NetCTLpan: pan-specific MHC class I pathway epitope predictions

Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates pred...

Full description

Saved in:
Bibliographic Details
Published inImmunogenetics (New York) Vol. 62; no. 6; pp. 357 - 368
Main Authors Stranzl, Thomas, Larsen, Mette Voldby, Lundegaard, Claus, Nielsen, Morten
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Berlin/Heidelberg : Springer-Verlag 01.06.2010
Springer-Verlag
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/.
AbstractList Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/.
Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/.[PUBLICATION ABSTRACT]
Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/.Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/.
Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan . The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL . The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/ .
Author Larsen, Mette Voldby
Stranzl, Thomas
Nielsen, Morten
Lundegaard, Claus
Author_xml – sequence: 1
  fullname: Stranzl, Thomas
– sequence: 2
  fullname: Larsen, Mette Voldby
– sequence: 3
  fullname: Lundegaard, Claus
– sequence: 4
  fullname: Nielsen, Morten
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20379710$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFH8AFol44mc7Yjp1woEKrQistcKA9W47jbF1l42BnQf339Sot0B7KxT7M955m3jsge0MYHCGvEd4jgDpOAKxECggUhEAqnpEFCs4oMsQ9sgCoOVUKcZ8cpHQNgGXN5Auyz4CrWiEsyMk3Ny0vVqMZPhT5oWl01nfeFl_PloXtTUrFeR5MV7_NTeFGP4XRFWN0rbeTD0N6SZ53pk_u1d1_SC4_n14sz-jq-5fz5acVtWUNE5WVLGsJDDrWKG4BeCtYIyQ61nW8kaoSXLWmcqyqQbSsabhqKoeAindlZ_gh-Tj7jttm41rrhimaXo_Rb0y80cF4_XAy-Cu9Dr80q1QpZJ0N3t0ZxPBz69KkNz5Z1_dmcGGbtBIsBwIV_J_kHGqQYkcePSKvwzYOOQfN822Ss5Jn6M2_m_9Z-b6DDKgZsDGkFF2nrZ_MLt18iO81gt61ree2dW5b79rWIivxkfLe_CkNmzUps8Paxb87PyV6O4s6E7RZR5_05Q8GyAErUYGQ_Ba9ecIe
CitedBy_id crossref_primary_10_1111_imm_12160
crossref_primary_10_1186_s13073_019_0679_x
crossref_primary_10_3389_fimmu_2022_812393
crossref_primary_10_3389_fimmu_2023_1208041
crossref_primary_10_1007_s00251_022_01282_5
crossref_primary_10_1016_j_vaccine_2024_126178
crossref_primary_10_1096_fj_202101538RR
crossref_primary_10_1016_j_meegid_2021_104982
crossref_primary_10_1128_JVI_02500_14
crossref_primary_10_1371_journal_pone_0071888
crossref_primary_10_1016_j_cels_2022_12_002
crossref_primary_10_1371_journal_pone_0286358
crossref_primary_10_1016_j_molimm_2012_03_006
crossref_primary_10_1177_11779322241289936
crossref_primary_10_3389_fgene_2019_01141
crossref_primary_10_3389_fimmu_2020_565730
crossref_primary_10_3390_vaccines11071129
crossref_primary_10_1007_s12033_025_01398_5
crossref_primary_10_1158_2159_8290_CD_24_0168
crossref_primary_10_3389_fimmu_2022_884433
crossref_primary_10_1371_journal_pone_0313835
crossref_primary_10_1007_s00251_014_0779_0
crossref_primary_10_1080_07391102_2021_1947381
crossref_primary_10_1158_2326_6066_CIR_18_0129
crossref_primary_10_2174_2210298102666220224115100
crossref_primary_10_1016_j_jtho_2015_11_006
crossref_primary_10_1080_07391102_2022_2118170
crossref_primary_10_1038_s41598_021_83949_9
crossref_primary_10_7554_eLife_00631
crossref_primary_10_2482_haigan_58_331
crossref_primary_10_1007_s00251_010_0493_5
crossref_primary_10_36233_0507_4088_2020_65_2_103_112
crossref_primary_10_1007_s12033_021_00303_0
crossref_primary_10_1089_vim_2020_0306
crossref_primary_10_1093_bib_bbw025
crossref_primary_10_1002_pep2_24046
crossref_primary_10_1089_cmb_2021_0464
crossref_primary_10_1007_s00262_012_1354_x
crossref_primary_10_3390_curroncol29050239
crossref_primary_10_3389_fimmu_2022_858057
crossref_primary_10_1016_j_xcrm_2021_100194
crossref_primary_10_1021_acscentsci_3c01544
crossref_primary_10_3390_vaccines11020203
crossref_primary_10_3389_fimmu_2019_01625
crossref_primary_10_3389_fonc_2022_836821
crossref_primary_10_1007_s42485_024_00164_6
crossref_primary_10_1186_s13073_015_0245_0
crossref_primary_10_1158_1078_0432_CCR_17_1012
crossref_primary_10_1016_j_actatropica_2021_106013
crossref_primary_10_1007_s00262_023_03413_7
crossref_primary_10_1093_femsre_fuv031
crossref_primary_10_1016_j_vaccine_2020_10_016
crossref_primary_10_1016_j_addr_2021_01_007
crossref_primary_10_1093_database_baad041
crossref_primary_10_1038_s43018_019_0008_8
crossref_primary_10_1016_j_vaccine_2024_04_098
crossref_primary_10_1016_j_vetvac_2023_100027
crossref_primary_10_1016_j_molstruc_2022_132524
crossref_primary_10_1186_s12916_024_03625_3
crossref_primary_10_1371_journal_pone_0201429
crossref_primary_10_3390_v14112328
crossref_primary_10_1016_j_biotechadv_2011_06_020
crossref_primary_10_1093_database_bay111
crossref_primary_10_1016_j_biotechadv_2024_108437
crossref_primary_10_1007_s00251_017_1047_x
crossref_primary_10_1007_s00251_017_1023_5
crossref_primary_10_1038_s41598_022_14427_z
crossref_primary_10_1016_j_compbiomed_2021_104563
crossref_primary_10_1155_2013_263952
crossref_primary_10_1016_j_vaccine_2014_04_039
crossref_primary_10_1016_j_micpath_2021_105150
crossref_primary_10_4161_hv_29767
crossref_primary_10_1038_s42256_022_00459_7
crossref_primary_10_1093_bib_bbaf012
crossref_primary_10_2174_1568026623666221019110334
crossref_primary_10_4236_cmb_2022_121004
crossref_primary_10_1016_j_intimp_2023_111351
crossref_primary_10_3389_fimmu_2020_02193
crossref_primary_10_1016_j_biopha_2023_115827
crossref_primary_10_1002_jmv_29630
crossref_primary_10_1016_j_meegid_2022_105236
crossref_primary_10_3390_vaccines12030324
crossref_primary_10_1080_21645515_2021_1974288
crossref_primary_10_1016_j_phrs_2024_107209
crossref_primary_10_1080_07391102_2014_967300
crossref_primary_10_1007_s10989_022_10467_1
crossref_primary_10_1158_2159_8290_CD_16_0828
crossref_primary_10_1371_journal_pone_0302684
crossref_primary_10_3389_fimmu_2023_1100188
crossref_primary_10_1111_pim_12359
crossref_primary_10_1007_s12033_023_00867_z
crossref_primary_10_1016_j_cellimm_2018_04_015
crossref_primary_10_3390_cancers12061660
crossref_primary_10_3390_ijms231911624
crossref_primary_10_1038_s41541_020_00224_0
crossref_primary_10_1038_s41598_022_12651_1
crossref_primary_10_1093_bib_bbz051
crossref_primary_10_1146_annurev_immunol_042617_053035
crossref_primary_10_3389_fimmu_2023_1301100
crossref_primary_10_1172_JCI86175
crossref_primary_10_37349_ei_2023_00091
crossref_primary_10_3389_fimmu_2019_00827
crossref_primary_10_18632_aging_203053
crossref_primary_10_2217_imt_2016_0146
crossref_primary_10_3389_fmolb_2024_1442158
crossref_primary_10_1016_j_molimm_2019_04_030
crossref_primary_10_1007_s00253_022_12033_7
crossref_primary_10_1136_jitc_2020_001111
crossref_primary_10_1371_journal_pone_0306111
crossref_primary_10_1042_BSR20202349
crossref_primary_10_1080_08830185_2024_2374546
crossref_primary_10_3389_fmicb_2020_01858
crossref_primary_10_1111_tan_12292
crossref_primary_10_1186_s12865_015_0119_7
crossref_primary_10_1586_erv_11_160
crossref_primary_10_4049_jimmunol_1600582
crossref_primary_10_4167_jbv_2022_52_4_170
crossref_primary_10_2174_1874613601206010274
crossref_primary_10_1016_j_vetimm_2025_110881
crossref_primary_10_1111_imm_12585
crossref_primary_10_3390_v9050112
crossref_primary_10_1096_fj_202400757RR
crossref_primary_10_1586_14760584_2014_861748
crossref_primary_10_3389_fimmu_2024_1342335
crossref_primary_10_1016_j_jtbi_2015_04_026
crossref_primary_10_1371_journal_pone_0310703
crossref_primary_10_3390_pathogens11020146
crossref_primary_10_1080_1040841X_2021_1979934
crossref_primary_10_3389_fmed_2021_825876
crossref_primary_10_1186_s12859_020_03869_9
crossref_primary_10_1016_j_virusres_2014_08_005
crossref_primary_10_1016_j_trsl_2018_05_001
crossref_primary_10_3390_biom14101217
crossref_primary_10_1136_jitc_2024_010569
crossref_primary_10_1016_j_ijbiomac_2024_129259
crossref_primary_10_1016_j_xcrm_2021_100312
crossref_primary_10_1093_bib_bbad150
crossref_primary_10_1016_j_micpath_2020_104398
crossref_primary_10_1080_07391102_2023_2219324
crossref_primary_10_3389_fimmu_2024_1463931
crossref_primary_10_1371_journal_pone_0084443
crossref_primary_10_3390_vaccines10030462
crossref_primary_10_1007_s00253_021_11609_z
crossref_primary_10_1016_j_cels_2020_06_010
crossref_primary_10_1016_j_meegid_2020_104189
crossref_primary_10_1186_s40364_023_00478_5
crossref_primary_10_1016_j_mam_2023_101204
crossref_primary_10_1080_07391102_2021_1883111
crossref_primary_10_1186_s12943_023_01844_5
crossref_primary_10_4049_jimmunol_2100700
crossref_primary_10_1111_tan_12199
crossref_primary_10_1016_j_heliyon_2024_e34721
crossref_primary_10_3390_biology11010005
crossref_primary_10_1016_j_addr_2021_02_004
crossref_primary_10_1089_aid_2013_0299
crossref_primary_10_1093_nar_gks438
crossref_primary_10_4049_jimmunol_1103434
crossref_primary_10_1038_s42256_023_00694_6
crossref_primary_10_1038_s41598_023_51005_3
crossref_primary_10_3390_microorganisms7080226
crossref_primary_10_1016_j_ijid_2022_12_016
crossref_primary_10_3390_antib11040068
crossref_primary_10_1038_nbt_4313
crossref_primary_10_1371_journal_pcbi_1003748
crossref_primary_10_1002_eji_202350683
crossref_primary_10_1016_j_humimm_2014_02_012
crossref_primary_10_1186_s12859_017_1667_z
crossref_primary_10_3390_bioengineering11040322
crossref_primary_10_1371_journal_pone_0162808
crossref_primary_10_1016_j_procbio_2022_08_014
crossref_primary_10_1016_j_jbi_2014_11_003
crossref_primary_10_1007_s10989_018_9780_z
crossref_primary_10_14202_IJOH_2024_216_229
crossref_primary_10_1016_j_compbiomed_2021_105122
crossref_primary_10_1146_annurev_immunol_082119_124838
crossref_primary_10_1186_s12864_017_4328_8
crossref_primary_10_1016_j_xcrm_2021_100221
crossref_primary_10_1186_s40164_018_0120_y
crossref_primary_10_3390_molecules27072375
crossref_primary_10_1038_s42003_021_02007_2
crossref_primary_10_3390_ijms23052594
crossref_primary_10_1371_journal_pone_0307877
crossref_primary_10_1146_annurev_chembioeng_101420_125021
crossref_primary_10_1038_s41573_021_00387_y
crossref_primary_10_4049_jimmunol_1700744
crossref_primary_10_7717_peerj_11126
crossref_primary_10_1186_s13045_019_0787_5
crossref_primary_10_52711_0974_360X_2024_00003
crossref_primary_10_1038_s41587_024_02420_y
crossref_primary_10_1097_CAD_0000000000001565
crossref_primary_10_1186_1471_2105_13_235
crossref_primary_10_1007_s00251_016_0911_4
crossref_primary_10_3389_fimmu_2017_00278
crossref_primary_10_1038_nrg_2016_67
crossref_primary_10_1016_j_heliyon_2024_e35129
crossref_primary_10_1016_j_drudis_2020_03_006
crossref_primary_10_1093_nar_gkae407
crossref_primary_10_3390_vaccines9121459
crossref_primary_10_1016_j_gde_2014_12_003
crossref_primary_10_3389_fimmu_2020_00607
crossref_primary_10_1007_s00251_011_0555_3
crossref_primary_10_1177_11769343221108218
crossref_primary_10_1155_2010_218590
crossref_primary_10_1186_1471_2172_13_67
crossref_primary_10_1038_s41598_019_51063_6
crossref_primary_10_1371_journal_pcbi_1012511
crossref_primary_10_1111_1348_0421_12870
crossref_primary_10_1016_j_compbiomed_2022_105462
crossref_primary_10_1016_j_compbiomed_2023_107247
crossref_primary_10_1186_s13073_020_00729_2
crossref_primary_10_1371_journal_pone_0015877
crossref_primary_10_1080_20477724_2022_2072456
crossref_primary_10_1111_tbed_13293
crossref_primary_10_1111_hiv_12316
crossref_primary_10_1080_07391102_2023_2184171
crossref_primary_10_3390_diagnostics11111990
crossref_primary_10_1186_s43141_021_00160_z
crossref_primary_10_1093_bib_bbr060
crossref_primary_10_1016_j_autrev_2021_102791
crossref_primary_10_3389_fimmu_2024_1425603
crossref_primary_10_1016_j_micpath_2022_105793
crossref_primary_10_1007_s10989_022_10402_4
crossref_primary_10_1111_imcb_12482
crossref_primary_10_1126_sciadv_abb8097
crossref_primary_10_1016_j_ccell_2024_05_005
crossref_primary_10_1016_j_semcancer_2023_02_007
crossref_primary_10_1186_1743_422X_9_111
crossref_primary_10_1016_j_meegid_2013_04_037
crossref_primary_10_1098_rsos_201141
crossref_primary_10_1016_j_cellimm_2016_12_008
crossref_primary_10_1186_s12929_018_0433_5
crossref_primary_10_1038_s41598_019_41496_4
crossref_primary_10_1016_j_cyto_2020_155031
crossref_primary_10_1111_iji_12214
crossref_primary_10_1186_s40164_024_00504_8
crossref_primary_10_2174_1386207323666200427114343
crossref_primary_10_1080_07391102_2020_1850357
crossref_primary_10_1186_s12864_019_6311_z
crossref_primary_10_3390_ijms251910520
crossref_primary_10_1007_s00251_011_0579_8
crossref_primary_10_1007_s10989_021_10159_2
crossref_primary_10_1016_j_it_2018_09_004
crossref_primary_10_1136_jitc_2023_007490
crossref_primary_10_1093_bib_bbaa415
crossref_primary_10_3389_fimmu_2024_1478201
crossref_primary_10_1016_j_imu_2022_101080
crossref_primary_10_1080_07391102_2021_2015443
crossref_primary_10_1093_annonc_mdy022
crossref_primary_10_3389_fgene_2014_00174
crossref_primary_10_1039_C3TB21549K
crossref_primary_10_1186_s40364_023_00449_w
crossref_primary_10_1111_imcb_12019
crossref_primary_10_1556_amicr_61_2014_3_4
crossref_primary_10_1016_j_molmed_2019_08_001
crossref_primary_10_1016_j_patter_2024_100994
crossref_primary_10_3389_fimmu_2018_01795
crossref_primary_10_1371_journal_pone_0012697
crossref_primary_10_4103_RPS_RPS_91_23
Cites_doi 10.1007/s00705-008-0194-7
10.1093/nar/gkn664
10.1093/bioinformatics/btn579
10.1006/jmbi.1999.3392
10.1007/s00251-005-0781-7
10.1186/1471-2105-8-424
10.1038/9858
10.1007/s00018-005-4528-2
10.1016/S1074-7613(00)80099-0
10.1186/1471-2172-9-1
10.1016/1074-7613(94)90091-4
10.1371/journal.pcbi.1000327
10.1110/ps.051352405
10.1007/s00251-004-0647-4
10.1007/s002510050595
10.1126/science.1546329
10.1093/bioinformatics/btn128
10.1002/(SICI)1521-4141(199812)28:12<4029::AID-IMMU4029>3.0.CO;2-N
10.1007/s00251-008-0341-z
10.1146/annurev.immunol.17.1.51
10.1371/journal.pone.0007448
10.1074/jbc.M312816200
10.1016/j.vaccine.2006.12.038
10.1371/journal.pone.0000796
10.1073/pnas.94.20.10850
10.1002/eji.200425811
10.1186/1471-2105-7-131
10.4049/jimmunol.176.4.2249
10.4049/jimmunol.163.11.5851
10.4049/jimmunol.182.3.1526
10.3233/ISB-00010
10.4049/jimmunol.180.7.5092
10.4049/jimmunol.156.10.3755
10.4049/jimmunol.151.7.3407
10.4049/jimmunol.180.5.3210
10.4049/jimmunol.169.8.4161
10.7551/mitpress/3679.001.0001
10.1007/BF03401948
10.4049/jimmunol.171.4.1741
ContentType Journal Article
Copyright The Author(s) 2010
Springer-Verlag 2010
Copyright_xml – notice: The Author(s) 2010
– notice: Springer-Verlag 2010
DBID FBQ
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T5
7T7
7TK
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
7S9
L.6
5PM
DOI 10.1007/s00251-010-0441-4
DatabaseName AGRIS
Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

ProQuest Central Student
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 5
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1432-1211
EndPage 368
ExternalDocumentID PMC2875469
2043334901
20379710
10_1007_s00251_010_0441_4
US201301848046
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AEQTP
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
X7M
YLTOR
Z45
Z7U
Z82
Z87
Z8O
Z8V
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
C6C
H13
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7T7
7TK
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c590t-686596020f2b73c003d42b461e2ff3b678437da8e28904d2bb37b8e10173f5fa3
IEDL.DBID U2A
ISSN 0093-7711
1432-1211
IngestDate Thu Aug 21 13:11:35 EDT 2025
Fri Jul 11 04:02:12 EDT 2025
Fri Jul 11 04:17:12 EDT 2025
Fri Jul 25 19:15:14 EDT 2025
Mon Jul 21 06:07:06 EDT 2025
Tue Aug 05 12:00:11 EDT 2025
Thu Apr 24 22:51:58 EDT 2025
Fri Feb 21 02:37:23 EST 2025
Wed Dec 27 19:19:55 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords MHC polymorphism
Pan-specific prediction
HLA
CTL epitope
MHC class I pathway
Language English
License This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-686596020f2b73c003d42b461e2ff3b678437da8e28904d2bb37b8e10173f5fa3
Notes http://dx.doi.org/10.1007/s00251-010-0441-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s00251-010-0441-4
PMID 20379710
PQID 346163253
PQPubID 54024
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2875469
proquest_miscellaneous_742710080
proquest_miscellaneous_733090640
proquest_journals_346163253
pubmed_primary_20379710
crossref_citationtrail_10_1007_s00251_010_0441_4
crossref_primary_10_1007_s00251_010_0441_4
springer_journals_10_1007_s00251_010_0441_4
fao_agris_US201301848046
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: New York
PublicationTitle Immunogenetics (New York)
PublicationTitleAbbrev Immunogenetics
PublicationTitleAlternate Immunogenetics
PublicationYear 2010
Publisher Berlin/Heidelberg : Springer-Verlag
Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Berlin/Heidelberg : Springer-Verlag
– name: Springer-Verlag
– name: Springer Nature B.V
References Peters, Bulik, Tampe, Van Endert, Holzhütter (CR24) 2003; 171
Juncker, Larsen, Weinhold, Nielsen, Brunak, Lund (CR10) 2009; 4
Hoof, Peters, Sidney, Pedersen, Sette, Lund, Buus, Nielsen (CR9) 2009; 61
MacNamara, Kadolsky, Bangham, Asquith (CR18) 2009; 5
Schatz, Peters, Akkad, Ullrich, Martinez, Carroll, Bulik, Rammensee, van Endert, Holzhütter, Tenzer, Schild (CR28) 2008; 180
Smith, Lutz (CR30) 1996; 156
Larsen, Lundegaard, Lamberth, Buus, Lund, Nielsen (CR13) 2007; 8
CR16
Doytchinova, Guan, Flower (CR5) 2006; 7
Ritz, Seliger (CR27) 2001; 7
Wang, Lamberth, Harndahl, Røder, Stryhn, Larsen, Nielsen, Lundegaard, Tang, Dziegiel, Rosenkvist, Pedersen, Buus, Claesson, Lund (CR36) 2007; 25
Altuvia, Margalit (CR1) 2000; 295
Zhang, Lundegaard, Nielsen (CR40) 2009; 25
Sturniolo, Bono, Ding, Raddrizzani, Tuereci, Sahin, Braxenthaler, Gallazzi, Protti, Sinigaglia, Hammer (CR32) 1999; 17
Lévy, Burri, Morel, Peitrequin, Lévy, Bachi, Hellman, Van Den Eynde, Servis (CR14) 2002; 169
Sidney, Peters, Frahm, Brander, Sette (CR29) 2008; 9
Larsen, Lundegaard, Lamberth, Buus, Brunak, Lund, Nielsen (CR12) 2005; 35
Lund, Nielsen, Kesmir, Petersen, Lundegaard, Worning, Sylvester-Hvid, Lamberth, Røder, Justesen, Buus, Brunak (CR15) 2004; 55
Tang, Wang, Lamberth, Harndahl, Dziegiel, Claesson, Buus, Lund (CR33) 2008; 153
Lundegaard, Lund, Nielsen (CR17) 2008; 24
Tenzer, Peters, Bulik, Schoor, Lemmel, Schatz, Kloetzel, Rammensee, Schild, Holzhütter (CR34) 2005; 62
Paz, Brouwenstijn, Perry, Shastri (CR22) 1999; 11
Rammensee, Bachmann, Emmerich, Bachor, Stevanović (CR25) 1999; 50
Mo, Cascio, Lemerise, Goldberg, Rock (CR19) 1999; 163
Pérez, Larsen, Gustafsson, Norström, Atlas, Nixon, Nielsen, Lund, Karlsson (CR23) 2008; 180
Dönnes, Kohlbacher (CR6) 2005; 14
van Endert, Tampé, Meyer, Tisch, Bach, McDevitt (CR39) 1994; 1
Anderson, Alexander, Wei, Cresswell (CR2) 1993; 151
Henderson, Michel, Sakaguchi, Shabanowitz, Appella, Hunt, Engelhard (CR8) 1992; 255
Koch, Guntrum, Heintke, Kyritsis, Tampé (CR11) 2004; 279
(CR35) 2009; 37
Nielsen, Lundegaard, Blicher, Lamberth, Harndahl, Justesen, Røder, Peters, Sette, Lund, Buus (CR21) 2007; 2
Rao, Costa, van Baarle, Kesmir (CR26) 2009; 182
Stoltze, Dick, Deeg, Pömmerl, Rammensee, Schild (CR31) 1998; 28
Brusic, van Endert, Zeleznikow, Daniel, Hammer, Petrovsky (CR3) 1999; 1
Wherry, Golovina, Morrison, Sinnathamby, McElhaugh, Shockey, Eisenlohr (CR37) 2006; 61
Nielsen, Lundegaard, Lund, Keşmir (CR20) 2005; 57
Hakenberg, Nussbaum, Schild, Rammensee, Kuttler, Holzhütter, Kloetzel, Kaufmann, Mollenkopf (CR7) 2003; 2
Yewdell, Bennink (CR38) 1999; 17
Craiu, Akopian, Goldberg, Rock (CR4) 1997; 94
M Nielsen (441_CR20) 2005; 57
XY Mo (441_CR19) 1999; 163
MV Larsen (441_CR13) 2007; 8
P Paz (441_CR22) 1999; 11
CL Pérez (441_CR23) 2008; 180
JW Yewdell (441_CR38) 1999; 17
KS Anderson (441_CR2) 1993; 151
J Sidney (441_CR29) 2008; 9
O Lund (441_CR15) 2004; 55
Uniprot consortium (441_CR35) 2009; 37
V Brusic (441_CR3) 1999; 1
J Hakenberg (441_CR7) 2003; 2
I Doytchinova (441_CR5) 2006; 7
M Wang (441_CR36) 2007; 25
H Zhang (441_CR40) 2009; 25
PM Endert van (441_CR39) 1994; 1
441_CR16
L Stoltze (441_CR31) 1998; 28
P Dönnes (441_CR6) 2005; 14
U Ritz (441_CR27) 2001; 7
ST Tang (441_CR33) 2008; 153
KD Smith (441_CR30) 1996; 156
A MacNamara (441_CR18) 2009; 5
B Peters (441_CR24) 2003; 171
I Hoof (441_CR9) 2009; 61
MV Larsen (441_CR12) 2005; 35
J Koch (441_CR11) 2004; 279
M Nielsen (441_CR21) 2007; 2
S Tenzer (441_CR34) 2005; 62
Y Altuvia (441_CR1) 2000; 295
RA Henderson (441_CR8) 1992; 255
F Lévy (441_CR14) 2002; 169
EJ Wherry (441_CR37) 2006; 61
MM Schatz (441_CR28) 2008; 180
A Craiu (441_CR4) 1997; 94
C Lundegaard (441_CR17) 2008; 24
H Rammensee (441_CR25) 1999; 50
X Rao (441_CR26) 2009; 182
AS Juncker (441_CR10) 2009; 4
T Sturniolo (441_CR32) 1999; 17
References_xml – volume: 2
  start-page: 155
  year: 2003
  end-page: 158
  ident: CR7
  article-title: MAPPP: MHC class I antigenic peptide processing prediction
  publication-title: Appl Bioinformatics
– volume: 171
  start-page: 1741
  year: 2003
  end-page: 1749
  ident: CR24
  article-title: Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors
  publication-title: J Immunol
– volume: 180
  start-page: 3210
  year: 2008
  end-page: 3217
  ident: CR28
  article-title: Characterizing the N-terminal processing motif of MHC class I ligands
  publication-title: J Immunol
– volume: 153
  start-page: 1833
  year: 2008
  end-page: 1844
  ident: CR33
  article-title: MHC-I-restricted epitopes conserved among variola and other related orthopoxviruses are recognized by T cells 30 years after vaccination
  publication-title: Arch Virol
  doi: 10.1007/s00705-008-0194-7
– volume: 37
  start-page: 169
  year: 2009
  end-page: 174
  ident: CR35
  article-title: The universal protein resource (UniProt) 2009
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn664
– volume: 25
  start-page: 83
  year: 2009
  end-page: 89
  ident: CR40
  article-title: Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn579
– volume: 295
  start-page: 879
  year: 2000
  end-page: 890
  ident: CR1
  article-title: Sequence signals for generation of antigenic peptides by the proteasome: implications for proteasomal cleavage mechanism
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3392
– volume: 57
  start-page: 33
  year: 2005
  end-page: 41
  ident: CR20
  article-title: The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage
  publication-title: Immunogenetics
  doi: 10.1007/s00251-005-0781-7
– volume: 8
  start-page: 424
  year: 2007
  ident: CR13
  article-title: Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-424
– volume: 17
  start-page: 555
  year: 1999
  end-page: 561
  ident: CR32
  article-title: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices
  publication-title: Nat Biotechnol
  doi: 10.1038/9858
– ident: CR16
– volume: 62
  start-page: 1025
  year: 2005
  end-page: 1037
  ident: CR34
  article-title: Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding
  publication-title: Cell Mol Life Sci: CMLS
  doi: 10.1007/s00018-005-4528-2
– volume: 1
  start-page: 109
  year: 1999
  end-page: 121
  ident: CR3
  article-title: A neural network model approach to the study of human TAP transporter
  publication-title: In Silico Biol
– volume: 11
  start-page: 241
  year: 1999
  end-page: 251
  ident: CR22
  article-title: Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80099-0
– volume: 9
  start-page: 1
  year: 2008
  ident: CR29
  article-title: HLA class I supertypes: a revised and updated classification
  publication-title: BMC Immunology
  doi: 10.1186/1471-2172-9-1
– volume: 61
  start-page: 2249
  year: 2006
  ident: CR37
  article-title: Re-evaluating the generation of a “proteasome-independent” MHC class I-restricted CD8 T cell epitope
  publication-title: J Immunol
– volume: 1
  start-page: 491
  year: 1994
  end-page: 500
  ident: CR39
  article-title: A sequential model for peptide binding and transport by the transporters associated with antigen processing
  publication-title: Immunity
  doi: 10.1016/1074-7613(94)90091-4
– volume: 5
  start-page: e1000327
  year: 2009
  ident: CR18
  article-title: T-cell epitope prediction: rescaling can mask biological variation between MHC molecules
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000327
– volume: 14
  start-page: 2132
  year: 2005
  end-page: 2140
  ident: CR6
  article-title: Integrated modeling of the major events in the MHC class I antigen processing pathway
  publication-title: Protein Sci
  doi: 10.1110/ps.051352405
– volume: 55
  start-page: 797
  year: 2004
  end-page: 810
  ident: CR15
  article-title: Definition of supertypes for HLA molecules using clustering of specificity matrices
  publication-title: Immunogenetics
  doi: 10.1007/s00251-004-0647-4
– volume: 151
  start-page: 3407
  year: 1993
  end-page: 3419
  ident: CR2
  article-title: Intracellular transport of class I MHC molecules in antigen processing mutant cell lines
  publication-title: J Immunol
– volume: 50
  start-page: 213
  year: 1999
  end-page: 219
  ident: CR25
  article-title: SYFPEITHI: database for MHC ligands and peptide motifs
  publication-title: Immunogenetics
  doi: 10.1007/s002510050595
– volume: 255
  start-page: 1264
  year: 1992
  end-page: 1266
  ident: CR8
  article-title: HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation
  publication-title: Science
  doi: 10.1126/science.1546329
– volume: 24
  start-page: 1397
  year: 2008
  end-page: 1398
  ident: CR17
  article-title: Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn128
– volume: 163
  start-page: 5851
  year: 1999
  end-page: 5859
  ident: CR19
  article-title: Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides
  publication-title: J Immunol
– volume: 28
  start-page: 4029
  year: 1998
  end-page: 4036
  ident: CR31
  article-title: Generation of the vesicular stomatitis virus nucleoprotein cytotoxic T lymphocyte epitope requires proteasome-dependent and -independent proteolytic activities
  publication-title: Eur J Immunol
  doi: 10.1002/(SICI)1521-4141(199812)28:12<4029::AID-IMMU4029>3.0.CO;2-N
– volume: 156
  start-page: 3755
  year: 1996
  end-page: 3764
  ident: CR30
  article-title: Peptide-dependent expression of HLA-B7 on antigen processing-deficient T2 cells
  publication-title: J Immunol
– volume: 61
  start-page: 1
  year: 2009
  end-page: 13
  ident: CR9
  article-title: NetMHCpan, a method for MHC class I binding prediction beyond humans
  publication-title: Immunogenetics
  doi: 10.1007/s00251-008-0341-z
– volume: 17
  start-page: 51
  year: 1999
  end-page: 88
  ident: CR38
  article-title: Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.17.1.51
– volume: 4
  start-page: e7448
  year: 2009
  ident: CR10
  article-title: Systematic characterisation of cellular localisation and expression profiles of proteins containing MHC ligands
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0007448
– volume: 180
  start-page: 5092
  year: 2008
  end-page: 5100
  ident: CR23
  article-title: Broadly immunogenic HLA class I supertype-restricted elite CTL epitopes recognized in a diverse population infected with different HIV-1 subtypes
  publication-title: J Immunol
– volume: 279
  start-page: 10142
  year: 2004
  end-page: 10147
  ident: CR11
  article-title: Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M312816200
– volume: 7
  start-page: 149
  year: 2001
  end-page: 158
  ident: CR27
  article-title: The transporter associated with antigen processing (TAP): structural integrity, expression, function, and its clinical relevance
  publication-title: Mol Med
– volume: 25
  start-page: 2823
  year: 2007
  end-page: 2831
  ident: CR36
  article-title: CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.12.038
– volume: 2
  start-page: e796
  year: 2007
  ident: CR21
  article-title: NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000796
– volume: 182
  start-page: 1526
  year: 2009
  end-page: 1532
  ident: CR26
  article-title: A comparative study of HLA binding affinity and ligand diversity: implications for generating immunodominant CD8+ T cell responses
  publication-title: J Immunol
– volume: 94
  start-page: 10850
  year: 1997
  end-page: 10855
  ident: CR4
  article-title: Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.20.10850
– volume: 35
  start-page: 2295
  year: 2005
  end-page: 2303
  ident: CR12
  article-title: An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200425811
– volume: 169
  start-page: 4161
  year: 2002
  end-page: 4171
  ident: CR14
  article-title: The final N-terminal trimming of a subaminoterminal proline-containing HLA class I-restricted antigenic peptide in the cytosol is mediated by two peptidases
  publication-title: J Immunol
– volume: 7
  start-page: 131
  year: 2006
  ident: CR5
  article-title: EpiJen: a server for multistep T cell epitope prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-131
– volume: 61
  start-page: 2249
  year: 2006
  ident: 441_CR37
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.4.2249
– volume: 163
  start-page: 5851
  year: 1999
  ident: 441_CR19
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.11.5851
– volume: 182
  start-page: 1526
  year: 2009
  ident: 441_CR26
  publication-title: J Immunol
  doi: 10.4049/jimmunol.182.3.1526
– volume: 17
  start-page: 555
  year: 1999
  ident: 441_CR32
  publication-title: Nat Biotechnol
  doi: 10.1038/9858
– volume: 1
  start-page: 109
  year: 1999
  ident: 441_CR3
  publication-title: In Silico Biol
  doi: 10.3233/ISB-00010
– volume: 180
  start-page: 5092
  year: 2008
  ident: 441_CR23
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.7.5092
– volume: 94
  start-page: 10850
  year: 1997
  ident: 441_CR4
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.20.10850
– volume: 57
  start-page: 33
  year: 2005
  ident: 441_CR20
  publication-title: Immunogenetics
  doi: 10.1007/s00251-005-0781-7
– volume: 4
  start-page: e7448
  year: 2009
  ident: 441_CR10
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0007448
– volume: 35
  start-page: 2295
  year: 2005
  ident: 441_CR12
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200425811
– volume: 14
  start-page: 2132
  year: 2005
  ident: 441_CR6
  publication-title: Protein Sci
  doi: 10.1110/ps.051352405
– volume: 11
  start-page: 241
  year: 1999
  ident: 441_CR22
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80099-0
– volume: 295
  start-page: 879
  year: 2000
  ident: 441_CR1
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3392
– volume: 255
  start-page: 1264
  year: 1992
  ident: 441_CR8
  publication-title: Science
  doi: 10.1126/science.1546329
– volume: 24
  start-page: 1397
  year: 2008
  ident: 441_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn128
– volume: 1
  start-page: 491
  year: 1994
  ident: 441_CR39
  publication-title: Immunity
  doi: 10.1016/1074-7613(94)90091-4
– volume: 7
  start-page: 131
  year: 2006
  ident: 441_CR5
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-131
– volume: 5
  start-page: e1000327
  year: 2009
  ident: 441_CR18
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000327
– volume: 62
  start-page: 1025
  year: 2005
  ident: 441_CR34
  publication-title: Cell Mol Life Sci: CMLS
  doi: 10.1007/s00018-005-4528-2
– volume: 156
  start-page: 3755
  year: 1996
  ident: 441_CR30
  publication-title: J Immunol
  doi: 10.4049/jimmunol.156.10.3755
– volume: 25
  start-page: 83
  year: 2009
  ident: 441_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn579
– volume: 279
  start-page: 10142
  year: 2004
  ident: 441_CR11
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M312816200
– volume: 55
  start-page: 797
  year: 2004
  ident: 441_CR15
  publication-title: Immunogenetics
  doi: 10.1007/s00251-004-0647-4
– volume: 50
  start-page: 213
  year: 1999
  ident: 441_CR25
  publication-title: Immunogenetics
  doi: 10.1007/s002510050595
– volume: 37
  start-page: 169
  year: 2009
  ident: 441_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn664
– volume: 2
  start-page: e796
  year: 2007
  ident: 441_CR21
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000796
– volume: 153
  start-page: 1833
  year: 2008
  ident: 441_CR33
  publication-title: Arch Virol
  doi: 10.1007/s00705-008-0194-7
– volume: 25
  start-page: 2823
  year: 2007
  ident: 441_CR36
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.12.038
– volume: 9
  start-page: 1
  year: 2008
  ident: 441_CR29
  publication-title: BMC Immunology
  doi: 10.1186/1471-2172-9-1
– volume: 151
  start-page: 3407
  year: 1993
  ident: 441_CR2
  publication-title: J Immunol
  doi: 10.4049/jimmunol.151.7.3407
– volume: 180
  start-page: 3210
  year: 2008
  ident: 441_CR28
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.5.3210
– volume: 169
  start-page: 4161
  year: 2002
  ident: 441_CR14
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.8.4161
– volume: 28
  start-page: 4029
  year: 1998
  ident: 441_CR31
  publication-title: Eur J Immunol
  doi: 10.1002/(SICI)1521-4141(199812)28:12<4029::AID-IMMU4029>3.0.CO;2-N
– ident: 441_CR16
  doi: 10.7551/mitpress/3679.001.0001
– volume: 7
  start-page: 149
  year: 2001
  ident: 441_CR27
  publication-title: Mol Med
  doi: 10.1007/BF03401948
– volume: 17
  start-page: 51
  year: 1999
  ident: 441_CR38
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.17.1.51
– volume: 171
  start-page: 1741
  year: 2003
  ident: 441_CR24
  publication-title: J Immunol
  doi: 10.4049/jimmunol.171.4.1741
– volume: 61
  start-page: 1
  year: 2009
  ident: 441_CR9
  publication-title: Immunogenetics
  doi: 10.1007/s00251-008-0341-z
– volume: 2
  start-page: 155
  year: 2003
  ident: 441_CR7
  publication-title: Appl Bioinformatics
– volume: 8
  start-page: 424
  year: 2007
  ident: 441_CR13
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-424
SSID ssj0015926
Score 2.4377663
Snippet Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 357
SubjectTerms Allergology
Antigen presentation
ATP-Binding Cassette Transporters - metabolism
Biomedical and Life Sciences
Biomedicine
Cell Biology
CTL epitope
Cytotoxicity
Epitopes, T-Lymphocyte
Gene Function
Histocompatibility Antigens Class I - immunology
HLA
Human Genetics
Humans
Immunology
Leukocytes
Ligands
Lymphocytes
Methods
MHC class I pathway
MHC polymorphism
Original Paper
Pan-specific prediction
Peptides
Proteasome Endopeptidase Complex - physiology
Protein Transport
Proteins
T-Lymphocytes, Cytotoxic - immunology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RIhAXBOXRUEA-cAJZZONXwqVCK6oFsb3QlfZm2V6HIqFs6G6F-u-ZcR5oeewlF9tSMuPxfJNvPAPwytcI4xEpcx1CyWXlBZGEnmvpBDpYE1Sgu8Pzcz1byE9LtexzczZ9WuVwJqaDerUO9I_8rZAaoUOhxGn7g1PTKCJX-w4aB3CbKpdRRpdZjvEWOurUbY2CdgSRk8lAauaphig6dp6YYAQEXO64pYParf-FOP9OnPyDPU1O6ewB3O_RJHvfqf8h3IrNEdzp-kveHMHdec-cP4LT87idXnxG23_H8MHphiVlCbH5bMoCQWj2kVF74p_uhsUW7byNrL2i9WlnPobF2YeL6Yz3zRN4UFW-5brUCqOTIq8Lb0RA413JwqMQY1HXwqOPksKsXBmJaZSrwnthfBnJQkWtaieewGGzbuIxsCBVCNoZjaOoQl_VGIYgMjJauYkuZQb5IDsb-sri1ODiux1rIidxWxS3JXFbXPJ6XNJ2ZTX2TT5GhVj3FY89u_hSENmKgWmJoX0GJ4OWbG98GztulQzYOIpWQ1SIa-L6emONEHlFJOaeKbJIlY9wytNO6-ObFrkwFQ5mYHb2wziBanbvjjTfLlPtbgxQldRVBm-GnfP7vf8rgGd7v_IE7nUpDfRr6Dkcbq-u4wtESlv_MtnDLwCbCQc
  priority: 102
  providerName: ProQuest
Title NetCTLpan: pan-specific MHC class I pathway epitope predictions
URI https://link.springer.com/article/10.1007/s00251-010-0441-4
https://www.ncbi.nlm.nih.gov/pubmed/20379710
https://www.proquest.com/docview/346163253
https://www.proquest.com/docview/733090640
https://www.proquest.com/docview/742710080
https://pubmed.ncbi.nlm.nih.gov/PMC2875469
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_RTSBeEAzYwkblB55AkVJ_JrxMbdRSPlohWKXyZMWuA0gordZOaP89Z-cDFcYkXuKHO0fJnS93l599B_DClBjGY6QcS2vTmGeGeZDQxJIXDB2sssL6s8OzuZwu-LulWDbnuLftbvcWkgxf6u6wWwiH4wDeog-PeQ8OhU_dcREv6LCDDkQWeqz5VB1Dx8GghTJvusWeM-qVxfqmOPPv7ZJ_YKbBFU0ewoMmhiTDWumP4I6rjuBu3VXy-gjuzRq8_DGcz90uv_iAFv-a4CX25yr93iAym-bE-sCZvCW-KfHP4pq4DVr3xpHNpZ8f1uMTWEzGF_k0blomxFZkyS6WqRSYk9CkpEYxiya74tRwOXC0LJlBz8SZWhWp8_giX1FjmDKp83bJSlEW7CkcVOvKnQCxXFgrCyWRioozWYnJB8ZDSopiIFMeQdLKTtumnrhva_FDd5WQg7g1ilt7cWuc8rKbsqmLadzGfIIK0cVX_NjpxWfqIVZMR1NM6CM4bbWkG5PbaoZvKRkVLALSUdFWPABSVG59tdWKsSTz0OUtLJyGekfIclxrvXtSmjCVITECtbceOgZfqXufUn3_Fip2Y1oquMwieNWunN_P_U8BPPsv7lO4X29s8D-IzuBgd3nlnmO8tDN96Kml6sPhcDIazf345sv7MY6j8fzjJ6TmMu8HG_oFS4kMQA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61qXhcEJRHl_LwAS6gVTe217uLhCoIrRKaRAgSqTezdrwtEtosTaoqP4r_yMy-UHjk1stebK92xzPjb_zZMwAvTIYwHpGyr6yNfZkYQSSh8ZVMBS6wkQ0t3R0ejVV_Kj-ehqdb8LO5C0PHKhufWDrq2dzSHvmBkAqhAw_FYfHDp6JRRK42FTQqrThxqyuM2BZvBx9wel9yfnw06fX9uqiAb8MkWPoqViGidh5k3ETColLPJDf4csezTBj03VJEszR2xMDJGTdGRCZ2pLkiC7NU4Hu3YUcKjGQ6sPP-aPzpc0tbhElZ3422CRC2drsNjRqUWUsRSvgl94wQxJdrC-F2ls7_hXH_Pqr5B19bLoPHd-FOjV_Zu0rh7sGWy3fhRlXRcrULN0c1V38fDsdu2ZsM0du8Yfjw6U4nnUtio36PWQLtbMCoIPJVumKuQM9SOFZc0PjSFh7A9Fok-xA6-Tx3e8CsDK1VaaSwFZXGJBkGPojFIhWmXRVLD4JGdtrWucyppMZ33WZhLsWtUdyaxK1xyKt2SFEl8tjUeQ8nRKdn6Gj19AsnehdD4TiQyoP9ZpZ0be4L3SqnB6xtRTsl8iXN3fxyoSMhgoRo0w1dJC9zLWGXR9Wst1_KAxEl2OhBtKYPbQfKEr7ekn87L7OFY0gcSpV48LrRnN_f_V8BPN74l8_hVn8yGurhYHyyD7erAxW0MfUEOsuLS_cUcdrSPKutg8HX6zbIX5SfRYY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61RVRcEBRol_LwAS6gVTe2195FQhVKiRLaREg0Um5m7XgBqdqkTaoqP41_x8y-UHjk1stebGc345nxN_7sGYBXNkcYj0g5VM4loUytIJLQhkpmAhdY7WJHd4eHI9Ufy0-TeLIFP5u7MHSssvGJpaOezhztkR8JqRA68Fgc5fWpiM8nveP5ZUgFpIhobappVBpy6lc3GL0t3g9OcKpfc977eN7th3WBgdDFabQMVaJiRPA8yrnVwqGCTyW3-CLP81xY9ONS6GmWeGLj5JRbK7RNPGmxyOM8E_i723BHi7hDJqYnbayHIKGs9EYbBghgO52GUI3K_KUIKsKShUYwEsq1JXE7z2b_Qrt_H9r8g7ktF8TeA7hfI1n2oVK9h7Dliz24W9W2XO3B7rBm7R_B8cgvu-dn6HfeMXyEdLuTTiixYb_LHMF3NmBUGvkmWzE_Rx8z92x-ReNLq3gM41uR6xPYKWaFPwDmZOycyrTCVlQfm-YYAiEq0yrOOiqRAUSN7Iyrs5pTcY0L0-ZjLsVtUNyGxG1wyJt2yLxK6bGp8wFOiMm-ocs14y-ciF4MipNIqgAOm1kyteEvTKumAbC2FS2WaJis8LPrhdFCRCkRqBu6SF5mXcIu-9Wst1_KI6FTbAxAr-lD24Hyha-3FD--l3nDMTiOpUoDeNtozu_v_q8Anm78ly9hF83QnA1Gp4dwrzpZQTtUz2BneXXtnyNgW9oXpWkw-HrbtvgLmutIVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NetCTLpan%3A+pan-specific+MHC+class+I+pathway+epitope+predictions&rft.jtitle=Immunogenetics+%28New+York%29&rft.au=Stranzl%2C+Thomas&rft.au=Larsen%2C+Mette+Voldby&rft.au=Lundegaard%2C+Claus&rft.au=Nielsen%2C+Morten&rft.date=2010-06-01&rft.issn=0093-7711&rft.eissn=1432-1211&rft.volume=62&rft.issue=6&rft.spage=357&rft.epage=368&rft_id=info:doi/10.1007%2Fs00251-010-0441-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00251_010_0441_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-7711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-7711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-7711&client=summon