crossref_primary_10_3389_fnins_2020_00603 crossref_primary_10_1523_JNEUROSCI_1007_17_2017 crossref_primary_10_1002_brb3_2869 crossref_primary_10_1038_s41598_020_63103_7 crossref_primary_10_1016_j_tics_2019_08_004 crossref_primary_10_1038_s41598_017_11981_9 crossref_primary_10_1016_j_neubiorev_2025_106111 crossref_primary_10_1044_2017_JSLHR_H_17_0080 crossref_primary_10_1093_cercor_bhab256 crossref_primary_10_1093_cercor_bhab136 crossref_primary_10_1016_j_conb_2014_07_005 crossref_primary_10_3917_enf2_201_0089 crossref_primary_10_1371_journal_pbio_3002128 crossref_primary_10_1523_JNEUROSCI_1468_18_2019 crossref_primary_10_1093_cercor_bhy282 crossref_primary_10_1038_s41598_018_32150_6 crossref_primary_10_1111_ejn_13992 crossref_primary_10_3389_fnins_2019_00720 crossref_primary_10_1109_TNNLS_2023_3303308 crossref_primary_10_3758_s13415_024_01260_2 crossref_primary_10_1162_jocn_a_01303 crossref_primary_10_3389_fpsyg_2017_01497 crossref_primary_10_1016_j_heares_2022_108552 crossref_primary_10_1016_j_tics_2014_02_005 crossref_primary_10_1152_jn_00401_2019 crossref_primary_10_3389_fnhum_2019_00386 crossref_primary_10_7554_eLife_65096 crossref_primary_10_1016_j_cub_2024_06_072 crossref_primary_10_1098_rspb_2020_2419 crossref_primary_10_3389_fnagi_2018_00201 crossref_primary_10_3390_e20070512 crossref_primary_10_1016_j_heares_2013_08_003 crossref_primary_10_1142_S0219843620500231 crossref_primary_10_1016_j_neuroimage_2020_117282 crossref_primary_10_3390_brainsci13091314 crossref_primary_10_3758_s13414_021_02298_x crossref_primary_10_1016_j_cub_2019_07_075 crossref_primary_10_1038_nn_4186 crossref_primary_10_1016_j_conb_2014_01_011 crossref_primary_10_1016_j_brainres_2021_147720 crossref_primary_10_1016_j_neubiorev_2021_12_029 crossref_primary_10_1093_brain_awaa429 crossref_primary_10_1016_j_dcn_2022_101093 crossref_primary_10_1080_23273798_2016_1238495 crossref_primary_10_1016_j_neuroimage_2021_118544 crossref_primary_10_1080_23273798_2020_1758335 crossref_primary_10_1523_JNEUROSCI_2606_17_2017 crossref_primary_10_1038_srep28073 crossref_primary_10_1093_braincomms_fcab186 crossref_primary_10_1187_cbe_19_11_0258 crossref_primary_10_1044_2024_JSLHR_24_00404 crossref_primary_10_1016_j_brainres_2021_147739 crossref_primary_10_1038_s41598_019_47643_1 crossref_primary_10_1097_AUD_0000000000000923 crossref_primary_10_1177_2331216518816600 crossref_primary_10_1016_j_ymeth_2022_04_009 crossref_primary_10_1111_ejn_14986 crossref_primary_10_1002_brb3_1635 crossref_primary_10_1007_s00426_014_0555_7 crossref_primary_10_1109_LSP_2021_3134563 crossref_primary_10_3389_fnsys_2018_00056 crossref_primary_10_1121_1_5024404 crossref_primary_10_1371_journal_pcbi_1009358 crossref_primary_10_1016_j_cortex_2015_03_006 crossref_primary_10_1016_j_neuroimage_2019_116152 crossref_primary_10_1093_cercor_bhab446 crossref_primary_10_1152_jn_00074_2016 crossref_primary_10_1111_desc_13420 crossref_primary_10_1016_j_jml_2016_12_002 crossref_primary_10_12688_f1000research_15580_1 crossref_primary_10_3389_fnhum_2023_1168108 crossref_primary_10_1007_s11571_020_09594_6 crossref_primary_10_3389_fncom_2016_00047 crossref_primary_10_1088_1741_2552_aae0a6 crossref_primary_10_1162_neco_a_01007 crossref_primary_10_1016_j_neuroimage_2023_120040 crossref_primary_10_1093_cercor_bhy052 crossref_primary_10_1371_journal_pbio_3002498 crossref_primary_10_1016_j_neuroimage_2015_11_016 crossref_primary_10_3389_fnins_2022_963629 crossref_primary_10_3389_fnins_2021_636060 crossref_primary_10_1523_JNEUROSCI_3658_16_2017 crossref_primary_10_1016_j_neuroscience_2017_07_021 crossref_primary_10_3390_audiolres11010012 crossref_primary_10_1016_j_neuroimage_2019_02_047 crossref_primary_10_1093_cercor_bhac424 crossref_primary_10_3389_fnins_2022_872600 crossref_primary_10_1016_j_neuroimage_2018_02_065 crossref_primary_10_1093_cercor_bhac302 crossref_primary_10_1093_cercor_bhaa245 crossref_primary_10_1016_j_procs_2018_11_089 crossref_primary_10_1016_j_ijpsycho_2014_06_010 crossref_primary_10_1111_ejn_15616 crossref_primary_10_1016_j_neuroimage_2018_01_033 crossref_primary_10_1371_journal_pone_0212754 crossref_primary_10_1152_jn_00652_2015 crossref_primary_10_1016_j_neuroimage_2020_117365 crossref_primary_10_1007_s10548_014_0365_7 crossref_primary_10_1016_j_neurobiolaging_2017_04_003 crossref_primary_10_1093_cercor_bhab469 crossref_primary_10_1016_j_neuropsychologia_2015_08_011 crossref_primary_10_1016_j_ijpsycho_2019_05_005 crossref_primary_10_1523_JNEUROSCI_2243_15_2015 crossref_primary_10_1523_JNEUROSCI_2313_20_2021 crossref_primary_10_1055_s_0041_1735134 crossref_primary_10_1111_psyp_12815 crossref_primary_10_3758_s13414_015_0882_9 crossref_primary_10_1038_nn_4386 crossref_primary_10_1111_ejn_15504 crossref_primary_10_1111_ejn_15503 crossref_primary_10_1371_journal_pone_0172480 crossref_primary_10_1093_cercor_bhy193 crossref_primary_10_7554_eLife_24763 crossref_primary_10_1016_j_neuropsychologia_2023_108660 crossref_primary_10_1088_1741_2552_ac975c crossref_primary_10_3389_fnins_2022_869426 crossref_primary_10_1016_j_cub_2015_07_043 crossref_primary_10_1523_JNEUROSCI_0025_14_2014 crossref_primary_10_1016_j_neuropsychologia_2018_10_019 crossref_primary_10_1016_j_neuroimage_2018_09_006 crossref_primary_10_1016_j_tics_2018_08_003 crossref_primary_10_1121_1_5065392 crossref_primary_10_5909_JBE_2015_20_1_68 crossref_primary_10_1044_2018_JSLHR_S_ASTM_18_0244 crossref_primary_10_1016_j_ijporl_2017_08_010 crossref_primary_10_1038_s42005_024_01818_z crossref_primary_10_1093_cercor_bhac203 crossref_primary_10_1111_nyas_12629 crossref_primary_10_1371_journal_pone_0085819 crossref_primary_10_1093_cercor_bhae472 crossref_primary_10_1016_j_heares_2015_11_002 crossref_primary_10_1111_ejn_14425 crossref_primary_10_1016_j_biopsycho_2023_108651 crossref_primary_10_1016_j_brs_2015_04_004 crossref_primary_10_3389_fncir_2014_00094 crossref_primary_10_1007_s11571_021_09711_z crossref_primary_10_1111_ejn_70009 crossref_primary_10_3390_brainsci9030070 crossref_primary_10_3389_fnhum_2015_00171 crossref_primary_10_1016_j_dcn_2022_101102 crossref_primary_10_3389_fncir_2021_721186 crossref_primary_10_7554_eLife_90735_4 crossref_primary_10_3389_fpsyg_2019_00786 crossref_primary_10_1113_jphysiol_2014_274886 crossref_primary_10_1109_TBME_2023_3294242 crossref_primary_10_1109_TBME_2016_2587382 crossref_primary_10_1088_1741_2552_ad867c crossref_primary_10_3389_fnsys_2017_00061 crossref_primary_10_3389_fnint_2017_00001 crossref_primary_10_1177_23312165241266316 crossref_primary_10_1038_s41598_020_62613_8 crossref_primary_10_1093_cercor_bhx235 crossref_primary_10_3389_fnins_2016_00361 crossref_primary_10_1371_journal_pone_0219744 crossref_primary_10_1088_1741_2552_ab4340 crossref_primary_10_1080_2326263X_2015_1063363 crossref_primary_10_1126_sciadv_ado8915 crossref_primary_10_1109_TBME_2022_3140246 crossref_primary_10_1152_jn_00758_2018 crossref_primary_10_1016_j_neubiorev_2023_105438 crossref_primary_10_7554_eLife_94509 crossref_primary_10_1152_jn_00329_2024 