Cyclic GMP-AMP Synthase Is Activated by Double-Stranded DNA-Induced Oligomerization
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2′,5′ cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiate...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 39; no. 6; pp. 1019 - 1031 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.12.2013
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2′,5′ cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2′,5′ cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization.
•cGAS is activated by dsDNA and catalyzes the synthesis of 2′,5′ cGAMP•cGAS is activated by dsDNA-induced oligomerization•cGAS binds dsDNA cooperatively through two binding sites•Mutations at the DNA binding sites and the dimer interface affect cGAS activity |
---|---|
AbstractList | Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization.Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide 2′,5′ cGAMP that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2′,5′ cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2\',5\' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN- beta gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN- beta reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2\',5\' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2′,5′ cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2′,5′ cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. •cGAS is activated by dsDNA and catalyzes the synthesis of 2′,5′ cGAMP•cGAS is activated by dsDNA-induced oligomerization•cGAS binds dsDNA cooperatively through two binding sites•Mutations at the DNA binding sites and the dimer interface affect cGAS activity |
Author | Shelton, Catherine L. Diao, Jiasheng Li, Pingwei Shu, Chang Herr, Andrew B. Yi, Guanghui Zuo, Xiaobing Li, Xin Kao, C. Cheng Chaton, Catherine T. |
AuthorAffiliation | 4 X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA 2 Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA 3 Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA – name: 4 X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA – name: 2 Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA – name: 3 Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA |
Author_xml | – sequence: 1 givenname: Xin surname: Li fullname: Li, Xin organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA – sequence: 2 givenname: Chang surname: Shu fullname: Shu, Chang organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA – sequence: 3 givenname: Guanghui surname: Yi fullname: Yi, Guanghui organization: Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA – sequence: 4 givenname: Catherine T. surname: Chaton fullname: Chaton, Catherine T. organization: Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA – sequence: 5 givenname: Catherine L. surname: Shelton fullname: Shelton, Catherine L. organization: Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA – sequence: 6 givenname: Jiasheng surname: Diao fullname: Diao, Jiasheng organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA – sequence: 7 givenname: Xiaobing surname: Zuo fullname: Zuo, Xiaobing organization: X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA – sequence: 8 givenname: C. Cheng surname: Kao fullname: Kao, C. Cheng organization: Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA – sequence: 9 givenname: Andrew B. surname: Herr fullname: Herr, Andrew B. organization: Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA – sequence: 10 givenname: Pingwei surname: Li fullname: Li, Pingwei email: pingwei@tamu.edu organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24332030$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vGyEURFWq5qP9B1W1Ui-9rAsLLLs9VLKcNLWUL8ntGWFgE6xdSIG15Pz6PtdO1eaQcAEeM6PhvTlGBz54i9B7gicEk_rzauKGYfRuUmFCoTTBpH2FjghuRclIgw-2Z8FKURN6iI5TWmFMGG_xG3RYMUorTPERWsw2une6OL-8KaeXN8Vi4_OdSraYp2Kqs1urbE2x3BSnYVz2tlzkqLyB0unVtJx7M2o4X_fuNgw2ugeVXfBv0etO9cm-2-8n6Oe3sx-z7-XF9fl8Nr0oNbjIpWjqpqZc09rgDjedbTsDq625YjVVlBJjha5ot-wMVhXTomrh1mgMvK4x9AR93enej8vBGm09mOvlfXSDihsZlJP_v3h3J2_DWtKmqQXhIPBpLxDDr9GmLAeXtO175W0YkyScs5ZzysTLUCYEr3klGEA_PoGuwhg9dAIEGW4bWgkCqA__mv_r-nE0APiyA-gYUoq2k9rlP_2Fv7heEiy3OZArucuB3OZgW4UcAJk9IT_qv0Dbd9TC2NbORpm0sx5m7KLVWZrgnhf4DV4zzVQ |
CitedBy_id | crossref_primary_10_1093_nar_gkac823 crossref_primary_10_1016_j_chembiol_2016_10_014 crossref_primary_10_1016_j_jpha_2024_101145 crossref_primary_10_1128_JVI_00760_21 crossref_primary_10_1002_JLB_4MIR1018_397RR crossref_primary_10_1038_srep19049 crossref_primary_10_1016_j_molcel_2019_12_009 crossref_primary_10_1126_sciimmunol_aal1713 crossref_primary_10_1111_febs_16137 crossref_primary_10_1016_j_immuni_2018_03_017 crossref_primary_10_1016_j_immuni_2018_03_016 crossref_primary_10_1038_s41420_024_02276_w crossref_primary_10_1016_j_colsurfb_2025_114573 crossref_primary_10_1080_08830185_2021_1898605 crossref_primary_10_1093_jmcb_mjac042 crossref_primary_10_1016_j_coi_2022_102280 crossref_primary_10_3389_fimmu_2020_624597 crossref_primary_10_1002_mog2_49 crossref_primary_10_1186_s13578_018_0233_3 crossref_primary_10_1016_j_cell_2019_01_016 crossref_primary_10_1016_j_cytogfr_2023_09_004 crossref_primary_10_1016_j_jim_2020_112751 crossref_primary_10_3389_fimmu_2022_931885 crossref_primary_10_1007_s12250_018_0005_6 crossref_primary_10_1016_j_cell_2024_05_031 crossref_primary_10_1016_j_celrep_2020_02_112 crossref_primary_10_1093_jmcb_mjac031 crossref_primary_10_1039_C8MD00555A crossref_primary_10_1038_nm_4027 crossref_primary_10_3389_fmicb_2019_02647 crossref_primary_10_1016_j_neuropharm_2022_109206 crossref_primary_10_1007_s12274_024_6714_x crossref_primary_10_1016_j_prp_2024_155330 crossref_primary_10_1007_s00281_014_0445_5 crossref_primary_10_1016_j_cytogfr_2014_06_006 crossref_primary_10_1073_pnas_1621363114 crossref_primary_10_3390_ijms23126847 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_1016_j_intimp_2019_105791 crossref_primary_10_1128_mbio_03395_24 crossref_primary_10_1021_acs_jpcb_3c02377 crossref_primary_10_18632_oncotarget_12399 crossref_primary_10_1002_cbic_202300147 crossref_primary_10_3389_fimmu_2020_00615 crossref_primary_10_1073_pnas_1516465112 crossref_primary_10_1371_journal_ppat_1011641 crossref_primary_10_1016_j_csbj_2023_10_013 crossref_primary_10_3390_ijms241914738 crossref_primary_10_1038_s41590_019_0556_1 crossref_primary_10_1038_s41401_024_01369_7 crossref_primary_10_1080_08830185_2022_2070616 crossref_primary_10_1016_j_devcel_2021_02_006 crossref_primary_10_1093_jmcb_mjac019 crossref_primary_10_1002_adfm_202112273 crossref_primary_10_1146_annurev_virology_111821_115636 crossref_primary_10_1038_s41586_023_06889_6 crossref_primary_10_1155_2022_8873536 crossref_primary_10_1016_j_neurot_2025_e00536 crossref_primary_10_7554_eLife_47491 crossref_primary_10_1002_bies_201400019 crossref_primary_10_1002_iub_1566 crossref_primary_10_1016_j_bpj_2020_04_025 crossref_primary_10_1016_j_immuni_2018_12_013 crossref_primary_10_1080_17568919_2024_2383164 crossref_primary_10_3389_fcell_2021_717610 crossref_primary_10_1021_acs_chemrev_1c00716 crossref_primary_10_1016_j_abb_2021_109001 crossref_primary_10_1021_jacsau_2c00481 crossref_primary_10_1038_s41586_020_2748_0 crossref_primary_10_7554_eLife_39984 crossref_primary_10_1093_jmcb_mjac005 crossref_primary_10_1016_j_coi_2022_01_004 crossref_primary_10_1051_e3sconf_202124503027 crossref_primary_10_1038_s41586_020_2749_z crossref_primary_10_1002_smtd_202401041 crossref_primary_10_1016_j_celrep_2024_115177 crossref_primary_10_3389_fimmu_2023_1093212 crossref_primary_10_1002_1873_3468_12598 crossref_primary_10_1016_j_arr_2025_102691 crossref_primary_10_1016_j_celrep_2022_110443 crossref_primary_10_3389_fimmu_2022_1019872 crossref_primary_10_1016_j_celrep_2023_112852 crossref_primary_10_1186_s13578_021_00724_z crossref_primary_10_1016_j_intimp_2024_112556 crossref_primary_10_7554_eLife_63728 crossref_primary_10_1186_s12943_020_01250_1 crossref_primary_10_3390_v11080758 crossref_primary_10_1371_journal_pgen_1005203 crossref_primary_10_3389_fimmu_2020_613039 crossref_primary_10_1371_journal_ppat_1006156 crossref_primary_10_1101_gad_348314_121 crossref_primary_10_12677_hjbm_2024_143056 crossref_primary_10_1016_j_celrep_2022_111310 crossref_primary_10_1016_j_dnarep_2020_102894 crossref_primary_10_1016_j_nano_2024_102762 crossref_primary_10_1039_D2CS00848C crossref_primary_10_1126_science_abd0237 crossref_primary_10_3390_nano12183138 crossref_primary_10_4049_jimmunol_1402793 crossref_primary_10_1016_j_molcel_2023_12_005 crossref_primary_10_1042_BSR20240269 crossref_primary_10_1007_s44178_024_00079_8 crossref_primary_10_1371_journal_ppat_1006264 crossref_primary_10_1007_s11904_016_0305_0 crossref_primary_10_1186_s13578_021_00586_5 crossref_primary_10_1016_j_isci_2020_101928 crossref_primary_10_1007_s10753_023_01812_7 crossref_primary_10_2174_0929867326666190620103105 crossref_primary_10_3389_fcell_2021_775441 crossref_primary_10_1016_j_biopha_2022_113680 crossref_primary_10_1016_j_dnarep_2021_103135 crossref_primary_10_2478_rir_2021_0023 crossref_primary_10_3724_abbs_2023139 crossref_primary_10_1146_annurev_cancerbio_030518_055636 crossref_primary_10_1039_D3MD00061C crossref_primary_10_18632_oncotarget_27673 crossref_primary_10_1038_s41392_020_0198_7 crossref_primary_10_1038_s41467_023_41164_2 crossref_primary_10_3389_fimmu_2023_1239142 crossref_primary_10_1177_1753425919852695 crossref_primary_10_1016_j_bcp_2022_114934 crossref_primary_10_1016_j_cell_2014_07_028 crossref_primary_10_1038_s41598_020_72393_w crossref_primary_10_15252_embr_201744017 crossref_primary_10_3390_ijms25031828 crossref_primary_10_1111_jcmm_70130 crossref_primary_10_1016_j_celrep_2023_112309 crossref_primary_10_1016_j_intimp_2024_113212 crossref_primary_10_1371_journal_ppat_1008429 crossref_primary_10_3389_fimmu_2020_01458 crossref_primary_10_1099_jgv_0_000647 crossref_primary_10_1016_j_molcel_2016_08_025 crossref_primary_10_1038_nri_2016_78 crossref_primary_10_1038_s41420_023_01607_7 crossref_primary_10_1038_s41422_020_00422_4 crossref_primary_10_1093_burnst_tkad050 crossref_primary_10_1038_ni_3558 crossref_primary_10_1038_s41422_020_0341_6 crossref_primary_10_3390_ijms241713316 crossref_primary_10_1016_j_intimp_2024_113447 crossref_primary_10_1016_j_immuni_2013_11_012 crossref_primary_10_1021_acs_chemrev_1c00750 crossref_primary_10_1016_j_phymed_2023_155020 crossref_primary_10_1111_jcmm_15768 crossref_primary_10_3389_fmicb_2021_771292 crossref_primary_10_1038_s41594_023_00933_9 crossref_primary_10_3390_ijms21217842 crossref_primary_10_1016_j_mad_2016_09_001 crossref_primary_10_1002_jmv_29685 crossref_primary_10_3389_fcell_2020_606001 crossref_primary_10_1016_j_immuni_2020_06_014 crossref_primary_10_1016_j_ijbiomac_2020_01_015 crossref_primary_10_1146_annurev_immunol_070119_115052 crossref_primary_10_3390_biom10121591 crossref_primary_10_3389_fimmu_2021_774807 crossref_primary_10_3389_fphar_2020_00088 crossref_primary_10_1016_j_chom_2015_07_015 crossref_primary_10_1016_j_bmc_2020_115899 crossref_primary_10_1080_10799893_2024_2325353 crossref_primary_10_1016_j_jmb_2022_167920 crossref_primary_10_1038_srep14770 crossref_primary_10_1038_s41598_024_64651_y crossref_primary_10_1016_j_immuni_2023_01_001 crossref_primary_10_1371_journal_ppat_1010718 crossref_primary_10_3389_fimmu_2020_611347 crossref_primary_10_1016_j_tcb_2022_11_001 crossref_primary_10_1002_eji_202049116 crossref_primary_10_1039_C8RA04603D crossref_primary_10_3389_fimmu_2023_1130423 crossref_primary_10_1038_s41422_020_00423_3 crossref_primary_10_1038_ncomms14391 crossref_primary_10_1093_nar_gkab689 crossref_primary_10_1096_fj_202101199R crossref_primary_10_3389_fcell_2022_816517 crossref_primary_10_3390_ijms232315182 crossref_primary_10_21769_BioProtoc_3055 crossref_primary_10_1038_s41586_024_07112_w crossref_primary_10_1016_j_fsi_2019_10_010 crossref_primary_10_1039_D1CP00378J crossref_primary_10_1038_s41467_023_39607_x crossref_primary_10_1038_s41467_018_05559_w crossref_primary_10_1126_sciimmunol_aba4219 crossref_primary_10_1016_j_meegid_2019_104094 crossref_primary_10_1038_s41418_023_01116_1 crossref_primary_10_1016_j_bmcl_2021_128101 crossref_primary_10_1186_s12967_022_03844_3 crossref_primary_10_1146_annurev_micro_102215_095605 crossref_primary_10_1016_j_neuropharm_2024_110217 crossref_primary_10_1021_acs_jcim_0c00171 crossref_primary_10_1016_j_bbagen_2021_129871 crossref_primary_10_1016_j_critrevonc_2023_104194 crossref_primary_10_1016_j_jbc_2022_102779 crossref_primary_10_1093_nar_gkae654 crossref_primary_10_1096_fj_201902833R crossref_primary_10_1080_2162402X_2015_1118599 crossref_primary_10_1371_journal_ppat_1009940 crossref_primary_10_3389_fimmu_2021_682736 crossref_primary_10_1111_ejn_15967 crossref_primary_10_3389_fimmu_2024_1399926 crossref_primary_10_3390_ijms24044068 crossref_primary_10_3389_fimmu_2020_593901 crossref_primary_10_1089_jir_2014_0120 crossref_primary_10_1016_j_ijbiomac_2024_134210 crossref_primary_10_1007_s11684_023_1026_6 crossref_primary_10_1186_s12951_025_03098_3 crossref_primary_10_2147_JIR_S423232 crossref_primary_10_1016_j_tcb_2017_08_007 crossref_primary_10_1080_08916934_2018_1522305 crossref_primary_10_1093_gbe_evv046 crossref_primary_10_1038_s41580_020_0244_x crossref_primary_10_3389_fphar_2021_653940 crossref_primary_10_1016_j_coi_2017_11_004 crossref_primary_10_1002_1873_3468_14838 crossref_primary_10_1126_science_aat1022 crossref_primary_10_1002_rmv_2488 crossref_primary_10_1038_ni_3267 crossref_primary_10_2147_JIR_S455035 crossref_primary_10_2337_dbi18_0052 crossref_primary_10_3389_fimmu_2020_00026 crossref_primary_10_1016_j_tibs_2021_05_011 crossref_primary_10_1111_iej_13636 crossref_primary_10_1136_jitc_2021_002569 crossref_primary_10_7554_eLife_67358 crossref_primary_10_1038_ni_3274 crossref_primary_10_1128_JVI_00841_18 crossref_primary_10_1038_s41577_024_01112_7 crossref_primary_10_1038_s41392_023_01503_7 crossref_primary_10_3389_fcell_2022_800393 crossref_primary_10_1186_s40364_023_00551_z crossref_primary_10_3390_ijms20040895 crossref_primary_10_1038_nchembio_1530 crossref_primary_10_1021_acsptsci_4c00310 crossref_primary_10_3389_fimmu_2024_1447719 crossref_primary_10_1016_j_celrep_2019_01_105 crossref_primary_10_1016_j_molimm_2024_10_002 crossref_primary_10_1039_D0CP05871H crossref_primary_10_1016_j_vaccine_2017_02_064 crossref_primary_10_1016_j_molcel_2014_03_040 crossref_primary_10_1038_s41418_021_00849_1 crossref_primary_10_1002_eji_202350386 crossref_primary_10_4155_fmc_2017_0322 crossref_primary_10_1126_science_abc5386 crossref_primary_10_31083_j_fbl2707205 crossref_primary_10_3389_fimmu_2020_554725 crossref_primary_10_1093_nar_gku569 crossref_primary_10_1016_j_virol_2023_05_002 crossref_primary_10_3390_v16050749 crossref_primary_10_1016_j_molcel_2023_09_007 crossref_primary_10_1098_rsob_210277 crossref_primary_10_1189_jlb_4RI0214_090R crossref_primary_10_3389_fcell_2022_903781 crossref_primary_10_1016_j_cca_2022_04_003 crossref_primary_10_1038_s41467_022_29266_9 crossref_primary_10_1007_s00109_016_1423_2 crossref_primary_10_1038_s41577_021_00524_z crossref_primary_10_1016_j_jhepr_2021_100324 crossref_primary_10_34172_brb_2023_29 crossref_primary_10_1615_CritRevImmunol_2024052486 crossref_primary_10_1016_j_bcp_2020_113831 crossref_primary_10_1038_nature23890 crossref_primary_10_1016_j_celrep_2020_108053 crossref_primary_10_4049_jimmunol_2101085 crossref_primary_10_1007_s11427_024_2808_3 crossref_primary_10_1146_annurev_immunol_032414_112258 crossref_primary_10_1007_s00216_021_03628_6 crossref_primary_10_1002_cmdc_202400111 crossref_primary_10_4049_jimmunol_2000026 crossref_primary_10_1098_rsob_210030 crossref_primary_10_1073_pnas_1905013116 crossref_primary_10_2222_jsv_64_83 crossref_primary_10_1038_s41388_017_0120_0 crossref_primary_10_1038_s41586_020_2750_6 crossref_primary_10_15252_embr_201541703 crossref_primary_10_1038_s41598_024_82525_1 crossref_primary_10_1016_j_bioorg_2023_106802 crossref_primary_10_2147_CCID_S476785 crossref_primary_10_1016_j_molcel_2021_05_002 crossref_primary_10_1073_pnas_2409493121 crossref_primary_10_1126_science_aat8657 crossref_primary_10_3389_fimmu_2021_753472 crossref_primary_10_1016_j_apsb_2024_05_012 crossref_primary_10_1016_j_dci_2021_104101 crossref_primary_10_1111_imm_13592 crossref_primary_10_3389_fgene_2023_1121018 crossref_primary_10_1016_j_immuni_2020_05_013 crossref_primary_10_1016_j_intimp_2023_110523 crossref_primary_10_1016_j_cellimm_2019_04_003 crossref_primary_10_1016_j_celrep_2014_01_003 crossref_primary_10_1016_j_ceca_2020_102308 crossref_primary_10_3389_fcell_2022_796066 crossref_primary_10_1073_pnas_1603269113 crossref_primary_10_1016_j_addr_2021_04_011 crossref_primary_10_1038_srep27498 crossref_primary_10_3389_fimmu_2023_1231057 crossref_primary_10_3390_ijms22031164 crossref_primary_10_1016_j_ccell_2023_05_005 crossref_primary_10_1073_pnas_2411659122 crossref_primary_10_1021_acssensors_4c02585 crossref_primary_10_1126_science_abd0609 crossref_primary_10_3389_fphar_2022_1072670 crossref_primary_10_1007_s12272_023_01452_3 crossref_primary_10_3389_fimmu_2021_814709 crossref_primary_10_1016_j_chembiol_2021_08_006 crossref_primary_10_1016_j_mrrev_2018_11_001 crossref_primary_10_1186_s12943_024_02217_2 crossref_primary_10_1016_j_molcel_2024_04_017 crossref_primary_10_1093_nar_gkaa084 crossref_primary_10_1038_s41590_018_0262_4 crossref_primary_10_1073_pnas_1507317112 crossref_primary_10_1016_j_immuni_2019_02_009 crossref_primary_10_1007_s12250_015_3604_5 crossref_primary_10_1186_s12943_024_02186_6 crossref_primary_10_12677_AMS_2017_42009 crossref_primary_10_1093_nar_gkac079 crossref_primary_10_1111_febs_15640 crossref_primary_10_1016_j_pharmthera_2024_108653 crossref_primary_10_1016_j_molcel_2019_09_023 crossref_primary_10_1016_j_cyto_2016_10_003 crossref_primary_10_4049_jimmunol_2100075 crossref_primary_10_3389_fimmu_2024_1367875 crossref_primary_10_1146_annurev_immunol_032713_120156 crossref_primary_10_1111_cas_15913 crossref_primary_10_1016_j_sbi_2019_08_003 crossref_primary_10_3390_v16081340 crossref_primary_10_1016_j_arr_2024_102602 crossref_primary_10_1016_j_bcp_2022_115246 crossref_primary_10_1016_j_intimp_2022_109304 crossref_primary_10_1002_ange_202303010 crossref_primary_10_1038_nri3719 crossref_primary_10_1021_acsnano_4c12237 crossref_primary_10_3389_fimmu_2020_625833 crossref_primary_10_15252_embj_2021109217 crossref_primary_10_3390_cells11182812 crossref_primary_10_15252_embr_202051800 crossref_primary_10_1038_s41435_019_0080_1 crossref_primary_10_1038_s41392_021_00554_y crossref_primary_10_3390_pathogens9040292 crossref_primary_10_1038_s41467_022_33671_5 crossref_primary_10_1080_08830185_2017_1298749 crossref_primary_10_1038_s41422_020_0346_1 crossref_primary_10_1016_j_tcb_2020_05_006 crossref_primary_10_1007_s13238_021_00839_6 crossref_primary_10_1146_annurev_biochem_061516_044813 crossref_primary_10_3389_fphar_2021_779425 crossref_primary_10_1016_j_cellin_2022_100014 crossref_primary_10_1016_j_molimm_2018_01_008 crossref_primary_10_1016_j_str_2015_01_023 crossref_primary_10_3389_fimmu_2021_753789 crossref_primary_10_3389_fonc_2021_667920 crossref_primary_10_1080_17460441_2023_2244409 crossref_primary_10_1016_j_jbc_2023_104866 crossref_primary_10_31857_S0233475524010015 crossref_primary_10_1016_j_cca_2021_11_003 crossref_primary_10_1042_EBC20220241 crossref_primary_10_3389_fimmu_2024_1470468 crossref_primary_10_4049_jimmunol_1901511 crossref_primary_10_1186_s43556_020_00006_z crossref_primary_10_3390_ijms25052767 crossref_primary_10_2147_JIR_S465978 crossref_primary_10_15252_embr_202051345 crossref_primary_10_3390_cells11193043 crossref_primary_10_1146_annurev_biochem_040320_101629 crossref_primary_10_1002_wsbm_1597 crossref_primary_10_32604_or_2022_03529 crossref_primary_10_3389_fcimb_2024_1370414 crossref_primary_10_1002_anie_202303010 crossref_primary_10_1002_med_22016 crossref_primary_10_1093_eurheartj_ehab249 crossref_primary_10_3390_ijms22031301 crossref_primary_10_1177_2472555219880185 crossref_primary_10_1158_2159_8290_CD_19_0761 crossref_primary_10_3389_fimmu_2021_795048 crossref_primary_10_1016_j_devcel_2023_03_015 crossref_primary_10_21769_BioProtoc_3870 crossref_primary_10_1111_imcb_12555 crossref_primary_10_1016_j_it_2019_06_001 crossref_primary_10_1016_j_ymthe_2023_03_026 crossref_primary_10_1038_s41598_019_45800_0 crossref_primary_10_1016_j_fsi_2017_09_056 crossref_primary_10_1038_s41423_020_0462_3 crossref_primary_10_1042_BST20200687 crossref_primary_10_1016_j_bmcl_2024_130007 crossref_primary_10_1002_pro_3304 crossref_primary_10_1016_j_molcel_2021_01_024 crossref_primary_10_1016_j_ymthe_2024_10_027 crossref_primary_10_15252_embr_202153166 crossref_primary_10_15252_embj_2019102718 crossref_primary_10_1038_s41467_018_05168_7 crossref_primary_10_1038_s41467_024_48365_3 crossref_primary_10_1016_j_apsb_2021_05_011 crossref_primary_10_1016_j_molimm_2021_05_012 crossref_primary_10_1371_journal_pone_0120090 crossref_primary_10_3389_fphar_2024_1383000 crossref_primary_10_1089_cbr_2020_4085 crossref_primary_10_1186_s13024_025_00815_2 crossref_primary_10_15252_embj_2021108293 crossref_primary_10_3389_fimmu_2022_901913 crossref_primary_10_1002_art_40002 crossref_primary_10_1096_fj_202200138R crossref_primary_10_4049_jimmunol_1601909 crossref_primary_10_1016_j_jmii_2020_07_010 crossref_primary_10_1007_s40242_024_4120_7 crossref_primary_10_1016_j_coi_2020_04_002 crossref_primary_10_1152_physiol_00022_2019 crossref_primary_10_1002_advs_202206820 crossref_primary_10_1016_j_molcel_2024_06_004 crossref_primary_10_1016_j_biopha_2023_114869 crossref_primary_10_1038_s41392_024_01839_8 crossref_primary_10_1126_science_aau6019 crossref_primary_10_1038_s41564_024_01684_z crossref_primary_10_1002_eji_202048810 crossref_primary_10_1021_acs_joc_9b02666 crossref_primary_10_1038_s41467_018_02936_3 crossref_primary_10_1038_s41467_022_34858_6 crossref_primary_10_1134_S199074782307005X crossref_primary_10_1016_j_isci_2024_111145 crossref_primary_10_1073_pnas_2205013119 crossref_primary_10_1016_j_isci_2023_106758 crossref_primary_10_1038_nature23449 crossref_primary_10_3389_fcimb_2024_1383811 crossref_primary_10_1016_j_cell_2018_06_026 crossref_primary_10_1093_pnasnexus_pgac109 crossref_primary_10_1124_pr_114_009928 crossref_primary_10_1002_adbi_202300528 crossref_primary_10_1038_s41418_020_00624_8 crossref_primary_10_1016_j_cels_2018_10_010 crossref_primary_10_1080_13543776_2024_2365409 crossref_primary_10_1038_s41564_024_01670_5 crossref_primary_10_15430_JCP_2023_28_4_143 crossref_primary_10_1016_j_nantod_2024_102455 crossref_primary_10_1074_jbc_RA120_012962 crossref_primary_10_1681_ASN_2021101286 crossref_primary_10_3389_fonc_2018_00192 crossref_primary_10_1016_j_jid_2021_05_007 crossref_primary_10_1002_cmdc_202100671 crossref_primary_10_3389_fimmu_2024_1380517 crossref_primary_10_1128_MMBR_00061_14 crossref_primary_10_1128_JVI_01720_15 crossref_primary_10_1038_mt_2016_138 crossref_primary_10_4251_wjgo_v17_i2_98556 crossref_primary_10_1016_j_immuni_2016_04_002 crossref_primary_10_1155_2021_9914854 crossref_primary_10_1007_s13238_020_00729_3 crossref_primary_10_1016_j_smim_2021_101580 crossref_primary_10_1016_j_heliyon_2024_e33093 crossref_primary_10_1038_s41401_023_01210_7 crossref_primary_10_1016_j_dci_2021_104266 crossref_primary_10_3390_v13071390 crossref_primary_10_1016_j_cellin_2021_100001 crossref_primary_10_1371_journal_pcbi_1007624 crossref_primary_10_1016_j_cpcardiol_2023_102189 crossref_primary_10_1039_D0CP04162A crossref_primary_10_1186_s12974_022_02602_y crossref_primary_10_1007_s13238_021_00869_0 crossref_primary_10_1016_j_dnarep_2023_103591 crossref_primary_10_1016_j_cej_2024_157554 crossref_primary_10_1016_j_virusres_2016_11_023 crossref_primary_10_1038_s41576_019_0151_1 crossref_primary_10_1038_s41467_020_14652_y crossref_primary_10_1016_j_mib_2021_01_017 crossref_primary_10_2183_pjab_98_001 crossref_primary_10_1016_j_it_2023_04_006 crossref_primary_10_1016_j_dnarep_2024_103634 crossref_primary_10_1111_imr_12901 crossref_primary_10_1016_j_it_2017_03_004 crossref_primary_10_1080_07853890_2023_2210845 crossref_primary_10_1016_j_addr_2024_115204 crossref_primary_10_1016_j_dnarep_2023_103583 crossref_primary_10_3389_fimmu_2023_1254915 crossref_primary_10_1038_s12276_023_00965_7 crossref_primary_10_1038_s41594_022_00862_z crossref_primary_10_1002_mco2_511 crossref_primary_10_1007_s13238_016_0320_3 crossref_primary_10_1038_s12276_020_0416_y crossref_primary_10_1016_j_micpath_2019_05_004 |
Cites_doi | 10.1016/S0006-3495(99)77443-6 10.1038/nsmb.2331 10.1016/S1097-2765(03)00433-7 10.1016/j.it.2011.08.004 10.1529/biophysj.106.081372 10.1016/j.molcel.2013.05.022 10.1038/nature12305 10.1038/nature08476 10.1038/nature09907 10.1073/pnas.1218528110 10.1016/j.molcel.2012.05.029 10.1073/pnas.0900850106 10.1126/scisignal.2002521 10.1038/nsmb.2333 10.1016/j.celrep.2013.05.009 10.1038/nri2690 10.1038/ni1282 10.1016/j.immuni.2012.03.019 10.1038/ni.2118 10.1038/ni921 10.1038/nature10429 10.1107/S0021889892001663 10.1111/j.1600-065X.2011.01052.x 10.1006/jmbi.1998.2439 10.1126/science.1244040 10.1038/ni.2491 10.1107/S0907444909052925 10.1016/j.coi.2010.12.015 10.1126/science.1229963 10.1016/j.immuni.2005.12.003 10.1107/S0907444910045749 10.1016/j.immuni.2009.01.008 10.1016/j.cell.2013.07.023 10.1038/35047123 10.1016/S0076-6879(97)76066-X 10.1038/nature07317 10.1126/science.1232458 10.1016/j.cell.2013.04.046 10.1016/j.cell.2013.08.014 10.1038/nature12306 10.1038/nsmb.2332 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Dec 12, 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Dec 12, 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2013.10.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 1031 |
ExternalDocumentID | PMC3886715 3351661191 24332030 10_1016_j_immuni_2013_10_019 S1074761313005104 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI 087741 – fundername: NIAID NIH HHS grantid: R01 AI087741 – fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID grantid: R01 AI087741 || AI |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 3V. 4.4 457 4G. 53G 5GY 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAQFI AAUCE AAVLU AAXJY AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGHFR AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 OVD P2P PQQKQ PROAC RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I AALRI AAMRU AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- UHS X7M Y6R ZGI CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K EFKBS FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c590t-7868635c36d0f08fe9fdddd965a463a331de7c23fbfd0a24c72923f8c0686f8d3 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 17:31:40 EDT 2025 Thu Jul 10 19:16:20 EDT 2025 Thu Jul 10 18:40:21 EDT 2025 Fri Jul 25 11:22:57 EDT 2025 Thu Apr 03 07:05:23 EDT 2025 Fri Jul 04 04:46:10 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Fri Feb 23 02:42:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-7868635c36d0f08fe9fdddd965a463a331de7c23fbfd0a24c72923f8c0686f8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 these authors contributed equally to the work |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1074761313005104 |
PMID | 24332030 |
PQID | 1540983271 |
PQPubID | 2031079 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3886715 proquest_miscellaneous_1554955347 proquest_miscellaneous_1477565274 proquest_journals_1540983271 pubmed_primary_24332030 crossref_citationtrail_10_1016_j_immuni_2013_10_019 crossref_primary_10_1016_j_immuni_2013_10_019 elsevier_sciencedirect_doi_10_1016_j_immuni_2013_10_019 |
PublicationCentury | 2000 |
PublicationDate | 2013-12-12 |
PublicationDateYYYYMMDD | 2013-12-12 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Burdette, Monroe, Sotelo-Troha, Iwig, Eckert, Hyodo, Hayakawa, Vance (bib7) 2011; 478 Civril, Deimling, de Oliveira Mann, Ablasser, Moldt, Witte, Hornung, Hopfner (bib8) 2013; 498 Hemmi, Takeuchi, Kawai, Kaisho, Sato, Sanjo, Matsumoto, Hoshino, Wagner, Takeda, Akira (bib16) 2000; 408 Li, Wu, Gao, Wang, Sun, Chen (bib24) 2013; 341 Otwinowski, Minor (bib26) 1997; 276 Fitzgerald, McWhirter, Faia, Rowe, Latz, Golenbock, Coyle, Liao, Maniatis (bib12) 2003; 4 Shang, Zhu, Li, Zhang, Zhu, Lu, Liu, Yu, Zhao, Xu, Gu (bib29) 2012; 19 Yin, Tian, Kabaleeswaran, Jiang, Tu, Eck, Chen, Wu (bib39) 2012; 46 Shu, Yi, Watts, Kao, Li (bib30) 2012; 19 Svergun (bib34) 1992; 25 Ablasser, Goldeck, Cavlar, Deimling, Witte, Röhl, Hopfner, Ludwig, Hornung (bib1) 2013; 498 Burdette, Vance (bib6) 2013; 14 Hornung, Latz (bib17) 2010; 10 Barber (bib4) 2011; 12 Sun, Wu, Du, Chen, Chen (bib33) 2013; 339 Zhong, Zhang, Lei, Li, Mao, Yang, Wang, Zhang, Shu (bib41) 2009; 30 Kato, Takahasi, Fujita (bib22) 2011; 243 Tanaka, Chen (bib36) 2012; 5 Brown, Schuck (bib5) 2006; 90 Gao, Ascano, Zillinger, Wang, Dai, Serganov, Gaffney, Shuman, Jones, Deng (bib14) 2013; 154 Sun, Li, Chen, Chen, You, Zhou, Zhou, Zhai, Chen, Jiang (bib32) 2009; 106 Ishikawa, Barber (bib20) 2008; 455 Barber (bib3) 2011; 23 Ishikawa, Ma, Barber (bib21) 2009; 461 Huang, Liu, Du, Jiang, Su (bib18) 2012; 19 Ouyang, Song, Wang, Ru, Shaw, Jiang, Niu, Zhu, Qiu, Parvatiyar (bib27) 2012; 36 Wu, Sun, Chen, Du, Shi, Chen, Chen (bib38) 2013; 339 Gao, Ascano, Wu, Barchet, Gaffney, Zillinger, Serganov, Liu, Jones, Hartmann (bib13) 2013; 153 Donovan, Dufner, Korennykh (bib11) 2013; 110 Diner, Burdette, Wilson, Monroe, Kellenberger, Hyodo, Hayakawa, Hammond, Vance (bib10) 2013; 3 Ishii, Coban, Kato, Takahashi, Torii, Takeshita, Ludwig, Sutter, Suzuki, Hemmi (bib19) 2006; 7 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib2) 2010; 66 Lo Conte, Chothia, Janin (bib25) 1999; 285 Svergun (bib35) 1999; 76 Schoggins, Wilson, Panis, Murphy, Jones, Bieniasz, Rice (bib28) 2011; 472 Stetson, Medzhitov (bib31) 2006; 24 Danilchanka, Mekalanos (bib9) 2013; 154 Zhang, Shi, Wu, Zhang, Sun, Chen, Chen (bib40) 2013; 51 Hartmann, Justesen, Sarkar, Sen, Yee (bib15) 2003; 12 Keating, Baran, Bowie (bib23) 2011; 32 Winn, Ballard, Cowtan, Dodson, Emsley, Evans, Keegan, Krissinel, Leslie, McCoy (bib37) 2011; 67 Yin (10.1016/j.immuni.2013.10.019_bib39) 2012; 46 Sun (10.1016/j.immuni.2013.10.019_bib33) 2013; 339 Gao (10.1016/j.immuni.2013.10.019_bib13) 2013; 153 Ishikawa (10.1016/j.immuni.2013.10.019_bib20) 2008; 455 Lo Conte (10.1016/j.immuni.2013.10.019_bib25) 1999; 285 Shu (10.1016/j.immuni.2013.10.019_bib30) 2012; 19 Fitzgerald (10.1016/j.immuni.2013.10.019_bib12) 2003; 4 Stetson (10.1016/j.immuni.2013.10.019_bib31) 2006; 24 Svergun (10.1016/j.immuni.2013.10.019_bib34) 1992; 25 Li (10.1016/j.immuni.2013.10.019_bib24) 2013; 341 Burdette (10.1016/j.immuni.2013.10.019_bib7) 2011; 478 Keating (10.1016/j.immuni.2013.10.019_bib23) 2011; 32 Ishii (10.1016/j.immuni.2013.10.019_bib19) 2006; 7 Civril (10.1016/j.immuni.2013.10.019_bib8) 2013; 498 Sun (10.1016/j.immuni.2013.10.019_bib32) 2009; 106 Gao (10.1016/j.immuni.2013.10.019_bib14) 2013; 154 Ishikawa (10.1016/j.immuni.2013.10.019_bib21) 2009; 461 Wu (10.1016/j.immuni.2013.10.019_bib38) 2013; 339 Zhang (10.1016/j.immuni.2013.10.019_bib40) 2013; 51 Burdette (10.1016/j.immuni.2013.10.019_bib6) 2013; 14 Zhong (10.1016/j.immuni.2013.10.019_bib41) 2009; 30 Donovan (10.1016/j.immuni.2013.10.019_bib11) 2013; 110 Hornung (10.1016/j.immuni.2013.10.019_bib17) 2010; 10 Schoggins (10.1016/j.immuni.2013.10.019_bib28) 2011; 472 Brown (10.1016/j.immuni.2013.10.019_bib5) 2006; 90 Ablasser (10.1016/j.immuni.2013.10.019_bib1) 2013; 498 Hartmann (10.1016/j.immuni.2013.10.019_bib15) 2003; 12 Otwinowski (10.1016/j.immuni.2013.10.019_bib26) 1997; 276 Huang (10.1016/j.immuni.2013.10.019_bib18) 2012; 19 Adams (10.1016/j.immuni.2013.10.019_bib2) 2010; 66 Barber (10.1016/j.immuni.2013.10.019_bib4) 2011; 12 Diner (10.1016/j.immuni.2013.10.019_bib10) 2013; 3 Hemmi (10.1016/j.immuni.2013.10.019_bib16) 2000; 408 Winn (10.1016/j.immuni.2013.10.019_bib37) 2011; 67 Barber (10.1016/j.immuni.2013.10.019_bib3) 2011; 23 Danilchanka (10.1016/j.immuni.2013.10.019_bib9) 2013; 154 Kato (10.1016/j.immuni.2013.10.019_bib22) 2011; 243 Shang (10.1016/j.immuni.2013.10.019_bib29) 2012; 19 Tanaka (10.1016/j.immuni.2013.10.019_bib36) 2012; 5 Ouyang (10.1016/j.immuni.2013.10.019_bib27) 2012; 36 Svergun (10.1016/j.immuni.2013.10.019_bib35) 1999; 76 24332024 - Immunity. 2013 Dec 12;39(6):992-4 |
References_xml | – volume: 51 start-page: 226 year: 2013 end-page: 235 ident: bib40 article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING publication-title: Mol. Cell – volume: 455 start-page: 674 year: 2008 end-page: 678 ident: bib20 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature – volume: 106 start-page: 8653 year: 2009 end-page: 8658 ident: bib32 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 1173 year: 2003 end-page: 1185 ident: bib15 article-title: Crystal structure of the 2′-specific and double-stranded RNA-activated interferon-induced antiviral protein 2′-5′-oligoadenylate synthetase publication-title: Mol. Cell – volume: 472 start-page: 481 year: 2011 end-page: 485 ident: bib28 article-title: A diverse range of gene products are effectors of the type I interferon antiviral response publication-title: Nature – volume: 5 start-page: ra20 year: 2012 ident: bib36 article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway publication-title: Sci. Signal. – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib2 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 339 start-page: 826 year: 2013 end-page: 830 ident: bib38 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science – volume: 285 start-page: 2177 year: 1999 end-page: 2198 ident: bib25 article-title: The atomic structure of protein-protein recognition sites publication-title: J. Mol. Biol. – volume: 4 start-page: 491 year: 2003 end-page: 496 ident: bib12 article-title: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway publication-title: Nat. Immunol. – volume: 498 start-page: 380 year: 2013 end-page: 384 ident: bib1 article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING publication-title: Nature – volume: 12 start-page: 929 year: 2011 end-page: 930 ident: bib4 article-title: STING-dependent signaling publication-title: Nat. Immunol. – volume: 46 start-page: 735 year: 2012 end-page: 745 ident: bib39 article-title: Cyclic di-GMP sensing via the innate immune signaling protein STING publication-title: Mol. Cell – volume: 24 start-page: 93 year: 2006 end-page: 103 ident: bib31 article-title: Recognition of cytosolic DNA activates an IRF3-dependent innate immune response publication-title: Immunity – volume: 154 start-page: 748 year: 2013 end-page: 762 ident: bib14 article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA publication-title: Cell – volume: 7 start-page: 40 year: 2006 end-page: 48 ident: bib19 article-title: A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA publication-title: Nat. Immunol. – volume: 461 start-page: 788 year: 2009 end-page: 792 ident: bib21 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature – volume: 3 start-page: 1355 year: 2013 end-page: 1361 ident: bib10 article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING publication-title: Cell Rep – volume: 32 start-page: 574 year: 2011 end-page: 581 ident: bib23 article-title: Cytosolic DNA sensors regulating type I interferon induction publication-title: Trends Immunol. – volume: 110 start-page: 1652 year: 2013 end-page: 1657 ident: bib11 article-title: Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1 publication-title: Proc. Natl. Acad. Sci. USA – volume: 408 start-page: 740 year: 2000 end-page: 745 ident: bib16 article-title: A Toll-like receptor recognizes bacterial DNA publication-title: Nature – volume: 36 start-page: 1073 year: 2012 end-page: 1086 ident: bib27 article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding publication-title: Immunity – volume: 23 start-page: 10 year: 2011 end-page: 20 ident: bib3 article-title: Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses publication-title: Curr. Opin. Immunol. – volume: 30 start-page: 397 year: 2009 end-page: 407 ident: bib41 article-title: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA publication-title: Immunity – volume: 243 start-page: 91 year: 2011 end-page: 98 ident: bib22 article-title: RIG-I-like receptors: cytoplasmic sensors for non-self RNA publication-title: Immunol. Rev. – volume: 19 start-page: 722 year: 2012 end-page: 724 ident: bib30 article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system publication-title: Nat. Struct. Mol. Biol. – volume: 19 start-page: 725 year: 2012 end-page: 727 ident: bib29 article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP publication-title: Nat. Struct. Mol. Biol. – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: bib33 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science – volume: 153 start-page: 1094 year: 2013 end-page: 1107 ident: bib13 article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell – volume: 14 start-page: 19 year: 2013 end-page: 26 ident: bib6 article-title: STING and the innate immune response to nucleic acids in the cytosol publication-title: Nat. Immunol. – volume: 25 start-page: 495 year: 1992 end-page: 503 ident: bib34 article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria publication-title: J. Appl. Cryst. – volume: 19 start-page: 728 year: 2012 end-page: 730 ident: bib18 article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING publication-title: Nat. Struct. Mol. Biol. – volume: 10 start-page: 123 year: 2010 end-page: 130 ident: bib17 article-title: Intracellular DNA recognition publication-title: Nat. Rev. Immunol. – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: bib26 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol – volume: 154 start-page: 962 year: 2013 end-page: 970 ident: bib9 article-title: Cyclic dinucleotides and the innate immune response publication-title: Cell – volume: 76 start-page: 2879 year: 1999 end-page: 2886 ident: bib35 article-title: Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing publication-title: Biophys. J. – volume: 498 start-page: 332 year: 2013 end-page: 337 ident: bib8 article-title: Structural mechanism of cytosolic DNA sensing by cGAS publication-title: Nature – volume: 478 start-page: 515 year: 2011 end-page: 518 ident: bib7 article-title: STING is a direct innate immune sensor of cyclic di-GMP publication-title: Nature – volume: 341 start-page: 1390 year: 2013 end-page: 1394 ident: bib24 article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science – volume: 90 start-page: 4651 year: 2006 end-page: 4661 ident: bib5 article-title: Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation publication-title: Biophys. J. – volume: 67 start-page: 235 year: 2011 end-page: 242 ident: bib37 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 76 start-page: 2879 year: 1999 ident: 10.1016/j.immuni.2013.10.019_bib35 article-title: Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77443-6 – volume: 19 start-page: 722 year: 2012 ident: 10.1016/j.immuni.2013.10.019_bib30 article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2331 – volume: 12 start-page: 1173 year: 2003 ident: 10.1016/j.immuni.2013.10.019_bib15 article-title: Crystal structure of the 2′-specific and double-stranded RNA-activated interferon-induced antiviral protein 2′-5′-oligoadenylate synthetase publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00433-7 – volume: 32 start-page: 574 year: 2011 ident: 10.1016/j.immuni.2013.10.019_bib23 article-title: Cytosolic DNA sensors regulating type I interferon induction publication-title: Trends Immunol. doi: 10.1016/j.it.2011.08.004 – volume: 90 start-page: 4651 year: 2006 ident: 10.1016/j.immuni.2013.10.019_bib5 article-title: Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation publication-title: Biophys. J. doi: 10.1529/biophysj.106.081372 – volume: 51 start-page: 226 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib40 article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.05.022 – volume: 498 start-page: 332 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib8 article-title: Structural mechanism of cytosolic DNA sensing by cGAS publication-title: Nature doi: 10.1038/nature12305 – volume: 461 start-page: 788 year: 2009 ident: 10.1016/j.immuni.2013.10.019_bib21 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 472 start-page: 481 year: 2011 ident: 10.1016/j.immuni.2013.10.019_bib28 article-title: A diverse range of gene products are effectors of the type I interferon antiviral response publication-title: Nature doi: 10.1038/nature09907 – volume: 110 start-page: 1652 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib11 article-title: Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1218528110 – volume: 46 start-page: 735 year: 2012 ident: 10.1016/j.immuni.2013.10.019_bib39 article-title: Cyclic di-GMP sensing via the innate immune signaling protein STING publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.029 – volume: 106 start-page: 8653 year: 2009 ident: 10.1016/j.immuni.2013.10.019_bib32 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0900850106 – volume: 5 start-page: ra20 year: 2012 ident: 10.1016/j.immuni.2013.10.019_bib36 article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway publication-title: Sci. Signal. doi: 10.1126/scisignal.2002521 – volume: 19 start-page: 728 year: 2012 ident: 10.1016/j.immuni.2013.10.019_bib18 article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2333 – volume: 3 start-page: 1355 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib10 article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING publication-title: Cell Rep doi: 10.1016/j.celrep.2013.05.009 – volume: 10 start-page: 123 year: 2010 ident: 10.1016/j.immuni.2013.10.019_bib17 article-title: Intracellular DNA recognition publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2690 – volume: 7 start-page: 40 year: 2006 ident: 10.1016/j.immuni.2013.10.019_bib19 article-title: A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA publication-title: Nat. Immunol. doi: 10.1038/ni1282 – volume: 36 start-page: 1073 year: 2012 ident: 10.1016/j.immuni.2013.10.019_bib27 article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding publication-title: Immunity doi: 10.1016/j.immuni.2012.03.019 – volume: 12 start-page: 929 year: 2011 ident: 10.1016/j.immuni.2013.10.019_bib4 article-title: STING-dependent signaling publication-title: Nat. Immunol. doi: 10.1038/ni.2118 – volume: 4 start-page: 491 year: 2003 ident: 10.1016/j.immuni.2013.10.019_bib12 article-title: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway publication-title: Nat. Immunol. doi: 10.1038/ni921 – volume: 478 start-page: 515 year: 2011 ident: 10.1016/j.immuni.2013.10.019_bib7 article-title: STING is a direct innate immune sensor of cyclic di-GMP publication-title: Nature doi: 10.1038/nature10429 – volume: 25 start-page: 495 year: 1992 ident: 10.1016/j.immuni.2013.10.019_bib34 article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria publication-title: J. Appl. Cryst. doi: 10.1107/S0021889892001663 – volume: 243 start-page: 91 year: 2011 ident: 10.1016/j.immuni.2013.10.019_bib22 article-title: RIG-I-like receptors: cytoplasmic sensors for non-self RNA publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01052.x – volume: 285 start-page: 2177 year: 1999 ident: 10.1016/j.immuni.2013.10.019_bib25 article-title: The atomic structure of protein-protein recognition sites publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2439 – volume: 341 start-page: 1390 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib24 article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science doi: 10.1126/science.1244040 – volume: 14 start-page: 19 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib6 article-title: STING and the innate immune response to nucleic acids in the cytosol publication-title: Nat. Immunol. doi: 10.1038/ni.2491 – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.immuni.2013.10.019_bib2 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 23 start-page: 10 year: 2011 ident: 10.1016/j.immuni.2013.10.019_bib3 article-title: Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2010.12.015 – volume: 339 start-page: 826 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib38 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – volume: 24 start-page: 93 year: 2006 ident: 10.1016/j.immuni.2013.10.019_bib31 article-title: Recognition of cytosolic DNA activates an IRF3-dependent innate immune response publication-title: Immunity doi: 10.1016/j.immuni.2005.12.003 – volume: 67 start-page: 235 year: 2011 ident: 10.1016/j.immuni.2013.10.019_bib37 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910045749 – volume: 30 start-page: 397 year: 2009 ident: 10.1016/j.immuni.2013.10.019_bib41 article-title: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA publication-title: Immunity doi: 10.1016/j.immuni.2009.01.008 – volume: 154 start-page: 748 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib14 article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA publication-title: Cell doi: 10.1016/j.cell.2013.07.023 – volume: 408 start-page: 740 year: 2000 ident: 10.1016/j.immuni.2013.10.019_bib16 article-title: A Toll-like receptor recognizes bacterial DNA publication-title: Nature doi: 10.1038/35047123 – volume: 276 start-page: 307 year: 1997 ident: 10.1016/j.immuni.2013.10.019_bib26 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)76066-X – volume: 455 start-page: 674 year: 2008 ident: 10.1016/j.immuni.2013.10.019_bib20 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature doi: 10.1038/nature07317 – volume: 339 start-page: 786 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib33 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 153 start-page: 1094 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib13 article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 154 start-page: 962 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib9 article-title: Cyclic dinucleotides and the innate immune response publication-title: Cell doi: 10.1016/j.cell.2013.08.014 – volume: 498 start-page: 380 year: 2013 ident: 10.1016/j.immuni.2013.10.019_bib1 article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING publication-title: Nature doi: 10.1038/nature12306 – volume: 19 start-page: 725 year: 2012 ident: 10.1016/j.immuni.2013.10.019_bib29 article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2332 – reference: 24332024 - Immunity. 2013 Dec 12;39(6):992-4 |
SSID | ssj0014590 |
Score | 2.6062076 |
Snippet | Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1019 |
SubjectTerms | Animals Binding Sites - genetics Catalytic Domain Chromatography Deoxyribonucleic acid DNA DNA - metabolism Enzymes Humans Kinases Ligands Mice Models, Molecular Nucleotides, Cyclic - metabolism Nucleotidyltransferases - chemistry Nucleotidyltransferases - genetics Nucleotidyltransferases - metabolism Protein Binding Protein Structure, Quaternary Proteins Sperm Studies Transcription factors |
Title | Cyclic GMP-AMP Synthase Is Activated by Double-Stranded DNA-Induced Oligomerization |
URI | https://dx.doi.org/10.1016/j.immuni.2013.10.019 https://www.ncbi.nlm.nih.gov/pubmed/24332030 https://www.proquest.com/docview/1540983271 https://www.proquest.com/docview/1477565274 https://www.proquest.com/docview/1554955347 https://pubmed.ncbi.nlm.nih.gov/PMC3886715 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQyBeJhi_OsZkJF5Nk9iJ48esYwymjoky0bfIdhyWqUqnrXvof89dfokCYhJ9aJXkIiUX-_yl9913AO-KyCkrfMFVZCWXFr9s6CwPtceA6anUkgqcp2fJyYX8PI_nWzDpa2GIVtnF_jamN9G62zPuvDm-rqrxjKiE-BIuKCGDI4s0QYVMmyK--eGQSZCxDgbeIVr35XMNx6tqajCI4CXeE8eL9Hb-vjz9CT9_Z1H-siwdP4GdDk-yrL3kp7Dl61142HaYXO_Co2mXO38Gs8naLSrHPk7PeTY9Z7N1vbrENYx9umWZa7qc-YLZNUNMbReek24t_T3Ojs4yTh0-0Ffsy6L6saQkT1u9-Rwujj98m5zwrqUCd-iHFVdpkiLEcCIpgjJIS6_LAj86iY1MhBEiLLxykShtWQQmkg6xN26ljipJyrQQL2C7Xtb-FTCRaKdM6nRptIx8hL8mUDY1Jkmk18EIRO_J3HV649T2YpH3xLKrvPV_Tv6nvej_EfDhrOtWb-Mee9U_pHxj3OS4JNxz5n7_TPNu3t7mCCgDjUFOhSN4OxzGGUdpFFP75R3aSKUQBuPr_D9sEKXpOBZSjeBlO0yG24lIMg5jK176xgAaDEjxe_NIXV02yt8iJTnCeO-_b_o1PKYt4uOE0T5sr27u_BtEVSt7AA-y06_fTw-a6fMTi94h7Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIT5eJhgMygYYiVfTJHbi-LF0jBaWMqmb1LcodhwWVKUT6x7633OXL62AmEQeEiU-S8nFPv-S-90dwPs8sMoIl3MVGMmlwZ3xreG-dmgwHYVaUoBzMosmF_LLIlzswLiLhSFaZWv7G5teW-v2yrDV5vCqLIdzohLiR7gghwyOLHkP7iMaUFS_Ybr42LsSZKi9nniI4l38XE3yKusgDGJ4iQ9E8qKEO39fn_7En7_TKG-tSydPYK8FlGzU3PNT2HHVPjxoSkxu9uFh0jrPn8F8vLHL0rLPyRkfJWdsvqnWl7iIsek1G9m6zJnLmdkwBNVm6TglrqX_4-x4NuJU4gOVxb4ty-8r8vI04ZvP4eLk0_l4wtuaCtyiHtZcxVGMGMOKKPcKLy6cLnLcdBRmMhKZEH7ulA1EYYrcywJpEXzjWWwplKSIc3EAu9Wqci-BiUhblcVWF5mWgQvwmHnKxFkWRdJpbwCi02Rq24TjVPdimXbMsh9po_-U9E9XUf8D4H2vqybhxh3yqntJ6dbASXFNuKPnUfdO03biXqeIKD2NVk75A3jXN-OUIz9KVrnVDcpIpRAH4_f8P2QQpukwFFIN4EUzTPrHCShnHBpXvPWtAdQLUMrv7ZaqvKxTf4uY8hGGr_77od_Co8l5cpqeTmdfD-ExtRA5xw-OYHf988a9Roi1Nm_qKfQL-UIjaQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+GMP-AMP+synthase+is+activated+by+double-stranded+DNA-induced+oligomerization&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Li%2C+Xin&rft.au=Shu%2C+Chang&rft.au=Yi%2C+Guanghui&rft.au=Chaton%2C+Catherine+T&rft.date=2013-12-12&rft.eissn=1097-4180&rft.volume=39&rft.issue=6&rft.spage=1019&rft_id=info:doi/10.1016%2Fj.immuni.2013.10.019&rft_id=info%3Apmid%2F24332030&rft.externalDocID=24332030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |