NetCTLpan: pan-specific MHC class I pathway epitope predictions
Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates pred...
Saved in:
Published in | Immunogenetics (New York) Vol. 62; no. 6; pp. 357 - 368 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Berlin/Heidelberg : Springer-Verlag
01.06.2010
Springer-Verlag Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/. |
---|---|
AbstractList | Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/. Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/.[PUBLICATION ABSTRACT] Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/.Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/. Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan . The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL . The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/ . |
Author | Larsen, Mette Voldby Stranzl, Thomas Nielsen, Morten Lundegaard, Claus |
Author_xml | – sequence: 1 fullname: Stranzl, Thomas – sequence: 2 fullname: Larsen, Mette Voldby – sequence: 3 fullname: Lundegaard, Claus – sequence: 4 fullname: Nielsen, Morten |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20379710$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFH8AFol44mc7Yjp1woEKrQistcKA9W47jbF1l42BnQf339Sot0B7KxT7M955m3jsge0MYHCGvEd4jgDpOAKxECggUhEAqnpEFCs4oMsQ9sgCoOVUKcZ8cpHQNgGXN5Auyz4CrWiEsyMk3Ny0vVqMZPhT5oWl01nfeFl_PloXtTUrFeR5MV7_NTeFGP4XRFWN0rbeTD0N6SZ53pk_u1d1_SC4_n14sz-jq-5fz5acVtWUNE5WVLGsJDDrWKG4BeCtYIyQ61nW8kaoSXLWmcqyqQbSsabhqKoeAindlZ_gh-Tj7jttm41rrhimaXo_Rb0y80cF4_XAy-Cu9Dr80q1QpZJ0N3t0ZxPBz69KkNz5Z1_dmcGGbtBIsBwIV_J_kHGqQYkcePSKvwzYOOQfN822Ss5Jn6M2_m_9Z-b6DDKgZsDGkFF2nrZ_MLt18iO81gt61ree2dW5b79rWIivxkfLe_CkNmzUps8Paxb87PyV6O4s6E7RZR5_05Q8GyAErUYGQ_Ba9ecIe |
CitedBy_id | crossref_primary_10_1111_imm_12160 crossref_primary_10_1186_s13073_019_0679_x crossref_primary_10_3389_fimmu_2022_812393 crossref_primary_10_3389_fimmu_2023_1208041 crossref_primary_10_1007_s00251_022_01282_5 crossref_primary_10_1016_j_vaccine_2024_126178 crossref_primary_10_1096_fj_202101538RR crossref_primary_10_1016_j_meegid_2021_104982 crossref_primary_10_1128_JVI_02500_14 crossref_primary_10_1371_journal_pone_0071888 crossref_primary_10_1016_j_cels_2022_12_002 crossref_primary_10_1371_journal_pone_0286358 crossref_primary_10_1016_j_molimm_2012_03_006 crossref_primary_10_1177_11779322241289936 crossref_primary_10_3389_fgene_2019_01141 crossref_primary_10_3389_fimmu_2020_565730 crossref_primary_10_3390_vaccines11071129 crossref_primary_10_1007_s12033_025_01398_5 crossref_primary_10_1158_2159_8290_CD_24_0168 crossref_primary_10_3389_fimmu_2022_884433 crossref_primary_10_1371_journal_pone_0313835 crossref_primary_10_1007_s00251_014_0779_0 crossref_primary_10_1080_07391102_2021_1947381 crossref_primary_10_1158_2326_6066_CIR_18_0129 crossref_primary_10_2174_2210298102666220224115100 crossref_primary_10_1016_j_jtho_2015_11_006 crossref_primary_10_1080_07391102_2022_2118170 crossref_primary_10_1038_s41598_021_83949_9 crossref_primary_10_7554_eLife_00631 crossref_primary_10_2482_haigan_58_331 crossref_primary_10_1007_s00251_010_0493_5 crossref_primary_10_36233_0507_4088_2020_65_2_103_112 crossref_primary_10_1007_s12033_021_00303_0 crossref_primary_10_1089_vim_2020_0306 crossref_primary_10_1093_bib_bbw025 crossref_primary_10_1002_pep2_24046 crossref_primary_10_1089_cmb_2021_0464 crossref_primary_10_1007_s00262_012_1354_x crossref_primary_10_3390_curroncol29050239 crossref_primary_10_3389_fimmu_2022_858057 crossref_primary_10_1016_j_xcrm_2021_100194 crossref_primary_10_1021_acscentsci_3c01544 crossref_primary_10_3390_vaccines11020203 crossref_primary_10_3389_fimmu_2019_01625 crossref_primary_10_3389_fonc_2022_836821 crossref_primary_10_1007_s42485_024_00164_6 crossref_primary_10_1186_s13073_015_0245_0 crossref_primary_10_1158_1078_0432_CCR_17_1012 crossref_primary_10_1016_j_actatropica_2021_106013 crossref_primary_10_1007_s00262_023_03413_7 crossref_primary_10_1093_femsre_fuv031 crossref_primary_10_1016_j_vaccine_2020_10_016 crossref_primary_10_1016_j_addr_2021_01_007 crossref_primary_10_1093_database_baad041 crossref_primary_10_1038_s43018_019_0008_8 crossref_primary_10_1016_j_vaccine_2024_04_098 crossref_primary_10_1016_j_vetvac_2023_100027 crossref_primary_10_1016_j_molstruc_2022_132524 crossref_primary_10_1186_s12916_024_03625_3 crossref_primary_10_1371_journal_pone_0201429 crossref_primary_10_3390_v14112328 crossref_primary_10_1016_j_biotechadv_2011_06_020 crossref_primary_10_1093_database_bay111 crossref_primary_10_1016_j_biotechadv_2024_108437 crossref_primary_10_1007_s00251_017_1047_x crossref_primary_10_1007_s00251_017_1023_5 crossref_primary_10_1038_s41598_022_14427_z crossref_primary_10_1016_j_compbiomed_2021_104563 crossref_primary_10_1155_2013_263952 crossref_primary_10_1016_j_vaccine_2014_04_039 crossref_primary_10_1016_j_micpath_2021_105150 crossref_primary_10_4161_hv_29767 crossref_primary_10_1038_s42256_022_00459_7 crossref_primary_10_1093_bib_bbaf012 crossref_primary_10_2174_1568026623666221019110334 crossref_primary_10_4236_cmb_2022_121004 crossref_primary_10_1016_j_intimp_2023_111351 crossref_primary_10_3389_fimmu_2020_02193 crossref_primary_10_1016_j_biopha_2023_115827 crossref_primary_10_1002_jmv_29630 crossref_primary_10_1016_j_meegid_2022_105236 crossref_primary_10_3390_vaccines12030324 crossref_primary_10_1080_21645515_2021_1974288 crossref_primary_10_1016_j_phrs_2024_107209 crossref_primary_10_1080_07391102_2014_967300 crossref_primary_10_1007_s10989_022_10467_1 crossref_primary_10_1158_2159_8290_CD_16_0828 crossref_primary_10_1371_journal_pone_0302684 crossref_primary_10_3389_fimmu_2023_1100188 crossref_primary_10_1111_pim_12359 crossref_primary_10_1007_s12033_023_00867_z crossref_primary_10_1016_j_cellimm_2018_04_015 crossref_primary_10_3390_cancers12061660 crossref_primary_10_3390_ijms231911624 crossref_primary_10_1038_s41541_020_00224_0 crossref_primary_10_1038_s41598_022_12651_1 crossref_primary_10_1093_bib_bbz051 crossref_primary_10_1146_annurev_immunol_042617_053035 crossref_primary_10_3389_fimmu_2023_1301100 crossref_primary_10_1172_JCI86175 crossref_primary_10_37349_ei_2023_00091 crossref_primary_10_3389_fimmu_2019_00827 crossref_primary_10_18632_aging_203053 crossref_primary_10_2217_imt_2016_0146 crossref_primary_10_3389_fmolb_2024_1442158 crossref_primary_10_1016_j_molimm_2019_04_030 crossref_primary_10_1007_s00253_022_12033_7 crossref_primary_10_1136_jitc_2020_001111 crossref_primary_10_1371_journal_pone_0306111 crossref_primary_10_1042_BSR20202349 crossref_primary_10_1080_08830185_2024_2374546 crossref_primary_10_3389_fmicb_2020_01858 crossref_primary_10_1111_tan_12292 crossref_primary_10_1186_s12865_015_0119_7 crossref_primary_10_1586_erv_11_160 crossref_primary_10_4049_jimmunol_1600582 crossref_primary_10_4167_jbv_2022_52_4_170 crossref_primary_10_2174_1874613601206010274 crossref_primary_10_1016_j_vetimm_2025_110881 crossref_primary_10_1111_imm_12585 crossref_primary_10_3390_v9050112 crossref_primary_10_1096_fj_202400757RR crossref_primary_10_1586_14760584_2014_861748 crossref_primary_10_3389_fimmu_2024_1342335 crossref_primary_10_1016_j_jtbi_2015_04_026 crossref_primary_10_1371_journal_pone_0310703 crossref_primary_10_3390_pathogens11020146 crossref_primary_10_1080_1040841X_2021_1979934 crossref_primary_10_3389_fmed_2021_825876 crossref_primary_10_1186_s12859_020_03869_9 crossref_primary_10_1016_j_virusres_2014_08_005 crossref_primary_10_1016_j_trsl_2018_05_001 crossref_primary_10_3390_biom14101217 crossref_primary_10_1136_jitc_2024_010569 crossref_primary_10_1016_j_ijbiomac_2024_129259 crossref_primary_10_1016_j_xcrm_2021_100312 crossref_primary_10_1093_bib_bbad150 crossref_primary_10_1016_j_micpath_2020_104398 crossref_primary_10_1080_07391102_2023_2219324 crossref_primary_10_3389_fimmu_2024_1463931 crossref_primary_10_1371_journal_pone_0084443 crossref_primary_10_3390_vaccines10030462 crossref_primary_10_1007_s00253_021_11609_z crossref_primary_10_1016_j_cels_2020_06_010 crossref_primary_10_1016_j_meegid_2020_104189 crossref_primary_10_1186_s40364_023_00478_5 crossref_primary_10_1016_j_mam_2023_101204 crossref_primary_10_1080_07391102_2021_1883111 crossref_primary_10_1186_s12943_023_01844_5 crossref_primary_10_4049_jimmunol_2100700 crossref_primary_10_1111_tan_12199 crossref_primary_10_1016_j_heliyon_2024_e34721 crossref_primary_10_3390_biology11010005 crossref_primary_10_1016_j_addr_2021_02_004 crossref_primary_10_1089_aid_2013_0299 crossref_primary_10_1093_nar_gks438 crossref_primary_10_4049_jimmunol_1103434 crossref_primary_10_1038_s42256_023_00694_6 crossref_primary_10_1038_s41598_023_51005_3 crossref_primary_10_3390_microorganisms7080226 crossref_primary_10_1016_j_ijid_2022_12_016 crossref_primary_10_3390_antib11040068 crossref_primary_10_1038_nbt_4313 crossref_primary_10_1371_journal_pcbi_1003748 crossref_primary_10_1002_eji_202350683 crossref_primary_10_1016_j_humimm_2014_02_012 crossref_primary_10_1186_s12859_017_1667_z crossref_primary_10_3390_bioengineering11040322 crossref_primary_10_1371_journal_pone_0162808 crossref_primary_10_1016_j_procbio_2022_08_014 crossref_primary_10_1016_j_jbi_2014_11_003 crossref_primary_10_1007_s10989_018_9780_z crossref_primary_10_14202_IJOH_2024_216_229 crossref_primary_10_1016_j_compbiomed_2021_105122 crossref_primary_10_1146_annurev_immunol_082119_124838 crossref_primary_10_1186_s12864_017_4328_8 crossref_primary_10_1016_j_xcrm_2021_100221 crossref_primary_10_1186_s40164_018_0120_y crossref_primary_10_3390_molecules27072375 crossref_primary_10_1038_s42003_021_02007_2 crossref_primary_10_3390_ijms23052594 crossref_primary_10_1371_journal_pone_0307877 crossref_primary_10_1146_annurev_chembioeng_101420_125021 crossref_primary_10_1038_s41573_021_00387_y crossref_primary_10_4049_jimmunol_1700744 crossref_primary_10_7717_peerj_11126 crossref_primary_10_1186_s13045_019_0787_5 crossref_primary_10_52711_0974_360X_2024_00003 crossref_primary_10_1038_s41587_024_02420_y crossref_primary_10_1097_CAD_0000000000001565 crossref_primary_10_1186_1471_2105_13_235 crossref_primary_10_1007_s00251_016_0911_4 crossref_primary_10_3389_fimmu_2017_00278 crossref_primary_10_1038_nrg_2016_67 crossref_primary_10_1016_j_heliyon_2024_e35129 crossref_primary_10_1016_j_drudis_2020_03_006 crossref_primary_10_1093_nar_gkae407 crossref_primary_10_3390_vaccines9121459 crossref_primary_10_1016_j_gde_2014_12_003 crossref_primary_10_3389_fimmu_2020_00607 crossref_primary_10_1007_s00251_011_0555_3 crossref_primary_10_1177_11769343221108218 crossref_primary_10_1155_2010_218590 crossref_primary_10_1186_1471_2172_13_67 crossref_primary_10_1038_s41598_019_51063_6 crossref_primary_10_1371_journal_pcbi_1012511 crossref_primary_10_1111_1348_0421_12870 crossref_primary_10_1016_j_compbiomed_2022_105462 crossref_primary_10_1016_j_compbiomed_2023_107247 crossref_primary_10_1186_s13073_020_00729_2 crossref_primary_10_1371_journal_pone_0015877 crossref_primary_10_1080_20477724_2022_2072456 crossref_primary_10_1111_tbed_13293 crossref_primary_10_1111_hiv_12316 crossref_primary_10_1080_07391102_2023_2184171 crossref_primary_10_3390_diagnostics11111990 crossref_primary_10_1186_s43141_021_00160_z crossref_primary_10_1093_bib_bbr060 crossref_primary_10_1016_j_autrev_2021_102791 crossref_primary_10_3389_fimmu_2024_1425603 crossref_primary_10_1016_j_micpath_2022_105793 crossref_primary_10_1007_s10989_022_10402_4 crossref_primary_10_1111_imcb_12482 crossref_primary_10_1126_sciadv_abb8097 crossref_primary_10_1016_j_ccell_2024_05_005 crossref_primary_10_1016_j_semcancer_2023_02_007 crossref_primary_10_1186_1743_422X_9_111 crossref_primary_10_1016_j_meegid_2013_04_037 crossref_primary_10_1098_rsos_201141 crossref_primary_10_1016_j_cellimm_2016_12_008 crossref_primary_10_1186_s12929_018_0433_5 crossref_primary_10_1038_s41598_019_41496_4 crossref_primary_10_1016_j_cyto_2020_155031 crossref_primary_10_1111_iji_12214 crossref_primary_10_1186_s40164_024_00504_8 crossref_primary_10_2174_1386207323666200427114343 crossref_primary_10_1080_07391102_2020_1850357 crossref_primary_10_1186_s12864_019_6311_z crossref_primary_10_3390_ijms251910520 crossref_primary_10_1007_s00251_011_0579_8 crossref_primary_10_1007_s10989_021_10159_2 crossref_primary_10_1016_j_it_2018_09_004 crossref_primary_10_1136_jitc_2023_007490 crossref_primary_10_1093_bib_bbaa415 crossref_primary_10_3389_fimmu_2024_1478201 crossref_primary_10_1016_j_imu_2022_101080 crossref_primary_10_1080_07391102_2021_2015443 crossref_primary_10_1093_annonc_mdy022 crossref_primary_10_3389_fgene_2014_00174 crossref_primary_10_1039_C3TB21549K crossref_primary_10_1186_s40364_023_00449_w crossref_primary_10_1111_imcb_12019 crossref_primary_10_1556_amicr_61_2014_3_4 crossref_primary_10_1016_j_molmed_2019_08_001 crossref_primary_10_1016_j_patter_2024_100994 crossref_primary_10_3389_fimmu_2018_01795 crossref_primary_10_1371_journal_pone_0012697 crossref_primary_10_4103_RPS_RPS_91_23 |
Cites_doi | 10.1007/s00705-008-0194-7 10.1093/nar/gkn664 10.1093/bioinformatics/btn579 10.1006/jmbi.1999.3392 10.1007/s00251-005-0781-7 10.1186/1471-2105-8-424 10.1038/9858 10.1007/s00018-005-4528-2 10.1016/S1074-7613(00)80099-0 10.1186/1471-2172-9-1 10.1016/1074-7613(94)90091-4 10.1371/journal.pcbi.1000327 10.1110/ps.051352405 10.1007/s00251-004-0647-4 10.1007/s002510050595 10.1126/science.1546329 10.1093/bioinformatics/btn128 10.1002/(SICI)1521-4141(199812)28:12<4029::AID-IMMU4029>3.0.CO;2-N 10.1007/s00251-008-0341-z 10.1146/annurev.immunol.17.1.51 10.1371/journal.pone.0007448 10.1074/jbc.M312816200 10.1016/j.vaccine.2006.12.038 10.1371/journal.pone.0000796 10.1073/pnas.94.20.10850 10.1002/eji.200425811 10.1186/1471-2105-7-131 10.4049/jimmunol.176.4.2249 10.4049/jimmunol.163.11.5851 10.4049/jimmunol.182.3.1526 10.3233/ISB-00010 10.4049/jimmunol.180.7.5092 10.4049/jimmunol.156.10.3755 10.4049/jimmunol.151.7.3407 10.4049/jimmunol.180.5.3210 10.4049/jimmunol.169.8.4161 10.7551/mitpress/3679.001.0001 10.1007/BF03401948 10.4049/jimmunol.171.4.1741 |
ContentType | Journal Article |
Copyright | The Author(s) 2010 Springer-Verlag 2010 |
Copyright_xml | – notice: The Author(s) 2010 – notice: Springer-Verlag 2010 |
DBID | FBQ C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T5 7T7 7TK 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 7S9 L.6 5PM |
DOI | 10.1007/s00251-010-0441-4 |
DatabaseName | AGRIS Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 5 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1432-1211 |
EndPage | 368 |
ExternalDocumentID | PMC2875469 2043334901 20379710 10_1007_s00251_010_0441_4 US201301848046 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .55 .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANXM AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABELW ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOAH ADOXG ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AEQTP AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOSHJ ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 X7M YLTOR Z45 Z7U Z82 Z87 Z8O Z8V Z91 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AACDK AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS C6C H13 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7T5 7T7 7TK 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c590t-686596020f2b73c003d42b461e2ff3b678437da8e28904d2bb37b8e10173f5fa3 |
IEDL.DBID | U2A |
ISSN | 0093-7711 1432-1211 |
IngestDate | Thu Aug 21 13:11:35 EDT 2025 Fri Jul 11 04:02:12 EDT 2025 Fri Jul 11 04:17:12 EDT 2025 Fri Jul 25 19:15:14 EDT 2025 Mon Jul 21 06:07:06 EDT 2025 Tue Aug 05 12:00:11 EDT 2025 Thu Apr 24 22:51:58 EDT 2025 Fri Feb 21 02:37:23 EST 2025 Wed Dec 27 19:19:55 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | MHC polymorphism Pan-specific prediction HLA CTL epitope MHC class I pathway |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-686596020f2b73c003d42b461e2ff3b678437da8e28904d2bb37b8e10173f5fa3 |
Notes | http://dx.doi.org/10.1007/s00251-010-0441-4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s00251-010-0441-4 |
PMID | 20379710 |
PQID | 346163253 |
PQPubID | 54024 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2875469 proquest_miscellaneous_742710080 proquest_miscellaneous_733090640 proquest_journals_346163253 pubmed_primary_20379710 crossref_citationtrail_10_1007_s00251_010_0441_4 crossref_primary_10_1007_s00251_010_0441_4 springer_journals_10_1007_s00251_010_0441_4 fao_agris_US201301848046 |
PublicationCentury | 2000 |
PublicationDate | 2010-06-01 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: New York |
PublicationTitle | Immunogenetics (New York) |
PublicationTitleAbbrev | Immunogenetics |
PublicationTitleAlternate | Immunogenetics |
PublicationYear | 2010 |
Publisher | Berlin/Heidelberg : Springer-Verlag Springer-Verlag Springer Nature B.V |
Publisher_xml | – name: Berlin/Heidelberg : Springer-Verlag – name: Springer-Verlag – name: Springer Nature B.V |
References | Peters, Bulik, Tampe, Van Endert, Holzhütter (CR24) 2003; 171 Juncker, Larsen, Weinhold, Nielsen, Brunak, Lund (CR10) 2009; 4 Hoof, Peters, Sidney, Pedersen, Sette, Lund, Buus, Nielsen (CR9) 2009; 61 MacNamara, Kadolsky, Bangham, Asquith (CR18) 2009; 5 Schatz, Peters, Akkad, Ullrich, Martinez, Carroll, Bulik, Rammensee, van Endert, Holzhütter, Tenzer, Schild (CR28) 2008; 180 Smith, Lutz (CR30) 1996; 156 Larsen, Lundegaard, Lamberth, Buus, Lund, Nielsen (CR13) 2007; 8 CR16 Doytchinova, Guan, Flower (CR5) 2006; 7 Ritz, Seliger (CR27) 2001; 7 Wang, Lamberth, Harndahl, Røder, Stryhn, Larsen, Nielsen, Lundegaard, Tang, Dziegiel, Rosenkvist, Pedersen, Buus, Claesson, Lund (CR36) 2007; 25 Altuvia, Margalit (CR1) 2000; 295 Zhang, Lundegaard, Nielsen (CR40) 2009; 25 Sturniolo, Bono, Ding, Raddrizzani, Tuereci, Sahin, Braxenthaler, Gallazzi, Protti, Sinigaglia, Hammer (CR32) 1999; 17 Lévy, Burri, Morel, Peitrequin, Lévy, Bachi, Hellman, Van Den Eynde, Servis (CR14) 2002; 169 Sidney, Peters, Frahm, Brander, Sette (CR29) 2008; 9 Larsen, Lundegaard, Lamberth, Buus, Brunak, Lund, Nielsen (CR12) 2005; 35 Lund, Nielsen, Kesmir, Petersen, Lundegaard, Worning, Sylvester-Hvid, Lamberth, Røder, Justesen, Buus, Brunak (CR15) 2004; 55 Tang, Wang, Lamberth, Harndahl, Dziegiel, Claesson, Buus, Lund (CR33) 2008; 153 Lundegaard, Lund, Nielsen (CR17) 2008; 24 Tenzer, Peters, Bulik, Schoor, Lemmel, Schatz, Kloetzel, Rammensee, Schild, Holzhütter (CR34) 2005; 62 Paz, Brouwenstijn, Perry, Shastri (CR22) 1999; 11 Rammensee, Bachmann, Emmerich, Bachor, Stevanović (CR25) 1999; 50 Mo, Cascio, Lemerise, Goldberg, Rock (CR19) 1999; 163 Pérez, Larsen, Gustafsson, Norström, Atlas, Nixon, Nielsen, Lund, Karlsson (CR23) 2008; 180 Dönnes, Kohlbacher (CR6) 2005; 14 van Endert, Tampé, Meyer, Tisch, Bach, McDevitt (CR39) 1994; 1 Anderson, Alexander, Wei, Cresswell (CR2) 1993; 151 Henderson, Michel, Sakaguchi, Shabanowitz, Appella, Hunt, Engelhard (CR8) 1992; 255 Koch, Guntrum, Heintke, Kyritsis, Tampé (CR11) 2004; 279 (CR35) 2009; 37 Nielsen, Lundegaard, Blicher, Lamberth, Harndahl, Justesen, Røder, Peters, Sette, Lund, Buus (CR21) 2007; 2 Rao, Costa, van Baarle, Kesmir (CR26) 2009; 182 Stoltze, Dick, Deeg, Pömmerl, Rammensee, Schild (CR31) 1998; 28 Brusic, van Endert, Zeleznikow, Daniel, Hammer, Petrovsky (CR3) 1999; 1 Wherry, Golovina, Morrison, Sinnathamby, McElhaugh, Shockey, Eisenlohr (CR37) 2006; 61 Nielsen, Lundegaard, Lund, Keşmir (CR20) 2005; 57 Hakenberg, Nussbaum, Schild, Rammensee, Kuttler, Holzhütter, Kloetzel, Kaufmann, Mollenkopf (CR7) 2003; 2 Yewdell, Bennink (CR38) 1999; 17 Craiu, Akopian, Goldberg, Rock (CR4) 1997; 94 M Nielsen (441_CR20) 2005; 57 XY Mo (441_CR19) 1999; 163 MV Larsen (441_CR13) 2007; 8 P Paz (441_CR22) 1999; 11 CL Pérez (441_CR23) 2008; 180 JW Yewdell (441_CR38) 1999; 17 KS Anderson (441_CR2) 1993; 151 J Sidney (441_CR29) 2008; 9 O Lund (441_CR15) 2004; 55 Uniprot consortium (441_CR35) 2009; 37 V Brusic (441_CR3) 1999; 1 J Hakenberg (441_CR7) 2003; 2 I Doytchinova (441_CR5) 2006; 7 M Wang (441_CR36) 2007; 25 H Zhang (441_CR40) 2009; 25 PM Endert van (441_CR39) 1994; 1 441_CR16 L Stoltze (441_CR31) 1998; 28 P Dönnes (441_CR6) 2005; 14 U Ritz (441_CR27) 2001; 7 ST Tang (441_CR33) 2008; 153 KD Smith (441_CR30) 1996; 156 A MacNamara (441_CR18) 2009; 5 B Peters (441_CR24) 2003; 171 I Hoof (441_CR9) 2009; 61 MV Larsen (441_CR12) 2005; 35 J Koch (441_CR11) 2004; 279 M Nielsen (441_CR21) 2007; 2 S Tenzer (441_CR34) 2005; 62 Y Altuvia (441_CR1) 2000; 295 RA Henderson (441_CR8) 1992; 255 F Lévy (441_CR14) 2002; 169 EJ Wherry (441_CR37) 2006; 61 MM Schatz (441_CR28) 2008; 180 A Craiu (441_CR4) 1997; 94 C Lundegaard (441_CR17) 2008; 24 H Rammensee (441_CR25) 1999; 50 X Rao (441_CR26) 2009; 182 AS Juncker (441_CR10) 2009; 4 T Sturniolo (441_CR32) 1999; 17 |
References_xml | – volume: 2 start-page: 155 year: 2003 end-page: 158 ident: CR7 article-title: MAPPP: MHC class I antigenic peptide processing prediction publication-title: Appl Bioinformatics – volume: 171 start-page: 1741 year: 2003 end-page: 1749 ident: CR24 article-title: Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors publication-title: J Immunol – volume: 180 start-page: 3210 year: 2008 end-page: 3217 ident: CR28 article-title: Characterizing the N-terminal processing motif of MHC class I ligands publication-title: J Immunol – volume: 153 start-page: 1833 year: 2008 end-page: 1844 ident: CR33 article-title: MHC-I-restricted epitopes conserved among variola and other related orthopoxviruses are recognized by T cells 30 years after vaccination publication-title: Arch Virol doi: 10.1007/s00705-008-0194-7 – volume: 37 start-page: 169 year: 2009 end-page: 174 ident: CR35 article-title: The universal protein resource (UniProt) 2009 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn664 – volume: 25 start-page: 83 year: 2009 end-page: 89 ident: CR40 article-title: Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn579 – volume: 295 start-page: 879 year: 2000 end-page: 890 ident: CR1 article-title: Sequence signals for generation of antigenic peptides by the proteasome: implications for proteasomal cleavage mechanism publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3392 – volume: 57 start-page: 33 year: 2005 end-page: 41 ident: CR20 article-title: The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage publication-title: Immunogenetics doi: 10.1007/s00251-005-0781-7 – volume: 8 start-page: 424 year: 2007 ident: CR13 article-title: Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-424 – volume: 17 start-page: 555 year: 1999 end-page: 561 ident: CR32 article-title: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices publication-title: Nat Biotechnol doi: 10.1038/9858 – ident: CR16 – volume: 62 start-page: 1025 year: 2005 end-page: 1037 ident: CR34 article-title: Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding publication-title: Cell Mol Life Sci: CMLS doi: 10.1007/s00018-005-4528-2 – volume: 1 start-page: 109 year: 1999 end-page: 121 ident: CR3 article-title: A neural network model approach to the study of human TAP transporter publication-title: In Silico Biol – volume: 11 start-page: 241 year: 1999 end-page: 251 ident: CR22 article-title: Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER publication-title: Immunity doi: 10.1016/S1074-7613(00)80099-0 – volume: 9 start-page: 1 year: 2008 ident: CR29 article-title: HLA class I supertypes: a revised and updated classification publication-title: BMC Immunology doi: 10.1186/1471-2172-9-1 – volume: 61 start-page: 2249 year: 2006 ident: CR37 article-title: Re-evaluating the generation of a “proteasome-independent” MHC class I-restricted CD8 T cell epitope publication-title: J Immunol – volume: 1 start-page: 491 year: 1994 end-page: 500 ident: CR39 article-title: A sequential model for peptide binding and transport by the transporters associated with antigen processing publication-title: Immunity doi: 10.1016/1074-7613(94)90091-4 – volume: 5 start-page: e1000327 year: 2009 ident: CR18 article-title: T-cell epitope prediction: rescaling can mask biological variation between MHC molecules publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000327 – volume: 14 start-page: 2132 year: 2005 end-page: 2140 ident: CR6 article-title: Integrated modeling of the major events in the MHC class I antigen processing pathway publication-title: Protein Sci doi: 10.1110/ps.051352405 – volume: 55 start-page: 797 year: 2004 end-page: 810 ident: CR15 article-title: Definition of supertypes for HLA molecules using clustering of specificity matrices publication-title: Immunogenetics doi: 10.1007/s00251-004-0647-4 – volume: 151 start-page: 3407 year: 1993 end-page: 3419 ident: CR2 article-title: Intracellular transport of class I MHC molecules in antigen processing mutant cell lines publication-title: J Immunol – volume: 50 start-page: 213 year: 1999 end-page: 219 ident: CR25 article-title: SYFPEITHI: database for MHC ligands and peptide motifs publication-title: Immunogenetics doi: 10.1007/s002510050595 – volume: 255 start-page: 1264 year: 1992 end-page: 1266 ident: CR8 article-title: HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation publication-title: Science doi: 10.1126/science.1546329 – volume: 24 start-page: 1397 year: 2008 end-page: 1398 ident: CR17 article-title: Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn128 – volume: 163 start-page: 5851 year: 1999 end-page: 5859 ident: CR19 article-title: Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides publication-title: J Immunol – volume: 28 start-page: 4029 year: 1998 end-page: 4036 ident: CR31 article-title: Generation of the vesicular stomatitis virus nucleoprotein cytotoxic T lymphocyte epitope requires proteasome-dependent and -independent proteolytic activities publication-title: Eur J Immunol doi: 10.1002/(SICI)1521-4141(199812)28:12<4029::AID-IMMU4029>3.0.CO;2-N – volume: 156 start-page: 3755 year: 1996 end-page: 3764 ident: CR30 article-title: Peptide-dependent expression of HLA-B7 on antigen processing-deficient T2 cells publication-title: J Immunol – volume: 61 start-page: 1 year: 2009 end-page: 13 ident: CR9 article-title: NetMHCpan, a method for MHC class I binding prediction beyond humans publication-title: Immunogenetics doi: 10.1007/s00251-008-0341-z – volume: 17 start-page: 51 year: 1999 end-page: 88 ident: CR38 article-title: Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.17.1.51 – volume: 4 start-page: e7448 year: 2009 ident: CR10 article-title: Systematic characterisation of cellular localisation and expression profiles of proteins containing MHC ligands publication-title: PLoS ONE doi: 10.1371/journal.pone.0007448 – volume: 180 start-page: 5092 year: 2008 end-page: 5100 ident: CR23 article-title: Broadly immunogenic HLA class I supertype-restricted elite CTL epitopes recognized in a diverse population infected with different HIV-1 subtypes publication-title: J Immunol – volume: 279 start-page: 10142 year: 2004 end-page: 10147 ident: CR11 article-title: Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP) publication-title: J Biol Chem doi: 10.1074/jbc.M312816200 – volume: 7 start-page: 149 year: 2001 end-page: 158 ident: CR27 article-title: The transporter associated with antigen processing (TAP): structural integrity, expression, function, and its clinical relevance publication-title: Mol Med – volume: 25 start-page: 2823 year: 2007 end-page: 2831 ident: CR36 article-title: CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening publication-title: Vaccine doi: 10.1016/j.vaccine.2006.12.038 – volume: 2 start-page: e796 year: 2007 ident: CR21 article-title: NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence publication-title: PLoS ONE doi: 10.1371/journal.pone.0000796 – volume: 182 start-page: 1526 year: 2009 end-page: 1532 ident: CR26 article-title: A comparative study of HLA binding affinity and ligand diversity: implications for generating immunodominant CD8+ T cell responses publication-title: J Immunol – volume: 94 start-page: 10850 year: 1997 end-page: 10855 ident: CR4 article-title: Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.20.10850 – volume: 35 start-page: 2295 year: 2005 end-page: 2303 ident: CR12 article-title: An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions publication-title: Eur J Immunol doi: 10.1002/eji.200425811 – volume: 169 start-page: 4161 year: 2002 end-page: 4171 ident: CR14 article-title: The final N-terminal trimming of a subaminoterminal proline-containing HLA class I-restricted antigenic peptide in the cytosol is mediated by two peptidases publication-title: J Immunol – volume: 7 start-page: 131 year: 2006 ident: CR5 article-title: EpiJen: a server for multistep T cell epitope prediction publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-131 – volume: 61 start-page: 2249 year: 2006 ident: 441_CR37 publication-title: J Immunol doi: 10.4049/jimmunol.176.4.2249 – volume: 163 start-page: 5851 year: 1999 ident: 441_CR19 publication-title: J Immunol doi: 10.4049/jimmunol.163.11.5851 – volume: 182 start-page: 1526 year: 2009 ident: 441_CR26 publication-title: J Immunol doi: 10.4049/jimmunol.182.3.1526 – volume: 17 start-page: 555 year: 1999 ident: 441_CR32 publication-title: Nat Biotechnol doi: 10.1038/9858 – volume: 1 start-page: 109 year: 1999 ident: 441_CR3 publication-title: In Silico Biol doi: 10.3233/ISB-00010 – volume: 180 start-page: 5092 year: 2008 ident: 441_CR23 publication-title: J Immunol doi: 10.4049/jimmunol.180.7.5092 – volume: 94 start-page: 10850 year: 1997 ident: 441_CR4 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.20.10850 – volume: 57 start-page: 33 year: 2005 ident: 441_CR20 publication-title: Immunogenetics doi: 10.1007/s00251-005-0781-7 – volume: 4 start-page: e7448 year: 2009 ident: 441_CR10 publication-title: PLoS ONE doi: 10.1371/journal.pone.0007448 – volume: 35 start-page: 2295 year: 2005 ident: 441_CR12 publication-title: Eur J Immunol doi: 10.1002/eji.200425811 – volume: 14 start-page: 2132 year: 2005 ident: 441_CR6 publication-title: Protein Sci doi: 10.1110/ps.051352405 – volume: 11 start-page: 241 year: 1999 ident: 441_CR22 publication-title: Immunity doi: 10.1016/S1074-7613(00)80099-0 – volume: 295 start-page: 879 year: 2000 ident: 441_CR1 publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3392 – volume: 255 start-page: 1264 year: 1992 ident: 441_CR8 publication-title: Science doi: 10.1126/science.1546329 – volume: 24 start-page: 1397 year: 2008 ident: 441_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn128 – volume: 1 start-page: 491 year: 1994 ident: 441_CR39 publication-title: Immunity doi: 10.1016/1074-7613(94)90091-4 – volume: 7 start-page: 131 year: 2006 ident: 441_CR5 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-131 – volume: 5 start-page: e1000327 year: 2009 ident: 441_CR18 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000327 – volume: 62 start-page: 1025 year: 2005 ident: 441_CR34 publication-title: Cell Mol Life Sci: CMLS doi: 10.1007/s00018-005-4528-2 – volume: 156 start-page: 3755 year: 1996 ident: 441_CR30 publication-title: J Immunol doi: 10.4049/jimmunol.156.10.3755 – volume: 25 start-page: 83 year: 2009 ident: 441_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn579 – volume: 279 start-page: 10142 year: 2004 ident: 441_CR11 publication-title: J Biol Chem doi: 10.1074/jbc.M312816200 – volume: 55 start-page: 797 year: 2004 ident: 441_CR15 publication-title: Immunogenetics doi: 10.1007/s00251-004-0647-4 – volume: 50 start-page: 213 year: 1999 ident: 441_CR25 publication-title: Immunogenetics doi: 10.1007/s002510050595 – volume: 37 start-page: 169 year: 2009 ident: 441_CR35 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn664 – volume: 2 start-page: e796 year: 2007 ident: 441_CR21 publication-title: PLoS ONE doi: 10.1371/journal.pone.0000796 – volume: 153 start-page: 1833 year: 2008 ident: 441_CR33 publication-title: Arch Virol doi: 10.1007/s00705-008-0194-7 – volume: 25 start-page: 2823 year: 2007 ident: 441_CR36 publication-title: Vaccine doi: 10.1016/j.vaccine.2006.12.038 – volume: 9 start-page: 1 year: 2008 ident: 441_CR29 publication-title: BMC Immunology doi: 10.1186/1471-2172-9-1 – volume: 151 start-page: 3407 year: 1993 ident: 441_CR2 publication-title: J Immunol doi: 10.4049/jimmunol.151.7.3407 – volume: 180 start-page: 3210 year: 2008 ident: 441_CR28 publication-title: J Immunol doi: 10.4049/jimmunol.180.5.3210 – volume: 169 start-page: 4161 year: 2002 ident: 441_CR14 publication-title: J Immunol doi: 10.4049/jimmunol.169.8.4161 – volume: 28 start-page: 4029 year: 1998 ident: 441_CR31 publication-title: Eur J Immunol doi: 10.1002/(SICI)1521-4141(199812)28:12<4029::AID-IMMU4029>3.0.CO;2-N – ident: 441_CR16 doi: 10.7551/mitpress/3679.001.0001 – volume: 7 start-page: 149 year: 2001 ident: 441_CR27 publication-title: Mol Med doi: 10.1007/BF03401948 – volume: 17 start-page: 51 year: 1999 ident: 441_CR38 publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.17.1.51 – volume: 171 start-page: 1741 year: 2003 ident: 441_CR24 publication-title: J Immunol doi: 10.4049/jimmunol.171.4.1741 – volume: 61 start-page: 1 year: 2009 ident: 441_CR9 publication-title: Immunogenetics doi: 10.1007/s00251-008-0341-z – volume: 2 start-page: 155 year: 2003 ident: 441_CR7 publication-title: Appl Bioinformatics – volume: 8 start-page: 424 year: 2007 ident: 441_CR13 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-424 |
SSID | ssj0015926 |
Score | 2.4377663 |
Snippet | Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In... |
SourceID | pubmedcentral proquest pubmed crossref springer fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 357 |
SubjectTerms | Allergology Antigen presentation ATP-Binding Cassette Transporters - metabolism Biomedical and Life Sciences Biomedicine Cell Biology CTL epitope Cytotoxicity Epitopes, T-Lymphocyte Gene Function Histocompatibility Antigens Class I - immunology HLA Human Genetics Humans Immunology Leukocytes Ligands Lymphocytes Methods MHC class I pathway MHC polymorphism Original Paper Pan-specific prediction Peptides Proteasome Endopeptidase Complex - physiology Protein Transport Proteins T-Lymphocytes, Cytotoxic - immunology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RIhAXBOXRUEA-cAJZZONXwqVCK6oFsb3QlfZm2V6HIqFs6G6F-u-ZcR5oeewlF9tSMuPxfJNvPAPwytcI4xEpcx1CyWXlBZGEnmvpBDpYE1Sgu8Pzcz1byE9LtexzczZ9WuVwJqaDerUO9I_8rZAaoUOhxGn7g1PTKCJX-w4aB3CbKpdRRpdZjvEWOurUbY2CdgSRk8lAauaphig6dp6YYAQEXO64pYParf-FOP9OnPyDPU1O6ewB3O_RJHvfqf8h3IrNEdzp-kveHMHdec-cP4LT87idXnxG23_H8MHphiVlCbH5bMoCQWj2kVF74p_uhsUW7byNrL2i9WlnPobF2YeL6Yz3zRN4UFW-5brUCqOTIq8Lb0RA413JwqMQY1HXwqOPksKsXBmJaZSrwnthfBnJQkWtaieewGGzbuIxsCBVCNoZjaOoQl_VGIYgMjJauYkuZQb5IDsb-sri1ODiux1rIidxWxS3JXFbXPJ6XNJ2ZTX2TT5GhVj3FY89u_hSENmKgWmJoX0GJ4OWbG98GztulQzYOIpWQ1SIa-L6emONEHlFJOaeKbJIlY9wytNO6-ObFrkwFQ5mYHb2wziBanbvjjTfLlPtbgxQldRVBm-GnfP7vf8rgGd7v_IE7nUpDfRr6Dkcbq-u4wtESlv_MtnDLwCbCQc priority: 102 providerName: ProQuest |
Title | NetCTLpan: pan-specific MHC class I pathway epitope predictions |
URI | https://link.springer.com/article/10.1007/s00251-010-0441-4 https://www.ncbi.nlm.nih.gov/pubmed/20379710 https://www.proquest.com/docview/346163253 https://www.proquest.com/docview/733090640 https://www.proquest.com/docview/742710080 https://pubmed.ncbi.nlm.nih.gov/PMC2875469 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_RTSBeEAzYwkblB55AkVJ_JrxMbdRSPlohWKXyZMWuA0gordZOaP89Z-cDFcYkXuKHO0fJnS93l599B_DClBjGY6QcS2vTmGeGeZDQxJIXDB2sssL6s8OzuZwu-LulWDbnuLftbvcWkgxf6u6wWwiH4wDeog-PeQ8OhU_dcREv6LCDDkQWeqz5VB1Dx8GghTJvusWeM-qVxfqmOPPv7ZJ_YKbBFU0ewoMmhiTDWumP4I6rjuBu3VXy-gjuzRq8_DGcz90uv_iAFv-a4CX25yr93iAym-bE-sCZvCW-KfHP4pq4DVr3xpHNpZ8f1uMTWEzGF_k0blomxFZkyS6WqRSYk9CkpEYxiya74tRwOXC0LJlBz8SZWhWp8_giX1FjmDKp83bJSlEW7CkcVOvKnQCxXFgrCyWRioozWYnJB8ZDSopiIFMeQdLKTtumnrhva_FDd5WQg7g1ilt7cWuc8rKbsqmLadzGfIIK0cVX_NjpxWfqIVZMR1NM6CM4bbWkG5PbaoZvKRkVLALSUdFWPABSVG59tdWKsSTz0OUtLJyGekfIclxrvXtSmjCVITECtbceOgZfqXufUn3_Fip2Y1oquMwieNWunN_P_U8BPPsv7lO4X29s8D-IzuBgd3nlnmO8tDN96Kml6sPhcDIazf345sv7MY6j8fzjJ6TmMu8HG_oFS4kMQA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61qXhcEJRHl_LwAS6gVTe217uLhCoIrRKaRAgSqTezdrwtEtosTaoqP4r_yMy-UHjk1stebK92xzPjb_zZMwAvTIYwHpGyr6yNfZkYQSSh8ZVMBS6wkQ0t3R0ejVV_Kj-ehqdb8LO5C0PHKhufWDrq2dzSHvmBkAqhAw_FYfHDp6JRRK42FTQqrThxqyuM2BZvBx9wel9yfnw06fX9uqiAb8MkWPoqViGidh5k3ETColLPJDf4csezTBj03VJEszR2xMDJGTdGRCZ2pLkiC7NU4Hu3YUcKjGQ6sPP-aPzpc0tbhElZ3422CRC2drsNjRqUWUsRSvgl94wQxJdrC-F2ls7_hXH_Pqr5B19bLoPHd-FOjV_Zu0rh7sGWy3fhRlXRcrULN0c1V38fDsdu2ZsM0du8Yfjw6U4nnUtio36PWQLtbMCoIPJVumKuQM9SOFZc0PjSFh7A9Fok-xA6-Tx3e8CsDK1VaaSwFZXGJBkGPojFIhWmXRVLD4JGdtrWucyppMZ33WZhLsWtUdyaxK1xyKt2SFEl8tjUeQ8nRKdn6Gj19AsnehdD4TiQyoP9ZpZ0be4L3SqnB6xtRTsl8iXN3fxyoSMhgoRo0w1dJC9zLWGXR9Wst1_KAxEl2OhBtKYPbQfKEr7ekn87L7OFY0gcSpV48LrRnN_f_V8BPN74l8_hVn8yGurhYHyyD7erAxW0MfUEOsuLS_cUcdrSPKutg8HX6zbIX5SfRYY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61RVRcEBRol_LwAS6gVTe2195FQhVKiRLaREg0Um5m7XgBqdqkTaoqP41_x8y-UHjk1stebGc345nxN_7sGYBXNkcYj0g5VM4loUytIJLQhkpmAhdY7WJHd4eHI9Ufy0-TeLIFP5u7MHSssvGJpaOezhztkR8JqRA68Fgc5fWpiM8nveP5ZUgFpIhobappVBpy6lc3GL0t3g9OcKpfc977eN7th3WBgdDFabQMVaJiRPA8yrnVwqGCTyW3-CLP81xY9ONS6GmWeGLj5JRbK7RNPGmxyOM8E_i723BHi7hDJqYnbayHIKGs9EYbBghgO52GUI3K_KUIKsKShUYwEsq1JXE7z2b_Qrt_H9r8g7ktF8TeA7hfI1n2oVK9h7Dliz24W9W2XO3B7rBm7R_B8cgvu-dn6HfeMXyEdLuTTiixYb_LHMF3NmBUGvkmWzE_Rx8z92x-ReNLq3gM41uR6xPYKWaFPwDmZOycyrTCVlQfm-YYAiEq0yrOOiqRAUSN7Iyrs5pTcY0L0-ZjLsVtUNyGxG1wyJt2yLxK6bGp8wFOiMm-ocs14y-ciF4MipNIqgAOm1kyteEvTKumAbC2FS2WaJis8LPrhdFCRCkRqBu6SF5mXcIu-9Wst1_KI6FTbAxAr-lD24Hyha-3FD--l3nDMTiOpUoDeNtozu_v_q8Anm78ly9hF83QnA1Gp4dwrzpZQTtUz2BneXXtnyNgW9oXpWkw-HrbtvgLmutIVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NetCTLpan%3A+pan-specific+MHC+class+I+pathway+epitope+predictions&rft.jtitle=Immunogenetics+%28New+York%29&rft.au=Stranzl%2C+Thomas&rft.au=Larsen%2C+Mette+Voldby&rft.au=Lundegaard%2C+Claus&rft.au=Nielsen%2C+Morten&rft.date=2010-06-01&rft.issn=0093-7711&rft.eissn=1432-1211&rft.volume=62&rft.issue=6&rft.spage=357&rft.epage=368&rft_id=info:doi/10.1007%2Fs00251-010-0441-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00251_010_0441_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-7711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-7711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-7711&client=summon |