crossref_primary_10_1523_ENEURO_0275_24_2025 crossref_primary_10_1523_ENEURO_0071_16_2016 crossref_primary_10_1121_1_5123391 crossref_primary_10_1016_j_bandl_2016_06_003 crossref_primary_10_1523_ENEURO_0057_19_2019 crossref_primary_10_1016_j_neuroimage_2022_119770 crossref_primary_10_1088_1741_2560_12_4_046007 crossref_primary_10_3389_fnint_2020_00010 crossref_primary_10_3389_fpsyg_2016_00844 crossref_primary_10_3389_fnins_2022_799787 crossref_primary_10_1016_j_cortex_2022_09_011 crossref_primary_10_3389_fnins_2016_00254 crossref_primary_10_1044_2015_JSLHR_H_15_0014 crossref_primary_10_1016_j_bandl_2016_06_006 crossref_primary_10_1111_ejn_14573 crossref_primary_10_1038_s41598_017_11295_w crossref_primary_10_1038_s41467_018_07773_y crossref_primary_10_3389_fnhum_2023_1174720 crossref_primary_10_1523_JNEUROSCI_1101_19_2019 crossref_primary_10_1016_j_neubiorev_2017_12_002 crossref_primary_10_1111_nyas_13317 crossref_primary_10_1371_journal_pbio_1001710 crossref_primary_10_3389_fnins_2016_00349 crossref_primary_10_1038_s41598_017_04464_4 crossref_primary_10_1371_journal_pone_0308554 crossref_primary_10_1016_j_neuroimage_2017_05_037 crossref_primary_10_1016_j_tics_2016_07_006 crossref_primary_10_1016_j_neuroimage_2022_119724 crossref_primary_10_1098_rspa_2015_0309 crossref_primary_10_1162_neco_a_01537 crossref_primary_10_1007_s10162_021_00789_0 crossref_primary_10_1016_j_neuroimage_2018_10_057 crossref_primary_10_21848_asr_210004 crossref_primary_10_3389_fpsyg_2017_00265 crossref_primary_10_3389_fnins_2018_00531 crossref_primary_10_1088_1741_2552_ab07fe crossref_primary_10_1073_pnas_1816414116 crossref_primary_10_1016_j_neuron_2019_04_023 crossref_primary_10_1162_jocn_a_00719 crossref_primary_10_1093_cercor_bhac376 crossref_primary_10_1093_cercor_bhad347 crossref_primary_10_3389_fnhum_2016_00604 crossref_primary_10_1016_j_copsyc_2018_12_016 crossref_primary_10_1093_cercor_bhad475 crossref_primary_10_3389_fpsyg_2015_00597 crossref_primary_10_1016_j_cortex_2017_05_001 crossref_primary_10_1016_j_neuroimage_2017_07_056 crossref_primary_10_3389_fcomp_2021_661178 crossref_primary_10_3389_fnhum_2022_1027335 crossref_primary_10_3389_fnins_2016_00472 crossref_primary_10_1088_1741_2560_11_4_046015 crossref_primary_10_1121_10_0021301 crossref_primary_10_1016_j_cortex_2023_11_018 crossref_primary_10_1016_j_clinph_2018_03_042 crossref_primary_10_1038_s41583_020_0304_4 crossref_primary_10_3389_fnhum_2017_00034 crossref_primary_10_1016_j_ijpsycho_2014_03_004 crossref_primary_10_1146_annurev_neuro_100120_085519 crossref_primary_10_1371_journal_pone_0114427 crossref_primary_10_3389_fnint_2019_00028 crossref_primary_10_1073_pnas_1620350114 crossref_primary_10_1016_j_neuroscience_2020_05_018 crossref_primary_10_1044_2021_JSLHR_20_00608 crossref_primary_10_1016_j_neuroimage_2016_11_043 crossref_primary_10_1038_s41598_019_39166_6 crossref_primary_10_1002_acn3_470 crossref_primary_10_1080_23273798_2018_1518534 crossref_primary_10_1016_j_cognition_2019_05_019 crossref_primary_10_1080_1357650X_2019_1606820 crossref_primary_10_1016_j_yebeh_2021_108164 crossref_primary_10_1016_j_heares_2019_107808 crossref_primary_10_1088_1741_2552_aa7ab4 crossref_primary_10_1016_j_neuroimage_2021_118578 crossref_primary_10_1016_j_neuropsychologia_2021_108106 crossref_primary_10_1121_10_0000646 crossref_primary_10_1016_j_heares_2024_109007 crossref_primary_10_3390_brainsci10110810 crossref_primary_10_1016_j_neuroimage_2021_118698 crossref_primary_10_1111_mbe_12373 crossref_primary_10_1098_rstb_2013_0393 crossref_primary_10_1162_imag_a_00148 crossref_primary_10_1016_j_bandl_2022_105221 crossref_primary_10_1093_cercor_bhae338 crossref_primary_10_1016_j_neuroimage_2019_116211 crossref_primary_10_1093_cercor_bhac277 crossref_primary_10_1016_j_neuron_2013_02_015 crossref_primary_10_3389_fnins_2020_00904 crossref_primary_10_1523_JNEUROSCI_4274_13_2013 crossref_primary_10_1016_j_neuron_2015_12_041 crossref_primary_10_1111_desc_12947 crossref_primary_10_1109_TNSRE_2016_2571900 crossref_primary_10_1016_j_neuroimage_2022_119613 crossref_primary_10_1038_s41598_019_47795_0 crossref_primary_10_1038_s41598_023_37173_2 crossref_primary_10_1126_sciadv_aav6134 crossref_primary_10_1109_TNNLS_2018_2830119 crossref_primary_10_1162_nol_a_00141 crossref_primary_10_3389_fnins_2018_00422 crossref_primary_10_3758_s13414_023_02815_0 crossref_primary_10_3389_fncom_2015_00005 crossref_primary_10_1162_imag_a_00035 crossref_primary_10_1016_j_bandl_2019_104700 crossref_primary_10_1016_j_neuron_2014_04_031 crossref_primary_10_1371_journal_pbio_1001752 crossref_primary_10_1016_j_cophys_2020_07_014 crossref_primary_10_1080_23273798_2016_1247970 crossref_primary_10_1371_journal_pbio_3000840 crossref_primary_10_1093_scan_nsab103 crossref_primary_10_1007_s10162_021_00787_2 crossref_primary_10_1109_TNSRE_2019_2952724 crossref_primary_10_1523_JNEUROSCI_3318_14_2015 crossref_primary_10_1038_s41598_019_44782_3 crossref_primary_10_3389_fnins_2021_652058 crossref_primary_10_1016_j_neuroimage_2017_04_026 crossref_primary_10_1086_714914 crossref_primary_10_1177_09567976241243367 crossref_primary_10_1016_j_tins_2016_05_001 crossref_primary_10_1162_jocn_a_00913 crossref_primary_10_1109_THMS_2021_3125283 crossref_primary_10_1523_JNEUROSCI_1889_18_2018 crossref_primary_10_1016_j_neuroimage_2015_08_054 crossref_primary_10_1523_JNEUROSCI_0588_18_2019 crossref_primary_10_3389_fnins_2021_717572 crossref_primary_10_3389_fnins_2014_00137 crossref_primary_10_3389_fnins_2019_00153 crossref_primary_10_1016_j_neuroimage_2023_119894 crossref_primary_10_1038_s41598_019_41752_7 crossref_primary_10_1016_j_conb_2014_12_005 crossref_primary_10_1073_pnas_2122481120 crossref_primary_10_1080_23273798_2018_1492002 crossref_primary_10_1111_psyp_13487 crossref_primary_10_1177_23312165211013242 crossref_primary_10_1111_ejn_15367 crossref_primary_10_1016_j_isci_2023_106849 crossref_primary_10_1016_j_neuroimage_2020_116882 crossref_primary_10_1163_22134808_bja10001 crossref_primary_10_1016_j_dcn_2023_101330 crossref_primary_10_1038_srep08662 crossref_primary_10_1016_j_bandl_2015_05_008 crossref_primary_10_1016_j_bandl_2016_04_004 crossref_primary_10_1016_j_neuroimage_2022_119024 crossref_primary_10_1111_nyas_15315 crossref_primary_10_1371_journal_pbio_3001713 crossref_primary_10_1016_j_neuroimage_2014_06_018 crossref_primary_10_1121_1_4879667 crossref_primary_10_1162_jocn_a_02079 crossref_primary_10_12677_AP_2023_133124 crossref_primary_10_1038_s41598_022_09989_x crossref_primary_10_1038_s41598_025_90301_y crossref_primary_10_1002_wcs_1610 crossref_primary_10_1111_ejn_16221 crossref_primary_10_3389_fnhum_2020_00130 crossref_primary_10_3758_s13414_020_02091_2 crossref_primary_10_3389_fnins_2022_842447 crossref_primary_10_1016_j_cub_2018_01_080 crossref_primary_10_1016_j_neuroimage_2023_120404 crossref_primary_10_1016_j_cub_2017_11_033 crossref_primary_10_7554_eLife_31640 crossref_primary_10_1155_2014_869726 crossref_primary_10_1016_j_neuroimage_2018_10_037 crossref_primary_10_1093_scan_nsaa142 crossref_primary_10_1016_j_cognition_2018_06_001 crossref_primary_10_1016_j_cub_2015_10_045 crossref_primary_10_1080_0163853X_2017_1330031 crossref_primary_10_1093_scan_nsaa024 crossref_primary_10_1016_j_neuroimage_2018_07_052 crossref_primary_10_1016_j_cub_2015_10_040 crossref_primary_10_1163_22134808_20181327 crossref_primary_10_1038_ncomms15801 crossref_primary_10_1007_s10548_017_0560_4 crossref_primary_10_1152_jn_00950_2016 crossref_primary_10_1016_j_dcn_2023_101313 crossref_primary_10_3389_fnins_2021_596478 crossref_primary_10_1121_1_4963902 crossref_primary_10_3389_fnhum_2014_00311 crossref_primary_10_1016_j_heares_2014_04_008 crossref_primary_10_1371_journal_pone_0073590 crossref_primary_10_3389_fnhum_2014_00798 crossref_primary_10_1098_rstb_2021_0488 crossref_primary_10_1016_j_neuroimage_2018_11_026 crossref_primary_10_1371_journal_pbio_3000883 crossref_primary_10_3389_fnins_2016_00183 crossref_primary_10_1038_s41467_018_04819_z crossref_primary_10_1098_rstb_2013_0214 crossref_primary_10_3389_fpsyg_2017_00781 crossref_primary_10_1177_2331216520915110 crossref_primary_10_1038_s42003_024_06913_z crossref_primary_10_3389_fnins_2023_1268591 crossref_primary_10_3389_fnins_2021_646543 crossref_primary_10_7554_eLife_94198_3 crossref_primary_10_1038_s41467_021_24771_9 crossref_primary_10_7554_eLife_87820 crossref_primary_10_1016_j_neuropsychologia_2019_01_009 crossref_primary_10_1016_j_nic_2020_01_004 crossref_primary_10_1016_j_neuron_2017_06_032 crossref_primary_10_3389_fpsyg_2015_00751 crossref_primary_10_1016_j_tics_2024_11_012 crossref_primary_10_1523_JNEUROSCI_1936_19_2020 crossref_primary_10_3389_fnhum_2015_00651 crossref_primary_10_1016_j_brainres_2016_05_029 crossref_primary_10_1016_j_tics_2014_05_001 crossref_primary_10_1007_s00429_016_1348_0 crossref_primary_10_1016_j_neuroimage_2020_116717 crossref_primary_10_1523_JNEUROSCI_2805_13_2014 crossref_primary_10_1016_j_jneumeth_2017_01_022 crossref_primary_10_1016_j_neuroimage_2022_119438 crossref_primary_10_1016_j_neuron_2019_09_007 crossref_primary_10_1162_jocn_a_02067 crossref_primary_10_3389_fnins_2017_00296 crossref_primary_10_1016_j_cortex_2020_06_007 crossref_primary_10_1016_j_neubiorev_2017_02_011 crossref_primary_10_1038_s41598_018_20824_0 crossref_primary_10_1111_ejn_16492 crossref_primary_10_1088_1741_2552_aa66dd crossref_primary_10_1016_j_neuroimage_2016_02_064 crossref_primary_10_1038_s41598_022_17401_x crossref_primary_10_1371_journal_pone_0108045 crossref_primary_10_1016_j_brainres_2020_146821 crossref_primary_10_1016_j_neuroimage_2023_119984 crossref_primary_10_1038_ncomms6255 crossref_primary_10_1016_j_cortex_2018_11_026 crossref_primary_10_1016_j_cub_2018_07_023 crossref_primary_10_1088_1741_2552_ad5403 crossref_primary_10_1111_ejn_16140 crossref_primary_10_1007_s11571_022_09924_w crossref_primary_10_1024_1016_264X_a000386 crossref_primary_10_1073_pnas_1408741111 crossref_primary_10_1523_JNEUROSCI_1310_22_2023 crossref_primary_10_1016_j_nicl_2015_08_015 crossref_primary_10_1016_j_neuroimage_2022_119698 crossref_primary_10_1038_ncomms5059 crossref_primary_10_1016_j_neuroimage_2016_03_074 crossref_primary_10_3389_fnhum_2015_00436 crossref_primary_10_7554_eLife_92079 crossref_primary_10_3389_fnins_2018_00262 crossref_primary_10_1523_JNEUROSCI_1730_15_2016 crossref_primary_10_1016_j_neuron_2014_02_044 crossref_primary_10_1016_j_psychsport_2024_102728 crossref_primary_10_1016_j_neuropsychologia_2021_107888 crossref_primary_10_3109_21695717_2013_821756 crossref_primary_10_1016_j_crneur_2022_100043 crossref_primary_10_1152_jn_00545_2015 crossref_primary_10_1162_NECO_a_00862 |
Cites_doi | 10.1121/1.1907309 10.1016/j.neuron.2009.08.016 10.1016/j.neuroimage.2004.10.020 10.1152/jn.00251.2010 10.1007/s10827-010-0230-y 10.1523/JNEUROSCI.3065-09.2009 10.1152/jn.00263.2005 10.1016/j.tins.2008.09.012 10.1126/science.182.4108.177 10.1007/s10548-009-0080-y 10.1037/0033-295X.106.1.119 10.1038/nature11020 10.1523/JNEUROSCI.0703-10.2010 10.1523/JNEUROSCI.4518-10.2011 10.1038/nn.3063 10.1016/S0167-8760(00)00172-0 10.1016/j.conb.2007.07.011 10.1016/j.conb.2010.02.010 10.1016/j.neuron.2007.06.004 10.1088/0954-898X/12/3/304 10.1371/journal.pcbi.1000436 10.1126/science.1154735 10.1126/science.270.5234.303 10.1080/09548980701609235 10.1016/j.neuron.2009.10.014 10.1073/pnas.1205381109 10.1097/00001756-200506210-00011 10.1371/journal.pbio.1000129 10.1523/JNEUROSCI.3675-12.2013 10.1016/j.bandl.2011.12.010 10.1016/j.neuron.2009.01.008 10.1121/1.1288668 10.1016/0959-4388(95)80012-3 10.1162/jocn.2009.21118 10.1037/0278-7393.21.1.255 10.1371/journal.pbio.1001251 10.1016/j.tics.2010.09.001 10.1073/pnas.1016134108 10.1152/jn.00297.2011 10.1073/pnas.90.18.8722 10.1523/JNEUROSCI.0827-10.2010 10.1523/JNEUROSCI.3825-03.2004 10.1152/jn.00358.2007 10.1523/JNEUROSCI.3631-09.2010 10.1098/rstb.1992.0070 10.1016/j.cub.2007.06.066 10.3389/fpsyg.2011.00130 10.1121/1.1907229 10.1016/j.neuroimage.2009.12.040 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Mar 6, 2013 2013 Elsevier Inc. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Mar 6, 2013 – notice: 2013 Elsevier Inc. All rights reserved. 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2012.12.037 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts Nursing & Allied Health Premium MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 991 |
ExternalDocumentID | PMC3891478 3324273991 23473326 10_1016_j_neuron_2012_12_037 S0896627313000457 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH60358 – fundername: NIDCD NIH HHS grantid: DC05660 – fundername: NIMH NIH HHS grantid: P50 MH086385 – fundername: NIDCD NIH HHS grantid: R56 DC005660 – fundername: NIMH NIH HHS grantid: MH086385 – fundername: NIDCD NIH HHS grantid: DC008342 – fundername: NIDCD NIH HHS grantid: R01 DC008342 – fundername: NIMH NIH HHS grantid: R01 MH060358 – fundername: NIDCD NIH HHS grantid: R01 DC012947 – fundername: NIMH NIH HHS grantid: F32 MH093061 – fundername: National Institute on Deafness and Other Communication Disorders : NIDCD grantid: R01 DC008342 || DC – fundername: National Institute of Mental Health : NIMH grantid: F32 MH093061 || MH – fundername: National Institute on Deafness and Other Communication Disorders : NIDCD grantid: R01 DC005660 || DC – fundername: National Institute of Mental Health : NIMH grantid: P50 MH086385 || MH – fundername: National Institute of Mental Health : NIMH grantid: R01 MH060358 || MH |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGHFR AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- AAFWJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB CGR CUY CVF ECM EFKBS EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c590t-830d301ce758c66e41be745a9b8a36df4916bc99229816c5a59e16a00a5cc0043 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 18:35:08 EDT 2025 Fri Jul 11 04:17:54 EDT 2025 Tue Aug 05 11:19:34 EDT 2025 Fri Jul 25 11:09:33 EDT 2025 Mon Jul 21 05:50:20 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Tue Jul 01 01:16:05 EDT 2025 Fri Feb 23 02:11:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-830d301ce758c66e41be745a9b8a36df4916bc99229816c5a59e16a00a5cc0043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627313000457 |
PMID | 23473326 |
PQID | 1532052704 |
PQPubID | 2031076 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891478 proquest_miscellaneous_1554950016 proquest_miscellaneous_1316053480 proquest_journals_1532052704 pubmed_primary_23473326 crossref_primary_10_1016_j_neuron_2012_12_037 crossref_citationtrail_10_1016_j_neuron_2012_12_037 elsevier_sciencedirect_doi_10_1016_j_neuron_2012_12_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-06 |
PublicationDateYYYYMMDD | 2013-03-06 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Nir, Fisch, Mukamel, Gelbard-Sagiv, Arieli, Fried, Malach (bib35) 2007; 17 Ding, Simon (bib12) 2012; 109 Stefanics, Hangya, Hernádi, Winkler, Lakatos, Ulbert (bib43) 2010; 30 Lakatos, Karmos, Mehta, Ulbert, Schroeder (bib28) 2008; 320 Schroeder, Lakatos (bib40) 2009; 32 Elhilali, Xiang, Shamma, Simon (bib15) 2009; 7 Schroeder, Wilson, Radman, Scharfman, Lakatos (bib41) 2010; 20 Zion Golumbic, Poeppel, Schroeder (bib51) 2012; 122 Buzsaki (bib6) 2006 Pasley, David, Mesgarani, Flinker, Shamma, Crone, Knight, Chang (bib37) 2012; 10 Buzsáki, Chrobak (bib7) 1995; 5 Schroeder, Lakatos (bib39) 2009; 22 Canolty, Knight (bib8) 2010; 14 Belitski, Panzeri, Magri, Logothetis, Kayser (bib3) 2010; 29 Bishop, Miller (bib5) 2009; 21 Elhilali, Fritz, Klein, Simon, Shamma (bib14) 2004; 24 Large, Jones (bib30) 1999; 106 Woldorff, Gallen, Hampson, Hillyard, Pantev, Sobel, Bloom (bib48) 1993; 90 Kerlin, Shahin, Miller (bib25) 2010; 30 Whittingstall, Logothetis (bib47) 2009; 64 Luo, Poeppel (bib31) 2007; 54 Lakatos, O’Connell, Barczak, Mills, Javitt, Schroeder (bib29) 2009; 64 Ahissar, Ahissar (bib1) 2005 Rosen (bib38) 1992; 336 Ahveninen, Hämäläinen, Jääskeläinen, Ahlfors, Huang, Lin, Raij, Sams, Vasios, Belliveau (bib2) 2011; 108 Mazzoni, Whittingstall, Brunel, Logothetis, Panzeri (bib33) 2010; 52 Chandrasekaran, Trubanova, Stillittano, Caplier, Ghazanfar (bib9) 2009; 5 Besle, Schevon, Mehta, Lakatos, Goodman, McKhann, Emerson, Schroeder (bib4) 2011; 31 Mesgarani, Chang (bib34) 2012; 485 Giraud, Poeppel (bib18) 2012; 15 Lakatos, Pincze, Fu, Javitt, Karmos, Schroeder (bib26) 2005; 16 Sumby, Pollack (bib44) 1954; 26 Cherry (bib10) 1953; 25 Hillyard, Hink, Schwent, Picton (bib21) 1973; 182 Shannon, Zeng, Kamath, Wygonski, Ekelid (bib42) 1995; 270 Xiang, Simon, Elhilali (bib50) 2010; 30 Ding, Simon (bib13) 2012; 107 David, Mesgarani, Shamma (bib11) 2007; 18 Nourski, Reale, Oya, Kawasaki, Kovach, Chen, Howard, Brugge (bib36) 2009; 29 Howard, Poeppel (bib22) 2010; 104 Zion Golumbic, Cogan, Schroeder, Poeppel (bib52) 2013; 33 Greenberg, Ainsworth (bib20) 2006 Kayser, Petkov, Logothetis (bib23) 2007; 98 von Stein, Sarnthein (bib46) 2000; 38 Wood, Cowan (bib49) 1995; 21 Mäkinen, Tiitinen, May (bib32) 2005; 24 Lakatos, Shah, Knuth, Ulbert, Karmos, Schroeder (bib27) 2005; 94 Grant, Seitz (bib19) 2000; 108 Kayser, Montemurro, Logothetis, Panzeri (bib24) 2009; 61 Theunissen, David, Singh, Hsu, Vinje, Gallant (bib45) 2001; 12 Fritz, Elhilali, David, Shamma (bib16) 2007; 17 Ghitza (bib17) 2011; 2 Schroeder (10.1016/j.neuron.2012.12.037_bib40) 2009; 32 Greenberg (10.1016/j.neuron.2012.12.037_bib20) 2006 Pasley (10.1016/j.neuron.2012.12.037_bib37) 2012; 10 Besle (10.1016/j.neuron.2012.12.037_bib4) 2011; 31 Kerlin (10.1016/j.neuron.2012.12.037_bib25) 2010; 30 Lakatos (10.1016/j.neuron.2012.12.037_bib28) 2008; 320 Kayser (10.1016/j.neuron.2012.12.037_bib24) 2009; 61 Canolty (10.1016/j.neuron.2012.12.037_bib8) 2010; 14 Chandrasekaran (10.1016/j.neuron.2012.12.037_bib9) 2009; 5 Wood (10.1016/j.neuron.2012.12.037_bib49) 1995; 21 Buzsáki (10.1016/j.neuron.2012.12.037_bib7) 1995; 5 Zion Golumbic (10.1016/j.neuron.2012.12.037_bib51) 2012; 122 Grant (10.1016/j.neuron.2012.12.037_bib19) 2000; 108 Schroeder (10.1016/j.neuron.2012.12.037_bib39) 2009; 22 Bishop (10.1016/j.neuron.2012.12.037_bib5) 2009; 21 Luo (10.1016/j.neuron.2012.12.037_bib31) 2007; 54 Elhilali (10.1016/j.neuron.2012.12.037_bib14) 2004; 24 Ghitza (10.1016/j.neuron.2012.12.037_bib17) 2011; 2 Ding (10.1016/j.neuron.2012.12.037_bib13) 2012; 107 Mazzoni (10.1016/j.neuron.2012.12.037_bib33) 2010; 52 Ahveninen (10.1016/j.neuron.2012.12.037_bib2) 2011; 108 Hillyard (10.1016/j.neuron.2012.12.037_bib21) 1973; 182 Large (10.1016/j.neuron.2012.12.037_bib30) 1999; 106 Lakatos (10.1016/j.neuron.2012.12.037_bib29) 2009; 64 Ahissar (10.1016/j.neuron.2012.12.037_bib1) 2005 Elhilali (10.1016/j.neuron.2012.12.037_bib15) 2009; 7 Ding (10.1016/j.neuron.2012.12.037_bib12) 2012; 109 Whittingstall (10.1016/j.neuron.2012.12.037_bib47) 2009; 64 Lakatos (10.1016/j.neuron.2012.12.037_bib27) 2005; 94 Nourski (10.1016/j.neuron.2012.12.037_bib36) 2009; 29 Woldorff (10.1016/j.neuron.2012.12.037_bib48) 1993; 90 Xiang (10.1016/j.neuron.2012.12.037_bib50) 2010; 30 Mesgarani (10.1016/j.neuron.2012.12.037_bib34) 2012; 485 Sumby (10.1016/j.neuron.2012.12.037_bib44) 1954; 26 Giraud (10.1016/j.neuron.2012.12.037_bib18) 2012; 15 Howard (10.1016/j.neuron.2012.12.037_bib22) 2010; 104 Nir (10.1016/j.neuron.2012.12.037_bib35) 2007; 17 Zion Golumbic (10.1016/j.neuron.2012.12.037_bib52) 2013; 33 Cherry (10.1016/j.neuron.2012.12.037_bib10) 1953; 25 David (10.1016/j.neuron.2012.12.037_bib11) 2007; 18 Kayser (10.1016/j.neuron.2012.12.037_bib23) 2007; 98 Schroeder (10.1016/j.neuron.2012.12.037_bib41) 2010; 20 von Stein (10.1016/j.neuron.2012.12.037_bib46) 2000; 38 Stefanics (10.1016/j.neuron.2012.12.037_bib43) 2010; 30 Rosen (10.1016/j.neuron.2012.12.037_bib38) 1992; 336 Belitski (10.1016/j.neuron.2012.12.037_bib3) 2010; 29 Lakatos (10.1016/j.neuron.2012.12.037_bib26) 2005; 16 Buzsaki (10.1016/j.neuron.2012.12.037_bib6) 2006 Fritz (10.1016/j.neuron.2012.12.037_bib16) 2007; 17 Shannon (10.1016/j.neuron.2012.12.037_bib42) 1995; 270 Mäkinen (10.1016/j.neuron.2012.12.037_bib32) 2005; 24 Theunissen (10.1016/j.neuron.2012.12.037_bib45) 2001; 12 19249279 - Neuron. 2009 Feb 26;61(4):597-608 7876773 - J Exp Psychol Learn Mem Cogn. 1995 Jan;21(1):255-60 18823249 - J Cogn Neurosci. 2009 Sep;21(9):1790-805 17686438 - Curr Biol. 2007 Aug 7;17(15):1275-85 22522927 - Nature. 2012 May 10;485(7397):233-6 7569981 - Science. 1995 Oct 13;270(5234):303-4 19205863 - Brain Topogr. 2009 Jun;22(1):24-6 20307966 - Curr Opin Neurobiol. 2010 Apr;20(2):172-6 1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73 4730062 - Science. 1973 Oct 12;182(4108):177-80 17714933 - Curr Opin Neurobiol. 2007 Aug;17(4):437-55 20232128 - J Comput Neurosci. 2010 Dec;29(3):533-45 23473312 - Neuron. 2013 Mar 6;77(5):806-9 21743809 - Front Psychol. 2011 Jun 27;2:130 19609344 - PLoS Comput Biol. 2009 Jul;5(7):e1000436 15901760 - J Neurophysiol. 2005 Sep;94(3):1904-11 20932795 - Trends Cogn Sci. 2010 Nov;14(11):506-15 22285024 - Brain Lang. 2012 Sep;122(3):151-61 22753470 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11854-9 20007480 - J Neurosci. 2009 Dec 9;29(49):15564-74 17582338 - Neuron. 2007 Jun 21;54(6):1001-10 19529760 - PLoS Biol. 2009 Jun;7(6):e1000129 14762134 - J Neurosci. 2004 Feb 4;24(5):1159-72 21368107 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7 20943899 - J Neurosci. 2010 Oct 13;30(41):13578-85 19914189 - Neuron. 2009 Nov 12;64(3):419-30 22303281 - PLoS Biol. 2012 Jan;10(1):e1001251 8378354 - Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8722-6 20071526 - J Neurosci. 2010 Jan 13;30(2):620-8 23345218 - J Neurosci. 2013 Jan 23;33(4):1417-26 11563531 - Network. 2001 Aug;12(3):289-316 18388295 - Science. 2008 Apr 4;320(5872):110-3 11102669 - Int J Psychophysiol. 2000 Dec 1;38(3):301-13 22426255 - Nat Neurosci. 2012 Apr;15(4):511-7 15931064 - Neuroreport. 2005 Jun 21;16(9):933-7 21975452 - J Neurophysiol. 2012 Jan;107(1):78-89 20826671 - J Neurosci. 2010 Sep 8;30(36):12084-93 11008820 - J Acoust Soc Am. 2000 Sep;108(3 Pt 1):1197-208 7488853 - Curr Opin Neurobiol. 1995 Aug;5(4):504-10 20026218 - Neuroimage. 2010 Sep;52(3):956-72 17596418 - J Neurophysiol. 2007 Sep;98(3):1806-9 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18 20484530 - J Neurophysiol. 2010 Nov;104(5):2500-11 17852750 - Network. 2007 Sep;18(3):191-212 19874794 - Neuron. 2009 Oct 29;64(2):281-9 15670673 - Neuroimage. 2005 Feb 15;24(4):961-8 21368029 - J Neurosci. 2011 Mar 2;31(9):3176-85 |
References_xml | – volume: 22 start-page: 24 year: 2009 end-page: 26 ident: bib39 article-title: The gamma oscillation: master or slave? publication-title: Brain Topogr. – volume: 25 start-page: 975 year: 1953 end-page: 979 ident: bib10 article-title: Some experiments on the recognition of speech, with one and two ears publication-title: J. Acoust. Soc. Am. – volume: 21 start-page: 255 year: 1995 end-page: 260 ident: bib49 article-title: The cocktail party phenomenon revisited: how frequent are attention shifts to one’s name in an irrelevant auditory channel? publication-title: J. Exp. Psychol. Learn. Mem. Cogn. – volume: 94 start-page: 1904 year: 2005 end-page: 1911 ident: bib27 article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex publication-title: J. Neurophysiol. – volume: 29 start-page: 15564 year: 2009 end-page: 15574 ident: bib36 article-title: Temporal envelope of time-compressed speech represented in the human auditory cortex publication-title: J. Neurosci. – volume: 7 start-page: e1000129 year: 2009 ident: bib15 article-title: Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene publication-title: PLoS Biol. – volume: 2 start-page: 130 year: 2011 ident: bib17 article-title: Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm publication-title: Front. Psychol. – volume: 30 start-page: 620 year: 2010 end-page: 628 ident: bib25 article-title: Attentional gain control of ongoing cortical speech representations in a “cocktail party” publication-title: J. Neurosci. – volume: 64 start-page: 419 year: 2009 end-page: 430 ident: bib29 article-title: The leading sense: supramodal control of neurophysiological context by attention publication-title: Neuron – volume: 24 start-page: 1159 year: 2004 end-page: 1172 ident: bib14 article-title: Dynamics of precise spike timing in primary auditory cortex publication-title: J. Neurosci. – volume: 122 start-page: 151 year: 2012 end-page: 161 ident: bib51 article-title: Temporal context in speech processing and attentional stream selection: a behavioral and neural perspective publication-title: Brain Lang. – year: 2006 ident: bib20 article-title: Listening to Speech: An Auditory Perspective – volume: 90 start-page: 8722 year: 1993 end-page: 8726 ident: bib48 article-title: Modulation of early sensory processing in human auditory cortex during auditory selective attention publication-title: Proc. Natl. Acad. Sci. USA – volume: 64 start-page: 281 year: 2009 end-page: 289 ident: bib47 article-title: Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex publication-title: Neuron – volume: 54 start-page: 1001 year: 2007 end-page: 1010 ident: bib31 article-title: Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex publication-title: Neuron – volume: 108 start-page: 4182 year: 2011 end-page: 4187 ident: bib2 article-title: Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise publication-title: Proc. Natl. Acad. Sci. USA – start-page: 295 year: 2005 end-page: 313 ident: bib1 article-title: Processing of the temporal envelope of speech publication-title: The Auditory Cortex: A Synthesis of Human and Animal Research – volume: 21 start-page: 1790 year: 2009 end-page: 1805 ident: bib5 article-title: A multisensory cortical network for understanding speech in noise publication-title: J. Cogn. Neurosci. – volume: 29 start-page: 533 year: 2010 end-page: 545 ident: bib3 article-title: Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands publication-title: J. Comput. Neurosci. – volume: 107 start-page: 78 year: 2012 end-page: 89 ident: bib13 article-title: Neural coding of continuous speech in auditory cortex during monaural and dichotic listening publication-title: J. Neurophysiol. – volume: 17 start-page: 437 year: 2007 end-page: 455 ident: bib16 article-title: Auditory attention—focusing the searchlight on sound publication-title: Curr. Opin. Neurobiol. – volume: 33 start-page: 1417 year: 2013 end-page: 1426 ident: bib52 article-title: Visual input enhances selective speech envelope tracking in auditory cortex at a “cocktail party” publication-title: J. Neurosci. – volume: 320 start-page: 110 year: 2008 end-page: 113 ident: bib28 article-title: Entrainment of neuronal oscillations as a mechanism of attentional selection publication-title: Science – volume: 109 start-page: 11854 year: 2012 end-page: 11859 ident: bib12 article-title: Emergence of neural encoding of auditory objects while listening to competing speakers publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 289 year: 2001 end-page: 316 ident: bib45 article-title: Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli publication-title: Network – volume: 17 start-page: 1275 year: 2007 end-page: 1285 ident: bib35 article-title: Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations publication-title: Curr. Biol. – volume: 336 start-page: 367 year: 1992 end-page: 373 ident: bib38 article-title: Temporal information in speech: acoustic, auditory and linguistic aspects publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 182 start-page: 177 year: 1973 end-page: 180 ident: bib21 article-title: Electrical signs of selective attention in the human brain publication-title: Science – volume: 5 start-page: e1000436 year: 2009 ident: bib9 article-title: The natural statistics of audiovisual speech publication-title: PLoS Comput. Biol. – volume: 31 start-page: 3176 year: 2011 end-page: 3185 ident: bib4 article-title: Tuning of the human neocortex to the temporal dynamics of attended events publication-title: J. Neurosci. – volume: 104 start-page: 2500 year: 2010 end-page: 2511 ident: bib22 article-title: Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension publication-title: J. Neurophysiol. – volume: 98 start-page: 1806 year: 2007 end-page: 1809 ident: bib23 article-title: Tuning to sound frequency in auditory field potentials publication-title: J. Neurophysiol. – volume: 16 start-page: 933 year: 2005 end-page: 937 ident: bib26 article-title: Timing of pure tone and noise-evoked responses in macaque auditory cortex publication-title: Neuroreport – volume: 30 start-page: 13578 year: 2010 end-page: 13585 ident: bib43 article-title: Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed publication-title: J. Neurosci. – volume: 10 start-page: e1001251 year: 2012 ident: bib37 article-title: Reconstructing speech from human auditory cortex publication-title: PLoS Biol. – volume: 108 start-page: 1197 year: 2000 end-page: 1208 ident: bib19 article-title: The use of visible speech cues for improving auditory detection of spoken sentences publication-title: J. Acoust. Soc. Am. – year: 2006 ident: bib6 article-title: Rhythms of the Brain – volume: 24 start-page: 961 year: 2005 end-page: 968 ident: bib32 article-title: Auditory event-related responses are generated independently of ongoing brain activity publication-title: Neuroimage – volume: 61 start-page: 597 year: 2009 end-page: 608 ident: bib24 article-title: Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns publication-title: Neuron – volume: 5 start-page: 504 year: 1995 end-page: 510 ident: bib7 article-title: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks publication-title: Curr. Opin. Neurobiol. – volume: 18 start-page: 191 year: 2007 end-page: 212 ident: bib11 article-title: Estimating sparse spectro-temporal receptive fields with natural stimuli publication-title: Network – volume: 52 start-page: 956 year: 2010 end-page: 972 ident: bib33 article-title: Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local cortical network model publication-title: Neuroimage – volume: 26 start-page: 212 year: 1954 end-page: 215 ident: bib44 article-title: Visual contribution to speech intelligibility in noise publication-title: J. Acoust. Soc. Am. – volume: 106 start-page: 119 year: 1999 end-page: 159 ident: bib30 article-title: The dynamics of attending: How people track time-varying events publication-title: Psychol. Rev. – volume: 38 start-page: 301 year: 2000 end-page: 313 ident: bib46 article-title: Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization publication-title: Int. J. Psychophysiol. – volume: 32 start-page: 9 year: 2009 end-page: 18 ident: bib40 article-title: Low-frequency neuronal oscillations as instruments of sensory selection publication-title: Trends Neurosci. – volume: 270 start-page: 303 year: 1995 end-page: 304 ident: bib42 article-title: Speech recognition with primarily temporal cues publication-title: Science – volume: 14 start-page: 506 year: 2010 end-page: 515 ident: bib8 article-title: The functional role of cross-frequency coupling publication-title: Trends Cogn. Sci. – volume: 15 start-page: 511 year: 2012 end-page: 517 ident: bib18 article-title: Cortical oscillations and speech processing: emerging computational principles and operations publication-title: Nat. Neurosci. – volume: 20 start-page: 172 year: 2010 end-page: 176 ident: bib41 article-title: Dynamics of Active Sensing and perceptual selection publication-title: Curr. Opin. Neurobiol. – volume: 485 start-page: 233 year: 2012 end-page: 236 ident: bib34 article-title: Selective cortical representation of attended speaker in multi-talker speech perception publication-title: Nature – volume: 30 start-page: 12084 year: 2010 end-page: 12093 ident: bib50 article-title: Competing streams at the cocktail party: exploring the mechanisms of attention and temporal integration publication-title: J. Neurosci. – volume: 26 start-page: 212 year: 1954 ident: 10.1016/j.neuron.2012.12.037_bib44 article-title: Visual contribution to speech intelligibility in noise publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1907309 – volume: 64 start-page: 281 year: 2009 ident: 10.1016/j.neuron.2012.12.037_bib47 article-title: Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2009.08.016 – volume: 24 start-page: 961 year: 2005 ident: 10.1016/j.neuron.2012.12.037_bib32 article-title: Auditory event-related responses are generated independently of ongoing brain activity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.020 – volume: 104 start-page: 2500 year: 2010 ident: 10.1016/j.neuron.2012.12.037_bib22 article-title: Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension publication-title: J. Neurophysiol. doi: 10.1152/jn.00251.2010 – volume: 29 start-page: 533 year: 2010 ident: 10.1016/j.neuron.2012.12.037_bib3 article-title: Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-010-0230-y – volume: 29 start-page: 15564 year: 2009 ident: 10.1016/j.neuron.2012.12.037_bib36 article-title: Temporal envelope of time-compressed speech represented in the human auditory cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3065-09.2009 – volume: 94 start-page: 1904 year: 2005 ident: 10.1016/j.neuron.2012.12.037_bib27 article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00263.2005 – volume: 32 start-page: 9 year: 2009 ident: 10.1016/j.neuron.2012.12.037_bib40 article-title: Low-frequency neuronal oscillations as instruments of sensory selection publication-title: Trends Neurosci. doi: 10.1016/j.tins.2008.09.012 – volume: 182 start-page: 177 year: 1973 ident: 10.1016/j.neuron.2012.12.037_bib21 article-title: Electrical signs of selective attention in the human brain publication-title: Science doi: 10.1126/science.182.4108.177 – volume: 22 start-page: 24 year: 2009 ident: 10.1016/j.neuron.2012.12.037_bib39 article-title: The gamma oscillation: master or slave? publication-title: Brain Topogr. doi: 10.1007/s10548-009-0080-y – volume: 106 start-page: 119 year: 1999 ident: 10.1016/j.neuron.2012.12.037_bib30 article-title: The dynamics of attending: How people track time-varying events publication-title: Psychol. Rev. doi: 10.1037/0033-295X.106.1.119 – year: 2006 ident: 10.1016/j.neuron.2012.12.037_bib6 – volume: 485 start-page: 233 year: 2012 ident: 10.1016/j.neuron.2012.12.037_bib34 article-title: Selective cortical representation of attended speaker in multi-talker speech perception publication-title: Nature doi: 10.1038/nature11020 – volume: 30 start-page: 13578 year: 2010 ident: 10.1016/j.neuron.2012.12.037_bib43 article-title: Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0703-10.2010 – volume: 31 start-page: 3176 year: 2011 ident: 10.1016/j.neuron.2012.12.037_bib4 article-title: Tuning of the human neocortex to the temporal dynamics of attended events publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4518-10.2011 – volume: 15 start-page: 511 year: 2012 ident: 10.1016/j.neuron.2012.12.037_bib18 article-title: Cortical oscillations and speech processing: emerging computational principles and operations publication-title: Nat. Neurosci. doi: 10.1038/nn.3063 – volume: 38 start-page: 301 year: 2000 ident: 10.1016/j.neuron.2012.12.037_bib46 article-title: Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(00)00172-0 – volume: 17 start-page: 437 year: 2007 ident: 10.1016/j.neuron.2012.12.037_bib16 article-title: Auditory attention—focusing the searchlight on sound publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2007.07.011 – volume: 20 start-page: 172 year: 2010 ident: 10.1016/j.neuron.2012.12.037_bib41 article-title: Dynamics of Active Sensing and perceptual selection publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2010.02.010 – volume: 54 start-page: 1001 year: 2007 ident: 10.1016/j.neuron.2012.12.037_bib31 article-title: Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex publication-title: Neuron doi: 10.1016/j.neuron.2007.06.004 – volume: 12 start-page: 289 year: 2001 ident: 10.1016/j.neuron.2012.12.037_bib45 article-title: Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli publication-title: Network doi: 10.1088/0954-898X/12/3/304 – year: 2006 ident: 10.1016/j.neuron.2012.12.037_bib20 – volume: 5 start-page: e1000436 year: 2009 ident: 10.1016/j.neuron.2012.12.037_bib9 article-title: The natural statistics of audiovisual speech publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000436 – volume: 320 start-page: 110 year: 2008 ident: 10.1016/j.neuron.2012.12.037_bib28 article-title: Entrainment of neuronal oscillations as a mechanism of attentional selection publication-title: Science doi: 10.1126/science.1154735 – volume: 270 start-page: 303 year: 1995 ident: 10.1016/j.neuron.2012.12.037_bib42 article-title: Speech recognition with primarily temporal cues publication-title: Science doi: 10.1126/science.270.5234.303 – volume: 18 start-page: 191 year: 2007 ident: 10.1016/j.neuron.2012.12.037_bib11 article-title: Estimating sparse spectro-temporal receptive fields with natural stimuli publication-title: Network doi: 10.1080/09548980701609235 – start-page: 295 year: 2005 ident: 10.1016/j.neuron.2012.12.037_bib1 article-title: Processing of the temporal envelope of speech – volume: 64 start-page: 419 year: 2009 ident: 10.1016/j.neuron.2012.12.037_bib29 article-title: The leading sense: supramodal control of neurophysiological context by attention publication-title: Neuron doi: 10.1016/j.neuron.2009.10.014 – volume: 109 start-page: 11854 year: 2012 ident: 10.1016/j.neuron.2012.12.037_bib12 article-title: Emergence of neural encoding of auditory objects while listening to competing speakers publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1205381109 – volume: 16 start-page: 933 year: 2005 ident: 10.1016/j.neuron.2012.12.037_bib26 article-title: Timing of pure tone and noise-evoked responses in macaque auditory cortex publication-title: Neuroreport doi: 10.1097/00001756-200506210-00011 – volume: 7 start-page: e1000129 year: 2009 ident: 10.1016/j.neuron.2012.12.037_bib15 article-title: Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000129 – volume: 33 start-page: 1417 year: 2013 ident: 10.1016/j.neuron.2012.12.037_bib52 article-title: Visual input enhances selective speech envelope tracking in auditory cortex at a “cocktail party” publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3675-12.2013 – volume: 122 start-page: 151 year: 2012 ident: 10.1016/j.neuron.2012.12.037_bib51 article-title: Temporal context in speech processing and attentional stream selection: a behavioral and neural perspective publication-title: Brain Lang. doi: 10.1016/j.bandl.2011.12.010 – volume: 61 start-page: 597 year: 2009 ident: 10.1016/j.neuron.2012.12.037_bib24 article-title: Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns publication-title: Neuron doi: 10.1016/j.neuron.2009.01.008 – volume: 108 start-page: 1197 year: 2000 ident: 10.1016/j.neuron.2012.12.037_bib19 article-title: The use of visible speech cues for improving auditory detection of spoken sentences publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1288668 – volume: 5 start-page: 504 year: 1995 ident: 10.1016/j.neuron.2012.12.037_bib7 article-title: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks publication-title: Curr. Opin. Neurobiol. doi: 10.1016/0959-4388(95)80012-3 – volume: 21 start-page: 1790 year: 2009 ident: 10.1016/j.neuron.2012.12.037_bib5 article-title: A multisensory cortical network for understanding speech in noise publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2009.21118 – volume: 21 start-page: 255 year: 1995 ident: 10.1016/j.neuron.2012.12.037_bib49 article-title: The cocktail party phenomenon revisited: how frequent are attention shifts to one’s name in an irrelevant auditory channel? publication-title: J. Exp. Psychol. Learn. Mem. Cogn. doi: 10.1037/0278-7393.21.1.255 – volume: 10 start-page: e1001251 year: 2012 ident: 10.1016/j.neuron.2012.12.037_bib37 article-title: Reconstructing speech from human auditory cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001251 – volume: 14 start-page: 506 year: 2010 ident: 10.1016/j.neuron.2012.12.037_bib8 article-title: The functional role of cross-frequency coupling publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2010.09.001 – volume: 108 start-page: 4182 year: 2011 ident: 10.1016/j.neuron.2012.12.037_bib2 article-title: Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1016134108 – volume: 107 start-page: 78 year: 2012 ident: 10.1016/j.neuron.2012.12.037_bib13 article-title: Neural coding of continuous speech in auditory cortex during monaural and dichotic listening publication-title: J. Neurophysiol. doi: 10.1152/jn.00297.2011 – volume: 90 start-page: 8722 year: 1993 ident: 10.1016/j.neuron.2012.12.037_bib48 article-title: Modulation of early sensory processing in human auditory cortex during auditory selective attention publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.18.8722 – volume: 30 start-page: 12084 year: 2010 ident: 10.1016/j.neuron.2012.12.037_bib50 article-title: Competing streams at the cocktail party: exploring the mechanisms of attention and temporal integration publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0827-10.2010 – volume: 24 start-page: 1159 year: 2004 ident: 10.1016/j.neuron.2012.12.037_bib14 article-title: Dynamics of precise spike timing in primary auditory cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3825-03.2004 – volume: 98 start-page: 1806 year: 2007 ident: 10.1016/j.neuron.2012.12.037_bib23 article-title: Tuning to sound frequency in auditory field potentials publication-title: J. Neurophysiol. doi: 10.1152/jn.00358.2007 – volume: 30 start-page: 620 year: 2010 ident: 10.1016/j.neuron.2012.12.037_bib25 article-title: Attentional gain control of ongoing cortical speech representations in a “cocktail party” publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3631-09.2010 – volume: 336 start-page: 367 year: 1992 ident: 10.1016/j.neuron.2012.12.037_bib38 article-title: Temporal information in speech: acoustic, auditory and linguistic aspects publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.1992.0070 – volume: 17 start-page: 1275 year: 2007 ident: 10.1016/j.neuron.2012.12.037_bib35 article-title: Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.06.066 – volume: 2 start-page: 130 year: 2011 ident: 10.1016/j.neuron.2012.12.037_bib17 article-title: Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm publication-title: Front. Psychol. doi: 10.3389/fpsyg.2011.00130 – volume: 25 start-page: 975 year: 1953 ident: 10.1016/j.neuron.2012.12.037_bib10 article-title: Some experiments on the recognition of speech, with one and two ears publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1907229 – volume: 52 start-page: 956 year: 2010 ident: 10.1016/j.neuron.2012.12.037_bib33 article-title: Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local cortical network model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.040 – reference: 17686438 - Curr Biol. 2007 Aug 7;17(15):1275-85 – reference: 20943899 - J Neurosci. 2010 Oct 13;30(41):13578-85 – reference: 4730062 - Science. 1973 Oct 12;182(4108):177-80 – reference: 22426255 - Nat Neurosci. 2012 Apr;15(4):511-7 – reference: 20826671 - J Neurosci. 2010 Sep 8;30(36):12084-93 – reference: 22303281 - PLoS Biol. 2012 Jan;10(1):e1001251 – reference: 20307966 - Curr Opin Neurobiol. 2010 Apr;20(2):172-6 – reference: 22522927 - Nature. 2012 May 10;485(7397):233-6 – reference: 19529760 - PLoS Biol. 2009 Jun;7(6):e1000129 – reference: 20232128 - J Comput Neurosci. 2010 Dec;29(3):533-45 – reference: 22753470 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11854-9 – reference: 11008820 - J Acoust Soc Am. 2000 Sep;108(3 Pt 1):1197-208 – reference: 23345218 - J Neurosci. 2013 Jan 23;33(4):1417-26 – reference: 7876773 - J Exp Psychol Learn Mem Cogn. 1995 Jan;21(1):255-60 – reference: 19249279 - Neuron. 2009 Feb 26;61(4):597-608 – reference: 19205863 - Brain Topogr. 2009 Jun;22(1):24-6 – reference: 15670673 - Neuroimage. 2005 Feb 15;24(4):961-8 – reference: 21743809 - Front Psychol. 2011 Jun 27;2:130 – reference: 23473312 - Neuron. 2013 Mar 6;77(5):806-9 – reference: 17852750 - Network. 2007 Sep;18(3):191-212 – reference: 20071526 - J Neurosci. 2010 Jan 13;30(2):620-8 – reference: 7488853 - Curr Opin Neurobiol. 1995 Aug;5(4):504-10 – reference: 20932795 - Trends Cogn Sci. 2010 Nov;14(11):506-15 – reference: 14762134 - J Neurosci. 2004 Feb 4;24(5):1159-72 – reference: 19874794 - Neuron. 2009 Oct 29;64(2):281-9 – reference: 8378354 - Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8722-6 – reference: 11102669 - Int J Psychophysiol. 2000 Dec 1;38(3):301-13 – reference: 17582338 - Neuron. 2007 Jun 21;54(6):1001-10 – reference: 1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73 – reference: 20484530 - J Neurophysiol. 2010 Nov;104(5):2500-11 – reference: 7569981 - Science. 1995 Oct 13;270(5234):303-4 – reference: 18388295 - Science. 2008 Apr 4;320(5872):110-3 – reference: 21368107 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7 – reference: 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18 – reference: 20026218 - Neuroimage. 2010 Sep;52(3):956-72 – reference: 19609344 - PLoS Comput Biol. 2009 Jul;5(7):e1000436 – reference: 19914189 - Neuron. 2009 Nov 12;64(3):419-30 – reference: 22285024 - Brain Lang. 2012 Sep;122(3):151-61 – reference: 18823249 - J Cogn Neurosci. 2009 Sep;21(9):1790-805 – reference: 17714933 - Curr Opin Neurobiol. 2007 Aug;17(4):437-55 – reference: 21368029 - J Neurosci. 2011 Mar 2;31(9):3176-85 – reference: 21975452 - J Neurophysiol. 2012 Jan;107(1):78-89 – reference: 15931064 - Neuroreport. 2005 Jun 21;16(9):933-7 – reference: 15901760 - J Neurophysiol. 2005 Sep;94(3):1904-11 – reference: 11563531 - Network. 2001 Aug;12(3):289-316 – reference: 17596418 - J Neurophysiol. 2007 Sep;98(3):1806-9 – reference: 20007480 - J Neurosci. 2009 Dec 9;29(49):15564-74 |
SSID | ssj0014591 |
Score | 2.6001613 |
Snippet | The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 980 |
SubjectTerms | Adult Algorithms Attention - physiology Brain Brain - physiology Data Interpretation, Statistical Electrodes Electrodes, Implanted Electroencephalography Epilepsy - physiopathology Epilepsy - psychology Epilepsy - surgery Humans Hypotheses Middle Aged Nerve Net - physiology Neurons - physiology Reproducibility of Results Sensory Gating - physiology Social Environment Social Perception Speech Speech Perception - physiology Young Adult |
Title | Mechanisms Underlying Selective Neuronal Tracking of Attended Speech at a “Cocktail Party” |
URI | https://dx.doi.org/10.1016/j.neuron.2012.12.037 https://www.ncbi.nlm.nih.gov/pubmed/23473326 https://www.proquest.com/docview/1532052704 https://www.proquest.com/docview/1316053480 https://www.proquest.com/docview/1554950016 https://pubmed.ncbi.nlm.nih.gov/PMC3891478 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED9Kx6AvY2u7LWtXNCh9M7EsybEes7BSVjbG0tI8VciKzDJaJyzuQ976Qbov10-yO_kPyzZaGPjJPhlbp9Pd6e5-B3AoUevwNLGRRF8jkpyLKBM-jxKCSsnRIStcQPv8nJ6cy48TNdmAUVsLQ2mVzd5f7-lht27u9JvZ7C9ms_44zjShlwsKyKBhQhXlQmahiG_yvoskSFV3zUPiiKjb8rmQ4xUwIwkFlSfhUJC6of9bPf1tfv6ZRfmbWjp-Ds8ae5IN609-ARu-3IadYYm-9PWKHbGQ4RmOzrfhad14crUDl588VfzOltdLFjofXVG1ExuHpji4_7GA2UEvRl3m6DSdzQs2rOoDczZeeBzPbMUsu7-9G-GeSomo7AvO3Or-9ucunB9_OBudRE2nhcgpHVfInniKku48eg8uTT2yyQ-ksjrPrEinhUQjMncEYasznjpllfY8tXFslXMUTHwJm-W89K-BoYPiUN9ZrnUuU17kohC88Da3iZZymvRAtBNsXANDTt0wrkybb_bd1GwxxBaDF7KlB1E3alHDcDxCP2h5Z9aWk0FN8cjI_ZbVphHnpeHUPkMlg1j24F33GAWRoiu29PMbpBEcXUNcgfEDNGi8aUVmdg9e1aun-51EyIFAYxo_fW1ddQQEBL7-pJx9C4DgFGtGoXvz3z-9B1tJaPNBnT72YbP6cePforFV5QfwZHj69eL0IEjVL-AmKu8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEeKEaAt0SwtGQtysjeNHkuOyotpCWyFtK-0Jy_E66lZtdsWmh731h5Q_11_CjPMQC4hKSDkl4yjxeDxPf0PIewlah-vYMgm-BpOcC5YKn7MYoVJycMgKF9A-T_XoXH6eqMkGGbZnYbCsstn76z097NbNnX4zm_3FbNYfR2mG6OUCEzJgmCSPyGOwBhKUzqPJxy6VIFXdNg-oGZK35-dCkVcAjUQYVB6HqCC2Q_-7fvrT_vy9jPIXvXT4nDxrDEo6qL95i2z4cpvsDEpwpq9X9AMNJZ4hdr5NntSdJ1c75NuJxyO_s-X1kobWR1d43ImOQ1cc2ABpAO3AF4MycxhOp_OCDqo6Yk7HCw_jqa2opfe3d0PYVLESlX6FqVvd3_54Qc4PP50NR6xptcCcyqIK-BNNQdSdB_fBae2BTz6RymZ5aoWeFhKsyNwhhm2Wcu2UVZnn2kaRVc5hNvEl2Sznpd8lFDwUBwrP8izLpeZFLgrBC29zG2dSTuMeEe0EG9fgkGM7jCvTFpxdmpotBtli4AK29AjrRi1qHI4H6JOWd2ZtPRlQFQ-M3G9ZbRp5XhqO_TNUnESyR951j0ESMb1iSz-_ARrBwTcUMo3-QQPWW6bQzu6RV_Xq6X4nFjIRYE3Dp6-tq44AkcDXn5Szi4AIjslmkLq9__7pt-Tp6Ozk2BwfnX55jbELjDMpFul9sll9v_EHYHlV-ZsgWT8BeF0sbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+Underlying+Selective+Neuronal+Tracking+of+Attended+Speech+at+a+%E2%80%9CCocktail+Party%E2%80%9D&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Zion%C2%A0Golumbic%2C+Elana%C2%A0M.&rft.au=Ding%2C+Nai&rft.au=Bickel%2C+Stephan&rft.au=Lakatos%2C+Peter&rft.date=2013-03-06&rft.issn=0896-6273&rft.volume=77&rft.issue=5&rft.spage=980&rft.epage=991&rft_id=info:doi/10.1016%2Fj.neuron.2012.12.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuron_2012_12_037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |