Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus
Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spin...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 38; no. 3; pp. 555 - 569 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.03.2013
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6chiCX3CR1lo) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6cloCX3CR1hi) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.
[Display omitted]
► Breached BBB is not a preferred entry route for monocytes infiltrating injured SC ► M2 macrophage homing to injured SC is orchestrated by the brain choroid plexus ► The choroid plexus and CSF provide trafficking monocytes with an M2-biased milieu ► M1 macrophages home to injured SC via leptomeninges, in a CCL2-dependent manner |
---|---|
AbstractList | Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function. Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6chiCX3CR1lo) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6cloCX3CR1hi) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function. Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6chiCX3CR1lo) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6cloCX3CR1hi) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function. [Display omitted] ► Breached BBB is not a preferred entry route for monocytes infiltrating injured SC ► M2 macrophage homing to injured SC is orchestrated by the brain choroid plexus ► The choroid plexus and CSF provide trafficking monocytes with an M2-biased milieu ► M1 macrophages home to injured SC via leptomeninges, in a CCL2-dependent manner Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function. Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c hi CX3CR1 lo ) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c lo CX3CR1 hi ) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function. |
Author | Rosenzweig, Neta Kim, Ki-Wook Yovel, Gili Bendel, Peter Lira, Sergio A. Kalchenko, Vyacheslav Klein, Eugenia Shechter, Ravid Jung, Steffen Ruckh, Julia Miller, Omer London, Anat Schwartz, Michal |
AuthorAffiliation | 4 Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel 3 The Irving and Cherna Moskowitz Center for Nano and Bio Nano Imaging, The Weizmann Institute of Science, Rehovot 76100, Israel 2 Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel 1 Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel 6 Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029-6574, USA 5 Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel |
AuthorAffiliation_xml | – name: 1 Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel – name: 2 Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel – name: 4 Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel – name: 6 Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029-6574, USA – name: 5 Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel – name: 3 The Irving and Cherna Moskowitz Center for Nano and Bio Nano Imaging, The Weizmann Institute of Science, Rehovot 76100, Israel |
Author_xml | – sequence: 1 givenname: Ravid surname: Shechter fullname: Shechter, Ravid email: ravid.shechter@weizmann.ac.il organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 2 givenname: Omer surname: Miller fullname: Miller, Omer organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 3 givenname: Gili surname: Yovel fullname: Yovel, Gili organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 4 givenname: Neta surname: Rosenzweig fullname: Rosenzweig, Neta organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 5 givenname: Anat surname: London fullname: London, Anat organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 6 givenname: Julia surname: Ruckh fullname: Ruckh, Julia organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 7 givenname: Ki-Wook surname: Kim fullname: Kim, Ki-Wook organization: Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 8 givenname: Eugenia surname: Klein fullname: Klein, Eugenia organization: The Irving and Cherna Moskowitz Center for Nano and Bio Nano Imaging, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 9 givenname: Vyacheslav surname: Kalchenko fullname: Kalchenko, Vyacheslav organization: Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 10 givenname: Peter surname: Bendel fullname: Bendel, Peter organization: Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 11 givenname: Sergio A. surname: Lira fullname: Lira, Sergio A. organization: Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029-6574, USA – sequence: 12 givenname: Steffen surname: Jung fullname: Jung, Steffen organization: Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 13 givenname: Michal surname: Schwartz fullname: Schwartz, Michal email: michal.schwartz@weizmann.ac.il organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23477737$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURD_gHyBkiQuXDR7bidcckOiKj5VaFRU4W44z6TpK7MVOKvrv8Wq3CHqgJ1uaZ17NO_OeFkc-eCyKl0BLoFC_7Us3jrN3JaPAS8pKCuxJcQJUyYWAJT3a_aVYyBr4cXGaUk8piErRZ8Ux40JKyeVJ4a_RxtlNI_qJhI6co8fOWWcGcsnIpbExbDfmBhOZAln7fo7Ykm9b5zOwCrEl60Suot1gmqKZcq25I9c4hgnJeTTOk9UmxOBa8nXAX3N6XjztzJDwxeE9K358-vh99WVxcfV5vfpwsbB5wGlRLcFyypbUKGU6a5SFZtkKxbtWqboGq2phoG04WtZYQKOMkgYaW9lGttjxs-L9Xnc7NyO2NruLZtDb6EYT73QwTv9b8W6jb8KtFgAVk5AF3hwEYvg5Z3d6dMniMBiPYU4aasFqnhfMHkc5qBqUEFVGXz9A-zDHvMudIFNc1aqWmXr19_B_pr6_Wgbe7YF8nZQidtq6yUwu7Ly4QQPVu4joXu8joncR0ZTpHJHcLB403-s_0nbYKOaz3TqMOlmH3mLrItpJt8H9X-A3YNrYqQ |
CitedBy_id | crossref_primary_10_1186_1742_2094_11_98 crossref_primary_10_1152_ajpgi_00229_2024 crossref_primary_10_1016_j_neuron_2014_07_027 crossref_primary_10_1161_CIRCRESAHA_116_308022 crossref_primary_10_1186_s12974_020_01860_y crossref_primary_10_1111_jnc_12705 crossref_primary_10_1016_j_ibror_2019_08_002 crossref_primary_10_1186_s12987_020_00196_2 crossref_primary_10_1007_s12017_023_08769_8 crossref_primary_10_1016_j_imbio_2013_09_001 crossref_primary_10_1172_jci_insight_86667 crossref_primary_10_1186_s12974_022_02458_2 crossref_primary_10_1016_j_bbi_2013_04_002 crossref_primary_10_3389_fimmu_2018_01066 crossref_primary_10_1002_cpmo_5 crossref_primary_10_1371_journal_pone_0145773 crossref_primary_10_1523_JNEUROSCI_3644_14_2015 crossref_primary_10_1007_s12035_014_9035_8 crossref_primary_10_1080_15622975_2021_1939154 crossref_primary_10_1038_s41593_020_0618_6 crossref_primary_10_1038_nrn3722 crossref_primary_10_1155_2022_8100195 crossref_primary_10_4049_jimmunol_1302401 crossref_primary_10_3389_fcell_2020_617879 crossref_primary_10_1371_journal_pone_0132329 crossref_primary_10_3389_fimmu_2020_00997 crossref_primary_10_1016_j_neuron_2015_01_013 crossref_primary_10_1016_j_neuroscience_2021_04_026 crossref_primary_10_1016_j_neuroscience_2020_02_014 crossref_primary_10_1111_cns_70105 crossref_primary_10_1002_nep3_22 crossref_primary_10_1371_journal_pbio_2005264 crossref_primary_10_2967_jnumed_120_243600 crossref_primary_10_3389_fimmu_2017_01666 crossref_primary_10_1016_j_expneurol_2013_09_013 crossref_primary_10_1038_s43587_021_00149_w crossref_primary_10_1186_s12974_022_02641_5 crossref_primary_10_1016_j_bbih_2021_100258 crossref_primary_10_1038_nm_4022 crossref_primary_10_1002_glia_23536 crossref_primary_10_1096_fj_14_261396 crossref_primary_10_1177_1535370219854668 crossref_primary_10_1021_nn505980z crossref_primary_10_1016_j_it_2020_07_005 crossref_primary_10_3389_fimmu_2014_00510 crossref_primary_10_1186_s40478_020_00968_9 crossref_primary_10_4103_NRR_NRR_D_24_00119 crossref_primary_10_1126_science_1242974 crossref_primary_10_2217_fnl_16_5 crossref_primary_10_3390_antiox9050421 crossref_primary_10_1002_glia_22676 crossref_primary_10_1016_j_bbi_2023_11_036 crossref_primary_10_3390_vetsci4010014 crossref_primary_10_1002_ca_23994 crossref_primary_10_4049_jimmunol_1401156 crossref_primary_10_3233_JAD_200387 crossref_primary_10_1016_j_ijbiomac_2025_140819 crossref_primary_10_1093_brain_aww270 crossref_primary_10_1002_adhm_202000353 crossref_primary_10_1002_wdev_365 crossref_primary_10_1093_brain_awv066 crossref_primary_10_1080_02699052_2018_1429023 crossref_primary_10_1007_s11302_022_09847_5 crossref_primary_10_1016_j_bbi_2015_07_021 crossref_primary_10_1016_j_celrep_2023_112629 crossref_primary_10_1016_j_ijdevneu_2019_04_005 crossref_primary_10_1016_j_tips_2019_11_001 crossref_primary_10_15252_embj_201489293 crossref_primary_10_1186_s12974_021_02370_1 crossref_primary_10_3233_JAD_210480 crossref_primary_10_1021_acschemneuro_0c00555 crossref_primary_10_1038_srep11872 crossref_primary_10_1016_j_heliyon_2023_e15689 crossref_primary_10_1016_j_it_2024_08_002 crossref_primary_10_1126_science_abf7844 crossref_primary_10_1186_s12974_019_1563_8 crossref_primary_10_3390_cancers14184394 crossref_primary_10_1016_j_neuroscience_2014_11_018 crossref_primary_10_1111_jnc_13607 crossref_primary_10_1016_j_clim_2023_109880 crossref_primary_10_3389_fimmu_2020_00430 crossref_primary_10_1186_s12974_022_02632_6 crossref_primary_10_34133_2021_4189516 crossref_primary_10_1111_imr_12528 crossref_primary_10_1016_j_drudis_2015_05_003 crossref_primary_10_1186_s12974_014_0201_8 crossref_primary_10_1016_j_imlet_2015_08_007 crossref_primary_10_1038_s41467_023_40513_5 crossref_primary_10_1016_j_neuroscience_2017_02_051 crossref_primary_10_18632_aging_205912 crossref_primary_10_1016_j_expneurol_2013_11_024 crossref_primary_10_1016_j_neuroscience_2015_08_064 crossref_primary_10_1126_science_aai8231 crossref_primary_10_1172_JCI135530 crossref_primary_10_1186_s12974_016_0547_1 crossref_primary_10_1002_cne_23363 crossref_primary_10_1007_s00018_023_05013_1 crossref_primary_10_4049_jimmunol_1900844 crossref_primary_10_1016_j_pediatrneurol_2019_08_007 crossref_primary_10_3390_cells10061499 crossref_primary_10_1186_s40478_023_01580_3 crossref_primary_10_1016_j_ymeth_2019_07_023 crossref_primary_10_1186_s12987_023_00502_8 crossref_primary_10_1016_j_ejphar_2021_173878 crossref_primary_10_1016_j_jcis_2019_04_047 crossref_primary_10_1016_j_bioactmat_2022_10_009 crossref_primary_10_1021_nn4036014 crossref_primary_10_3171_2019_7_JNS19879 crossref_primary_10_1007_s11481_015_9618_9 crossref_primary_10_1016_j_coviro_2017_12_003 crossref_primary_10_1093_brain_awv395 crossref_primary_10_1186_s13287_015_0202_2 crossref_primary_10_3389_fphar_2019_00286 crossref_primary_10_1515_revneuro_2022_0021 crossref_primary_10_31887_DCNS_2019_21_1_mschwartz crossref_primary_10_1016_j_arabjc_2021_103534 crossref_primary_10_1016_j_bbi_2017_11_018 crossref_primary_10_1016_j_jpsychires_2020_07_013 crossref_primary_10_3389_fnins_2014_00359 crossref_primary_10_1038_ncomms8967 crossref_primary_10_1038_s41531_021_00180_z crossref_primary_10_1523_JNEUROSCI_5218_14_2015 crossref_primary_10_1038_s42255_024_01079_8 crossref_primary_10_3389_fnana_2019_00015 crossref_primary_10_1155_2017_6392592 crossref_primary_10_3390_cells11172692 crossref_primary_10_1038_s41419_025_07336_2 crossref_primary_10_1074_jbc_M114_593285 crossref_primary_10_1016_j_molmed_2017_07_005 crossref_primary_10_1088_1748_605X_ac1d3c crossref_primary_10_3390_ijms21124539 crossref_primary_10_3389_fncel_2018_00507 crossref_primary_10_1016_j_molmed_2018_04_003 crossref_primary_10_1016_j_bbadis_2015_09_017 crossref_primary_10_1124_pr_117_014647 crossref_primary_10_1186_s12974_015_0440_3 crossref_primary_10_1016_j_bbi_2015_06_010 crossref_primary_10_3389_fncel_2014_00262 crossref_primary_10_1007_s00109_018_1672_3 crossref_primary_10_1186_1742_2094_11_23 crossref_primary_10_1038_s41598_019_39007_6 crossref_primary_10_1084_jem_20212121 crossref_primary_10_1126_sciimmunol_abk0391 crossref_primary_10_3389_fimmu_2021_620698 crossref_primary_10_3389_fimmu_2022_903796 crossref_primary_10_1111_cpr_13050 crossref_primary_10_1007_s11064_014_1429_5 crossref_primary_10_4103_glioma_glioma_4_24 crossref_primary_10_1189_jlb_1A0314_170R crossref_primary_10_1016_j_neuron_2023_04_011 crossref_primary_10_1007_s11481_019_09887_6 crossref_primary_10_3389_fncel_2020_00078 crossref_primary_10_1016_j_stem_2014_06_009 crossref_primary_10_3390_life13061274 crossref_primary_10_1038_s41593_024_01847_5 crossref_primary_10_1016_j_biomaterials_2017_07_013 crossref_primary_10_3389_fimmu_2019_02558 crossref_primary_10_1016_j_imbio_2014_05_002 crossref_primary_10_1186_s12977_019_0506_x crossref_primary_10_1186_s12987_016_0027_0 crossref_primary_10_1021_acs_jproteome_6b00604 crossref_primary_10_1080_02699052_2025_2450600 crossref_primary_10_1016_j_devcel_2020_01_027 crossref_primary_10_1016_j_conb_2016_04_003 crossref_primary_10_1007_s00401_017_1758_y crossref_primary_10_1007_s00401_021_02384_2 crossref_primary_10_3389_fncel_2019_00248 crossref_primary_10_3389_fimmu_2020_01781 crossref_primary_10_3389_fimmu_2021_771551 crossref_primary_10_1126_sciadv_aav5086 crossref_primary_10_4103_1673_5374_355747 crossref_primary_10_1155_2013_945034 crossref_primary_10_3389_fimmu_2019_02789 crossref_primary_10_1038_ncomms3597 crossref_primary_10_1016_j_pain_2014_03_012 crossref_primary_10_3390_ijms22189706 crossref_primary_10_1186_s13073_023_01155_w crossref_primary_10_1007_s00401_014_1267_1 crossref_primary_10_1002_glia_24445 crossref_primary_10_1016_j_ymeth_2015_03_023 crossref_primary_10_3389_fimmu_2019_00790 crossref_primary_10_3389_fncel_2020_00018 crossref_primary_10_1016_j_celrep_2016_12_041 crossref_primary_10_1186_s40478_023_01547_4 crossref_primary_10_3389_fneur_2019_00718 crossref_primary_10_1152_physrev_00068_2017 crossref_primary_10_3389_fncel_2015_00039 crossref_primary_10_1016_j_expneurol_2014_04_007 crossref_primary_10_1523_JNEUROSCI_4369_13_2014 crossref_primary_10_1038_nrn3921 crossref_primary_10_1016_j_celrep_2023_113313 crossref_primary_10_1002_dad2_12517 crossref_primary_10_1038_s41598_017_09639_7 crossref_primary_10_1111_ejn_15609 crossref_primary_10_1007_s00018_022_04644_0 crossref_primary_10_1161_ATVBAHA_114_304650 crossref_primary_10_1016_j_neubiorev_2016_06_014 crossref_primary_10_1146_annurev_physiol_022516_034356 crossref_primary_10_1155_2016_6986175 crossref_primary_10_1016_j_cellimm_2014_07_002 crossref_primary_10_1016_j_brainresbull_2020_02_009 crossref_primary_10_1016_j_stem_2017_03_024 crossref_primary_10_1186_s13024_021_00458_z crossref_primary_10_1242_dev_194449 crossref_primary_10_3389_fimmu_2014_00127 crossref_primary_10_1002_jnr_23612 crossref_primary_10_1007_s00281_016_0608_7 crossref_primary_10_1371_journal_pone_0153758 crossref_primary_10_1186_s13287_017_0677_0 crossref_primary_10_1093_brain_awaa249 crossref_primary_10_3389_fmolb_2021_752465 crossref_primary_10_1038_s41583_020_0263_9 crossref_primary_10_1186_s12974_018_1212_7 crossref_primary_10_1096_fj_202000669RR crossref_primary_10_1242_dmm_014886 crossref_primary_10_5483_BMBRep_2021_54_4_205 crossref_primary_10_3389_fphar_2018_00445 crossref_primary_10_1038_nm_3653 crossref_primary_10_3389_fimmu_2015_00249 crossref_primary_10_2217_imt_15_106 crossref_primary_10_1126_science_aaf6260 crossref_primary_10_3390_ijms242417297 crossref_primary_10_1093_brain_awab203 crossref_primary_10_1038_s41467_019_08352_5 crossref_primary_10_1007_s00414_020_02384_z crossref_primary_10_1016_j_coi_2022_102182 crossref_primary_10_1038_s41598_021_86593_5 crossref_primary_10_1016_j_mad_2019_111148 crossref_primary_10_1111_jnc_12814 crossref_primary_10_3389_fimmu_2021_753940 crossref_primary_10_1111_jcmm_13368 crossref_primary_10_1146_annurev_physiol_022516_034219 crossref_primary_10_1146_annurev_physiol_022516_034339 crossref_primary_10_1186_s12974_017_0909_3 crossref_primary_10_1016_j_tips_2019_04_013 crossref_primary_10_3389_fncel_2022_969002 crossref_primary_10_1021_acsbiomaterials_6b00706 crossref_primary_10_1016_j_smim_2017_12_005 crossref_primary_10_1016_j_tins_2024_05_010 crossref_primary_10_1016_j_cell_2020_12_040 crossref_primary_10_1016_j_ajps_2021_03_005 crossref_primary_10_1007_s13770_023_00616_y crossref_primary_10_1016_j_expneurol_2020_113310 crossref_primary_10_1016_j_neuron_2015_05_019 crossref_primary_10_5966_sctm_2015_0263 crossref_primary_10_1016_j_expneurol_2020_113430 crossref_primary_10_1186_s12987_023_00441_4 crossref_primary_10_3389_fimmu_2019_01048 crossref_primary_10_46833_reumatologiasp_2016_15_3_50_64 crossref_primary_10_15252_embj_201591468 crossref_primary_10_1007_s00401_018_1807_1 crossref_primary_10_1016_j_omtn_2023_08_023 crossref_primary_10_1016_j_pharmthera_2016_06_011 crossref_primary_10_1096_fj_202201767R crossref_primary_10_1038_srep26381 crossref_primary_10_1371_journal_pone_0148001 crossref_primary_10_1016_j_metrad_2024_100048 crossref_primary_10_1016_j_expneurol_2021_113704 crossref_primary_10_1080_15548627_2022_2039000 crossref_primary_10_15252_embr_202357003 crossref_primary_10_1016_j_it_2015_08_002 crossref_primary_10_1371_journal_pone_0114472 crossref_primary_10_3389_fnagi_2017_00193 crossref_primary_10_1021_acsami_1c12013 crossref_primary_10_3389_fncel_2020_00209 crossref_primary_10_1016_j_nbd_2017_02_001 crossref_primary_10_1038_srep16795 crossref_primary_10_1172_jci_insight_96902 crossref_primary_10_1186_s12974_014_0150_2 crossref_primary_10_2217_rme_14_9 crossref_primary_10_1113_JP272134 crossref_primary_10_1016_j_immuni_2016_03_008 crossref_primary_10_1002_embj_201386609 crossref_primary_10_1016_j_pnpbp_2015_03_008 crossref_primary_10_1186_s12987_025_00632_1 crossref_primary_10_1038_s41467_022_33015_3 crossref_primary_10_4103_1673_5374_235302 crossref_primary_10_1002_glia_23097 crossref_primary_10_1080_1061186X_2024_2417012 crossref_primary_10_1089_neu_2018_5806 crossref_primary_10_1016_j_neuron_2020_08_024 crossref_primary_10_1016_j_freeradbiomed_2015_04_031 crossref_primary_10_1186_s13287_018_0871_8 crossref_primary_10_3390_ijms21134768 crossref_primary_10_1016_j_celrep_2014_09_032 crossref_primary_10_1016_j_it_2024_04_006 crossref_primary_10_1016_j_mehy_2023_111212 crossref_primary_10_1038_mt_2015_46 crossref_primary_10_1007_s00281_019_00765_0 crossref_primary_10_1101_lm_028357_112 crossref_primary_10_3390_nano14080730 crossref_primary_10_1074_jbc_M114_579870 crossref_primary_10_1097_WNR_0000000000001839 crossref_primary_10_1186_s12974_024_03016_8 crossref_primary_10_3389_fimmu_2019_00085 crossref_primary_10_1038_s41590_021_00994_2 crossref_primary_10_7554_eLife_07288 crossref_primary_10_1189_jlb_4RI0115_006RR crossref_primary_10_15252_embj_201694202 crossref_primary_10_1016_j_actbio_2017_02_020 crossref_primary_10_1016_j_jtemb_2019_09_010 crossref_primary_10_1038_sc_2017_69 crossref_primary_10_1016_j_bbi_2014_11_007 crossref_primary_10_3390_ijms24076483 crossref_primary_10_1016_j_immuni_2016_04_024 crossref_primary_10_1111_bph_13139 crossref_primary_10_1007_s13770_023_00613_1 crossref_primary_10_1016_j_bioactmat_2023_07_003 crossref_primary_10_1186_s12974_016_0628_1 crossref_primary_10_1002_adfm_202407958 crossref_primary_10_1016_j_jcyt_2015_02_006 crossref_primary_10_1002_advs_202101433 crossref_primary_10_1002_stem_2193 crossref_primary_10_1016_j_biomaterials_2015_10_015 crossref_primary_10_1016_j_bbi_2015_11_006 crossref_primary_10_1159_000369350 crossref_primary_10_1016_j_expneurol_2020_113232 crossref_primary_10_1016_j_nbd_2019_104722 crossref_primary_10_1016_j_jneuroim_2015_11_004 crossref_primary_10_1038_s41590_018_0086_2 crossref_primary_10_1172_jci_insight_152616 crossref_primary_10_1016_j_injury_2015_01_007 crossref_primary_10_3389_fncel_2014_00461 crossref_primary_10_4049_jimmunol_1701093 crossref_primary_10_1016_j_immuni_2016_02_015 crossref_primary_10_1016_j_tins_2021_07_002 crossref_primary_10_1016_j_bbi_2018_01_005 crossref_primary_10_1038_s41568_024_00700_y crossref_primary_10_3389_fimmu_2023_1325530 crossref_primary_10_26508_lsa_202000907 crossref_primary_10_3389_fnmol_2024_1419520 crossref_primary_10_1111_head_14088 crossref_primary_10_1080_14728222_2019_1661381 crossref_primary_10_1155_2015_361326 crossref_primary_10_1016_j_jneuroim_2014_09_016 crossref_primary_10_1016_j_jneuroim_2014_09_014 crossref_primary_10_1038_ni_3666 crossref_primary_10_1016_S1474_4422_14_70305_9 crossref_primary_10_1016_j_jneuroim_2018_06_003 crossref_primary_10_1099_jgv_0_000667 crossref_primary_10_1126_science_aad8670 crossref_primary_10_1212_NXI_0000000000000080 crossref_primary_10_3389_fncel_2014_00328 crossref_primary_10_1007_s00429_014_0759_z crossref_primary_10_1007_s00401_014_1310_2 crossref_primary_10_3390_jcm13237230 crossref_primary_10_1016_j_jconrel_2018_03_034 crossref_primary_10_1371_journal_pone_0168034 crossref_primary_10_1007_s12975_022_01111_7 crossref_primary_10_1016_j_biomaterials_2015_10_045 crossref_primary_10_1016_j_neuint_2025_105947 crossref_primary_10_3390_cells9030708 crossref_primary_10_1371_journal_pone_0113489 crossref_primary_10_1016_j_it_2016_08_001 crossref_primary_10_1016_j_cell_2021_04_003 crossref_primary_10_1016_j_bbi_2020_09_015 crossref_primary_10_1038_s41577_023_00836_2 crossref_primary_10_1016_j_jcyt_2015_07_014 crossref_primary_10_1002_advs_202309305 crossref_primary_10_1371_journal_ppat_1004873 crossref_primary_10_4049_jimmunol_1400700 crossref_primary_10_1089_ten_tea_2015_0019 crossref_primary_10_3389_fnins_2014_00363 crossref_primary_10_3389_fimmu_2020_609921 crossref_primary_10_1038_s41598_018_22872_y crossref_primary_10_1007_s00018_023_05073_3 crossref_primary_10_1093_rb_rbv012 crossref_primary_10_1186_s12974_021_02320_x crossref_primary_10_1016_j_expneurol_2019_112972 crossref_primary_10_1038_s41590_021_01012_1 crossref_primary_10_1016_j_biomaterials_2014_02_051 crossref_primary_10_1002_glia_23828 crossref_primary_10_3389_fbioe_2020_590549 crossref_primary_10_1158_0008_5472_CAN_18_1805 crossref_primary_10_1016_j_intimp_2024_111709 crossref_primary_10_1093_jimmun_vkae034 crossref_primary_10_1016_j_molmed_2015_02_002 crossref_primary_10_1016_j_immuni_2018_01_011 crossref_primary_10_1038_s41593_018_0212_3 crossref_primary_10_1016_j_immuni_2022_06_013 crossref_primary_10_1126_science_abo7649 crossref_primary_10_1186_s13578_021_00554_z crossref_primary_10_1016_j_cellimm_2014_05_010 crossref_primary_10_1007_s00401_019_01992_3 crossref_primary_10_3389_fncel_2021_757482 crossref_primary_10_1038_nature16939 crossref_primary_10_1016_j_bbih_2022_100458 crossref_primary_10_3389_fimmu_2024_1497839 crossref_primary_10_3390_nu17030496 crossref_primary_10_1038_s41420_022_00893_x crossref_primary_10_3390_neurosci3010001 crossref_primary_10_3389_fnagi_2022_872134 crossref_primary_10_1073_pnas_2114406119 crossref_primary_10_1111_cpr_12753 crossref_primary_10_1523_JNEUROSCI_2199_16_2016 crossref_primary_10_3109_21678421_2013_838413 crossref_primary_10_1523_JNEUROSCI_4317_15_2016 crossref_primary_10_1186_s12974_023_03003_5 crossref_primary_10_1021_acsbiomaterials_0c01779 crossref_primary_10_14712_fb2017063030085 crossref_primary_10_1002_prp2_795 crossref_primary_10_3390_ijms22179486 crossref_primary_10_1136_acupmed_2016_011107 crossref_primary_10_1016_j_jaut_2014_08_002 crossref_primary_10_1186_s13075_020_2146_x crossref_primary_10_1038_s41392_023_01486_5 crossref_primary_10_1007_s13311_020_00862_1 crossref_primary_10_1126_science_1252945 crossref_primary_10_1016_j_actbio_2014_08_007 crossref_primary_10_1016_j_expneurol_2017_04_012 crossref_primary_10_1016_j_expneurol_2017_06_002 crossref_primary_10_1186_s12974_020_1708_9 crossref_primary_10_1038_srep19406 crossref_primary_10_1093_nutrit_nuab068 crossref_primary_10_1523_JNEUROSCI_2149_19_2020 crossref_primary_10_1016_j_fsi_2021_11_026 crossref_primary_10_1038_srep20636 crossref_primary_10_1016_j_expneurol_2014_01_013 crossref_primary_10_1097_WCO_0000000000000550 crossref_primary_10_3389_fcell_2016_00060 crossref_primary_10_3390_cells12060853 crossref_primary_10_1016_j_biomaterials_2020_120475 crossref_primary_10_1038_s41586_022_05474_7 crossref_primary_10_1523_JNEUROSCI_3241_13_2013 crossref_primary_10_3389_fimmu_2023_1101564 crossref_primary_10_1016_j_jconrel_2013_11_001 crossref_primary_10_1186_s12974_022_02415_z crossref_primary_10_3389_fncel_2021_725573 crossref_primary_10_1038_jcbfm_2014_80 crossref_primary_10_1080_21505594_2020_1797352 crossref_primary_10_18632_oncotarget_12572 crossref_primary_10_1016_j_nbd_2017_08_006 crossref_primary_10_1016_j_biopha_2018_08_154 crossref_primary_10_1016_j_drudis_2022_01_004 crossref_primary_10_3389_fneur_2020_00189 crossref_primary_10_1007_s00281_019_00764_1 crossref_primary_10_1038_s41467_023_36759_8 crossref_primary_10_5607_en_2017_26_5_278 crossref_primary_10_1016_j_scib_2019_04_026 crossref_primary_10_1186_s40635_015_0066_x crossref_primary_10_1038_ni_2705 crossref_primary_10_1089_ten_tea_2015_0019_rev crossref_primary_10_1016_j_brainres_2015_04_047 crossref_primary_10_1016_j_jneuroim_2014_07_012 crossref_primary_10_3389_fnmol_2017_00090 crossref_primary_10_1016_j_procbio_2021_11_025 crossref_primary_10_1016_j_expneurol_2024_114866 crossref_primary_10_1002_adfm_201909331 crossref_primary_10_1002_glia_22809 crossref_primary_10_1038_s41467_018_06668_2 crossref_primary_10_1093_brain_awt259 crossref_primary_10_29252_shefa_8_4_90 crossref_primary_10_1016_j_mtbio_2022_100524 crossref_primary_10_1002_eji_202350761 crossref_primary_10_1186_s40478_019_0877_1 crossref_primary_10_1007_s12035_014_8934_z crossref_primary_10_1126_sciadv_abb6260 crossref_primary_10_1016_j_pnpbp_2016_04_013 crossref_primary_10_1016_j_smim_2022_101629 crossref_primary_10_1136_bmjnph_2023_000755 crossref_primary_10_1155_2015_197150 crossref_primary_10_1016_j_immuni_2017_06_007 crossref_primary_10_1016_j_jtemb_2017_11_012 crossref_primary_10_1007_s11010_017_3184_9 crossref_primary_10_1093_jleuko_qiae134 crossref_primary_10_1523_ENEURO_0077_15_2015 crossref_primary_10_1038_cddis_2017_542 crossref_primary_10_1523_JNEUROSCI_2405_14_2015 crossref_primary_10_14336_AD_2023_1107 crossref_primary_10_1126_sciadv_aav4111 crossref_primary_10_1172_JCI95612 crossref_primary_10_1172_JCI71544 crossref_primary_10_4049_jimmunol_1501177 crossref_primary_10_1016_j_jcyt_2019_02_002 crossref_primary_10_1523_JNEUROSCI_3046_16_2017 crossref_primary_10_3389_fimmu_2020_600822 crossref_primary_10_3389_fimmu_2024_1450688 |
Cites_doi | 10.1111/j.1399-0039.1990.tb01750.x 10.1186/1742-2094-9-193 10.1523/JNEUROSCI.3257-09.2009 10.1371/journal.pone.0034730 10.1172/JCI0215337 10.1371/journal.pmed.1000113 10.1002/eji.1830220423 10.1089/neu.2009.1111 10.1093/brain/awp144 10.1097/NEN.0b013e3181edbc1a 10.1371/journal.pone.0009380 10.1038/nri1733 10.1016/j.immuni.2006.01.005 10.1371/journal.pone.0027969 10.1093/brain/awh707 10.2174/1381612053507477 10.1186/1471-2377-7-30 10.1038/nri1130 10.1016/0006-8993(89)90542-8 10.1128/MCB.20.11.4106-4114.2000 10.1182/blood-2004-07-2505 10.1038/nn1701 10.1084/jem.20070075 10.1371/journal.pone.0013693 10.1089/neu.2006.23.635 10.1084/jem.20070885 10.1186/1743-8454-4-9 10.1038/nn2014 10.1038/nn2015 10.1038/jcbfm.2011.111 10.1073/pnas.0711175105 10.1038/jcbfm.2009.71 10.1038/nm0798-814 10.1084/jem.20102657 10.1038/nri1224 10.1038/ni.1716 10.1073/pnas.88.16.7438 10.1038/nature08478 10.1046/j.1460-9568.1999.00792.x |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Mar 21, 2013 2013 Elsevier Inc. 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Mar 21, 2013 – notice: 2013 Elsevier Inc. 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2013.02.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 569 |
ExternalDocumentID | PMC4115271 3513123181 23477737 10_1016_j_immuni_2013_02_012 S1074761313000939 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P01 DK072201 |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 3V. 4.4 457 4G. 53G 5GY 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAQFI AAUCE AAVLU AAXJY AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGHFR AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 OVD P2P PQQKQ PROAC RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I AALRI AAMRU AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- UHS X7M Y6R ZGI CGR CUY CVF ECM EFKBS EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c590t-581c30280a99afca9c1b8d493fd99661c964a1db3ec2bc1ea9a97a1bc5cb7def3 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 14:06:12 EDT 2025 Fri Jul 11 10:33:16 EDT 2025 Sun Aug 24 04:00:24 EDT 2025 Fri Jul 25 11:18:01 EDT 2025 Mon Jul 21 06:04:48 EDT 2025 Fri Jul 04 04:46:10 EDT 2025 Thu Apr 24 22:55:27 EDT 2025 Fri Feb 23 02:28:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-581c30280a99afca9c1b8d493fd99661c964a1db3ec2bc1ea9a97a1bc5cb7def3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1074761313000939 |
PMID | 23477737 |
PQID | 1629396967 |
PQPubID | 2031079 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4115271 proquest_miscellaneous_1642631072 proquest_miscellaneous_1319619445 proquest_journals_1629396967 pubmed_primary_23477737 crossref_citationtrail_10_1016_j_immuni_2013_02_012 crossref_primary_10_1016_j_immuni_2013_02_012 elsevier_sciencedirect_doi_10_1016_j_immuni_2013_02_012 |
PublicationCentury | 2000 |
PublicationDate | 2013-03-21 |
PublicationDateYYYYMMDD | 2013-03-21 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Yin, Henzl, Lorber, Nakazawa, Thomas, Jiang, Langer, Benowitz (bib40) 2006; 9 Kigerl, Gensel, Ankeny, Alexander, Donnelly, Popovich (bib13) 2009; 29 Basso, Fisher, Anderson, Jakeman, McTigue, Popovich (bib5) 2006; 23 Kleinewietfeld, Puentes, Borsellino, Battistini, Rötzschke, Falk (bib14) 2005; 105 Mills, Thompson, Mueller, Waickman, Jalkanen, Niemela, Airas, Bynoe (bib18) 2008; 105 Wilbanks, Streilein (bib39) 1992; 22 Fieschi, Sacchetti (bib9) 1967; 58 Reboldi, Coisne, Baumjohann, Benvenuto, Bottinelli, Lira, Uccelli, Lanzavecchia, Engelhardt, Sallusto (bib25) 2009; 10 Rapalino, Lazarov-Spiegler, Agranov, Velan, Yoles, Fraidakis, Solomon, Gepstein, Katz, Belkin (bib24) 1998; 4 Chinnery, Ruitenberg, McMenamin (bib8) 2010; 69 Mildner, Mack, Schmidt, Brück, Djukic, Zabel, Hille, Priller, Prinz (bib17) 2009; 132 Mills, Alabanza, Mahamed, Bynoe (bib19) 2012; 9 Kalderon (bib12) 2005; 11 Arnold, Henry, Poron, Baba-Amer, van Rooijen, Plonquet, Gherardi, Chazaud (bib3) 2007; 204 Jung, Aliberti, Graemmel, Sunshine, Kreutzberg, Sher, Littman (bib11) 2000; 20 Sun, Wang, Chen, Li, Cao, Lu, Chen, Sun, Luo, Fan (bib33) 2010; 5 Ajami, Bennett, Krieger, Tetzlaff, Rossi (bib1) 2007; 10 Anandasabapathy, Victora, Meredith, Feder, Dong, Kluger, Yao, Dustin, Nussenzweig, Steinman, Liu (bib2) 2011; 208 Bönner, Borg, Burghoff, Schrader (bib6) 2012; 7 Thomson, Ruedi, Glass, Moldenhauer, Moller, Low, Klemens, Massaia, Lucas (bib38) 1990; 35 Saederup, Cardona, Croft, Mizutani, Cotleur, Tsou, Ransohoff, Charo (bib26) 2010; 5 Mildner, Schmidt, Nitsche, Merkler, Hanisch, Mack, Heikenwalder, Brück, Priller, Prinz (bib16) 2007; 10 Radojicic, Nistor, Keirstead (bib22) 2007; 7 Synnestvedt, Furuta, Comerford, Louis, Karhausen, Eltzschig, Hansen, Thompson, Colgan (bib34) 2002; 110 Szmydynger-Chodobska, Strazielle, Gandy, Keefe, Zink, Ghersi-Egea, Chodobski (bib36) 2012; 32 Le Borgne, Etchart, Goubier, Lira, Sirard, van Rooijen, Caux, Aït-Yahia, Vicari, Kaiserlian, Dubois (bib15) 2006; 24 Ransohoff, Kivisäkk, Kidd (bib23) 2003; 3 Noble, Wrathall (bib21) 1989; 482 Takigawa, Yonezawa, Yoshitaka, Minaguchi, Kurosaki, Tanaka, Sado, Ohtsuka, Ozaki, Ninomiya (bib37) 2010; 27 Bartholomäus, Kawakami, Odoardi, Schläger, Miljkovic, Ellwart, Klinkert, Flügel-Koch, Issekutz, Wekerle, Flügel (bib4) 2009; 462 Nahrendorf, Swirski, Aikawa, Stangenberg, Wurdinger, Figueiredo, Libby, Weissleder, Pittet (bib20) 2007; 204 Slobodian, Krassioukov-Enns, Del Bigio (bib31) 2007; 4 Szmydynger-Chodobska, Strazielle, Zink, Ghersi-Egea, Chodobski (bib35) 2009; 29 Gordon, Taylor (bib10) 2005; 5 Shechter, London, Varol, Raposo, Cusimano, Yovel, Rolls, Mack, Pluchino, Martino (bib29) 2009; 6 Boven, Van Meurs, Van Zwam, Wierenga-Wolf, Hintzen, Boot, Aerts, Amor, Nieuwenhuis, Laman (bib7) 2006; 129 Schnell, Fearn, Klassen, Schwab, Perry (bib27) 1999; 11 Sedgwick, Schwender, Imrich, Dörries, Butcher, ter Meulen (bib28) 1991; 88 Streilein (bib32) 2003; 3 Shechter, Raposo, London, Sagi, Schwartz (bib30) 2011; 6 Rapalino (10.1016/j.immuni.2013.02.012_bib24) 1998; 4 Takigawa (10.1016/j.immuni.2013.02.012_bib37) 2010; 27 Wilbanks (10.1016/j.immuni.2013.02.012_bib39) 1992; 22 Arnold (10.1016/j.immuni.2013.02.012_bib3) 2007; 204 Shechter (10.1016/j.immuni.2013.02.012_bib30) 2011; 6 Mildner (10.1016/j.immuni.2013.02.012_bib16) 2007; 10 Synnestvedt (10.1016/j.immuni.2013.02.012_bib34) 2002; 110 Mildner (10.1016/j.immuni.2013.02.012_bib17) 2009; 132 Szmydynger-Chodobska (10.1016/j.immuni.2013.02.012_bib36) 2012; 32 Boven (10.1016/j.immuni.2013.02.012_bib7) 2006; 129 Ajami (10.1016/j.immuni.2013.02.012_bib1) 2007; 10 Noble (10.1016/j.immuni.2013.02.012_bib21) 1989; 482 Szmydynger-Chodobska (10.1016/j.immuni.2013.02.012_bib35) 2009; 29 Kleinewietfeld (10.1016/j.immuni.2013.02.012_bib14) 2005; 105 Reboldi (10.1016/j.immuni.2013.02.012_bib25) 2009; 10 Thomson (10.1016/j.immuni.2013.02.012_bib38) 1990; 35 Mills (10.1016/j.immuni.2013.02.012_bib18) 2008; 105 Radojicic (10.1016/j.immuni.2013.02.012_bib22) 2007; 7 Streilein (10.1016/j.immuni.2013.02.012_bib32) 2003; 3 Bönner (10.1016/j.immuni.2013.02.012_bib6) 2012; 7 Jung (10.1016/j.immuni.2013.02.012_bib11) 2000; 20 Kigerl (10.1016/j.immuni.2013.02.012_bib13) 2009; 29 Anandasabapathy (10.1016/j.immuni.2013.02.012_bib2) 2011; 208 Le Borgne (10.1016/j.immuni.2013.02.012_bib15) 2006; 24 Saederup (10.1016/j.immuni.2013.02.012_bib26) 2010; 5 Sedgwick (10.1016/j.immuni.2013.02.012_bib28) 1991; 88 Gordon (10.1016/j.immuni.2013.02.012_bib10) 2005; 5 Nahrendorf (10.1016/j.immuni.2013.02.012_bib20) 2007; 204 Slobodian (10.1016/j.immuni.2013.02.012_bib31) 2007; 4 Bartholomäus (10.1016/j.immuni.2013.02.012_bib4) 2009; 462 Basso (10.1016/j.immuni.2013.02.012_bib5) 2006; 23 Fieschi (10.1016/j.immuni.2013.02.012_bib9) 1967; 58 Yin (10.1016/j.immuni.2013.02.012_bib40) 2006; 9 Shechter (10.1016/j.immuni.2013.02.012_bib29) 2009; 6 Sun (10.1016/j.immuni.2013.02.012_bib33) 2010; 5 Kalderon (10.1016/j.immuni.2013.02.012_bib12) 2005; 11 Chinnery (10.1016/j.immuni.2013.02.012_bib8) 2010; 69 Mills (10.1016/j.immuni.2013.02.012_bib19) 2012; 9 Schnell (10.1016/j.immuni.2013.02.012_bib27) 1999; 11 Ransohoff (10.1016/j.immuni.2013.02.012_bib23) 2003; 3 16364958 - Brain. 2006 Feb;129(Pt 2):517-26 17485518 - J Exp Med. 2007 May 14;204(5):1057-69 20186338 - PLoS One. 2010;5(2):e9380 20038195 - J Neurotrauma. 2010 Apr;27(4):739-51 21788405 - J Exp Med. 2011 Aug 1;208(8):1695-705 16473831 - Immunity. 2006 Feb;24(2):191-201 19471279 - J Cereb Blood Flow Metab. 2009 Sep;29(9):1503-16 16689667 - J Neurotrauma. 2006 May;23(5):635-59 2137649 - Tissue Antigens. 1990 Jan;35(1):9-19 5583013 - Minerva Med. 1967 Dec 22;58(102):4684-8 9662373 - Nat Med. 1998 Jul;4(7):814-21 19531531 - Brain. 2009 Sep;132(Pt 9):2487-500 22883932 - J Neuroinflammation. 2012;9:193 19305396 - Nat Immunol. 2009 May;10(5):514-23 19829296 - Nature. 2009 Nov 5;462(7269):94-8 15613550 - Blood. 2005 Apr 1;105(7):2877-86 14668804 - Nat Rev Immunol. 2003 Nov;3(11):879-89 16699509 - Nat Neurosci. 2006 Jun;9(6):843-52 15853680 - Curr Pharm Des. 2005;11(10):1237-45 22514659 - PLoS One. 2012;7(4):e34730 10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14 19864556 - J Neurosci. 2009 Oct 28;29(43):13435-44 16322748 - Nat Rev Immunol. 2005 Dec;5(12):953-64 18026096 - Nat Neurosci. 2007 Dec;10(12):1544-53 18025128 - J Exp Med. 2007 Nov 26;204(12):3037-47 2706482 - Brain Res. 1989 Mar 13;482(1):57-66 21060874 - PLoS One. 2010;5(10):e13693 12370277 - J Clin Invest. 2002 Oct;110(7):993-1002 10564372 - Eur J Neurosci. 1999 Oct;11(10):3648-58 18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43 12876559 - Nat Rev Immunol. 2003 Jul;3(7):569-81 22205935 - PLoS One. 2011;6(12):e27969 17894867 - Cerebrospinal Fluid Res. 2007 Sep 25;4:9 18591671 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9325-30 17822568 - BMC Neurol. 2007;7:30 21829211 - J Cereb Blood Flow Metab. 2012 Jan;32(1):93-104 20720507 - J Neuropathol Exp Neurol. 2010 Sep;69(9):896-909 1551403 - Eur J Immunol. 1992 Apr;22(4):1031-6 19636355 - PLoS Med. 2009 Jul;6(7):e1000113 1651506 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7438-42 |
References_xml | – volume: 10 start-page: 1538 year: 2007 end-page: 1543 ident: bib1 article-title: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life publication-title: Nat. Neurosci. – volume: 22 start-page: 1031 year: 1992 end-page: 1036 ident: bib39 article-title: Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-beta publication-title: Eur. J. Immunol. – volume: 5 start-page: e13693 year: 2010 ident: bib26 article-title: Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice publication-title: PLoS ONE – volume: 69 start-page: 896 year: 2010 end-page: 909 ident: bib8 article-title: Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice publication-title: J. Neuropathol. Exp. Neurol. – volume: 5 start-page: 953 year: 2005 end-page: 964 ident: bib10 article-title: Monocyte and macrophage heterogeneity publication-title: Nat. Rev. Immunol. – volume: 482 start-page: 57 year: 1989 end-page: 66 ident: bib21 article-title: Distribution and time course of protein extravasation in the rat spinal cord after contusive injury publication-title: Brain Res. – volume: 4 start-page: 814 year: 1998 end-page: 821 ident: bib24 article-title: Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats publication-title: Nat. Med. – volume: 32 start-page: 93 year: 2012 end-page: 104 ident: bib36 article-title: Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier publication-title: J. Cereb. Blood Flow Metab. – volume: 208 start-page: 1695 year: 2011 end-page: 1705 ident: bib2 article-title: Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain publication-title: J. Exp. Med. – volume: 29 start-page: 13435 year: 2009 end-page: 13444 ident: bib13 article-title: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord publication-title: J. Neurosci. – volume: 3 start-page: 879 year: 2003 end-page: 889 ident: bib32 article-title: Ocular immune privilege: therapeutic opportunities from an experiment of nature publication-title: Nat. Rev. Immunol. – volume: 9 start-page: 193 year: 2012 ident: bib19 article-title: Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis publication-title: J. Neuroinflammation – volume: 11 start-page: 3648 year: 1999 end-page: 3658 ident: bib27 article-title: Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord publication-title: Eur. J. Neurosci. – volume: 129 start-page: 517 year: 2006 end-page: 526 ident: bib7 article-title: Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis publication-title: Brain – volume: 204 start-page: 1057 year: 2007 end-page: 1069 ident: bib3 article-title: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis publication-title: J. Exp. Med. – volume: 35 start-page: 9 year: 1990 end-page: 19 ident: bib38 article-title: Production and characterization of monoclonal antibodies to the glycosyl phosphatidylinositol-anchored lymphocyte differentiation antigen ecto-5′-nucleotidase (CD73) publication-title: Tissue Antigens – volume: 23 start-page: 635 year: 2006 end-page: 659 ident: bib5 article-title: Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains publication-title: J. Neurotrauma – volume: 27 start-page: 739 year: 2010 end-page: 751 ident: bib37 article-title: Separation of the perivascular basement membrane provides a conduit for inflammatory cells in a mouse spinal cord injury model publication-title: J. Neurotrauma – volume: 204 start-page: 3037 year: 2007 end-page: 3047 ident: bib20 article-title: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions publication-title: J. Exp. Med. – volume: 20 start-page: 4106 year: 2000 end-page: 4114 ident: bib11 article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion publication-title: Mol. Cell. Biol. – volume: 105 start-page: 2877 year: 2005 end-page: 2886 ident: bib14 article-title: CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset publication-title: Blood – volume: 3 start-page: 569 year: 2003 end-page: 581 ident: bib23 article-title: Three or more routes for leukocyte migration into the central nervous system publication-title: Nat. Rev. Immunol. – volume: 7 start-page: 30 year: 2007 ident: bib22 article-title: Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury publication-title: BMC Neurol. – volume: 9 start-page: 843 year: 2006 end-page: 852 ident: bib40 article-title: Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells publication-title: Nat. Neurosci. – volume: 462 start-page: 94 year: 2009 end-page: 98 ident: bib4 article-title: Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions publication-title: Nature – volume: 105 start-page: 9325 year: 2008 end-page: 9330 ident: bib18 article-title: CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 1503 year: 2009 end-page: 1516 ident: bib35 article-title: The role of the choroid plexus in neutrophil invasion after traumatic brain injury publication-title: J. Cereb. Blood Flow Metab. – volume: 7 start-page: e34730 year: 2012 ident: bib6 article-title: Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury publication-title: PLoS ONE – volume: 88 start-page: 7438 year: 1991 end-page: 7442 ident: bib28 article-title: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 191 year: 2006 end-page: 201 ident: bib15 article-title: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo publication-title: Immunity – volume: 110 start-page: 993 year: 2002 end-page: 1002 ident: bib34 article-title: Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia publication-title: J. Clin. Invest. – volume: 6 start-page: e1000113 year: 2009 ident: bib29 article-title: Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice publication-title: PLoS Med. – volume: 58 start-page: 4684 year: 1967 end-page: 4688 ident: bib9 article-title: [Physiopathological and clinical aspects of hypersplenism. Summary] publication-title: Minerva Med. – volume: 132 start-page: 2487 year: 2009 end-page: 2500 ident: bib17 article-title: CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system publication-title: Brain – volume: 6 start-page: e27969 year: 2011 ident: bib30 article-title: The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair publication-title: PLoS ONE – volume: 11 start-page: 1237 year: 2005 end-page: 1245 ident: bib12 article-title: Cell elimination as a strategy for repair in acute spinal cord injury publication-title: Curr. Pharm. Des. – volume: 5 start-page: e9380 year: 2010 ident: bib33 article-title: Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system publication-title: PLoS ONE – volume: 10 start-page: 1544 year: 2007 end-page: 1553 ident: bib16 article-title: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions publication-title: Nat. Neurosci. – volume: 4 start-page: 9 year: 2007 ident: bib31 article-title: Protein and synthetic polymer injection for induction of obstructive hydrocephalus in rats publication-title: Cerebrospinal Fluid Res. – volume: 10 start-page: 514 year: 2009 end-page: 523 ident: bib25 article-title: C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE publication-title: Nat. Immunol. – volume: 35 start-page: 9 year: 1990 ident: 10.1016/j.immuni.2013.02.012_bib38 article-title: Production and characterization of monoclonal antibodies to the glycosyl phosphatidylinositol-anchored lymphocyte differentiation antigen ecto-5′-nucleotidase (CD73) publication-title: Tissue Antigens doi: 10.1111/j.1399-0039.1990.tb01750.x – volume: 9 start-page: 193 year: 2012 ident: 10.1016/j.immuni.2013.02.012_bib19 article-title: Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-9-193 – volume: 29 start-page: 13435 year: 2009 ident: 10.1016/j.immuni.2013.02.012_bib13 article-title: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3257-09.2009 – volume: 7 start-page: e34730 year: 2012 ident: 10.1016/j.immuni.2013.02.012_bib6 article-title: Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury publication-title: PLoS ONE doi: 10.1371/journal.pone.0034730 – volume: 110 start-page: 993 year: 2002 ident: 10.1016/j.immuni.2013.02.012_bib34 article-title: Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia publication-title: J. Clin. Invest. doi: 10.1172/JCI0215337 – volume: 6 start-page: e1000113 year: 2009 ident: 10.1016/j.immuni.2013.02.012_bib29 article-title: Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice publication-title: PLoS Med. doi: 10.1371/journal.pmed.1000113 – volume: 22 start-page: 1031 year: 1992 ident: 10.1016/j.immuni.2013.02.012_bib39 article-title: Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-beta publication-title: Eur. J. Immunol. doi: 10.1002/eji.1830220423 – volume: 27 start-page: 739 year: 2010 ident: 10.1016/j.immuni.2013.02.012_bib37 article-title: Separation of the perivascular basement membrane provides a conduit for inflammatory cells in a mouse spinal cord injury model publication-title: J. Neurotrauma doi: 10.1089/neu.2009.1111 – volume: 132 start-page: 2487 year: 2009 ident: 10.1016/j.immuni.2013.02.012_bib17 article-title: CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system publication-title: Brain doi: 10.1093/brain/awp144 – volume: 69 start-page: 896 year: 2010 ident: 10.1016/j.immuni.2013.02.012_bib8 article-title: Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0b013e3181edbc1a – volume: 5 start-page: e9380 year: 2010 ident: 10.1016/j.immuni.2013.02.012_bib33 article-title: Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system publication-title: PLoS ONE doi: 10.1371/journal.pone.0009380 – volume: 5 start-page: 953 year: 2005 ident: 10.1016/j.immuni.2013.02.012_bib10 article-title: Monocyte and macrophage heterogeneity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1733 – volume: 24 start-page: 191 year: 2006 ident: 10.1016/j.immuni.2013.02.012_bib15 article-title: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo publication-title: Immunity doi: 10.1016/j.immuni.2006.01.005 – volume: 6 start-page: e27969 year: 2011 ident: 10.1016/j.immuni.2013.02.012_bib30 article-title: The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair publication-title: PLoS ONE doi: 10.1371/journal.pone.0027969 – volume: 129 start-page: 517 year: 2006 ident: 10.1016/j.immuni.2013.02.012_bib7 article-title: Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis publication-title: Brain doi: 10.1093/brain/awh707 – volume: 11 start-page: 1237 year: 2005 ident: 10.1016/j.immuni.2013.02.012_bib12 article-title: Cell elimination as a strategy for repair in acute spinal cord injury publication-title: Curr. Pharm. Des. doi: 10.2174/1381612053507477 – volume: 7 start-page: 30 year: 2007 ident: 10.1016/j.immuni.2013.02.012_bib22 article-title: Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury publication-title: BMC Neurol. doi: 10.1186/1471-2377-7-30 – volume: 3 start-page: 569 year: 2003 ident: 10.1016/j.immuni.2013.02.012_bib23 article-title: Three or more routes for leukocyte migration into the central nervous system publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1130 – volume: 482 start-page: 57 year: 1989 ident: 10.1016/j.immuni.2013.02.012_bib21 article-title: Distribution and time course of protein extravasation in the rat spinal cord after contusive injury publication-title: Brain Res. doi: 10.1016/0006-8993(89)90542-8 – volume: 20 start-page: 4106 year: 2000 ident: 10.1016/j.immuni.2013.02.012_bib11 article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.11.4106-4114.2000 – volume: 105 start-page: 2877 year: 2005 ident: 10.1016/j.immuni.2013.02.012_bib14 article-title: CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset publication-title: Blood doi: 10.1182/blood-2004-07-2505 – volume: 9 start-page: 843 year: 2006 ident: 10.1016/j.immuni.2013.02.012_bib40 article-title: Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells publication-title: Nat. Neurosci. doi: 10.1038/nn1701 – volume: 204 start-page: 1057 year: 2007 ident: 10.1016/j.immuni.2013.02.012_bib3 article-title: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis publication-title: J. Exp. Med. doi: 10.1084/jem.20070075 – volume: 5 start-page: e13693 year: 2010 ident: 10.1016/j.immuni.2013.02.012_bib26 article-title: Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice publication-title: PLoS ONE doi: 10.1371/journal.pone.0013693 – volume: 58 start-page: 4684 year: 1967 ident: 10.1016/j.immuni.2013.02.012_bib9 article-title: [Physiopathological and clinical aspects of hypersplenism. Summary] publication-title: Minerva Med. – volume: 23 start-page: 635 year: 2006 ident: 10.1016/j.immuni.2013.02.012_bib5 article-title: Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains publication-title: J. Neurotrauma doi: 10.1089/neu.2006.23.635 – volume: 204 start-page: 3037 year: 2007 ident: 10.1016/j.immuni.2013.02.012_bib20 article-title: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions publication-title: J. Exp. Med. doi: 10.1084/jem.20070885 – volume: 4 start-page: 9 year: 2007 ident: 10.1016/j.immuni.2013.02.012_bib31 article-title: Protein and synthetic polymer injection for induction of obstructive hydrocephalus in rats publication-title: Cerebrospinal Fluid Res. doi: 10.1186/1743-8454-4-9 – volume: 10 start-page: 1538 year: 2007 ident: 10.1016/j.immuni.2013.02.012_bib1 article-title: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life publication-title: Nat. Neurosci. doi: 10.1038/nn2014 – volume: 10 start-page: 1544 year: 2007 ident: 10.1016/j.immuni.2013.02.012_bib16 article-title: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions publication-title: Nat. Neurosci. doi: 10.1038/nn2015 – volume: 32 start-page: 93 year: 2012 ident: 10.1016/j.immuni.2013.02.012_bib36 article-title: Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2011.111 – volume: 105 start-page: 9325 year: 2008 ident: 10.1016/j.immuni.2013.02.012_bib18 article-title: CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0711175105 – volume: 29 start-page: 1503 year: 2009 ident: 10.1016/j.immuni.2013.02.012_bib35 article-title: The role of the choroid plexus in neutrophil invasion after traumatic brain injury publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2009.71 – volume: 4 start-page: 814 year: 1998 ident: 10.1016/j.immuni.2013.02.012_bib24 article-title: Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats publication-title: Nat. Med. doi: 10.1038/nm0798-814 – volume: 208 start-page: 1695 year: 2011 ident: 10.1016/j.immuni.2013.02.012_bib2 article-title: Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain publication-title: J. Exp. Med. doi: 10.1084/jem.20102657 – volume: 3 start-page: 879 year: 2003 ident: 10.1016/j.immuni.2013.02.012_bib32 article-title: Ocular immune privilege: therapeutic opportunities from an experiment of nature publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1224 – volume: 10 start-page: 514 year: 2009 ident: 10.1016/j.immuni.2013.02.012_bib25 article-title: C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE publication-title: Nat. Immunol. doi: 10.1038/ni.1716 – volume: 88 start-page: 7438 year: 1991 ident: 10.1016/j.immuni.2013.02.012_bib28 article-title: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.16.7438 – volume: 462 start-page: 94 year: 2009 ident: 10.1016/j.immuni.2013.02.012_bib4 article-title: Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions publication-title: Nature doi: 10.1038/nature08478 – volume: 11 start-page: 3648 year: 1999 ident: 10.1016/j.immuni.2013.02.012_bib27 article-title: Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.1999.00792.x – reference: 22883932 - J Neuroinflammation. 2012;9:193 – reference: 2137649 - Tissue Antigens. 1990 Jan;35(1):9-19 – reference: 16689667 - J Neurotrauma. 2006 May;23(5):635-59 – reference: 20720507 - J Neuropathol Exp Neurol. 2010 Sep;69(9):896-909 – reference: 21060874 - PLoS One. 2010;5(10):e13693 – reference: 16699509 - Nat Neurosci. 2006 Jun;9(6):843-52 – reference: 20186338 - PLoS One. 2010;5(2):e9380 – reference: 19829296 - Nature. 2009 Nov 5;462(7269):94-8 – reference: 18025128 - J Exp Med. 2007 Nov 26;204(12):3037-47 – reference: 22205935 - PLoS One. 2011;6(12):e27969 – reference: 21788405 - J Exp Med. 2011 Aug 1;208(8):1695-705 – reference: 16473831 - Immunity. 2006 Feb;24(2):191-201 – reference: 18026096 - Nat Neurosci. 2007 Dec;10(12):1544-53 – reference: 19531531 - Brain. 2009 Sep;132(Pt 9):2487-500 – reference: 15853680 - Curr Pharm Des. 2005;11(10):1237-45 – reference: 17485518 - J Exp Med. 2007 May 14;204(5):1057-69 – reference: 1551403 - Eur J Immunol. 1992 Apr;22(4):1031-6 – reference: 16364958 - Brain. 2006 Feb;129(Pt 2):517-26 – reference: 18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43 – reference: 14668804 - Nat Rev Immunol. 2003 Nov;3(11):879-89 – reference: 1651506 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7438-42 – reference: 2706482 - Brain Res. 1989 Mar 13;482(1):57-66 – reference: 19471279 - J Cereb Blood Flow Metab. 2009 Sep;29(9):1503-16 – reference: 19864556 - J Neurosci. 2009 Oct 28;29(43):13435-44 – reference: 18591671 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9325-30 – reference: 12370277 - J Clin Invest. 2002 Oct;110(7):993-1002 – reference: 20038195 - J Neurotrauma. 2010 Apr;27(4):739-51 – reference: 22514659 - PLoS One. 2012;7(4):e34730 – reference: 9662373 - Nat Med. 1998 Jul;4(7):814-21 – reference: 19305396 - Nat Immunol. 2009 May;10(5):514-23 – reference: 12876559 - Nat Rev Immunol. 2003 Jul;3(7):569-81 – reference: 10564372 - Eur J Neurosci. 1999 Oct;11(10):3648-58 – reference: 21829211 - J Cereb Blood Flow Metab. 2012 Jan;32(1):93-104 – reference: 19636355 - PLoS Med. 2009 Jul;6(7):e1000113 – reference: 17822568 - BMC Neurol. 2007;7:30 – reference: 16322748 - Nat Rev Immunol. 2005 Dec;5(12):953-64 – reference: 15613550 - Blood. 2005 Apr 1;105(7):2877-86 – reference: 5583013 - Minerva Med. 1967 Dec 22;58(102):4684-8 – reference: 10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14 – reference: 17894867 - Cerebrospinal Fluid Res. 2007 Sep 25;4:9 |
SSID | ssj0014590 |
Score | 2.5915124 |
Snippet | Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 555 |
SubjectTerms | 5'-Nucleotidase - antagonists & inhibitors 5'-Nucleotidase - genetics 5'-Nucleotidase - immunology Adenosine Diphosphate - analogs & derivatives Adenosine Diphosphate - pharmacology Animals Antigens, Ly - immunology Antigens, Ly - metabolism Blood-Brain Barrier - immunology Blood-Brain Barrier - metabolism Cell Movement - genetics Cell Movement - immunology Choroid Plexus - immunology Choroid Plexus - metabolism CX3C Chemokine Receptor 1 Cytokines Enzyme Inhibitors - pharmacology Flow Cytometry Gene Expression - immunology Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Integrin alpha4beta1 - genetics Integrin alpha4beta1 - immunology Leukocyte Common Antigens - immunology Leukocyte Common Antigens - metabolism Macrophages - drug effects Macrophages - immunology Macrophages - metabolism Meninges - immunology Meninges - metabolism Mice Mice, Inbred C57BL Mice, Knockout Microscopy, Confocal Monocytes - drug effects Monocytes - immunology Monocytes - metabolism Receptors, Chemokine - genetics Receptors, Chemokine - immunology Recruitment Reverse Transcriptase Polymerase Chain Reaction Rodents Spinal Cord - immunology Spinal Cord - metabolism Spinal Cord Injuries - cerebrospinal fluid Spinal Cord Injuries - genetics Spinal Cord Injuries - immunology Statistical analysis Vascular Cell Adhesion Molecule-1 - genetics Vascular Cell Adhesion Molecule-1 - immunology |
Title | Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus |
URI | https://dx.doi.org/10.1016/j.immuni.2013.02.012 https://www.ncbi.nlm.nih.gov/pubmed/23477737 https://www.proquest.com/docview/1629396967 https://www.proquest.com/docview/1319619445 https://www.proquest.com/docview/1642631072 https://pubmed.ncbi.nlm.nih.gov/PMC4115271 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY2MvY-u-snZFg72aRB-2rMcmrLQr2Ua7srwJWR_EpdghiWH976uTP1g2tsJerTO2dNLpjrv7_RD6aE1mHJlMElFQn3BmTJJbqxNvnNCWCU9z6B2ef8nOrvnnRbrYQ7O-FwbKKjvb39r0aK27J-NuNcershxfQSlhCMIZJGRCXA5NfIznsYlvMR0yCTyVk6HuMEj37XOxxquMPRhQ4MUiciehf7ue_nQ_f6-i_OVaOn2OnnX-JD5pf_kF2nPVAXrcMkzeHaAn8y53_hJV4CE2Zawqx7XH02DlWvgIPKd4roHLaxmsywZva3xe3TRrZ_HVCliz8CyEqPh8g7-uI78WwEtYXNzhSxc07fAUeCbwbFmv69Lib7fuZ7N5ha5PP32fnSUd20JiwhJtkzQnhkGiVUupvdHSkCK3XDJvISYiRmZcE1swZ2hhiNNSS6FJYVJTCOs8e432q7pybxGmOsQ91OVZkOSZn0jtuM5TbrzWnhd8hFi_yMp0UOTAiHGr-pqzG9WqRoFq1ISqoJoRSoa3Vi0UxwPyotef2tlSKtwWD7x51KtbdUd6o0gWPCPAEhIj9GEYDocRMiy6cnUTZMCgEcl5-g-ZDDDyw34Mn3nT7qBhOpRxIQQLXxA7e2sQADDw3ZGqXEZQcE6AoJi8--9JH6KnNFJ9sISSI7S_XTfufXC4tsUxenRycfnj4jierHtjpS4P |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxELZKEccLgnIFChiJ11XiY9frRxJRJdAtiLZS3iyvD2WrajdKshL993j2EgFBJV7XY3ntscczmvH3IfTBmsQ4MplEIqc-4syYKLVWR944oS0Tnqbwdjg7S-aX_PMyXh6gWf8WBsoqO9vf2vTGWndfxt1qjtdFMT6HUsIQhDNIyIS4XN5Bd4M3IOB0LpbTIZXAYzkZCg-DeP9-rinyKppHGFDhxRroTkL_dj_96X_-Xkb5y7108hg96hxK_LH95yfowJVH6F5LMXlzhO5nXfL8KSrBRayLpqwcVx5Pg5lr8SNwRnGmgcxrFczLFu8qvCiv6o2z-HwNtFl4FmJUvNjir5uGYAvwJSzOb_B3F1Tt8BSIJvBsVW2qwuJv1-5HvX2GLk8-XczmUUe3EJmwRLsoTolhkGnVUmpvtDQkTy2XzFsIioiRCdfE5swZmhvitNRSaJKb2OTCOs-eo8OyKt1LhKkOgQ91aRIkeeInUjuu05gbr7XnOR8h1i-yMh0WOVBiXKu-6OxKtapRoBo1oSqoZoSiode6xeK4RV70-lN7e0qF6-KWnse9ulV3preKJME1AjAhMULvh-ZwGiHFoktX1UEGLBqRnMf_kEkAJD_sxzDMi3YHDdOhjAshWBhB7O2tQQDQwPdbymLVoIJzAgzF5NV_T_odejC_yE7V6eLsy2v0kDa8Hyyi5Bgd7ja1exO8r13-tjldPwELbS-M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recruitment+of+Beneficial+M2+Macrophages+to+Injured+Spinal+Cord+Is+Orchestrated+by+Remote+Brain+Choroid+Plexus&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Shechter%2C+Ravid&rft.au=Miller%2C+Omer&rft.au=Yovel%2C+Gili&rft.au=Rosenzweig%2C+Neta&rft.date=2013-03-21&rft.pub=Elsevier+Inc&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=38&rft.issue=3&rft.spage=555&rft.epage=569&rft_id=info:doi/10.1016%2Fj.immuni.2013.02.012&rft.externalDocID=S1074761313000939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |