Cyclic GMP-AMP Synthase Is Activated by Double-Stranded DNA-Induced Oligomerization

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2′,5′ cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiate...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 39; no. 6; pp. 1019 - 1031
Main Authors Li, Xin, Shu, Chang, Yi, Guanghui, Chaton, Catherine T., Shelton, Catherine L., Diao, Jiasheng, Zuo, Xiaobing, Kao, C. Cheng, Herr, Andrew B., Li, Pingwei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.12.2013
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2′,5′ cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2′,5′ cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. •cGAS is activated by dsDNA and catalyzes the synthesis of 2′,5′ cGAMP•cGAS is activated by dsDNA-induced oligomerization•cGAS binds dsDNA cooperatively through two binding sites•Mutations at the DNA binding sites and the dimer interface affect cGAS activity
AbstractList Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization.
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization.Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization.
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide 2′,5′ cGAMP that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2′,5′ cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization.
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2\',5\' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN- beta gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN- beta reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2\',5\' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization.
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2′,5′ cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2′,5′ cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. •cGAS is activated by dsDNA and catalyzes the synthesis of 2′,5′ cGAMP•cGAS is activated by dsDNA-induced oligomerization•cGAS binds dsDNA cooperatively through two binding sites•Mutations at the DNA binding sites and the dimer interface affect cGAS activity
Author Shelton, Catherine L.
Diao, Jiasheng
Li, Pingwei
Shu, Chang
Herr, Andrew B.
Yi, Guanghui
Zuo, Xiaobing
Li, Xin
Kao, C. Cheng
Chaton, Catherine T.
AuthorAffiliation 4 X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
2 Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
3 Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
AuthorAffiliation_xml – name: 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
– name: 4 X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
– name: 2 Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
– name: 3 Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
Author_xml – sequence: 1
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
– sequence: 2
  givenname: Chang
  surname: Shu
  fullname: Shu, Chang
  organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
– sequence: 3
  givenname: Guanghui
  surname: Yi
  fullname: Yi, Guanghui
  organization: Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
– sequence: 4
  givenname: Catherine T.
  surname: Chaton
  fullname: Chaton, Catherine T.
  organization: Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
– sequence: 5
  givenname: Catherine L.
  surname: Shelton
  fullname: Shelton, Catherine L.
  organization: Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
– sequence: 6
  givenname: Jiasheng
  surname: Diao
  fullname: Diao, Jiasheng
  organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
– sequence: 7
  givenname: Xiaobing
  surname: Zuo
  fullname: Zuo, Xiaobing
  organization: X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
– sequence: 8
  givenname: C. Cheng
  surname: Kao
  fullname: Kao, C. Cheng
  organization: Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
– sequence: 9
  givenname: Andrew B.
  surname: Herr
  fullname: Herr, Andrew B.
  organization: Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
– sequence: 10
  givenname: Pingwei
  surname: Li
  fullname: Li, Pingwei
  email: pingwei@tamu.edu
  organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24332030$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vGyEURFWq5qP9B1W1Ui-9rAsLLLs9VLKcNLWUL8ntGWFgE6xdSIG15Pz6PtdO1eaQcAEeM6PhvTlGBz54i9B7gicEk_rzauKGYfRuUmFCoTTBpH2FjghuRclIgw-2Z8FKURN6iI5TWmFMGG_xG3RYMUorTPERWsw2une6OL-8KaeXN8Vi4_OdSraYp2Kqs1urbE2x3BSnYVz2tlzkqLyB0unVtJx7M2o4X_fuNgw2ugeVXfBv0etO9cm-2-8n6Oe3sx-z7-XF9fl8Nr0oNbjIpWjqpqZc09rgDjedbTsDq625YjVVlBJjha5ot-wMVhXTomrh1mgMvK4x9AR93enej8vBGm09mOvlfXSDihsZlJP_v3h3J2_DWtKmqQXhIPBpLxDDr9GmLAeXtO175W0YkyScs5ZzysTLUCYEr3klGEA_PoGuwhg9dAIEGW4bWgkCqA__mv_r-nE0APiyA-gYUoq2k9rlP_2Fv7heEiy3OZArucuB3OZgW4UcAJk9IT_qv0Dbd9TC2NbORpm0sx5m7KLVWZrgnhf4DV4zzVQ
CitedBy_id crossref_primary_10_1093_nar_gkac823
crossref_primary_10_1016_j_chembiol_2016_10_014
crossref_primary_10_1016_j_jpha_2024_101145
crossref_primary_10_1128_JVI_00760_21
crossref_primary_10_1002_JLB_4MIR1018_397RR
crossref_primary_10_1038_srep19049
crossref_primary_10_1016_j_molcel_2019_12_009
crossref_primary_10_1126_sciimmunol_aal1713
crossref_primary_10_1111_febs_16137
crossref_primary_10_1016_j_immuni_2018_03_017
crossref_primary_10_1016_j_immuni_2018_03_016
crossref_primary_10_1038_s41420_024_02276_w
crossref_primary_10_1016_j_colsurfb_2025_114573
crossref_primary_10_1080_08830185_2021_1898605
crossref_primary_10_1093_jmcb_mjac042
crossref_primary_10_1016_j_coi_2022_102280
crossref_primary_10_3389_fimmu_2020_624597
crossref_primary_10_1002_mog2_49
crossref_primary_10_1186_s13578_018_0233_3
crossref_primary_10_1016_j_cell_2019_01_016
crossref_primary_10_1016_j_cytogfr_2023_09_004
crossref_primary_10_1016_j_jim_2020_112751
crossref_primary_10_3389_fimmu_2022_931885
crossref_primary_10_1007_s12250_018_0005_6
crossref_primary_10_1016_j_cell_2024_05_031
crossref_primary_10_1016_j_celrep_2020_02_112
crossref_primary_10_1093_jmcb_mjac031
crossref_primary_10_1039_C8MD00555A
crossref_primary_10_1038_nm_4027
crossref_primary_10_3389_fmicb_2019_02647
crossref_primary_10_1016_j_neuropharm_2022_109206
crossref_primary_10_1007_s12274_024_6714_x
crossref_primary_10_1016_j_prp_2024_155330
crossref_primary_10_1007_s00281_014_0445_5
crossref_primary_10_1016_j_cytogfr_2014_06_006
crossref_primary_10_1073_pnas_1621363114
crossref_primary_10_3390_ijms23126847
crossref_primary_10_3389_fimmu_2024_1356369
crossref_primary_10_1016_j_intimp_2019_105791
crossref_primary_10_1128_mbio_03395_24
crossref_primary_10_1021_acs_jpcb_3c02377
crossref_primary_10_18632_oncotarget_12399
crossref_primary_10_1002_cbic_202300147
crossref_primary_10_3389_fimmu_2020_00615
crossref_primary_10_1073_pnas_1516465112
crossref_primary_10_1371_journal_ppat_1011641
crossref_primary_10_1016_j_csbj_2023_10_013
crossref_primary_10_3390_ijms241914738
crossref_primary_10_1038_s41590_019_0556_1
crossref_primary_10_1038_s41401_024_01369_7
crossref_primary_10_1080_08830185_2022_2070616
crossref_primary_10_1016_j_devcel_2021_02_006
crossref_primary_10_1093_jmcb_mjac019
crossref_primary_10_1002_adfm_202112273
crossref_primary_10_1146_annurev_virology_111821_115636
crossref_primary_10_1038_s41586_023_06889_6
crossref_primary_10_1155_2022_8873536
crossref_primary_10_1016_j_neurot_2025_e00536
crossref_primary_10_7554_eLife_47491
crossref_primary_10_1002_bies_201400019
crossref_primary_10_1002_iub_1566
crossref_primary_10_1016_j_bpj_2020_04_025
crossref_primary_10_1016_j_immuni_2018_12_013
crossref_primary_10_1080_17568919_2024_2383164
crossref_primary_10_3389_fcell_2021_717610
crossref_primary_10_1021_acs_chemrev_1c00716
crossref_primary_10_1016_j_abb_2021_109001
crossref_primary_10_1021_jacsau_2c00481
crossref_primary_10_1038_s41586_020_2748_0
crossref_primary_10_7554_eLife_39984
crossref_primary_10_1093_jmcb_mjac005
crossref_primary_10_1016_j_coi_2022_01_004
crossref_primary_10_1051_e3sconf_202124503027
crossref_primary_10_1038_s41586_020_2749_z
crossref_primary_10_1002_smtd_202401041
crossref_primary_10_1016_j_celrep_2024_115177
crossref_primary_10_3389_fimmu_2023_1093212
crossref_primary_10_1002_1873_3468_12598
crossref_primary_10_1016_j_arr_2025_102691
crossref_primary_10_1016_j_celrep_2022_110443
crossref_primary_10_3389_fimmu_2022_1019872
crossref_primary_10_1016_j_celrep_2023_112852
crossref_primary_10_1186_s13578_021_00724_z
crossref_primary_10_1016_j_intimp_2024_112556
crossref_primary_10_7554_eLife_63728
crossref_primary_10_1186_s12943_020_01250_1
crossref_primary_10_3390_v11080758
crossref_primary_10_1371_journal_pgen_1005203
crossref_primary_10_3389_fimmu_2020_613039
crossref_primary_10_1371_journal_ppat_1006156
crossref_primary_10_1101_gad_348314_121
crossref_primary_10_12677_hjbm_2024_143056
crossref_primary_10_1016_j_celrep_2022_111310
crossref_primary_10_1016_j_dnarep_2020_102894
crossref_primary_10_1016_j_nano_2024_102762
crossref_primary_10_1039_D2CS00848C
crossref_primary_10_1126_science_abd0237
crossref_primary_10_3390_nano12183138
crossref_primary_10_4049_jimmunol_1402793
crossref_primary_10_1016_j_molcel_2023_12_005
crossref_primary_10_1042_BSR20240269
crossref_primary_10_1007_s44178_024_00079_8
crossref_primary_10_1371_journal_ppat_1006264
crossref_primary_10_1007_s11904_016_0305_0
crossref_primary_10_1186_s13578_021_00586_5
crossref_primary_10_1016_j_isci_2020_101928
crossref_primary_10_1007_s10753_023_01812_7
crossref_primary_10_2174_0929867326666190620103105
crossref_primary_10_3389_fcell_2021_775441
crossref_primary_10_1016_j_biopha_2022_113680
crossref_primary_10_1016_j_dnarep_2021_103135
crossref_primary_10_2478_rir_2021_0023
crossref_primary_10_3724_abbs_2023139
crossref_primary_10_1146_annurev_cancerbio_030518_055636
crossref_primary_10_1039_D3MD00061C
crossref_primary_10_18632_oncotarget_27673
crossref_primary_10_1038_s41392_020_0198_7
crossref_primary_10_1038_s41467_023_41164_2
crossref_primary_10_3389_fimmu_2023_1239142
crossref_primary_10_1177_1753425919852695
crossref_primary_10_1016_j_bcp_2022_114934
crossref_primary_10_1016_j_cell_2014_07_028
crossref_primary_10_1038_s41598_020_72393_w
crossref_primary_10_15252_embr_201744017
crossref_primary_10_3390_ijms25031828
crossref_primary_10_1111_jcmm_70130
crossref_primary_10_1016_j_celrep_2023_112309
crossref_primary_10_1016_j_intimp_2024_113212
crossref_primary_10_1371_journal_ppat_1008429
crossref_primary_10_3389_fimmu_2020_01458
crossref_primary_10_1099_jgv_0_000647
crossref_primary_10_1016_j_molcel_2016_08_025
crossref_primary_10_1038_nri_2016_78
crossref_primary_10_1038_s41420_023_01607_7
crossref_primary_10_1038_s41422_020_00422_4
crossref_primary_10_1093_burnst_tkad050
crossref_primary_10_1038_ni_3558
crossref_primary_10_1038_s41422_020_0341_6
crossref_primary_10_3390_ijms241713316
crossref_primary_10_1016_j_intimp_2024_113447
crossref_primary_10_1016_j_immuni_2013_11_012
crossref_primary_10_1021_acs_chemrev_1c00750
crossref_primary_10_1016_j_phymed_2023_155020
crossref_primary_10_1111_jcmm_15768
crossref_primary_10_3389_fmicb_2021_771292
crossref_primary_10_1038_s41594_023_00933_9
crossref_primary_10_3390_ijms21217842
crossref_primary_10_1016_j_mad_2016_09_001
crossref_primary_10_1002_jmv_29685
crossref_primary_10_3389_fcell_2020_606001
crossref_primary_10_1016_j_immuni_2020_06_014
crossref_primary_10_1016_j_ijbiomac_2020_01_015
crossref_primary_10_1146_annurev_immunol_070119_115052
crossref_primary_10_3390_biom10121591
crossref_primary_10_3389_fimmu_2021_774807
crossref_primary_10_3389_fphar_2020_00088
crossref_primary_10_1016_j_chom_2015_07_015
crossref_primary_10_1016_j_bmc_2020_115899
crossref_primary_10_1080_10799893_2024_2325353
crossref_primary_10_1016_j_jmb_2022_167920
crossref_primary_10_1038_srep14770
crossref_primary_10_1038_s41598_024_64651_y
crossref_primary_10_1016_j_immuni_2023_01_001
crossref_primary_10_1371_journal_ppat_1010718
crossref_primary_10_3389_fimmu_2020_611347
crossref_primary_10_1016_j_tcb_2022_11_001
crossref_primary_10_1002_eji_202049116
crossref_primary_10_1039_C8RA04603D
crossref_primary_10_3389_fimmu_2023_1130423
crossref_primary_10_1038_s41422_020_00423_3
crossref_primary_10_1038_ncomms14391
crossref_primary_10_1093_nar_gkab689
crossref_primary_10_1096_fj_202101199R
crossref_primary_10_3389_fcell_2022_816517
crossref_primary_10_3390_ijms232315182
crossref_primary_10_21769_BioProtoc_3055
crossref_primary_10_1038_s41586_024_07112_w
crossref_primary_10_1016_j_fsi_2019_10_010
crossref_primary_10_1039_D1CP00378J
crossref_primary_10_1038_s41467_023_39607_x
crossref_primary_10_1038_s41467_018_05559_w
crossref_primary_10_1126_sciimmunol_aba4219
crossref_primary_10_1016_j_meegid_2019_104094
crossref_primary_10_1038_s41418_023_01116_1
crossref_primary_10_1016_j_bmcl_2021_128101
crossref_primary_10_1186_s12967_022_03844_3
crossref_primary_10_1146_annurev_micro_102215_095605
crossref_primary_10_1016_j_neuropharm_2024_110217
crossref_primary_10_1021_acs_jcim_0c00171
crossref_primary_10_1016_j_bbagen_2021_129871
crossref_primary_10_1016_j_critrevonc_2023_104194
crossref_primary_10_1016_j_jbc_2022_102779
crossref_primary_10_1093_nar_gkae654
crossref_primary_10_1096_fj_201902833R
crossref_primary_10_1080_2162402X_2015_1118599
crossref_primary_10_1371_journal_ppat_1009940
crossref_primary_10_3389_fimmu_2021_682736
crossref_primary_10_1111_ejn_15967
crossref_primary_10_3389_fimmu_2024_1399926
crossref_primary_10_3390_ijms24044068
crossref_primary_10_3389_fimmu_2020_593901
crossref_primary_10_1089_jir_2014_0120
crossref_primary_10_1016_j_ijbiomac_2024_134210
crossref_primary_10_1007_s11684_023_1026_6
crossref_primary_10_1186_s12951_025_03098_3
crossref_primary_10_2147_JIR_S423232
crossref_primary_10_1016_j_tcb_2017_08_007
crossref_primary_10_1080_08916934_2018_1522305
crossref_primary_10_1093_gbe_evv046
crossref_primary_10_1038_s41580_020_0244_x
crossref_primary_10_3389_fphar_2021_653940
crossref_primary_10_1016_j_coi_2017_11_004
crossref_primary_10_1002_1873_3468_14838
crossref_primary_10_1126_science_aat1022
crossref_primary_10_1002_rmv_2488
crossref_primary_10_1038_ni_3267
crossref_primary_10_2147_JIR_S455035
crossref_primary_10_2337_dbi18_0052
crossref_primary_10_3389_fimmu_2020_00026
crossref_primary_10_1016_j_tibs_2021_05_011
crossref_primary_10_1111_iej_13636
crossref_primary_10_1136_jitc_2021_002569
crossref_primary_10_7554_eLife_67358
crossref_primary_10_1038_ni_3274
crossref_primary_10_1128_JVI_00841_18
crossref_primary_10_1038_s41577_024_01112_7
crossref_primary_10_1038_s41392_023_01503_7
crossref_primary_10_3389_fcell_2022_800393
crossref_primary_10_1186_s40364_023_00551_z
crossref_primary_10_3390_ijms20040895
crossref_primary_10_1038_nchembio_1530
crossref_primary_10_1021_acsptsci_4c00310
crossref_primary_10_3389_fimmu_2024_1447719
crossref_primary_10_1016_j_celrep_2019_01_105
crossref_primary_10_1016_j_molimm_2024_10_002
crossref_primary_10_1039_D0CP05871H
crossref_primary_10_1016_j_vaccine_2017_02_064
crossref_primary_10_1016_j_molcel_2014_03_040
crossref_primary_10_1038_s41418_021_00849_1
crossref_primary_10_1002_eji_202350386
crossref_primary_10_4155_fmc_2017_0322
crossref_primary_10_1126_science_abc5386
crossref_primary_10_31083_j_fbl2707205
crossref_primary_10_3389_fimmu_2020_554725
crossref_primary_10_1093_nar_gku569
crossref_primary_10_1016_j_virol_2023_05_002
crossref_primary_10_3390_v16050749
crossref_primary_10_1016_j_molcel_2023_09_007
crossref_primary_10_1098_rsob_210277
crossref_primary_10_1189_jlb_4RI0214_090R
crossref_primary_10_3389_fcell_2022_903781
crossref_primary_10_1016_j_cca_2022_04_003
crossref_primary_10_1038_s41467_022_29266_9
crossref_primary_10_1007_s00109_016_1423_2
crossref_primary_10_1038_s41577_021_00524_z
crossref_primary_10_1016_j_jhepr_2021_100324
crossref_primary_10_34172_brb_2023_29
crossref_primary_10_1615_CritRevImmunol_2024052486
crossref_primary_10_1016_j_bcp_2020_113831
crossref_primary_10_1038_nature23890
crossref_primary_10_1016_j_celrep_2020_108053
crossref_primary_10_4049_jimmunol_2101085
crossref_primary_10_1007_s11427_024_2808_3
crossref_primary_10_1146_annurev_immunol_032414_112258
crossref_primary_10_1007_s00216_021_03628_6
crossref_primary_10_1002_cmdc_202400111
crossref_primary_10_4049_jimmunol_2000026
crossref_primary_10_1098_rsob_210030
crossref_primary_10_1073_pnas_1905013116
crossref_primary_10_2222_jsv_64_83
crossref_primary_10_1038_s41388_017_0120_0
crossref_primary_10_1038_s41586_020_2750_6
crossref_primary_10_15252_embr_201541703
crossref_primary_10_1038_s41598_024_82525_1
crossref_primary_10_1016_j_bioorg_2023_106802
crossref_primary_10_2147_CCID_S476785
crossref_primary_10_1016_j_molcel_2021_05_002
crossref_primary_10_1073_pnas_2409493121
crossref_primary_10_1126_science_aat8657
crossref_primary_10_3389_fimmu_2021_753472
crossref_primary_10_1016_j_apsb_2024_05_012
crossref_primary_10_1016_j_dci_2021_104101
crossref_primary_10_1111_imm_13592
crossref_primary_10_3389_fgene_2023_1121018
crossref_primary_10_1016_j_immuni_2020_05_013
crossref_primary_10_1016_j_intimp_2023_110523
crossref_primary_10_1016_j_cellimm_2019_04_003
crossref_primary_10_1016_j_celrep_2014_01_003
crossref_primary_10_1016_j_ceca_2020_102308
crossref_primary_10_3389_fcell_2022_796066
crossref_primary_10_1073_pnas_1603269113
crossref_primary_10_1016_j_addr_2021_04_011
crossref_primary_10_1038_srep27498
crossref_primary_10_3389_fimmu_2023_1231057
crossref_primary_10_3390_ijms22031164
crossref_primary_10_1016_j_ccell_2023_05_005
crossref_primary_10_1073_pnas_2411659122
crossref_primary_10_1021_acssensors_4c02585
crossref_primary_10_1126_science_abd0609
crossref_primary_10_3389_fphar_2022_1072670
crossref_primary_10_1007_s12272_023_01452_3
crossref_primary_10_3389_fimmu_2021_814709
crossref_primary_10_1016_j_chembiol_2021_08_006
crossref_primary_10_1016_j_mrrev_2018_11_001
crossref_primary_10_1186_s12943_024_02217_2
crossref_primary_10_1016_j_molcel_2024_04_017
crossref_primary_10_1093_nar_gkaa084
crossref_primary_10_1038_s41590_018_0262_4
crossref_primary_10_1073_pnas_1507317112
crossref_primary_10_1016_j_immuni_2019_02_009
crossref_primary_10_1007_s12250_015_3604_5
crossref_primary_10_1186_s12943_024_02186_6
crossref_primary_10_12677_AMS_2017_42009
crossref_primary_10_1093_nar_gkac079
crossref_primary_10_1111_febs_15640
crossref_primary_10_1016_j_pharmthera_2024_108653
crossref_primary_10_1016_j_molcel_2019_09_023
crossref_primary_10_1016_j_cyto_2016_10_003
crossref_primary_10_4049_jimmunol_2100075
crossref_primary_10_3389_fimmu_2024_1367875
crossref_primary_10_1146_annurev_immunol_032713_120156
crossref_primary_10_1111_cas_15913
crossref_primary_10_1016_j_sbi_2019_08_003
crossref_primary_10_3390_v16081340
crossref_primary_10_1016_j_arr_2024_102602
crossref_primary_10_1016_j_bcp_2022_115246
crossref_primary_10_1016_j_intimp_2022_109304
crossref_primary_10_1002_ange_202303010
crossref_primary_10_1038_nri3719
crossref_primary_10_1021_acsnano_4c12237
crossref_primary_10_3389_fimmu_2020_625833
crossref_primary_10_15252_embj_2021109217
crossref_primary_10_3390_cells11182812
crossref_primary_10_15252_embr_202051800
crossref_primary_10_1038_s41435_019_0080_1
crossref_primary_10_1038_s41392_021_00554_y
crossref_primary_10_3390_pathogens9040292
crossref_primary_10_1038_s41467_022_33671_5
crossref_primary_10_1080_08830185_2017_1298749
crossref_primary_10_1038_s41422_020_0346_1
crossref_primary_10_1016_j_tcb_2020_05_006
crossref_primary_10_1007_s13238_021_00839_6
crossref_primary_10_1146_annurev_biochem_061516_044813
crossref_primary_10_3389_fphar_2021_779425
crossref_primary_10_1016_j_cellin_2022_100014
crossref_primary_10_1016_j_molimm_2018_01_008
crossref_primary_10_1016_j_str_2015_01_023
crossref_primary_10_3389_fimmu_2021_753789
crossref_primary_10_3389_fonc_2021_667920
crossref_primary_10_1080_17460441_2023_2244409
crossref_primary_10_1016_j_jbc_2023_104866
crossref_primary_10_31857_S0233475524010015
crossref_primary_10_1016_j_cca_2021_11_003
crossref_primary_10_1042_EBC20220241
crossref_primary_10_3389_fimmu_2024_1470468
crossref_primary_10_4049_jimmunol_1901511
crossref_primary_10_1186_s43556_020_00006_z
crossref_primary_10_3390_ijms25052767
crossref_primary_10_2147_JIR_S465978
crossref_primary_10_15252_embr_202051345
crossref_primary_10_3390_cells11193043
crossref_primary_10_1146_annurev_biochem_040320_101629
crossref_primary_10_1002_wsbm_1597
crossref_primary_10_32604_or_2022_03529
crossref_primary_10_3389_fcimb_2024_1370414
crossref_primary_10_1002_anie_202303010
crossref_primary_10_1002_med_22016
crossref_primary_10_1093_eurheartj_ehab249
crossref_primary_10_3390_ijms22031301
crossref_primary_10_1177_2472555219880185
crossref_primary_10_1158_2159_8290_CD_19_0761
crossref_primary_10_3389_fimmu_2021_795048
crossref_primary_10_1016_j_devcel_2023_03_015
crossref_primary_10_21769_BioProtoc_3870
crossref_primary_10_1111_imcb_12555
crossref_primary_10_1016_j_it_2019_06_001
crossref_primary_10_1016_j_ymthe_2023_03_026
crossref_primary_10_1038_s41598_019_45800_0
crossref_primary_10_1016_j_fsi_2017_09_056
crossref_primary_10_1038_s41423_020_0462_3
crossref_primary_10_1042_BST20200687
crossref_primary_10_1016_j_bmcl_2024_130007
crossref_primary_10_1002_pro_3304
crossref_primary_10_1016_j_molcel_2021_01_024
crossref_primary_10_1016_j_ymthe_2024_10_027
crossref_primary_10_15252_embr_202153166
crossref_primary_10_15252_embj_2019102718
crossref_primary_10_1038_s41467_018_05168_7
crossref_primary_10_1038_s41467_024_48365_3
crossref_primary_10_1016_j_apsb_2021_05_011
crossref_primary_10_1016_j_molimm_2021_05_012
crossref_primary_10_1371_journal_pone_0120090
crossref_primary_10_3389_fphar_2024_1383000
crossref_primary_10_1089_cbr_2020_4085
crossref_primary_10_1186_s13024_025_00815_2
crossref_primary_10_15252_embj_2021108293
crossref_primary_10_3389_fimmu_2022_901913
crossref_primary_10_1002_art_40002
crossref_primary_10_1096_fj_202200138R
crossref_primary_10_4049_jimmunol_1601909
crossref_primary_10_1016_j_jmii_2020_07_010
crossref_primary_10_1007_s40242_024_4120_7
crossref_primary_10_1016_j_coi_2020_04_002
crossref_primary_10_1152_physiol_00022_2019
crossref_primary_10_1002_advs_202206820
crossref_primary_10_1016_j_molcel_2024_06_004
crossref_primary_10_1016_j_biopha_2023_114869
crossref_primary_10_1038_s41392_024_01839_8
crossref_primary_10_1126_science_aau6019
crossref_primary_10_1038_s41564_024_01684_z
crossref_primary_10_1002_eji_202048810
crossref_primary_10_1021_acs_joc_9b02666
crossref_primary_10_1038_s41467_018_02936_3
crossref_primary_10_1038_s41467_022_34858_6
crossref_primary_10_1134_S199074782307005X
crossref_primary_10_1016_j_isci_2024_111145
crossref_primary_10_1073_pnas_2205013119
crossref_primary_10_1016_j_isci_2023_106758
crossref_primary_10_1038_nature23449
crossref_primary_10_3389_fcimb_2024_1383811
crossref_primary_10_1016_j_cell_2018_06_026
crossref_primary_10_1093_pnasnexus_pgac109
crossref_primary_10_1124_pr_114_009928
crossref_primary_10_1002_adbi_202300528
crossref_primary_10_1038_s41418_020_00624_8
crossref_primary_10_1016_j_cels_2018_10_010
crossref_primary_10_1080_13543776_2024_2365409
crossref_primary_10_1038_s41564_024_01670_5
crossref_primary_10_15430_JCP_2023_28_4_143
crossref_primary_10_1016_j_nantod_2024_102455
crossref_primary_10_1074_jbc_RA120_012962
crossref_primary_10_1681_ASN_2021101286
crossref_primary_10_3389_fonc_2018_00192
crossref_primary_10_1016_j_jid_2021_05_007
crossref_primary_10_1002_cmdc_202100671
crossref_primary_10_3389_fimmu_2024_1380517
crossref_primary_10_1128_MMBR_00061_14
crossref_primary_10_1128_JVI_01720_15
crossref_primary_10_1038_mt_2016_138
crossref_primary_10_4251_wjgo_v17_i2_98556
crossref_primary_10_1016_j_immuni_2016_04_002
crossref_primary_10_1155_2021_9914854
crossref_primary_10_1007_s13238_020_00729_3
crossref_primary_10_1016_j_smim_2021_101580
crossref_primary_10_1016_j_heliyon_2024_e33093
crossref_primary_10_1038_s41401_023_01210_7
crossref_primary_10_1016_j_dci_2021_104266
crossref_primary_10_3390_v13071390
crossref_primary_10_1016_j_cellin_2021_100001
crossref_primary_10_1371_journal_pcbi_1007624
crossref_primary_10_1016_j_cpcardiol_2023_102189
crossref_primary_10_1039_D0CP04162A
crossref_primary_10_1186_s12974_022_02602_y
crossref_primary_10_1007_s13238_021_00869_0
crossref_primary_10_1016_j_dnarep_2023_103591
crossref_primary_10_1016_j_cej_2024_157554
crossref_primary_10_1016_j_virusres_2016_11_023
crossref_primary_10_1038_s41576_019_0151_1
crossref_primary_10_1038_s41467_020_14652_y
crossref_primary_10_1016_j_mib_2021_01_017
crossref_primary_10_2183_pjab_98_001
crossref_primary_10_1016_j_it_2023_04_006
crossref_primary_10_1016_j_dnarep_2024_103634
crossref_primary_10_1111_imr_12901
crossref_primary_10_1016_j_it_2017_03_004
crossref_primary_10_1080_07853890_2023_2210845
crossref_primary_10_1016_j_addr_2024_115204
crossref_primary_10_1016_j_dnarep_2023_103583
crossref_primary_10_3389_fimmu_2023_1254915
crossref_primary_10_1038_s12276_023_00965_7
crossref_primary_10_1038_s41594_022_00862_z
crossref_primary_10_1002_mco2_511
crossref_primary_10_1007_s13238_016_0320_3
crossref_primary_10_1038_s12276_020_0416_y
crossref_primary_10_1016_j_micpath_2019_05_004
Cites_doi 10.1016/S0006-3495(99)77443-6
10.1038/nsmb.2331
10.1016/S1097-2765(03)00433-7
10.1016/j.it.2011.08.004
10.1529/biophysj.106.081372
10.1016/j.molcel.2013.05.022
10.1038/nature12305
10.1038/nature08476
10.1038/nature09907
10.1073/pnas.1218528110
10.1016/j.molcel.2012.05.029
10.1073/pnas.0900850106
10.1126/scisignal.2002521
10.1038/nsmb.2333
10.1016/j.celrep.2013.05.009
10.1038/nri2690
10.1038/ni1282
10.1016/j.immuni.2012.03.019
10.1038/ni.2118
10.1038/ni921
10.1038/nature10429
10.1107/S0021889892001663
10.1111/j.1600-065X.2011.01052.x
10.1006/jmbi.1998.2439
10.1126/science.1244040
10.1038/ni.2491
10.1107/S0907444909052925
10.1016/j.coi.2010.12.015
10.1126/science.1229963
10.1016/j.immuni.2005.12.003
10.1107/S0907444910045749
10.1016/j.immuni.2009.01.008
10.1016/j.cell.2013.07.023
10.1038/35047123
10.1016/S0076-6879(97)76066-X
10.1038/nature07317
10.1126/science.1232458
10.1016/j.cell.2013.04.046
10.1016/j.cell.2013.08.014
10.1038/nature12306
10.1038/nsmb.2332
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Dec 12, 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Dec 12, 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2013.10.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts

AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 1031
ExternalDocumentID PMC3886715
3351661191
24332030
10_1016_j_immuni_2013_10_019
S1074761313005104
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI 087741
– fundername: NIAID NIH HHS
  grantid: R01 AI087741
– fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
  grantid: R01 AI087741 || AI
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
3V.
4.4
457
4G.
53G
5GY
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGGSO
AGHFR
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
.55
.GJ
29I
AALRI
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AHHHB
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c590t-7868635c36d0f08fe9fdddd965a463a331de7c23fbfd0a24c72923f8c0686f8d3
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Thu Aug 21 17:31:40 EDT 2025
Thu Jul 10 19:16:20 EDT 2025
Thu Jul 10 18:40:21 EDT 2025
Fri Jul 25 11:22:57 EDT 2025
Thu Apr 03 07:05:23 EDT 2025
Fri Jul 04 04:46:10 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Fri Feb 23 02:42:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-7868635c36d0f08fe9fdddd965a463a331de7c23fbfd0a24c72923f8c0686f8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
these authors contributed equally to the work
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1074761313005104
PMID 24332030
PQID 1540983271
PQPubID 2031079
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3886715
proquest_miscellaneous_1554955347
proquest_miscellaneous_1477565274
proquest_journals_1540983271
pubmed_primary_24332030
crossref_citationtrail_10_1016_j_immuni_2013_10_019
crossref_primary_10_1016_j_immuni_2013_10_019
elsevier_sciencedirect_doi_10_1016_j_immuni_2013_10_019
PublicationCentury 2000
PublicationDate 2013-12-12
PublicationDateYYYYMMDD 2013-12-12
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2013
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Burdette, Monroe, Sotelo-Troha, Iwig, Eckert, Hyodo, Hayakawa, Vance (bib7) 2011; 478
Civril, Deimling, de Oliveira Mann, Ablasser, Moldt, Witte, Hornung, Hopfner (bib8) 2013; 498
Hemmi, Takeuchi, Kawai, Kaisho, Sato, Sanjo, Matsumoto, Hoshino, Wagner, Takeda, Akira (bib16) 2000; 408
Li, Wu, Gao, Wang, Sun, Chen (bib24) 2013; 341
Otwinowski, Minor (bib26) 1997; 276
Fitzgerald, McWhirter, Faia, Rowe, Latz, Golenbock, Coyle, Liao, Maniatis (bib12) 2003; 4
Shang, Zhu, Li, Zhang, Zhu, Lu, Liu, Yu, Zhao, Xu, Gu (bib29) 2012; 19
Yin, Tian, Kabaleeswaran, Jiang, Tu, Eck, Chen, Wu (bib39) 2012; 46
Shu, Yi, Watts, Kao, Li (bib30) 2012; 19
Svergun (bib34) 1992; 25
Ablasser, Goldeck, Cavlar, Deimling, Witte, Röhl, Hopfner, Ludwig, Hornung (bib1) 2013; 498
Burdette, Vance (bib6) 2013; 14
Hornung, Latz (bib17) 2010; 10
Barber (bib4) 2011; 12
Sun, Wu, Du, Chen, Chen (bib33) 2013; 339
Zhong, Zhang, Lei, Li, Mao, Yang, Wang, Zhang, Shu (bib41) 2009; 30
Kato, Takahasi, Fujita (bib22) 2011; 243
Tanaka, Chen (bib36) 2012; 5
Brown, Schuck (bib5) 2006; 90
Gao, Ascano, Zillinger, Wang, Dai, Serganov, Gaffney, Shuman, Jones, Deng (bib14) 2013; 154
Sun, Li, Chen, Chen, You, Zhou, Zhou, Zhai, Chen, Jiang (bib32) 2009; 106
Ishikawa, Barber (bib20) 2008; 455
Barber (bib3) 2011; 23
Ishikawa, Ma, Barber (bib21) 2009; 461
Huang, Liu, Du, Jiang, Su (bib18) 2012; 19
Ouyang, Song, Wang, Ru, Shaw, Jiang, Niu, Zhu, Qiu, Parvatiyar (bib27) 2012; 36
Wu, Sun, Chen, Du, Shi, Chen, Chen (bib38) 2013; 339
Gao, Ascano, Wu, Barchet, Gaffney, Zillinger, Serganov, Liu, Jones, Hartmann (bib13) 2013; 153
Donovan, Dufner, Korennykh (bib11) 2013; 110
Diner, Burdette, Wilson, Monroe, Kellenberger, Hyodo, Hayakawa, Hammond, Vance (bib10) 2013; 3
Ishii, Coban, Kato, Takahashi, Torii, Takeshita, Ludwig, Sutter, Suzuki, Hemmi (bib19) 2006; 7
Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib2) 2010; 66
Lo Conte, Chothia, Janin (bib25) 1999; 285
Svergun (bib35) 1999; 76
Schoggins, Wilson, Panis, Murphy, Jones, Bieniasz, Rice (bib28) 2011; 472
Stetson, Medzhitov (bib31) 2006; 24
Danilchanka, Mekalanos (bib9) 2013; 154
Zhang, Shi, Wu, Zhang, Sun, Chen, Chen (bib40) 2013; 51
Hartmann, Justesen, Sarkar, Sen, Yee (bib15) 2003; 12
Keating, Baran, Bowie (bib23) 2011; 32
Winn, Ballard, Cowtan, Dodson, Emsley, Evans, Keegan, Krissinel, Leslie, McCoy (bib37) 2011; 67
Yin (10.1016/j.immuni.2013.10.019_bib39) 2012; 46
Sun (10.1016/j.immuni.2013.10.019_bib33) 2013; 339
Gao (10.1016/j.immuni.2013.10.019_bib13) 2013; 153
Ishikawa (10.1016/j.immuni.2013.10.019_bib20) 2008; 455
Lo Conte (10.1016/j.immuni.2013.10.019_bib25) 1999; 285
Shu (10.1016/j.immuni.2013.10.019_bib30) 2012; 19
Fitzgerald (10.1016/j.immuni.2013.10.019_bib12) 2003; 4
Stetson (10.1016/j.immuni.2013.10.019_bib31) 2006; 24
Svergun (10.1016/j.immuni.2013.10.019_bib34) 1992; 25
Li (10.1016/j.immuni.2013.10.019_bib24) 2013; 341
Burdette (10.1016/j.immuni.2013.10.019_bib7) 2011; 478
Keating (10.1016/j.immuni.2013.10.019_bib23) 2011; 32
Ishii (10.1016/j.immuni.2013.10.019_bib19) 2006; 7
Civril (10.1016/j.immuni.2013.10.019_bib8) 2013; 498
Sun (10.1016/j.immuni.2013.10.019_bib32) 2009; 106
Gao (10.1016/j.immuni.2013.10.019_bib14) 2013; 154
Ishikawa (10.1016/j.immuni.2013.10.019_bib21) 2009; 461
Wu (10.1016/j.immuni.2013.10.019_bib38) 2013; 339
Zhang (10.1016/j.immuni.2013.10.019_bib40) 2013; 51
Burdette (10.1016/j.immuni.2013.10.019_bib6) 2013; 14
Zhong (10.1016/j.immuni.2013.10.019_bib41) 2009; 30
Donovan (10.1016/j.immuni.2013.10.019_bib11) 2013; 110
Hornung (10.1016/j.immuni.2013.10.019_bib17) 2010; 10
Schoggins (10.1016/j.immuni.2013.10.019_bib28) 2011; 472
Brown (10.1016/j.immuni.2013.10.019_bib5) 2006; 90
Ablasser (10.1016/j.immuni.2013.10.019_bib1) 2013; 498
Hartmann (10.1016/j.immuni.2013.10.019_bib15) 2003; 12
Otwinowski (10.1016/j.immuni.2013.10.019_bib26) 1997; 276
Huang (10.1016/j.immuni.2013.10.019_bib18) 2012; 19
Adams (10.1016/j.immuni.2013.10.019_bib2) 2010; 66
Barber (10.1016/j.immuni.2013.10.019_bib4) 2011; 12
Diner (10.1016/j.immuni.2013.10.019_bib10) 2013; 3
Hemmi (10.1016/j.immuni.2013.10.019_bib16) 2000; 408
Winn (10.1016/j.immuni.2013.10.019_bib37) 2011; 67
Barber (10.1016/j.immuni.2013.10.019_bib3) 2011; 23
Danilchanka (10.1016/j.immuni.2013.10.019_bib9) 2013; 154
Kato (10.1016/j.immuni.2013.10.019_bib22) 2011; 243
Shang (10.1016/j.immuni.2013.10.019_bib29) 2012; 19
Tanaka (10.1016/j.immuni.2013.10.019_bib36) 2012; 5
Ouyang (10.1016/j.immuni.2013.10.019_bib27) 2012; 36
Svergun (10.1016/j.immuni.2013.10.019_bib35) 1999; 76
24332024 - Immunity. 2013 Dec 12;39(6):992-4
References_xml – volume: 51
  start-page: 226
  year: 2013
  end-page: 235
  ident: bib40
  article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING
  publication-title: Mol. Cell
– volume: 455
  start-page: 674
  year: 2008
  end-page: 678
  ident: bib20
  article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
  publication-title: Nature
– volume: 106
  start-page: 8653
  year: 2009
  end-page: 8658
  ident: bib32
  article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 1173
  year: 2003
  end-page: 1185
  ident: bib15
  article-title: Crystal structure of the 2′-specific and double-stranded RNA-activated interferon-induced antiviral protein 2′-5′-oligoadenylate synthetase
  publication-title: Mol. Cell
– volume: 472
  start-page: 481
  year: 2011
  end-page: 485
  ident: bib28
  article-title: A diverse range of gene products are effectors of the type I interferon antiviral response
  publication-title: Nature
– volume: 5
  start-page: ra20
  year: 2012
  ident: bib36
  article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
  publication-title: Sci. Signal.
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: bib2
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 339
  start-page: 826
  year: 2013
  end-page: 830
  ident: bib38
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
– volume: 285
  start-page: 2177
  year: 1999
  end-page: 2198
  ident: bib25
  article-title: The atomic structure of protein-protein recognition sites
  publication-title: J. Mol. Biol.
– volume: 4
  start-page: 491
  year: 2003
  end-page: 496
  ident: bib12
  article-title: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway
  publication-title: Nat. Immunol.
– volume: 498
  start-page: 380
  year: 2013
  end-page: 384
  ident: bib1
  article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING
  publication-title: Nature
– volume: 12
  start-page: 929
  year: 2011
  end-page: 930
  ident: bib4
  article-title: STING-dependent signaling
  publication-title: Nat. Immunol.
– volume: 46
  start-page: 735
  year: 2012
  end-page: 745
  ident: bib39
  article-title: Cyclic di-GMP sensing via the innate immune signaling protein STING
  publication-title: Mol. Cell
– volume: 24
  start-page: 93
  year: 2006
  end-page: 103
  ident: bib31
  article-title: Recognition of cytosolic DNA activates an IRF3-dependent innate immune response
  publication-title: Immunity
– volume: 154
  start-page: 748
  year: 2013
  end-page: 762
  ident: bib14
  article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA
  publication-title: Cell
– volume: 7
  start-page: 40
  year: 2006
  end-page: 48
  ident: bib19
  article-title: A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA
  publication-title: Nat. Immunol.
– volume: 461
  start-page: 788
  year: 2009
  end-page: 792
  ident: bib21
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
– volume: 3
  start-page: 1355
  year: 2013
  end-page: 1361
  ident: bib10
  article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING
  publication-title: Cell Rep
– volume: 32
  start-page: 574
  year: 2011
  end-page: 581
  ident: bib23
  article-title: Cytosolic DNA sensors regulating type I interferon induction
  publication-title: Trends Immunol.
– volume: 110
  start-page: 1652
  year: 2013
  end-page: 1657
  ident: bib11
  article-title: Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 408
  start-page: 740
  year: 2000
  end-page: 745
  ident: bib16
  article-title: A Toll-like receptor recognizes bacterial DNA
  publication-title: Nature
– volume: 36
  start-page: 1073
  year: 2012
  end-page: 1086
  ident: bib27
  article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding
  publication-title: Immunity
– volume: 23
  start-page: 10
  year: 2011
  end-page: 20
  ident: bib3
  article-title: Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses
  publication-title: Curr. Opin. Immunol.
– volume: 30
  start-page: 397
  year: 2009
  end-page: 407
  ident: bib41
  article-title: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA
  publication-title: Immunity
– volume: 243
  start-page: 91
  year: 2011
  end-page: 98
  ident: bib22
  article-title: RIG-I-like receptors: cytoplasmic sensors for non-self RNA
  publication-title: Immunol. Rev.
– volume: 19
  start-page: 722
  year: 2012
  end-page: 724
  ident: bib30
  article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system
  publication-title: Nat. Struct. Mol. Biol.
– volume: 19
  start-page: 725
  year: 2012
  end-page: 727
  ident: bib29
  article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP
  publication-title: Nat. Struct. Mol. Biol.
– volume: 339
  start-page: 786
  year: 2013
  end-page: 791
  ident: bib33
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
– volume: 153
  start-page: 1094
  year: 2013
  end-page: 1107
  ident: bib13
  article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
– volume: 14
  start-page: 19
  year: 2013
  end-page: 26
  ident: bib6
  article-title: STING and the innate immune response to nucleic acids in the cytosol
  publication-title: Nat. Immunol.
– volume: 25
  start-page: 495
  year: 1992
  end-page: 503
  ident: bib34
  article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria
  publication-title: J. Appl. Cryst.
– volume: 19
  start-page: 728
  year: 2012
  end-page: 730
  ident: bib18
  article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING
  publication-title: Nat. Struct. Mol. Biol.
– volume: 10
  start-page: 123
  year: 2010
  end-page: 130
  ident: bib17
  article-title: Intracellular DNA recognition
  publication-title: Nat. Rev. Immunol.
– volume: 276
  start-page: 307
  year: 1997
  end-page: 326
  ident: bib26
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol
– volume: 154
  start-page: 962
  year: 2013
  end-page: 970
  ident: bib9
  article-title: Cyclic dinucleotides and the innate immune response
  publication-title: Cell
– volume: 76
  start-page: 2879
  year: 1999
  end-page: 2886
  ident: bib35
  article-title: Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing
  publication-title: Biophys. J.
– volume: 498
  start-page: 332
  year: 2013
  end-page: 337
  ident: bib8
  article-title: Structural mechanism of cytosolic DNA sensing by cGAS
  publication-title: Nature
– volume: 478
  start-page: 515
  year: 2011
  end-page: 518
  ident: bib7
  article-title: STING is a direct innate immune sensor of cyclic di-GMP
  publication-title: Nature
– volume: 341
  start-page: 1390
  year: 2013
  end-page: 1394
  ident: bib24
  article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science
– volume: 90
  start-page: 4651
  year: 2006
  end-page: 4661
  ident: bib5
  article-title: Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation
  publication-title: Biophys. J.
– volume: 67
  start-page: 235
  year: 2011
  end-page: 242
  ident: bib37
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 76
  start-page: 2879
  year: 1999
  ident: 10.1016/j.immuni.2013.10.019_bib35
  article-title: Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77443-6
– volume: 19
  start-page: 722
  year: 2012
  ident: 10.1016/j.immuni.2013.10.019_bib30
  article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2331
– volume: 12
  start-page: 1173
  year: 2003
  ident: 10.1016/j.immuni.2013.10.019_bib15
  article-title: Crystal structure of the 2′-specific and double-stranded RNA-activated interferon-induced antiviral protein 2′-5′-oligoadenylate synthetase
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00433-7
– volume: 32
  start-page: 574
  year: 2011
  ident: 10.1016/j.immuni.2013.10.019_bib23
  article-title: Cytosolic DNA sensors regulating type I interferon induction
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2011.08.004
– volume: 90
  start-page: 4651
  year: 2006
  ident: 10.1016/j.immuni.2013.10.019_bib5
  article-title: Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.081372
– volume: 51
  start-page: 226
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib40
  article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.05.022
– volume: 498
  start-page: 332
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib8
  article-title: Structural mechanism of cytosolic DNA sensing by cGAS
  publication-title: Nature
  doi: 10.1038/nature12305
– volume: 461
  start-page: 788
  year: 2009
  ident: 10.1016/j.immuni.2013.10.019_bib21
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
  doi: 10.1038/nature08476
– volume: 472
  start-page: 481
  year: 2011
  ident: 10.1016/j.immuni.2013.10.019_bib28
  article-title: A diverse range of gene products are effectors of the type I interferon antiviral response
  publication-title: Nature
  doi: 10.1038/nature09907
– volume: 110
  start-page: 1652
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib11
  article-title: Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1218528110
– volume: 46
  start-page: 735
  year: 2012
  ident: 10.1016/j.immuni.2013.10.019_bib39
  article-title: Cyclic di-GMP sensing via the innate immune signaling protein STING
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.029
– volume: 106
  start-page: 8653
  year: 2009
  ident: 10.1016/j.immuni.2013.10.019_bib32
  article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0900850106
– volume: 5
  start-page: ra20
  year: 2012
  ident: 10.1016/j.immuni.2013.10.019_bib36
  article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002521
– volume: 19
  start-page: 728
  year: 2012
  ident: 10.1016/j.immuni.2013.10.019_bib18
  article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2333
– volume: 3
  start-page: 1355
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib10
  article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.05.009
– volume: 10
  start-page: 123
  year: 2010
  ident: 10.1016/j.immuni.2013.10.019_bib17
  article-title: Intracellular DNA recognition
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2690
– volume: 7
  start-page: 40
  year: 2006
  ident: 10.1016/j.immuni.2013.10.019_bib19
  article-title: A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1282
– volume: 36
  start-page: 1073
  year: 2012
  ident: 10.1016/j.immuni.2013.10.019_bib27
  article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.019
– volume: 12
  start-page: 929
  year: 2011
  ident: 10.1016/j.immuni.2013.10.019_bib4
  article-title: STING-dependent signaling
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2118
– volume: 4
  start-page: 491
  year: 2003
  ident: 10.1016/j.immuni.2013.10.019_bib12
  article-title: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway
  publication-title: Nat. Immunol.
  doi: 10.1038/ni921
– volume: 478
  start-page: 515
  year: 2011
  ident: 10.1016/j.immuni.2013.10.019_bib7
  article-title: STING is a direct innate immune sensor of cyclic di-GMP
  publication-title: Nature
  doi: 10.1038/nature10429
– volume: 25
  start-page: 495
  year: 1992
  ident: 10.1016/j.immuni.2013.10.019_bib34
  article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889892001663
– volume: 243
  start-page: 91
  year: 2011
  ident: 10.1016/j.immuni.2013.10.019_bib22
  article-title: RIG-I-like receptors: cytoplasmic sensors for non-self RNA
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01052.x
– volume: 285
  start-page: 2177
  year: 1999
  ident: 10.1016/j.immuni.2013.10.019_bib25
  article-title: The atomic structure of protein-protein recognition sites
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2439
– volume: 341
  start-page: 1390
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib24
  article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science
  doi: 10.1126/science.1244040
– volume: 14
  start-page: 19
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib6
  article-title: STING and the innate immune response to nucleic acids in the cytosol
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2491
– volume: 66
  start-page: 213
  year: 2010
  ident: 10.1016/j.immuni.2013.10.019_bib2
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909052925
– volume: 23
  start-page: 10
  year: 2011
  ident: 10.1016/j.immuni.2013.10.019_bib3
  article-title: Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2010.12.015
– volume: 339
  start-page: 826
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib38
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 24
  start-page: 93
  year: 2006
  ident: 10.1016/j.immuni.2013.10.019_bib31
  article-title: Recognition of cytosolic DNA activates an IRF3-dependent innate immune response
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.12.003
– volume: 67
  start-page: 235
  year: 2011
  ident: 10.1016/j.immuni.2013.10.019_bib37
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910045749
– volume: 30
  start-page: 397
  year: 2009
  ident: 10.1016/j.immuni.2013.10.019_bib41
  article-title: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.01.008
– volume: 154
  start-page: 748
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib14
  article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.023
– volume: 408
  start-page: 740
  year: 2000
  ident: 10.1016/j.immuni.2013.10.019_bib16
  article-title: A Toll-like receptor recognizes bacterial DNA
  publication-title: Nature
  doi: 10.1038/35047123
– volume: 276
  start-page: 307
  year: 1997
  ident: 10.1016/j.immuni.2013.10.019_bib26
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 455
  start-page: 674
  year: 2008
  ident: 10.1016/j.immuni.2013.10.019_bib20
  article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 339
  start-page: 786
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib33
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 153
  start-page: 1094
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib13
  article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 154
  start-page: 962
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib9
  article-title: Cyclic dinucleotides and the innate immune response
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.014
– volume: 498
  start-page: 380
  year: 2013
  ident: 10.1016/j.immuni.2013.10.019_bib1
  article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING
  publication-title: Nature
  doi: 10.1038/nature12306
– volume: 19
  start-page: 725
  year: 2012
  ident: 10.1016/j.immuni.2013.10.019_bib29
  article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2332
– reference: 24332024 - Immunity. 2013 Dec 12;39(6):992-4
SSID ssj0014590
Score 2.6062076
Snippet Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1019
SubjectTerms Animals
Binding Sites - genetics
Catalytic Domain
Chromatography
Deoxyribonucleic acid
DNA
DNA - metabolism
Enzymes
Humans
Kinases
Ligands
Mice
Models, Molecular
Nucleotides, Cyclic - metabolism
Nucleotidyltransferases - chemistry
Nucleotidyltransferases - genetics
Nucleotidyltransferases - metabolism
Protein Binding
Protein Structure, Quaternary
Proteins
Sperm
Studies
Transcription factors
Title Cyclic GMP-AMP Synthase Is Activated by Double-Stranded DNA-Induced Oligomerization
URI https://dx.doi.org/10.1016/j.immuni.2013.10.019
https://www.ncbi.nlm.nih.gov/pubmed/24332030
https://www.proquest.com/docview/1540983271
https://www.proquest.com/docview/1477565274
https://www.proquest.com/docview/1554955347
https://pubmed.ncbi.nlm.nih.gov/PMC3886715
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQyBeJhi_OsZkJF5Nk9iJ48esYwymjoky0bfIdhyWqUqnrXvof89dfokCYhJ9aJXkIiUX-_yl9913AO-KyCkrfMFVZCWXFr9s6CwPtceA6anUkgqcp2fJyYX8PI_nWzDpa2GIVtnF_jamN9G62zPuvDm-rqrxjKiE-BIuKCGDI4s0QYVMmyK--eGQSZCxDgbeIVr35XMNx6tqajCI4CXeE8eL9Hb-vjz9CT9_Z1H-siwdP4GdDk-yrL3kp7Dl61142HaYXO_Co2mXO38Gs8naLSrHPk7PeTY9Z7N1vbrENYx9umWZa7qc-YLZNUNMbReek24t_T3Ojs4yTh0-0Ffsy6L6saQkT1u9-Rwujj98m5zwrqUCd-iHFVdpkiLEcCIpgjJIS6_LAj86iY1MhBEiLLxykShtWQQmkg6xN26ljipJyrQQL2C7Xtb-FTCRaKdM6nRptIx8hL8mUDY1Jkmk18EIRO_J3HV649T2YpH3xLKrvPV_Tv6nvej_EfDhrOtWb-Mee9U_pHxj3OS4JNxz5n7_TPNu3t7mCCgDjUFOhSN4OxzGGUdpFFP75R3aSKUQBuPr_D9sEKXpOBZSjeBlO0yG24lIMg5jK176xgAaDEjxe_NIXV02yt8iJTnCeO-_b_o1PKYt4uOE0T5sr27u_BtEVSt7AA-y06_fTw-a6fMTi94h7Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIT5eJhgMygYYiVfTJHbi-LF0jBaWMqmb1LcodhwWVKUT6x7633OXL62AmEQeEiU-S8nFPv-S-90dwPs8sMoIl3MVGMmlwZ3xreG-dmgwHYVaUoBzMosmF_LLIlzswLiLhSFaZWv7G5teW-v2yrDV5vCqLIdzohLiR7gghwyOLHkP7iMaUFS_Ybr42LsSZKi9nniI4l38XE3yKusgDGJ4iQ9E8qKEO39fn_7En7_TKG-tSydPYK8FlGzU3PNT2HHVPjxoSkxu9uFh0jrPn8F8vLHL0rLPyRkfJWdsvqnWl7iIsek1G9m6zJnLmdkwBNVm6TglrqX_4-x4NuJU4gOVxb4ty-8r8vI04ZvP4eLk0_l4wtuaCtyiHtZcxVGMGMOKKPcKLy6cLnLcdBRmMhKZEH7ulA1EYYrcywJpEXzjWWwplKSIc3EAu9Wqci-BiUhblcVWF5mWgQvwmHnKxFkWRdJpbwCi02Rq24TjVPdimXbMsh9po_-U9E9XUf8D4H2vqybhxh3yqntJ6dbASXFNuKPnUfdO03biXqeIKD2NVk75A3jXN-OUIz9KVrnVDcpIpRAH4_f8P2QQpukwFFIN4EUzTPrHCShnHBpXvPWtAdQLUMrv7ZaqvKxTf4uY8hGGr_77od_Co8l5cpqeTmdfD-ExtRA5xw-OYHf988a9Roi1Nm_qKfQL-UIjaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+GMP-AMP+synthase+is+activated+by+double-stranded+DNA-induced+oligomerization&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Li%2C+Xin&rft.au=Shu%2C+Chang&rft.au=Yi%2C+Guanghui&rft.au=Chaton%2C+Catherine+T&rft.date=2013-12-12&rft.eissn=1097-4180&rft.volume=39&rft.issue=6&rft.spage=1019&rft_id=info:doi/10.1016%2Fj.immuni.2013.10.019&rft_id=info%3Apmid%2F24332030&rft.externalDocID=24332030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon