Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus

Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spin...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 38; no. 3; pp. 555 - 569
Main Authors Shechter, Ravid, Miller, Omer, Yovel, Gili, Rosenzweig, Neta, London, Anat, Ruckh, Julia, Kim, Ki-Wook, Klein, Eugenia, Kalchenko, Vyacheslav, Bendel, Peter, Lira, Sergio A., Jung, Steffen, Schwartz, Michal
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.03.2013
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6chiCX3CR1lo) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6cloCX3CR1hi) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function. [Display omitted] ► Breached BBB is not a preferred entry route for monocytes infiltrating injured SC ► M2 macrophage homing to injured SC is orchestrated by the brain choroid plexus ► The choroid plexus and CSF provide trafficking monocytes with an M2-biased milieu ► M1 macrophages home to injured SC via leptomeninges, in a CCL2-dependent manner
AbstractList Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.
Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6chiCX3CR1lo) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6cloCX3CR1hi) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.
Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6chiCX3CR1lo) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6cloCX3CR1hi) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function. [Display omitted] ► Breached BBB is not a preferred entry route for monocytes infiltrating injured SC ► M2 macrophage homing to injured SC is orchestrated by the brain choroid plexus ► The choroid plexus and CSF provide trafficking monocytes with an M2-biased milieu ► M1 macrophages home to injured SC via leptomeninges, in a CCL2-dependent manner
Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.
Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c hi CX3CR1 lo ) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c lo CX3CR1 hi ) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.
Author Rosenzweig, Neta
Kim, Ki-Wook
Yovel, Gili
Bendel, Peter
Lira, Sergio A.
Kalchenko, Vyacheslav
Klein, Eugenia
Shechter, Ravid
Jung, Steffen
Ruckh, Julia
Miller, Omer
London, Anat
Schwartz, Michal
AuthorAffiliation 4 Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel
3 The Irving and Cherna Moskowitz Center for Nano and Bio Nano Imaging, The Weizmann Institute of Science, Rehovot 76100, Israel
2 Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
1 Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
6 Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
5 Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
AuthorAffiliation_xml – name: 1 Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
– name: 2 Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
– name: 4 Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel
– name: 6 Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
– name: 5 Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
– name: 3 The Irving and Cherna Moskowitz Center for Nano and Bio Nano Imaging, The Weizmann Institute of Science, Rehovot 76100, Israel
Author_xml – sequence: 1
  givenname: Ravid
  surname: Shechter
  fullname: Shechter, Ravid
  email: ravid.shechter@weizmann.ac.il
  organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 2
  givenname: Omer
  surname: Miller
  fullname: Miller, Omer
  organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 3
  givenname: Gili
  surname: Yovel
  fullname: Yovel, Gili
  organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 4
  givenname: Neta
  surname: Rosenzweig
  fullname: Rosenzweig, Neta
  organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 5
  givenname: Anat
  surname: London
  fullname: London, Anat
  organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 6
  givenname: Julia
  surname: Ruckh
  fullname: Ruckh, Julia
  organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 7
  givenname: Ki-Wook
  surname: Kim
  fullname: Kim, Ki-Wook
  organization: Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 8
  givenname: Eugenia
  surname: Klein
  fullname: Klein, Eugenia
  organization: The Irving and Cherna Moskowitz Center for Nano and Bio Nano Imaging, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 9
  givenname: Vyacheslav
  surname: Kalchenko
  fullname: Kalchenko, Vyacheslav
  organization: Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 10
  givenname: Peter
  surname: Bendel
  fullname: Bendel, Peter
  organization: Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 11
  givenname: Sergio A.
  surname: Lira
  fullname: Lira, Sergio A.
  organization: Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
– sequence: 12
  givenname: Steffen
  surname: Jung
  fullname: Jung, Steffen
  organization: Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 13
  givenname: Michal
  surname: Schwartz
  fullname: Schwartz, Michal
  email: michal.schwartz@weizmann.ac.il
  organization: Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23477737$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gHyBkiQuXDR7bidcckOiKj5VaFRU4W44z6TpK7MVOKvrv8Wq3CHqgJ1uaZ17NO_OeFkc-eCyKl0BLoFC_7Us3jrN3JaPAS8pKCuxJcQJUyYWAJT3a_aVYyBr4cXGaUk8piErRZ8Ux40JKyeVJ4a_RxtlNI_qJhI6co8fOWWcGcsnIpbExbDfmBhOZAln7fo7Ykm9b5zOwCrEl60Suot1gmqKZcq25I9c4hgnJeTTOk9UmxOBa8nXAX3N6XjztzJDwxeE9K358-vh99WVxcfV5vfpwsbB5wGlRLcFyypbUKGU6a5SFZtkKxbtWqboGq2phoG04WtZYQKOMkgYaW9lGttjxs-L9Xnc7NyO2NruLZtDb6EYT73QwTv9b8W6jb8KtFgAVk5AF3hwEYvg5Z3d6dMniMBiPYU4aasFqnhfMHkc5qBqUEFVGXz9A-zDHvMudIFNc1aqWmXr19_B_pr6_Wgbe7YF8nZQidtq6yUwu7Ly4QQPVu4joXu8joncR0ZTpHJHcLB403-s_0nbYKOaz3TqMOlmH3mLrItpJt8H9X-A3YNrYqQ
CitedBy_id crossref_primary_10_1186_1742_2094_11_98
crossref_primary_10_1152_ajpgi_00229_2024
crossref_primary_10_1016_j_neuron_2014_07_027
crossref_primary_10_1161_CIRCRESAHA_116_308022
crossref_primary_10_1186_s12974_020_01860_y
crossref_primary_10_1111_jnc_12705
crossref_primary_10_1016_j_ibror_2019_08_002
crossref_primary_10_1186_s12987_020_00196_2
crossref_primary_10_1007_s12017_023_08769_8
crossref_primary_10_1016_j_imbio_2013_09_001
crossref_primary_10_1172_jci_insight_86667
crossref_primary_10_1186_s12974_022_02458_2
crossref_primary_10_1016_j_bbi_2013_04_002
crossref_primary_10_3389_fimmu_2018_01066
crossref_primary_10_1002_cpmo_5
crossref_primary_10_1371_journal_pone_0145773
crossref_primary_10_1523_JNEUROSCI_3644_14_2015
crossref_primary_10_1007_s12035_014_9035_8
crossref_primary_10_1080_15622975_2021_1939154
crossref_primary_10_1038_s41593_020_0618_6
crossref_primary_10_1038_nrn3722
crossref_primary_10_1155_2022_8100195
crossref_primary_10_4049_jimmunol_1302401
crossref_primary_10_3389_fcell_2020_617879
crossref_primary_10_1371_journal_pone_0132329
crossref_primary_10_3389_fimmu_2020_00997
crossref_primary_10_1016_j_neuron_2015_01_013
crossref_primary_10_1016_j_neuroscience_2021_04_026
crossref_primary_10_1016_j_neuroscience_2020_02_014
crossref_primary_10_1111_cns_70105
crossref_primary_10_1002_nep3_22
crossref_primary_10_1371_journal_pbio_2005264
crossref_primary_10_2967_jnumed_120_243600
crossref_primary_10_3389_fimmu_2017_01666
crossref_primary_10_1016_j_expneurol_2013_09_013
crossref_primary_10_1038_s43587_021_00149_w
crossref_primary_10_1186_s12974_022_02641_5
crossref_primary_10_1016_j_bbih_2021_100258
crossref_primary_10_1038_nm_4022
crossref_primary_10_1002_glia_23536
crossref_primary_10_1096_fj_14_261396
crossref_primary_10_1177_1535370219854668
crossref_primary_10_1021_nn505980z
crossref_primary_10_1016_j_it_2020_07_005
crossref_primary_10_3389_fimmu_2014_00510
crossref_primary_10_1186_s40478_020_00968_9
crossref_primary_10_4103_NRR_NRR_D_24_00119
crossref_primary_10_1126_science_1242974
crossref_primary_10_2217_fnl_16_5
crossref_primary_10_3390_antiox9050421
crossref_primary_10_1002_glia_22676
crossref_primary_10_1016_j_bbi_2023_11_036
crossref_primary_10_3390_vetsci4010014
crossref_primary_10_1002_ca_23994
crossref_primary_10_4049_jimmunol_1401156
crossref_primary_10_3233_JAD_200387
crossref_primary_10_1016_j_ijbiomac_2025_140819
crossref_primary_10_1093_brain_aww270
crossref_primary_10_1002_adhm_202000353
crossref_primary_10_1002_wdev_365
crossref_primary_10_1093_brain_awv066
crossref_primary_10_1080_02699052_2018_1429023
crossref_primary_10_1007_s11302_022_09847_5
crossref_primary_10_1016_j_bbi_2015_07_021
crossref_primary_10_1016_j_celrep_2023_112629
crossref_primary_10_1016_j_ijdevneu_2019_04_005
crossref_primary_10_1016_j_tips_2019_11_001
crossref_primary_10_15252_embj_201489293
crossref_primary_10_1186_s12974_021_02370_1
crossref_primary_10_3233_JAD_210480
crossref_primary_10_1021_acschemneuro_0c00555
crossref_primary_10_1038_srep11872
crossref_primary_10_1016_j_heliyon_2023_e15689
crossref_primary_10_1016_j_it_2024_08_002
crossref_primary_10_1126_science_abf7844
crossref_primary_10_1186_s12974_019_1563_8
crossref_primary_10_3390_cancers14184394
crossref_primary_10_1016_j_neuroscience_2014_11_018
crossref_primary_10_1111_jnc_13607
crossref_primary_10_1016_j_clim_2023_109880
crossref_primary_10_3389_fimmu_2020_00430
crossref_primary_10_1186_s12974_022_02632_6
crossref_primary_10_34133_2021_4189516
crossref_primary_10_1111_imr_12528
crossref_primary_10_1016_j_drudis_2015_05_003
crossref_primary_10_1186_s12974_014_0201_8
crossref_primary_10_1016_j_imlet_2015_08_007
crossref_primary_10_1038_s41467_023_40513_5
crossref_primary_10_1016_j_neuroscience_2017_02_051
crossref_primary_10_18632_aging_205912
crossref_primary_10_1016_j_expneurol_2013_11_024
crossref_primary_10_1016_j_neuroscience_2015_08_064
crossref_primary_10_1126_science_aai8231
crossref_primary_10_1172_JCI135530
crossref_primary_10_1186_s12974_016_0547_1
crossref_primary_10_1002_cne_23363
crossref_primary_10_1007_s00018_023_05013_1
crossref_primary_10_4049_jimmunol_1900844
crossref_primary_10_1016_j_pediatrneurol_2019_08_007
crossref_primary_10_3390_cells10061499
crossref_primary_10_1186_s40478_023_01580_3
crossref_primary_10_1016_j_ymeth_2019_07_023
crossref_primary_10_1186_s12987_023_00502_8
crossref_primary_10_1016_j_ejphar_2021_173878
crossref_primary_10_1016_j_jcis_2019_04_047
crossref_primary_10_1016_j_bioactmat_2022_10_009
crossref_primary_10_1021_nn4036014
crossref_primary_10_3171_2019_7_JNS19879
crossref_primary_10_1007_s11481_015_9618_9
crossref_primary_10_1016_j_coviro_2017_12_003
crossref_primary_10_1093_brain_awv395
crossref_primary_10_1186_s13287_015_0202_2
crossref_primary_10_3389_fphar_2019_00286
crossref_primary_10_1515_revneuro_2022_0021
crossref_primary_10_31887_DCNS_2019_21_1_mschwartz
crossref_primary_10_1016_j_arabjc_2021_103534
crossref_primary_10_1016_j_bbi_2017_11_018
crossref_primary_10_1016_j_jpsychires_2020_07_013
crossref_primary_10_3389_fnins_2014_00359
crossref_primary_10_1038_ncomms8967
crossref_primary_10_1038_s41531_021_00180_z
crossref_primary_10_1523_JNEUROSCI_5218_14_2015
crossref_primary_10_1038_s42255_024_01079_8
crossref_primary_10_3389_fnana_2019_00015
crossref_primary_10_1155_2017_6392592
crossref_primary_10_3390_cells11172692
crossref_primary_10_1038_s41419_025_07336_2
crossref_primary_10_1074_jbc_M114_593285
crossref_primary_10_1016_j_molmed_2017_07_005
crossref_primary_10_1088_1748_605X_ac1d3c
crossref_primary_10_3390_ijms21124539
crossref_primary_10_3389_fncel_2018_00507
crossref_primary_10_1016_j_molmed_2018_04_003
crossref_primary_10_1016_j_bbadis_2015_09_017
crossref_primary_10_1124_pr_117_014647
crossref_primary_10_1186_s12974_015_0440_3
crossref_primary_10_1016_j_bbi_2015_06_010
crossref_primary_10_3389_fncel_2014_00262
crossref_primary_10_1007_s00109_018_1672_3
crossref_primary_10_1186_1742_2094_11_23
crossref_primary_10_1038_s41598_019_39007_6
crossref_primary_10_1084_jem_20212121
crossref_primary_10_1126_sciimmunol_abk0391
crossref_primary_10_3389_fimmu_2021_620698
crossref_primary_10_3389_fimmu_2022_903796
crossref_primary_10_1111_cpr_13050
crossref_primary_10_1007_s11064_014_1429_5
crossref_primary_10_4103_glioma_glioma_4_24
crossref_primary_10_1189_jlb_1A0314_170R
crossref_primary_10_1016_j_neuron_2023_04_011
crossref_primary_10_1007_s11481_019_09887_6
crossref_primary_10_3389_fncel_2020_00078
crossref_primary_10_1016_j_stem_2014_06_009
crossref_primary_10_3390_life13061274
crossref_primary_10_1038_s41593_024_01847_5
crossref_primary_10_1016_j_biomaterials_2017_07_013
crossref_primary_10_3389_fimmu_2019_02558
crossref_primary_10_1016_j_imbio_2014_05_002
crossref_primary_10_1186_s12977_019_0506_x
crossref_primary_10_1186_s12987_016_0027_0
crossref_primary_10_1021_acs_jproteome_6b00604
crossref_primary_10_1080_02699052_2025_2450600
crossref_primary_10_1016_j_devcel_2020_01_027
crossref_primary_10_1016_j_conb_2016_04_003
crossref_primary_10_1007_s00401_017_1758_y
crossref_primary_10_1007_s00401_021_02384_2
crossref_primary_10_3389_fncel_2019_00248
crossref_primary_10_3389_fimmu_2020_01781
crossref_primary_10_3389_fimmu_2021_771551
crossref_primary_10_1126_sciadv_aav5086
crossref_primary_10_4103_1673_5374_355747
crossref_primary_10_1155_2013_945034
crossref_primary_10_3389_fimmu_2019_02789
crossref_primary_10_1038_ncomms3597
crossref_primary_10_1016_j_pain_2014_03_012
crossref_primary_10_3390_ijms22189706
crossref_primary_10_1186_s13073_023_01155_w
crossref_primary_10_1007_s00401_014_1267_1
crossref_primary_10_1002_glia_24445
crossref_primary_10_1016_j_ymeth_2015_03_023
crossref_primary_10_3389_fimmu_2019_00790
crossref_primary_10_3389_fncel_2020_00018
crossref_primary_10_1016_j_celrep_2016_12_041
crossref_primary_10_1186_s40478_023_01547_4
crossref_primary_10_3389_fneur_2019_00718
crossref_primary_10_1152_physrev_00068_2017
crossref_primary_10_3389_fncel_2015_00039
crossref_primary_10_1016_j_expneurol_2014_04_007
crossref_primary_10_1523_JNEUROSCI_4369_13_2014
crossref_primary_10_1038_nrn3921
crossref_primary_10_1016_j_celrep_2023_113313
crossref_primary_10_1002_dad2_12517
crossref_primary_10_1038_s41598_017_09639_7
crossref_primary_10_1111_ejn_15609
crossref_primary_10_1007_s00018_022_04644_0
crossref_primary_10_1161_ATVBAHA_114_304650
crossref_primary_10_1016_j_neubiorev_2016_06_014
crossref_primary_10_1146_annurev_physiol_022516_034356
crossref_primary_10_1155_2016_6986175
crossref_primary_10_1016_j_cellimm_2014_07_002
crossref_primary_10_1016_j_brainresbull_2020_02_009
crossref_primary_10_1016_j_stem_2017_03_024
crossref_primary_10_1186_s13024_021_00458_z
crossref_primary_10_1242_dev_194449
crossref_primary_10_3389_fimmu_2014_00127
crossref_primary_10_1002_jnr_23612
crossref_primary_10_1007_s00281_016_0608_7
crossref_primary_10_1371_journal_pone_0153758
crossref_primary_10_1186_s13287_017_0677_0
crossref_primary_10_1093_brain_awaa249
crossref_primary_10_3389_fmolb_2021_752465
crossref_primary_10_1038_s41583_020_0263_9
crossref_primary_10_1186_s12974_018_1212_7
crossref_primary_10_1096_fj_202000669RR
crossref_primary_10_1242_dmm_014886
crossref_primary_10_5483_BMBRep_2021_54_4_205
crossref_primary_10_3389_fphar_2018_00445
crossref_primary_10_1038_nm_3653
crossref_primary_10_3389_fimmu_2015_00249
crossref_primary_10_2217_imt_15_106
crossref_primary_10_1126_science_aaf6260
crossref_primary_10_3390_ijms242417297
crossref_primary_10_1093_brain_awab203
crossref_primary_10_1038_s41467_019_08352_5
crossref_primary_10_1007_s00414_020_02384_z
crossref_primary_10_1016_j_coi_2022_102182
crossref_primary_10_1038_s41598_021_86593_5
crossref_primary_10_1016_j_mad_2019_111148
crossref_primary_10_1111_jnc_12814
crossref_primary_10_3389_fimmu_2021_753940
crossref_primary_10_1111_jcmm_13368
crossref_primary_10_1146_annurev_physiol_022516_034219
crossref_primary_10_1146_annurev_physiol_022516_034339
crossref_primary_10_1186_s12974_017_0909_3
crossref_primary_10_1016_j_tips_2019_04_013
crossref_primary_10_3389_fncel_2022_969002
crossref_primary_10_1021_acsbiomaterials_6b00706
crossref_primary_10_1016_j_smim_2017_12_005
crossref_primary_10_1016_j_tins_2024_05_010
crossref_primary_10_1016_j_cell_2020_12_040
crossref_primary_10_1016_j_ajps_2021_03_005
crossref_primary_10_1007_s13770_023_00616_y
crossref_primary_10_1016_j_expneurol_2020_113310
crossref_primary_10_1016_j_neuron_2015_05_019
crossref_primary_10_5966_sctm_2015_0263
crossref_primary_10_1016_j_expneurol_2020_113430
crossref_primary_10_1186_s12987_023_00441_4
crossref_primary_10_3389_fimmu_2019_01048
crossref_primary_10_46833_reumatologiasp_2016_15_3_50_64
crossref_primary_10_15252_embj_201591468
crossref_primary_10_1007_s00401_018_1807_1
crossref_primary_10_1016_j_omtn_2023_08_023
crossref_primary_10_1016_j_pharmthera_2016_06_011
crossref_primary_10_1096_fj_202201767R
crossref_primary_10_1038_srep26381
crossref_primary_10_1371_journal_pone_0148001
crossref_primary_10_1016_j_metrad_2024_100048
crossref_primary_10_1016_j_expneurol_2021_113704
crossref_primary_10_1080_15548627_2022_2039000
crossref_primary_10_15252_embr_202357003
crossref_primary_10_1016_j_it_2015_08_002
crossref_primary_10_1371_journal_pone_0114472
crossref_primary_10_3389_fnagi_2017_00193
crossref_primary_10_1021_acsami_1c12013
crossref_primary_10_3389_fncel_2020_00209
crossref_primary_10_1016_j_nbd_2017_02_001
crossref_primary_10_1038_srep16795
crossref_primary_10_1172_jci_insight_96902
crossref_primary_10_1186_s12974_014_0150_2
crossref_primary_10_2217_rme_14_9
crossref_primary_10_1113_JP272134
crossref_primary_10_1016_j_immuni_2016_03_008
crossref_primary_10_1002_embj_201386609
crossref_primary_10_1016_j_pnpbp_2015_03_008
crossref_primary_10_1186_s12987_025_00632_1
crossref_primary_10_1038_s41467_022_33015_3
crossref_primary_10_4103_1673_5374_235302
crossref_primary_10_1002_glia_23097
crossref_primary_10_1080_1061186X_2024_2417012
crossref_primary_10_1089_neu_2018_5806
crossref_primary_10_1016_j_neuron_2020_08_024
crossref_primary_10_1016_j_freeradbiomed_2015_04_031
crossref_primary_10_1186_s13287_018_0871_8
crossref_primary_10_3390_ijms21134768
crossref_primary_10_1016_j_celrep_2014_09_032
crossref_primary_10_1016_j_it_2024_04_006
crossref_primary_10_1016_j_mehy_2023_111212
crossref_primary_10_1038_mt_2015_46
crossref_primary_10_1007_s00281_019_00765_0
crossref_primary_10_1101_lm_028357_112
crossref_primary_10_3390_nano14080730
crossref_primary_10_1074_jbc_M114_579870
crossref_primary_10_1097_WNR_0000000000001839
crossref_primary_10_1186_s12974_024_03016_8
crossref_primary_10_3389_fimmu_2019_00085
crossref_primary_10_1038_s41590_021_00994_2
crossref_primary_10_7554_eLife_07288
crossref_primary_10_1189_jlb_4RI0115_006RR
crossref_primary_10_15252_embj_201694202
crossref_primary_10_1016_j_actbio_2017_02_020
crossref_primary_10_1016_j_jtemb_2019_09_010
crossref_primary_10_1038_sc_2017_69
crossref_primary_10_1016_j_bbi_2014_11_007
crossref_primary_10_3390_ijms24076483
crossref_primary_10_1016_j_immuni_2016_04_024
crossref_primary_10_1111_bph_13139
crossref_primary_10_1007_s13770_023_00613_1
crossref_primary_10_1016_j_bioactmat_2023_07_003
crossref_primary_10_1186_s12974_016_0628_1
crossref_primary_10_1002_adfm_202407958
crossref_primary_10_1016_j_jcyt_2015_02_006
crossref_primary_10_1002_advs_202101433
crossref_primary_10_1002_stem_2193
crossref_primary_10_1016_j_biomaterials_2015_10_015
crossref_primary_10_1016_j_bbi_2015_11_006
crossref_primary_10_1159_000369350
crossref_primary_10_1016_j_expneurol_2020_113232
crossref_primary_10_1016_j_nbd_2019_104722
crossref_primary_10_1016_j_jneuroim_2015_11_004
crossref_primary_10_1038_s41590_018_0086_2
crossref_primary_10_1172_jci_insight_152616
crossref_primary_10_1016_j_injury_2015_01_007
crossref_primary_10_3389_fncel_2014_00461
crossref_primary_10_4049_jimmunol_1701093
crossref_primary_10_1016_j_immuni_2016_02_015
crossref_primary_10_1016_j_tins_2021_07_002
crossref_primary_10_1016_j_bbi_2018_01_005
crossref_primary_10_1038_s41568_024_00700_y
crossref_primary_10_3389_fimmu_2023_1325530
crossref_primary_10_26508_lsa_202000907
crossref_primary_10_3389_fnmol_2024_1419520
crossref_primary_10_1111_head_14088
crossref_primary_10_1080_14728222_2019_1661381
crossref_primary_10_1155_2015_361326
crossref_primary_10_1016_j_jneuroim_2014_09_016
crossref_primary_10_1016_j_jneuroim_2014_09_014
crossref_primary_10_1038_ni_3666
crossref_primary_10_1016_S1474_4422_14_70305_9
crossref_primary_10_1016_j_jneuroim_2018_06_003
crossref_primary_10_1099_jgv_0_000667
crossref_primary_10_1126_science_aad8670
crossref_primary_10_1212_NXI_0000000000000080
crossref_primary_10_3389_fncel_2014_00328
crossref_primary_10_1007_s00429_014_0759_z
crossref_primary_10_1007_s00401_014_1310_2
crossref_primary_10_3390_jcm13237230
crossref_primary_10_1016_j_jconrel_2018_03_034
crossref_primary_10_1371_journal_pone_0168034
crossref_primary_10_1007_s12975_022_01111_7
crossref_primary_10_1016_j_biomaterials_2015_10_045
crossref_primary_10_1016_j_neuint_2025_105947
crossref_primary_10_3390_cells9030708
crossref_primary_10_1371_journal_pone_0113489
crossref_primary_10_1016_j_it_2016_08_001
crossref_primary_10_1016_j_cell_2021_04_003
crossref_primary_10_1016_j_bbi_2020_09_015
crossref_primary_10_1038_s41577_023_00836_2
crossref_primary_10_1016_j_jcyt_2015_07_014
crossref_primary_10_1002_advs_202309305
crossref_primary_10_1371_journal_ppat_1004873
crossref_primary_10_4049_jimmunol_1400700
crossref_primary_10_1089_ten_tea_2015_0019
crossref_primary_10_3389_fnins_2014_00363
crossref_primary_10_3389_fimmu_2020_609921
crossref_primary_10_1038_s41598_018_22872_y
crossref_primary_10_1007_s00018_023_05073_3
crossref_primary_10_1093_rb_rbv012
crossref_primary_10_1186_s12974_021_02320_x
crossref_primary_10_1016_j_expneurol_2019_112972
crossref_primary_10_1038_s41590_021_01012_1
crossref_primary_10_1016_j_biomaterials_2014_02_051
crossref_primary_10_1002_glia_23828
crossref_primary_10_3389_fbioe_2020_590549
crossref_primary_10_1158_0008_5472_CAN_18_1805
crossref_primary_10_1016_j_intimp_2024_111709
crossref_primary_10_1093_jimmun_vkae034
crossref_primary_10_1016_j_molmed_2015_02_002
crossref_primary_10_1016_j_immuni_2018_01_011
crossref_primary_10_1038_s41593_018_0212_3
crossref_primary_10_1016_j_immuni_2022_06_013
crossref_primary_10_1126_science_abo7649
crossref_primary_10_1186_s13578_021_00554_z
crossref_primary_10_1016_j_cellimm_2014_05_010
crossref_primary_10_1007_s00401_019_01992_3
crossref_primary_10_3389_fncel_2021_757482
crossref_primary_10_1038_nature16939
crossref_primary_10_1016_j_bbih_2022_100458
crossref_primary_10_3389_fimmu_2024_1497839
crossref_primary_10_3390_nu17030496
crossref_primary_10_1038_s41420_022_00893_x
crossref_primary_10_3390_neurosci3010001
crossref_primary_10_3389_fnagi_2022_872134
crossref_primary_10_1073_pnas_2114406119
crossref_primary_10_1111_cpr_12753
crossref_primary_10_1523_JNEUROSCI_2199_16_2016
crossref_primary_10_3109_21678421_2013_838413
crossref_primary_10_1523_JNEUROSCI_4317_15_2016
crossref_primary_10_1186_s12974_023_03003_5
crossref_primary_10_1021_acsbiomaterials_0c01779
crossref_primary_10_14712_fb2017063030085
crossref_primary_10_1002_prp2_795
crossref_primary_10_3390_ijms22179486
crossref_primary_10_1136_acupmed_2016_011107
crossref_primary_10_1016_j_jaut_2014_08_002
crossref_primary_10_1186_s13075_020_2146_x
crossref_primary_10_1038_s41392_023_01486_5
crossref_primary_10_1007_s13311_020_00862_1
crossref_primary_10_1126_science_1252945
crossref_primary_10_1016_j_actbio_2014_08_007
crossref_primary_10_1016_j_expneurol_2017_04_012
crossref_primary_10_1016_j_expneurol_2017_06_002
crossref_primary_10_1186_s12974_020_1708_9
crossref_primary_10_1038_srep19406
crossref_primary_10_1093_nutrit_nuab068
crossref_primary_10_1523_JNEUROSCI_2149_19_2020
crossref_primary_10_1016_j_fsi_2021_11_026
crossref_primary_10_1038_srep20636
crossref_primary_10_1016_j_expneurol_2014_01_013
crossref_primary_10_1097_WCO_0000000000000550
crossref_primary_10_3389_fcell_2016_00060
crossref_primary_10_3390_cells12060853
crossref_primary_10_1016_j_biomaterials_2020_120475
crossref_primary_10_1038_s41586_022_05474_7
crossref_primary_10_1523_JNEUROSCI_3241_13_2013
crossref_primary_10_3389_fimmu_2023_1101564
crossref_primary_10_1016_j_jconrel_2013_11_001
crossref_primary_10_1186_s12974_022_02415_z
crossref_primary_10_3389_fncel_2021_725573
crossref_primary_10_1038_jcbfm_2014_80
crossref_primary_10_1080_21505594_2020_1797352
crossref_primary_10_18632_oncotarget_12572
crossref_primary_10_1016_j_nbd_2017_08_006
crossref_primary_10_1016_j_biopha_2018_08_154
crossref_primary_10_1016_j_drudis_2022_01_004
crossref_primary_10_3389_fneur_2020_00189
crossref_primary_10_1007_s00281_019_00764_1
crossref_primary_10_1038_s41467_023_36759_8
crossref_primary_10_5607_en_2017_26_5_278
crossref_primary_10_1016_j_scib_2019_04_026
crossref_primary_10_1186_s40635_015_0066_x
crossref_primary_10_1038_ni_2705
crossref_primary_10_1089_ten_tea_2015_0019_rev
crossref_primary_10_1016_j_brainres_2015_04_047
crossref_primary_10_1016_j_jneuroim_2014_07_012
crossref_primary_10_3389_fnmol_2017_00090
crossref_primary_10_1016_j_procbio_2021_11_025
crossref_primary_10_1016_j_expneurol_2024_114866
crossref_primary_10_1002_adfm_201909331
crossref_primary_10_1002_glia_22809
crossref_primary_10_1038_s41467_018_06668_2
crossref_primary_10_1093_brain_awt259
crossref_primary_10_29252_shefa_8_4_90
crossref_primary_10_1016_j_mtbio_2022_100524
crossref_primary_10_1002_eji_202350761
crossref_primary_10_1186_s40478_019_0877_1
crossref_primary_10_1007_s12035_014_8934_z
crossref_primary_10_1126_sciadv_abb6260
crossref_primary_10_1016_j_pnpbp_2016_04_013
crossref_primary_10_1016_j_smim_2022_101629
crossref_primary_10_1136_bmjnph_2023_000755
crossref_primary_10_1155_2015_197150
crossref_primary_10_1016_j_immuni_2017_06_007
crossref_primary_10_1016_j_jtemb_2017_11_012
crossref_primary_10_1007_s11010_017_3184_9
crossref_primary_10_1093_jleuko_qiae134
crossref_primary_10_1523_ENEURO_0077_15_2015
crossref_primary_10_1038_cddis_2017_542
crossref_primary_10_1523_JNEUROSCI_2405_14_2015
crossref_primary_10_14336_AD_2023_1107
crossref_primary_10_1126_sciadv_aav4111
crossref_primary_10_1172_JCI95612
crossref_primary_10_1172_JCI71544
crossref_primary_10_4049_jimmunol_1501177
crossref_primary_10_1016_j_jcyt_2019_02_002
crossref_primary_10_1523_JNEUROSCI_3046_16_2017
crossref_primary_10_3389_fimmu_2020_600822
crossref_primary_10_3389_fimmu_2024_1450688
Cites_doi 10.1111/j.1399-0039.1990.tb01750.x
10.1186/1742-2094-9-193
10.1523/JNEUROSCI.3257-09.2009
10.1371/journal.pone.0034730
10.1172/JCI0215337
10.1371/journal.pmed.1000113
10.1002/eji.1830220423
10.1089/neu.2009.1111
10.1093/brain/awp144
10.1097/NEN.0b013e3181edbc1a
10.1371/journal.pone.0009380
10.1038/nri1733
10.1016/j.immuni.2006.01.005
10.1371/journal.pone.0027969
10.1093/brain/awh707
10.2174/1381612053507477
10.1186/1471-2377-7-30
10.1038/nri1130
10.1016/0006-8993(89)90542-8
10.1128/MCB.20.11.4106-4114.2000
10.1182/blood-2004-07-2505
10.1038/nn1701
10.1084/jem.20070075
10.1371/journal.pone.0013693
10.1089/neu.2006.23.635
10.1084/jem.20070885
10.1186/1743-8454-4-9
10.1038/nn2014
10.1038/nn2015
10.1038/jcbfm.2011.111
10.1073/pnas.0711175105
10.1038/jcbfm.2009.71
10.1038/nm0798-814
10.1084/jem.20102657
10.1038/nri1224
10.1038/ni.1716
10.1073/pnas.88.16.7438
10.1038/nature08478
10.1046/j.1460-9568.1999.00792.x
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Mar 21, 2013
2013 Elsevier Inc. 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Mar 21, 2013
– notice: 2013 Elsevier Inc. 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2013.02.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AIDS and Cancer Research Abstracts

MEDLINE

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 569
ExternalDocumentID PMC4115271
3513123181
23477737
10_1016_j_immuni_2013_02_012
S1074761313000939
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P01 DK072201
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
3V.
4.4
457
4G.
53G
5GY
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGGSO
AGHFR
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
.55
.GJ
29I
AALRI
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AHHHB
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c590t-581c30280a99afca9c1b8d493fd99661c964a1db3ec2bc1ea9a97a1bc5cb7def3
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Thu Aug 21 14:06:12 EDT 2025
Fri Jul 11 10:33:16 EDT 2025
Sun Aug 24 04:00:24 EDT 2025
Fri Jul 25 11:18:01 EDT 2025
Mon Jul 21 06:04:48 EDT 2025
Fri Jul 04 04:46:10 EDT 2025
Thu Apr 24 22:55:27 EDT 2025
Fri Feb 23 02:28:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-581c30280a99afca9c1b8d493fd99661c964a1db3ec2bc1ea9a97a1bc5cb7def3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1074761313000939
PMID 23477737
PQID 1629396967
PQPubID 2031079
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4115271
proquest_miscellaneous_1642631072
proquest_miscellaneous_1319619445
proquest_journals_1629396967
pubmed_primary_23477737
crossref_citationtrail_10_1016_j_immuni_2013_02_012
crossref_primary_10_1016_j_immuni_2013_02_012
elsevier_sciencedirect_doi_10_1016_j_immuni_2013_02_012
PublicationCentury 2000
PublicationDate 2013-03-21
PublicationDateYYYYMMDD 2013-03-21
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2013
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Yin, Henzl, Lorber, Nakazawa, Thomas, Jiang, Langer, Benowitz (bib40) 2006; 9
Kigerl, Gensel, Ankeny, Alexander, Donnelly, Popovich (bib13) 2009; 29
Basso, Fisher, Anderson, Jakeman, McTigue, Popovich (bib5) 2006; 23
Kleinewietfeld, Puentes, Borsellino, Battistini, Rötzschke, Falk (bib14) 2005; 105
Mills, Thompson, Mueller, Waickman, Jalkanen, Niemela, Airas, Bynoe (bib18) 2008; 105
Wilbanks, Streilein (bib39) 1992; 22
Fieschi, Sacchetti (bib9) 1967; 58
Reboldi, Coisne, Baumjohann, Benvenuto, Bottinelli, Lira, Uccelli, Lanzavecchia, Engelhardt, Sallusto (bib25) 2009; 10
Rapalino, Lazarov-Spiegler, Agranov, Velan, Yoles, Fraidakis, Solomon, Gepstein, Katz, Belkin (bib24) 1998; 4
Chinnery, Ruitenberg, McMenamin (bib8) 2010; 69
Mildner, Mack, Schmidt, Brück, Djukic, Zabel, Hille, Priller, Prinz (bib17) 2009; 132
Mills, Alabanza, Mahamed, Bynoe (bib19) 2012; 9
Kalderon (bib12) 2005; 11
Arnold, Henry, Poron, Baba-Amer, van Rooijen, Plonquet, Gherardi, Chazaud (bib3) 2007; 204
Jung, Aliberti, Graemmel, Sunshine, Kreutzberg, Sher, Littman (bib11) 2000; 20
Sun, Wang, Chen, Li, Cao, Lu, Chen, Sun, Luo, Fan (bib33) 2010; 5
Ajami, Bennett, Krieger, Tetzlaff, Rossi (bib1) 2007; 10
Anandasabapathy, Victora, Meredith, Feder, Dong, Kluger, Yao, Dustin, Nussenzweig, Steinman, Liu (bib2) 2011; 208
Bönner, Borg, Burghoff, Schrader (bib6) 2012; 7
Thomson, Ruedi, Glass, Moldenhauer, Moller, Low, Klemens, Massaia, Lucas (bib38) 1990; 35
Saederup, Cardona, Croft, Mizutani, Cotleur, Tsou, Ransohoff, Charo (bib26) 2010; 5
Mildner, Schmidt, Nitsche, Merkler, Hanisch, Mack, Heikenwalder, Brück, Priller, Prinz (bib16) 2007; 10
Radojicic, Nistor, Keirstead (bib22) 2007; 7
Synnestvedt, Furuta, Comerford, Louis, Karhausen, Eltzschig, Hansen, Thompson, Colgan (bib34) 2002; 110
Szmydynger-Chodobska, Strazielle, Gandy, Keefe, Zink, Ghersi-Egea, Chodobski (bib36) 2012; 32
Le Borgne, Etchart, Goubier, Lira, Sirard, van Rooijen, Caux, Aït-Yahia, Vicari, Kaiserlian, Dubois (bib15) 2006; 24
Ransohoff, Kivisäkk, Kidd (bib23) 2003; 3
Noble, Wrathall (bib21) 1989; 482
Takigawa, Yonezawa, Yoshitaka, Minaguchi, Kurosaki, Tanaka, Sado, Ohtsuka, Ozaki, Ninomiya (bib37) 2010; 27
Bartholomäus, Kawakami, Odoardi, Schläger, Miljkovic, Ellwart, Klinkert, Flügel-Koch, Issekutz, Wekerle, Flügel (bib4) 2009; 462
Nahrendorf, Swirski, Aikawa, Stangenberg, Wurdinger, Figueiredo, Libby, Weissleder, Pittet (bib20) 2007; 204
Slobodian, Krassioukov-Enns, Del Bigio (bib31) 2007; 4
Szmydynger-Chodobska, Strazielle, Zink, Ghersi-Egea, Chodobski (bib35) 2009; 29
Gordon, Taylor (bib10) 2005; 5
Shechter, London, Varol, Raposo, Cusimano, Yovel, Rolls, Mack, Pluchino, Martino (bib29) 2009; 6
Boven, Van Meurs, Van Zwam, Wierenga-Wolf, Hintzen, Boot, Aerts, Amor, Nieuwenhuis, Laman (bib7) 2006; 129
Schnell, Fearn, Klassen, Schwab, Perry (bib27) 1999; 11
Sedgwick, Schwender, Imrich, Dörries, Butcher, ter Meulen (bib28) 1991; 88
Streilein (bib32) 2003; 3
Shechter, Raposo, London, Sagi, Schwartz (bib30) 2011; 6
Rapalino (10.1016/j.immuni.2013.02.012_bib24) 1998; 4
Takigawa (10.1016/j.immuni.2013.02.012_bib37) 2010; 27
Wilbanks (10.1016/j.immuni.2013.02.012_bib39) 1992; 22
Arnold (10.1016/j.immuni.2013.02.012_bib3) 2007; 204
Shechter (10.1016/j.immuni.2013.02.012_bib30) 2011; 6
Mildner (10.1016/j.immuni.2013.02.012_bib16) 2007; 10
Synnestvedt (10.1016/j.immuni.2013.02.012_bib34) 2002; 110
Mildner (10.1016/j.immuni.2013.02.012_bib17) 2009; 132
Szmydynger-Chodobska (10.1016/j.immuni.2013.02.012_bib36) 2012; 32
Boven (10.1016/j.immuni.2013.02.012_bib7) 2006; 129
Ajami (10.1016/j.immuni.2013.02.012_bib1) 2007; 10
Noble (10.1016/j.immuni.2013.02.012_bib21) 1989; 482
Szmydynger-Chodobska (10.1016/j.immuni.2013.02.012_bib35) 2009; 29
Kleinewietfeld (10.1016/j.immuni.2013.02.012_bib14) 2005; 105
Reboldi (10.1016/j.immuni.2013.02.012_bib25) 2009; 10
Thomson (10.1016/j.immuni.2013.02.012_bib38) 1990; 35
Mills (10.1016/j.immuni.2013.02.012_bib18) 2008; 105
Radojicic (10.1016/j.immuni.2013.02.012_bib22) 2007; 7
Streilein (10.1016/j.immuni.2013.02.012_bib32) 2003; 3
Bönner (10.1016/j.immuni.2013.02.012_bib6) 2012; 7
Jung (10.1016/j.immuni.2013.02.012_bib11) 2000; 20
Kigerl (10.1016/j.immuni.2013.02.012_bib13) 2009; 29
Anandasabapathy (10.1016/j.immuni.2013.02.012_bib2) 2011; 208
Le Borgne (10.1016/j.immuni.2013.02.012_bib15) 2006; 24
Saederup (10.1016/j.immuni.2013.02.012_bib26) 2010; 5
Sedgwick (10.1016/j.immuni.2013.02.012_bib28) 1991; 88
Gordon (10.1016/j.immuni.2013.02.012_bib10) 2005; 5
Nahrendorf (10.1016/j.immuni.2013.02.012_bib20) 2007; 204
Slobodian (10.1016/j.immuni.2013.02.012_bib31) 2007; 4
Bartholomäus (10.1016/j.immuni.2013.02.012_bib4) 2009; 462
Basso (10.1016/j.immuni.2013.02.012_bib5) 2006; 23
Fieschi (10.1016/j.immuni.2013.02.012_bib9) 1967; 58
Yin (10.1016/j.immuni.2013.02.012_bib40) 2006; 9
Shechter (10.1016/j.immuni.2013.02.012_bib29) 2009; 6
Sun (10.1016/j.immuni.2013.02.012_bib33) 2010; 5
Kalderon (10.1016/j.immuni.2013.02.012_bib12) 2005; 11
Chinnery (10.1016/j.immuni.2013.02.012_bib8) 2010; 69
Mills (10.1016/j.immuni.2013.02.012_bib19) 2012; 9
Schnell (10.1016/j.immuni.2013.02.012_bib27) 1999; 11
Ransohoff (10.1016/j.immuni.2013.02.012_bib23) 2003; 3
16364958 - Brain. 2006 Feb;129(Pt 2):517-26
17485518 - J Exp Med. 2007 May 14;204(5):1057-69
20186338 - PLoS One. 2010;5(2):e9380
20038195 - J Neurotrauma. 2010 Apr;27(4):739-51
21788405 - J Exp Med. 2011 Aug 1;208(8):1695-705
16473831 - Immunity. 2006 Feb;24(2):191-201
19471279 - J Cereb Blood Flow Metab. 2009 Sep;29(9):1503-16
16689667 - J Neurotrauma. 2006 May;23(5):635-59
2137649 - Tissue Antigens. 1990 Jan;35(1):9-19
5583013 - Minerva Med. 1967 Dec 22;58(102):4684-8
9662373 - Nat Med. 1998 Jul;4(7):814-21
19531531 - Brain. 2009 Sep;132(Pt 9):2487-500
22883932 - J Neuroinflammation. 2012;9:193
19305396 - Nat Immunol. 2009 May;10(5):514-23
19829296 - Nature. 2009 Nov 5;462(7269):94-8
15613550 - Blood. 2005 Apr 1;105(7):2877-86
14668804 - Nat Rev Immunol. 2003 Nov;3(11):879-89
16699509 - Nat Neurosci. 2006 Jun;9(6):843-52
15853680 - Curr Pharm Des. 2005;11(10):1237-45
22514659 - PLoS One. 2012;7(4):e34730
10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14
19864556 - J Neurosci. 2009 Oct 28;29(43):13435-44
16322748 - Nat Rev Immunol. 2005 Dec;5(12):953-64
18026096 - Nat Neurosci. 2007 Dec;10(12):1544-53
18025128 - J Exp Med. 2007 Nov 26;204(12):3037-47
2706482 - Brain Res. 1989 Mar 13;482(1):57-66
21060874 - PLoS One. 2010;5(10):e13693
12370277 - J Clin Invest. 2002 Oct;110(7):993-1002
10564372 - Eur J Neurosci. 1999 Oct;11(10):3648-58
18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43
12876559 - Nat Rev Immunol. 2003 Jul;3(7):569-81
22205935 - PLoS One. 2011;6(12):e27969
17894867 - Cerebrospinal Fluid Res. 2007 Sep 25;4:9
18591671 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9325-30
17822568 - BMC Neurol. 2007;7:30
21829211 - J Cereb Blood Flow Metab. 2012 Jan;32(1):93-104
20720507 - J Neuropathol Exp Neurol. 2010 Sep;69(9):896-909
1551403 - Eur J Immunol. 1992 Apr;22(4):1031-6
19636355 - PLoS Med. 2009 Jul;6(7):e1000113
1651506 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7438-42
References_xml – volume: 10
  start-page: 1538
  year: 2007
  end-page: 1543
  ident: bib1
  article-title: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life
  publication-title: Nat. Neurosci.
– volume: 22
  start-page: 1031
  year: 1992
  end-page: 1036
  ident: bib39
  article-title: Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-beta
  publication-title: Eur. J. Immunol.
– volume: 5
  start-page: e13693
  year: 2010
  ident: bib26
  article-title: Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice
  publication-title: PLoS ONE
– volume: 69
  start-page: 896
  year: 2010
  end-page: 909
  ident: bib8
  article-title: Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 5
  start-page: 953
  year: 2005
  end-page: 964
  ident: bib10
  article-title: Monocyte and macrophage heterogeneity
  publication-title: Nat. Rev. Immunol.
– volume: 482
  start-page: 57
  year: 1989
  end-page: 66
  ident: bib21
  article-title: Distribution and time course of protein extravasation in the rat spinal cord after contusive injury
  publication-title: Brain Res.
– volume: 4
  start-page: 814
  year: 1998
  end-page: 821
  ident: bib24
  article-title: Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats
  publication-title: Nat. Med.
– volume: 32
  start-page: 93
  year: 2012
  end-page: 104
  ident: bib36
  article-title: Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 208
  start-page: 1695
  year: 2011
  end-page: 1705
  ident: bib2
  article-title: Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain
  publication-title: J. Exp. Med.
– volume: 29
  start-page: 13435
  year: 2009
  end-page: 13444
  ident: bib13
  article-title: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord
  publication-title: J. Neurosci.
– volume: 3
  start-page: 879
  year: 2003
  end-page: 889
  ident: bib32
  article-title: Ocular immune privilege: therapeutic opportunities from an experiment of nature
  publication-title: Nat. Rev. Immunol.
– volume: 9
  start-page: 193
  year: 2012
  ident: bib19
  article-title: Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis
  publication-title: J. Neuroinflammation
– volume: 11
  start-page: 3648
  year: 1999
  end-page: 3658
  ident: bib27
  article-title: Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord
  publication-title: Eur. J. Neurosci.
– volume: 129
  start-page: 517
  year: 2006
  end-page: 526
  ident: bib7
  article-title: Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis
  publication-title: Brain
– volume: 204
  start-page: 1057
  year: 2007
  end-page: 1069
  ident: bib3
  article-title: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
  publication-title: J. Exp. Med.
– volume: 35
  start-page: 9
  year: 1990
  end-page: 19
  ident: bib38
  article-title: Production and characterization of monoclonal antibodies to the glycosyl phosphatidylinositol-anchored lymphocyte differentiation antigen ecto-5′-nucleotidase (CD73)
  publication-title: Tissue Antigens
– volume: 23
  start-page: 635
  year: 2006
  end-page: 659
  ident: bib5
  article-title: Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains
  publication-title: J. Neurotrauma
– volume: 27
  start-page: 739
  year: 2010
  end-page: 751
  ident: bib37
  article-title: Separation of the perivascular basement membrane provides a conduit for inflammatory cells in a mouse spinal cord injury model
  publication-title: J. Neurotrauma
– volume: 204
  start-page: 3037
  year: 2007
  end-page: 3047
  ident: bib20
  article-title: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
  publication-title: J. Exp. Med.
– volume: 20
  start-page: 4106
  year: 2000
  end-page: 4114
  ident: bib11
  article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
  publication-title: Mol. Cell. Biol.
– volume: 105
  start-page: 2877
  year: 2005
  end-page: 2886
  ident: bib14
  article-title: CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset
  publication-title: Blood
– volume: 3
  start-page: 569
  year: 2003
  end-page: 581
  ident: bib23
  article-title: Three or more routes for leukocyte migration into the central nervous system
  publication-title: Nat. Rev. Immunol.
– volume: 7
  start-page: 30
  year: 2007
  ident: bib22
  article-title: Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury
  publication-title: BMC Neurol.
– volume: 9
  start-page: 843
  year: 2006
  end-page: 852
  ident: bib40
  article-title: Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells
  publication-title: Nat. Neurosci.
– volume: 462
  start-page: 94
  year: 2009
  end-page: 98
  ident: bib4
  article-title: Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions
  publication-title: Nature
– volume: 105
  start-page: 9325
  year: 2008
  end-page: 9330
  ident: bib18
  article-title: CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 1503
  year: 2009
  end-page: 1516
  ident: bib35
  article-title: The role of the choroid plexus in neutrophil invasion after traumatic brain injury
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 7
  start-page: e34730
  year: 2012
  ident: bib6
  article-title: Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury
  publication-title: PLoS ONE
– volume: 88
  start-page: 7438
  year: 1991
  end-page: 7442
  ident: bib28
  article-title: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 191
  year: 2006
  end-page: 201
  ident: bib15
  article-title: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo
  publication-title: Immunity
– volume: 110
  start-page: 993
  year: 2002
  end-page: 1002
  ident: bib34
  article-title: Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia
  publication-title: J. Clin. Invest.
– volume: 6
  start-page: e1000113
  year: 2009
  ident: bib29
  article-title: Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice
  publication-title: PLoS Med.
– volume: 58
  start-page: 4684
  year: 1967
  end-page: 4688
  ident: bib9
  article-title: [Physiopathological and clinical aspects of hypersplenism. Summary]
  publication-title: Minerva Med.
– volume: 132
  start-page: 2487
  year: 2009
  end-page: 2500
  ident: bib17
  article-title: CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system
  publication-title: Brain
– volume: 6
  start-page: e27969
  year: 2011
  ident: bib30
  article-title: The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair
  publication-title: PLoS ONE
– volume: 11
  start-page: 1237
  year: 2005
  end-page: 1245
  ident: bib12
  article-title: Cell elimination as a strategy for repair in acute spinal cord injury
  publication-title: Curr. Pharm. Des.
– volume: 5
  start-page: e9380
  year: 2010
  ident: bib33
  article-title: Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system
  publication-title: PLoS ONE
– volume: 10
  start-page: 1544
  year: 2007
  end-page: 1553
  ident: bib16
  article-title: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions
  publication-title: Nat. Neurosci.
– volume: 4
  start-page: 9
  year: 2007
  ident: bib31
  article-title: Protein and synthetic polymer injection for induction of obstructive hydrocephalus in rats
  publication-title: Cerebrospinal Fluid Res.
– volume: 10
  start-page: 514
  year: 2009
  end-page: 523
  ident: bib25
  article-title: C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE
  publication-title: Nat. Immunol.
– volume: 35
  start-page: 9
  year: 1990
  ident: 10.1016/j.immuni.2013.02.012_bib38
  article-title: Production and characterization of monoclonal antibodies to the glycosyl phosphatidylinositol-anchored lymphocyte differentiation antigen ecto-5′-nucleotidase (CD73)
  publication-title: Tissue Antigens
  doi: 10.1111/j.1399-0039.1990.tb01750.x
– volume: 9
  start-page: 193
  year: 2012
  ident: 10.1016/j.immuni.2013.02.012_bib19
  article-title: Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-9-193
– volume: 29
  start-page: 13435
  year: 2009
  ident: 10.1016/j.immuni.2013.02.012_bib13
  article-title: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3257-09.2009
– volume: 7
  start-page: e34730
  year: 2012
  ident: 10.1016/j.immuni.2013.02.012_bib6
  article-title: Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0034730
– volume: 110
  start-page: 993
  year: 2002
  ident: 10.1016/j.immuni.2013.02.012_bib34
  article-title: Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215337
– volume: 6
  start-page: e1000113
  year: 2009
  ident: 10.1016/j.immuni.2013.02.012_bib29
  article-title: Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1000113
– volume: 22
  start-page: 1031
  year: 1992
  ident: 10.1016/j.immuni.2013.02.012_bib39
  article-title: Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-beta
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.1830220423
– volume: 27
  start-page: 739
  year: 2010
  ident: 10.1016/j.immuni.2013.02.012_bib37
  article-title: Separation of the perivascular basement membrane provides a conduit for inflammatory cells in a mouse spinal cord injury model
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.2009.1111
– volume: 132
  start-page: 2487
  year: 2009
  ident: 10.1016/j.immuni.2013.02.012_bib17
  article-title: CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system
  publication-title: Brain
  doi: 10.1093/brain/awp144
– volume: 69
  start-page: 896
  year: 2010
  ident: 10.1016/j.immuni.2013.02.012_bib8
  article-title: Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/NEN.0b013e3181edbc1a
– volume: 5
  start-page: e9380
  year: 2010
  ident: 10.1016/j.immuni.2013.02.012_bib33
  article-title: Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009380
– volume: 5
  start-page: 953
  year: 2005
  ident: 10.1016/j.immuni.2013.02.012_bib10
  article-title: Monocyte and macrophage heterogeneity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1733
– volume: 24
  start-page: 191
  year: 2006
  ident: 10.1016/j.immuni.2013.02.012_bib15
  article-title: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.01.005
– volume: 6
  start-page: e27969
  year: 2011
  ident: 10.1016/j.immuni.2013.02.012_bib30
  article-title: The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0027969
– volume: 129
  start-page: 517
  year: 2006
  ident: 10.1016/j.immuni.2013.02.012_bib7
  article-title: Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awh707
– volume: 11
  start-page: 1237
  year: 2005
  ident: 10.1016/j.immuni.2013.02.012_bib12
  article-title: Cell elimination as a strategy for repair in acute spinal cord injury
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612053507477
– volume: 7
  start-page: 30
  year: 2007
  ident: 10.1016/j.immuni.2013.02.012_bib22
  article-title: Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury
  publication-title: BMC Neurol.
  doi: 10.1186/1471-2377-7-30
– volume: 3
  start-page: 569
  year: 2003
  ident: 10.1016/j.immuni.2013.02.012_bib23
  article-title: Three or more routes for leukocyte migration into the central nervous system
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1130
– volume: 482
  start-page: 57
  year: 1989
  ident: 10.1016/j.immuni.2013.02.012_bib21
  article-title: Distribution and time course of protein extravasation in the rat spinal cord after contusive injury
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(89)90542-8
– volume: 20
  start-page: 4106
  year: 2000
  ident: 10.1016/j.immuni.2013.02.012_bib11
  article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.11.4106-4114.2000
– volume: 105
  start-page: 2877
  year: 2005
  ident: 10.1016/j.immuni.2013.02.012_bib14
  article-title: CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset
  publication-title: Blood
  doi: 10.1182/blood-2004-07-2505
– volume: 9
  start-page: 843
  year: 2006
  ident: 10.1016/j.immuni.2013.02.012_bib40
  article-title: Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1701
– volume: 204
  start-page: 1057
  year: 2007
  ident: 10.1016/j.immuni.2013.02.012_bib3
  article-title: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070075
– volume: 5
  start-page: e13693
  year: 2010
  ident: 10.1016/j.immuni.2013.02.012_bib26
  article-title: Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0013693
– volume: 58
  start-page: 4684
  year: 1967
  ident: 10.1016/j.immuni.2013.02.012_bib9
  article-title: [Physiopathological and clinical aspects of hypersplenism. Summary]
  publication-title: Minerva Med.
– volume: 23
  start-page: 635
  year: 2006
  ident: 10.1016/j.immuni.2013.02.012_bib5
  article-title: Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.2006.23.635
– volume: 204
  start-page: 3037
  year: 2007
  ident: 10.1016/j.immuni.2013.02.012_bib20
  article-title: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070885
– volume: 4
  start-page: 9
  year: 2007
  ident: 10.1016/j.immuni.2013.02.012_bib31
  article-title: Protein and synthetic polymer injection for induction of obstructive hydrocephalus in rats
  publication-title: Cerebrospinal Fluid Res.
  doi: 10.1186/1743-8454-4-9
– volume: 10
  start-page: 1538
  year: 2007
  ident: 10.1016/j.immuni.2013.02.012_bib1
  article-title: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2014
– volume: 10
  start-page: 1544
  year: 2007
  ident: 10.1016/j.immuni.2013.02.012_bib16
  article-title: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2015
– volume: 32
  start-page: 93
  year: 2012
  ident: 10.1016/j.immuni.2013.02.012_bib36
  article-title: Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2011.111
– volume: 105
  start-page: 9325
  year: 2008
  ident: 10.1016/j.immuni.2013.02.012_bib18
  article-title: CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0711175105
– volume: 29
  start-page: 1503
  year: 2009
  ident: 10.1016/j.immuni.2013.02.012_bib35
  article-title: The role of the choroid plexus in neutrophil invasion after traumatic brain injury
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2009.71
– volume: 4
  start-page: 814
  year: 1998
  ident: 10.1016/j.immuni.2013.02.012_bib24
  article-title: Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats
  publication-title: Nat. Med.
  doi: 10.1038/nm0798-814
– volume: 208
  start-page: 1695
  year: 2011
  ident: 10.1016/j.immuni.2013.02.012_bib2
  article-title: Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20102657
– volume: 3
  start-page: 879
  year: 2003
  ident: 10.1016/j.immuni.2013.02.012_bib32
  article-title: Ocular immune privilege: therapeutic opportunities from an experiment of nature
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1224
– volume: 10
  start-page: 514
  year: 2009
  ident: 10.1016/j.immuni.2013.02.012_bib25
  article-title: C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1716
– volume: 88
  start-page: 7438
  year: 1991
  ident: 10.1016/j.immuni.2013.02.012_bib28
  article-title: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.88.16.7438
– volume: 462
  start-page: 94
  year: 2009
  ident: 10.1016/j.immuni.2013.02.012_bib4
  article-title: Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions
  publication-title: Nature
  doi: 10.1038/nature08478
– volume: 11
  start-page: 3648
  year: 1999
  ident: 10.1016/j.immuni.2013.02.012_bib27
  article-title: Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.1999.00792.x
– reference: 22883932 - J Neuroinflammation. 2012;9:193
– reference: 2137649 - Tissue Antigens. 1990 Jan;35(1):9-19
– reference: 16689667 - J Neurotrauma. 2006 May;23(5):635-59
– reference: 20720507 - J Neuropathol Exp Neurol. 2010 Sep;69(9):896-909
– reference: 21060874 - PLoS One. 2010;5(10):e13693
– reference: 16699509 - Nat Neurosci. 2006 Jun;9(6):843-52
– reference: 20186338 - PLoS One. 2010;5(2):e9380
– reference: 19829296 - Nature. 2009 Nov 5;462(7269):94-8
– reference: 18025128 - J Exp Med. 2007 Nov 26;204(12):3037-47
– reference: 22205935 - PLoS One. 2011;6(12):e27969
– reference: 21788405 - J Exp Med. 2011 Aug 1;208(8):1695-705
– reference: 16473831 - Immunity. 2006 Feb;24(2):191-201
– reference: 18026096 - Nat Neurosci. 2007 Dec;10(12):1544-53
– reference: 19531531 - Brain. 2009 Sep;132(Pt 9):2487-500
– reference: 15853680 - Curr Pharm Des. 2005;11(10):1237-45
– reference: 17485518 - J Exp Med. 2007 May 14;204(5):1057-69
– reference: 1551403 - Eur J Immunol. 1992 Apr;22(4):1031-6
– reference: 16364958 - Brain. 2006 Feb;129(Pt 2):517-26
– reference: 18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43
– reference: 14668804 - Nat Rev Immunol. 2003 Nov;3(11):879-89
– reference: 1651506 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7438-42
– reference: 2706482 - Brain Res. 1989 Mar 13;482(1):57-66
– reference: 19471279 - J Cereb Blood Flow Metab. 2009 Sep;29(9):1503-16
– reference: 19864556 - J Neurosci. 2009 Oct 28;29(43):13435-44
– reference: 18591671 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9325-30
– reference: 12370277 - J Clin Invest. 2002 Oct;110(7):993-1002
– reference: 20038195 - J Neurotrauma. 2010 Apr;27(4):739-51
– reference: 22514659 - PLoS One. 2012;7(4):e34730
– reference: 9662373 - Nat Med. 1998 Jul;4(7):814-21
– reference: 19305396 - Nat Immunol. 2009 May;10(5):514-23
– reference: 12876559 - Nat Rev Immunol. 2003 Jul;3(7):569-81
– reference: 10564372 - Eur J Neurosci. 1999 Oct;11(10):3648-58
– reference: 21829211 - J Cereb Blood Flow Metab. 2012 Jan;32(1):93-104
– reference: 19636355 - PLoS Med. 2009 Jul;6(7):e1000113
– reference: 17822568 - BMC Neurol. 2007;7:30
– reference: 16322748 - Nat Rev Immunol. 2005 Dec;5(12):953-64
– reference: 15613550 - Blood. 2005 Apr 1;105(7):2877-86
– reference: 5583013 - Minerva Med. 1967 Dec 22;58(102):4684-8
– reference: 10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14
– reference: 17894867 - Cerebrospinal Fluid Res. 2007 Sep 25;4:9
SSID ssj0014590
Score 2.5915124
Snippet Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 555
SubjectTerms 5'-Nucleotidase - antagonists & inhibitors
5'-Nucleotidase - genetics
5'-Nucleotidase - immunology
Adenosine Diphosphate - analogs & derivatives
Adenosine Diphosphate - pharmacology
Animals
Antigens, Ly - immunology
Antigens, Ly - metabolism
Blood-Brain Barrier - immunology
Blood-Brain Barrier - metabolism
Cell Movement - genetics
Cell Movement - immunology
Choroid Plexus - immunology
Choroid Plexus - metabolism
CX3C Chemokine Receptor 1
Cytokines
Enzyme Inhibitors - pharmacology
Flow Cytometry
Gene Expression - immunology
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Integrin alpha4beta1 - genetics
Integrin alpha4beta1 - immunology
Leukocyte Common Antigens - immunology
Leukocyte Common Antigens - metabolism
Macrophages - drug effects
Macrophages - immunology
Macrophages - metabolism
Meninges - immunology
Meninges - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Microscopy, Confocal
Monocytes - drug effects
Monocytes - immunology
Monocytes - metabolism
Receptors, Chemokine - genetics
Receptors, Chemokine - immunology
Recruitment
Reverse Transcriptase Polymerase Chain Reaction
Rodents
Spinal Cord - immunology
Spinal Cord - metabolism
Spinal Cord Injuries - cerebrospinal fluid
Spinal Cord Injuries - genetics
Spinal Cord Injuries - immunology
Statistical analysis
Vascular Cell Adhesion Molecule-1 - genetics
Vascular Cell Adhesion Molecule-1 - immunology
Title Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus
URI https://dx.doi.org/10.1016/j.immuni.2013.02.012
https://www.ncbi.nlm.nih.gov/pubmed/23477737
https://www.proquest.com/docview/1629396967
https://www.proquest.com/docview/1319619445
https://www.proquest.com/docview/1642631072
https://pubmed.ncbi.nlm.nih.gov/PMC4115271
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY2MvY-u-snZFg72aRB-2rMcmrLQr2Ua7srwJWR_EpdghiWH976uTP1g2tsJerTO2dNLpjrv7_RD6aE1mHJlMElFQn3BmTJJbqxNvnNCWCU9z6B2ef8nOrvnnRbrYQ7O-FwbKKjvb39r0aK27J-NuNcershxfQSlhCMIZJGRCXA5NfIznsYlvMR0yCTyVk6HuMEj37XOxxquMPRhQ4MUiciehf7ue_nQ_f6-i_OVaOn2OnnX-JD5pf_kF2nPVAXrcMkzeHaAn8y53_hJV4CE2Zawqx7XH02DlWvgIPKd4roHLaxmsywZva3xe3TRrZ_HVCliz8CyEqPh8g7-uI78WwEtYXNzhSxc07fAUeCbwbFmv69Lib7fuZ7N5ha5PP32fnSUd20JiwhJtkzQnhkGiVUupvdHSkCK3XDJvISYiRmZcE1swZ2hhiNNSS6FJYVJTCOs8e432q7pybxGmOsQ91OVZkOSZn0jtuM5TbrzWnhd8hFi_yMp0UOTAiHGr-pqzG9WqRoFq1ISqoJoRSoa3Vi0UxwPyotef2tlSKtwWD7x51KtbdUd6o0gWPCPAEhIj9GEYDocRMiy6cnUTZMCgEcl5-g-ZDDDyw34Mn3nT7qBhOpRxIQQLXxA7e2sQADDw3ZGqXEZQcE6AoJi8--9JH6KnNFJ9sISSI7S_XTfufXC4tsUxenRycfnj4jierHtjpS4P
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxELZKEccLgnIFChiJ11XiY9frRxJRJdAtiLZS3iyvD2WrajdKshL993j2EgFBJV7XY3ntscczmvH3IfTBmsQ4MplEIqc-4syYKLVWR944oS0Tnqbwdjg7S-aX_PMyXh6gWf8WBsoqO9vf2vTGWndfxt1qjtdFMT6HUsIQhDNIyIS4XN5Bd4M3IOB0LpbTIZXAYzkZCg-DeP9-rinyKppHGFDhxRroTkL_dj_96X_-Xkb5y7108hg96hxK_LH95yfowJVH6F5LMXlzhO5nXfL8KSrBRayLpqwcVx5Pg5lr8SNwRnGmgcxrFczLFu8qvCiv6o2z-HwNtFl4FmJUvNjir5uGYAvwJSzOb_B3F1Tt8BSIJvBsVW2qwuJv1-5HvX2GLk8-XczmUUe3EJmwRLsoTolhkGnVUmpvtDQkTy2XzFsIioiRCdfE5swZmhvitNRSaJKb2OTCOs-eo8OyKt1LhKkOgQ91aRIkeeInUjuu05gbr7XnOR8h1i-yMh0WOVBiXKu-6OxKtapRoBo1oSqoZoSiode6xeK4RV70-lN7e0qF6-KWnse9ulV3preKJME1AjAhMULvh-ZwGiHFoktX1UEGLBqRnMf_kEkAJD_sxzDMi3YHDdOhjAshWBhB7O2tQQDQwPdbymLVoIJzAgzF5NV_T_odejC_yE7V6eLsy2v0kDa8Hyyi5Bgd7ja1exO8r13-tjldPwELbS-M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recruitment+of+Beneficial+M2+Macrophages+to+Injured+Spinal+Cord+Is+Orchestrated+by+Remote+Brain+Choroid+Plexus&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Shechter%2C+Ravid&rft.au=Miller%2C+Omer&rft.au=Yovel%2C+Gili&rft.au=Rosenzweig%2C+Neta&rft.date=2013-03-21&rft.pub=Elsevier+Inc&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=38&rft.issue=3&rft.spage=555&rft.epage=569&rft_id=info:doi/10.1016%2Fj.immuni.2013.02.012&rft.externalDocID=S1074761313000939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon