Fitness landscapes of human microsatellites

Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, m...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 20; no. 12; p. e1011524
Main Authors Haasl, Ryan J., Payseur, Bret A.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 30.12.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites.
AbstractList Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites.
Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites. Microsatellites are repetitive DNA variants that have a long history of use in genetics. Mounting evidence suggests that some microsatellite variation is adaptive or deleterious. Yet, methods for characterizing natural selection on microsatellites are largely missing, perhaps because microsatellite mutation is complicated. We describe models that capture the relative fitnesses of microsatellite genotypes and enable reconstruction of the microsatellite fitness landscape. Fitting these models to genotypes for 200 individuals in eight human populations, we identify 43 microsatellites as targets of selection and visualize their fitness surfaces. Our results reveal that selection on microsatellites takes a variety of forms and emphasize the importance of taking mutation into account when considering the fitness of repetitive variation.
Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites.Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites.
Audience Academic
Author Payseur, Bret A.
Haasl, Ryan J.
AuthorAffiliation The University of Kansas, UNITED STATES OF AMERICA
2 Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
1 Department of Biology, University of Wisconsin-Platteville, Platteville, Wisconsin, United States of America
AuthorAffiliation_xml – name: The University of Kansas, UNITED STATES OF AMERICA
– name: 2 Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
– name: 1 Department of Biology, University of Wisconsin-Platteville, Platteville, Wisconsin, United States of America
Author_xml – sequence: 1
  givenname: Ryan J.
  orcidid: 0009-0002-8996-9418
  surname: Haasl
  fullname: Haasl, Ryan J.
– sequence: 2
  givenname: Bret A.
  orcidid: 0000-0003-3109-4778
  surname: Payseur
  fullname: Payseur, Bret A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39775235$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2LEzEUhoOsuB_6D0QKgqxIa76mSa5kWVwtLCz4dRsymZNpyjTpTjLi_nszti4d8EJykXDynJeTN-85OgkxAEIvCV4QJsj7TRz6YLrFroWwIJiQivIn6IxUFZsLjvnJ0fkUnae0wZhVUoln6JQpISrKqjP07sbnACnNOhOaZM0O0iy62XrYmjDbetvHZDJ0nc-QnqOnznQJXhz2C_T95uO368_z27tPq-ur27mtFM5z3tSKAAduKIYlaXgjZN2IWjIrKolrAUxSLJ0i1hKgtXMUhKBYcGkFc45doNVet4lmo3e935r-QUfj9Z9C7Ftt-uxtB9oqyYysQUhS3gnUAKkBjOK04QokLVof9lq7od5CYyHk3nQT0elN8Gvdxp-aEMG4osuicHlQ6OP9ACnrrU-2WGICxCFpRiomxVKpEX29R1tTZvPBxSJpR1xflVmWVDI2jrT4B1VWA8Xw8snOl_qk4e2koTAZfuXWDCnp1dcv_8_e_Ziyb47YNZgur1PshuxjSFPw1bGJj-79jVEB-B4Y85J6cI8IwXpMqz6kVY9p1Ye0st8IKNxM
Cites_doi 10.1016/j.mce.2018.10.021
10.1186/1479-7364-2-2-113
10.1016/j.nbd.2019.104533
10.1146/annurev-genet-072610-155046
10.3389/fnsyn.2022.1090865
10.1016/j.jphs.2016.10.002
10.1097/JTO.0b013e3181c6e330
10.1038/nature15393
10.1038/s41586-020-2493-4
10.1073/pnas.121176998
10.1007/s13311-019-00762-z
10.1534/genetics.116.193359
10.1186/s12915-017-0434-y
10.1093/nar/gkw219
10.1016/S0160-9327(97)01005-3
10.1006/tpbi.1997.1346
10.1101/gr.7113408
10.1038/35057062
10.1371/annotation/32c8d343-9e1d-46c6-bfd4-b0cd3fb7a97e
10.1093/bioinformatics/bty867
10.1186/s13059-022-02818-4
10.1111/j.1755-0998.2011.03014.x
10.1016/j.molcel.2014.08.027
10.1093/nar/gkz501
10.1101/gr.225672.117
10.1016/j.gene.2011.10.028
10.1016/j.cell.2018.01.012
10.1093/bioinformatics/btv684
10.1007/s00251-002-0459-3
10.1101/gr.177774.114
10.1159/000507759
10.1073/pnas.0408118101
10.1016/S0168-9525(97)01008-1
10.1093/bioinformatics/18.2.337
10.1007/s11033-012-2289-1
10.1182/blood-2006-12-063289
10.1098/rstb.2009.0219
10.7554/eLife.84043
10.1016/j.diff.2024.100757
10.1002/mds.29355
10.1093/molbev/msq198
10.1080/03008200600846564
10.1126/sciadv.aaz9115
10.1073/pnas.1102900108
10.1007/BF02460081
10.1093/oxfordjournals.molbev.a025901
10.1038/nature11247
10.1093/molbev/mss247
10.1101/gr.269530.120
10.1017/S0016672300015731
10.1093/nar/gkx1074
10.1093/hmg/2.8.1123
10.1073/pnas.75.6.2868
10.1093/emboj/20.10.2587
10.1111/mec.13339
10.1111/jeb.14106
10.1534/genetics.103.022665
10.1093/oxfordjournals.molbev.a004023
10.1016/j.ejcb.2017.02.007
10.1093/oxfordjournals.molbev.a004186
10.1093/bioinformatics/btw098
10.1534/genetics.107.081927
10.1016/j.nbd.2019.104635
10.1093/hmg/8.11.2047
10.1146/annurev-genet-111212-133526
10.1093/genetics/61.4.893
10.1111/evo.12460
10.1073/pnas.0909740107
10.1093/nar/gks011
10.1093/molbev/msq164
10.1038/s41598-023-33239-3
10.1111/j.1601-183X.2006.00273.x
10.1021/bi301416v
10.1101/gr.135780.111
10.1073/pnas.91.8.3166
10.1093/oxfordjournals.molbev.a026091
10.1002/jcb.20204
10.1001/archneur.61.8.1314
10.1074/jbc.M010664200
10.1016/S1672-0229(07)60009-6
10.1016/j.tig.2006.03.005
10.1002/ajmg.c.32038
10.1093/genetics/145.2.505
10.1016/j.lungcan.2010.02.012
10.1016/j.ajhg.2016.04.001
ContentType Journal Article
Copyright Copyright: © 2024 Haasl, Payseur. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Haasl, Payseur 2024 Haasl, Payseur
Copyright_xml – notice: Copyright: © 2024 Haasl, Payseur. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Haasl, Payseur 2024 Haasl, Payseur
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1011524
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Fitness landscapes of human microsatellites
EISSN 1553-7404
ExternalDocumentID oai_doaj_org_article_c983a8be781740e2ae1beea942d49e82
PMC11734926
A823628332
39775235
10_1371_journal_pgen_1011524
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM139412
– fundername: NHGRI NIH HHS
  grantid: R01 HG004498
– fundername: ;
  grantid: R01HG004498
– fundername: ;
  grantid: R35GM139412
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c590t-4db91e4e4a20e61d4d78bd7b83c7580b7e38208f91cc1e2bff2e7720748c73ff3
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Wed Aug 27 01:32:05 EDT 2025
Thu Aug 21 18:28:31 EDT 2025
Fri Jul 11 09:05:09 EDT 2025
Tue Jun 17 21:59:55 EDT 2025
Tue Jun 10 20:54:15 EDT 2025
Fri Jun 27 05:15:08 EDT 2025
Fri Jun 27 05:14:53 EDT 2025
Thu May 22 21:23:32 EDT 2025
Mon Jul 21 05:24:18 EDT 2025
Tue Jul 01 01:21:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Copyright: © 2024 Haasl, Payseur. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-4db91e4e4a20e61d4d78bd7b83c7580b7e38208f91cc1e2bff2e7720748c73ff3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ORCID 0009-0002-8996-9418
0000-0003-3109-4778
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1011524
PMID 39775235
PQID 3153876996
PQPubID 23479
PageCount e1011524
ParticipantIDs doaj_primary_oai_doaj_org_article_c983a8be781740e2ae1beea942d49e82
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11734926
proquest_miscellaneous_3153876996
gale_infotracmisc_A823628332
gale_infotracacademiconefile_A823628332
gale_incontextgauss_ISR_A823628332
gale_incontextgauss_IOV_A823628332
gale_healthsolutions_A823628332
pubmed_primary_39775235
crossref_primary_10_1371_journal_pgen_1011524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-30
PublicationDateYYYYMMDD 2024-12-30
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References RJ Haasl (pgen.1011524.ref082) 2024
J Yu (pgen.1011524.ref101) 2020; 83
BA Payseur (pgen.1011524.ref019) 2011; 28
SL Sabo (pgen.1011524.ref116) 2023; 14
R Koide (pgen.1011524.ref089) 1999; 8
AL Seyfert (pgen.1011524.ref014) 2008; 178
RJ Haasl (pgen.1011524.ref084) 2014; 68
R Srinivasan (pgen.1011524.ref038) 2020; 6
CA Horton (pgen.1011524.ref022) 2023; 381
A Di Rienzo (pgen.1011524.ref061) 1994; 91
J. Quilez (pgen.1011524.ref043) 2016; 44
H Fan (pgen.1011524.ref008) 2007; 5
EN Trifonov (pgen.1011524.ref054) 2004
E Dolzhenko (pgen.1011524.ref066) 2024
Y Lin (pgen.1011524.ref049) 2010; 107
V Selvaraj (pgen.1011524.ref095) 2024; 136
V. Rockman M (pgen.1011524.ref039) 2002; 19
P Pudlo (pgen.1011524.ref067) 2016; 32
N Mousavi (pgen.1011524.ref065) 2019; 47
X Xu (pgen.1011524.ref017) 2000; 24
ES Lander (pgen.1011524.ref021) 2001; 409
HG Lee (pgen.1011524.ref108) 2001; 276
HK Bayele (pgen.1011524.ref118) 2007; 110
TN Marriage (pgen.1011524.ref015) 2009; 103
Z Kavian (pgen.1011524.ref103) 2023; 13
Y Kashi (pgen.1011524.ref055) 2006; 22
CJ Steely (pgen.1011524.ref013) 2022; 23
DG King (pgen.1011524.ref056) 2009; 326
M Kimura (pgen.1011524.ref060) 1978; 75
RJ Haasl (pgen.1011524.ref083) 2010; 27
SE Wright (pgen.1011524.ref057) 2023; 12
R Gemayel (pgen.1011524.ref026) 2010; 44
AC Bruni (pgen.1011524.ref090) 2004; 61
T Raveh-Sadka (pgen.1011524.ref046) 2012; 44
E Venable (pgen.1011524.ref097) 2023; 193
Y Kashi (pgen.1011524.ref052) 1997; 13
RJ Haasl (pgen.1011524.ref004) 2016; 25
VR Krishnaswamy (pgen.1011524.ref087) 2017; 96
E. TRIFONOV (pgen.1011524.ref050) 1989; 51
E Dolzhenko (pgen.1011524.ref063) 2017; 27
S Endele (pgen.1011524.ref091) 2010; 42
XS Liu (pgen.1011524.ref047) 2018; 172
LA Sawyer (pgen.1011524.ref033) 1997; 278
MD Vinces (pgen.1011524.ref036) 2009; 324
R Sainudiin (pgen.1011524.ref010) 2004; 168
Y Vigouroux (pgen.1011524.ref018) 2002; 19
S Tavaré (pgen.1011524.ref078) 1997; 145
JK Pritchard (pgen.1011524.ref079) 1999; 16
JL Weber (pgen.1011524.ref009) 1993; 2
JJ Vitti (pgen.1011524.ref003) 2013; 47
YD Kelkar (pgen.1011524.ref020) 2008; 18
I Dunham (pgen.1011524.ref069) 2012; 489
LC Sutherland (pgen.1011524.ref100) 2010; 5
O Okamoto (pgen.1011524.ref086) 2006; 47
M. Kimura (pgen.1011524.ref006) 1969; 61
SC Goldstein DB (pgen.1011524.ref025) 1999
BJ O’Roak (pgen.1011524.ref093) 2012; 338
F Abascal (pgen.1011524.ref070) 2020; 583
Y Guo (pgen.1011524.ref107) 2019; 480
TK Oleksyk (pgen.1011524.ref002) 2010; 365
E Viguera (pgen.1011524.ref007) 2001; 20
MO Press (pgen.1011524.ref034) 2017; 205
MD Schug (pgen.1011524.ref016) 1998; 15
JJ Oh (pgen.1011524.ref099) 2010; 70
MH Schaefer (pgen.1011524.ref111) 2012; 40
B Nowak (pgen.1011524.ref113) 2023; 38
M Verbiest (pgen.1011524.ref027) 2023; 36
FR Wendt (pgen.1011524.ref030) 2022; 13
KJ Verstrepen (pgen.1011524.ref035) 2005; 37
T Gall-Duncan (pgen.1011524.ref028) 2022; 32
S Lanni (pgen.1011524.ref114) 2019; 132
N Garibaldi (pgen.1011524.ref096) 2022; 15
SF Fotsing (pgen.1011524.ref044) 2019; 51
R Batra (pgen.1011524.ref115) 2014; 56
I Mitra (pgen.1011524.ref012) 2021; 589
C Hu (pgen.1011524.ref085) 2016; 132
S Petrovski (pgen.1011524.ref117) 2013; 9
D Polychronopoulos (pgen.1011524.ref119) 2017; 45
JX Sun (pgen.1011524.ref011) 2012; 44
E Guichoux (pgen.1011524.ref073)
B Huang (pgen.1011524.ref024) 2022
T Willems (pgen.1011524.ref023) 2016; 98
EAD Hammock (pgen.1011524.ref032) 2005; 308
Q Lu (pgen.1011524.ref037) 1993; 13
A Auton (pgen.1011524.ref068) 2015; 526
JW Fondon (pgen.1011524.ref031) 2004; 101
CB Volle (pgen.1011524.ref045) 2012; 51
T Willems (pgen.1011524.ref064) 2017; 14
LC Sutherland (pgen.1011524.ref098) 2005; 94
TR Booker (pgen.1011524.ref005) 2017; 15
T Li (pgen.1011524.ref105) 2022; 98
GS Erwin (pgen.1011524.ref029) 2022; 613
M Gymrek (pgen.1011524.ref041) 2015; 48
RJ Haasl (pgen.1011524.ref075)
F Shahzad (pgen.1011524.ref104) 2022; 23
A Heidari (pgen.1011524.ref040) 2012; 492
S Taka (pgen.1011524.ref106) 2013; 40
DG King (pgen.1011524.ref051) 1994; 263
L Raynal (pgen.1011524.ref080) 2019; 35
CP Roberta (pgen.1011524.ref081) 2011; 108
MJ Friedman (pgen.1011524.ref110) 2007; 10
DG King (pgen.1011524.ref053) 1997; 21
HS McLoughlin (pgen.1011524.ref112) 2020; 134
S Rothenburg (pgen.1011524.ref048) 2001; 98
WM Bassuny (pgen.1011524.ref102) 2002; 54
T. Wiehe (pgen.1011524.ref062) 1998; 53
PR Staab (pgen.1011524.ref076) 2016; 32
RJ Haasl (pgen.1011524.ref058) 2013; 30
T Ohta (pgen.1011524.ref059) 1975; 25
J Ronald (pgen.1011524.ref001) 2005; 2
AJ Hannan (pgen.1011524.ref042) 2018; 19
Q Liu (pgen.1011524.ref109) 2019; 16
M Gymrek (pgen.1011524.ref071) 2012; 22
T Willems (pgen.1011524.ref072) 2014; 24
B Walsh (pgen.1011524.ref074) 2018
GC Fan (pgen.1011524.ref088) 2004; 287
KM Dorval (pgen.1011524.ref092) 2007; 6
RR Hudson (pgen.1011524.ref077) 2002; 18
HA Fachim (pgen.1011524.ref094) 2019; 11
References_xml – volume: 480
  start-page: 122
  year: 2019
  ident: pgen.1011524.ref107
  article-title: Dermatopontin inhibits papillary thyroid cancer cell proliferation through MYC repression
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2018.10.021
– volume: 2
  start-page: 113
  year: 2005
  ident: pgen.1011524.ref001
  article-title: Genome-wide scans for loci under selection in humans
  publication-title: Hum Genomics
  doi: 10.1186/1479-7364-2-2-113
– volume: 132
  start-page: 104533
  year: 2019
  ident: pgen.1011524.ref114
  article-title: Molecular genetics of congenital myotonic dystrophy
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2019.104533
– volume: 44
  start-page: 445
  year: 2010
  ident: pgen.1011524.ref026
  article-title: Variable tandem repeats accelerate evolution of coding and regulatory sequences
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-072610-155046
– volume: 14
  start-page: 1090865
  year: 2023
  ident: pgen.1011524.ref116
  article-title: GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms.
  publication-title: Front Synaptic Neurosci
  doi: 10.3389/fnsyn.2022.1090865
– volume: 613
  start-page: 96
  year: 2022
  ident: pgen.1011524.ref029
  article-title: Recurrent repeat expansions in human cancer genomes
  publication-title: Nature 2022 613:7942.
– volume: 132
  start-page: 115
  year: 2016
  ident: pgen.1011524.ref085
  article-title: Human GRIN2B variants in neurodevelopmental disorders.
  publication-title: J Pharmacol Sci
  doi: 10.1016/j.jphs.2016.10.002
– volume: 10
  start-page: 1519
  year: 2007
  ident: pgen.1011524.ref110
  article-title: Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration
  publication-title: Nature Neuroscience 2007 10:12.
– start-page: 1
  year: 2024
  ident: pgen.1011524.ref066
  article-title: Characterization and visualization of tandem repeats at genome scale
  publication-title: Nature Biotechnology 2024.
– volume: 5
  start-page: 294
  year: 2010
  ident: pgen.1011524.ref100
  article-title: RBM5 as a Putative Tumor Suppressor Gene for Lung Cancer.
  publication-title: Journal of Thoracic Oncology
  doi: 10.1097/JTO.0b013e3181c6e330
– volume: 526
  start-page: 68
  year: 2015
  ident: pgen.1011524.ref068
  article-title: A global reference for human genetic variation
  publication-title: Nature
  doi: 10.1038/nature15393
– volume: 24
  start-page: 396
  year: 2000
  ident: pgen.1011524.ref017
  article-title: The direction of microsatellite mutations is dependent upon allele length
  publication-title: Nature Genetics 2000 24:4.
– volume: 326
  start-page: 229
  year: 2009
  ident: pgen.1011524.ref056
  article-title: Heretical DNA Sequences?
  publication-title: Science (1979).
– volume: 583
  start-page: 699
  year: 2020
  ident: pgen.1011524.ref070
  article-title: Expanded encyclopaedias of DNA elements in the human and mouse genomes
  publication-title: Nature
  doi: 10.1038/s41586-020-2493-4
– volume: 44
  start-page: 1161
  year: 2012
  ident: pgen.1011524.ref011
  article-title: A direct characterization of human mutation based on microsatellites
  publication-title: Nature Genetics 2012 44:10.
– volume: 98
  start-page: 8985
  year: 2001
  ident: pgen.1011524.ref048
  article-title: A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.121176998
– volume-title: Oxford University Press
  year: 1999
  ident: pgen.1011524.ref025
– volume: 16
  start-page: 1097
  year: 2019
  ident: pgen.1011524.ref109
  article-title: Molecular Mechanisms and Therapeutics for SCA17.
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-019-00762-z
– volume: 205
  start-page: 455
  year: 2017
  ident: pgen.1011524.ref034
  article-title: Variability in a short tandem repeat mediates complex epistatic interactions in Arabidopsis thaliana
  publication-title: Genetics
  doi: 10.1534/genetics.116.193359
– volume: 15
  start-page: 98
  year: 2017
  ident: pgen.1011524.ref005
  article-title: Detecting positive selection in the genome
  publication-title: BMC Biol
  doi: 10.1186/s12915-017-0434-y
– volume: 44
  start-page: 3750
  year: 2016
  ident: pgen.1011524.ref043
  article-title: Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw219
– volume: 21
  start-page: 36
  year: 1997
  ident: pgen.1011524.ref053
  article-title: Evolutionary tuning knobs
  publication-title: Endeavour
  doi: 10.1016/S0160-9327(97)01005-3
– volume: 53
  start-page: 272
  year: 1998
  ident: pgen.1011524.ref062
  article-title: The Effect of Selective Sweeps on the Variance of the Allele Distribution of a Linked Multiallele Locus: Hitchhiking of Microsatellites
  publication-title: Theor Popul Biol
  doi: 10.1006/tpbi.1997.1346
– volume: 18
  start-page: 30
  year: 2008
  ident: pgen.1011524.ref020
  article-title: The genome-wide determinants of human and chimpanzee microsatellite evolution
  publication-title: Genome Res
  doi: 10.1101/gr.7113408
– volume: 589
  start-page: 246
  year: 2021
  ident: pgen.1011524.ref012
  article-title: Patterns of de novo tandem repeat mutations and their role in autism
  publication-title: Nature 2020 589:7841.
– ident: pgen.1011524.ref075
  article-title: Nature in Silico: Population Genetic Simulation and its Evolutionary Interpretation Using C++ and R.
  publication-title: SpringerNature
– volume: 15
  year: 2022
  ident: pgen.1011524.ref096
  article-title: Dissecting the phenotypic variability of osteogenesis imperfecta.
  publication-title: DMM Disease Models and Mechanisms.
– volume: 409
  start-page: 860
  year: 2001
  ident: pgen.1011524.ref021
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 9
  year: 2013
  ident: pgen.1011524.ref117
  article-title: Genic intolerance to functional variation and the interpretation of personal genomes.
  publication-title: PLoS Genet.
  doi: 10.1371/annotation/32c8d343-9e1d-46c6-bfd4-b0cd3fb7a97e
– volume: 35
  start-page: 1720
  year: 2019
  ident: pgen.1011524.ref080
  article-title: ABC random forests for Bayesian parameter inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty867
– volume: 324
  start-page: 1213
  year: 2009
  ident: pgen.1011524.ref036
  article-title: Unstable tandem repeats in promoters confer transcriptional evolvability
  publication-title: Science (1979).
– volume: 23
  start-page: 1
  year: 2022
  ident: pgen.1011524.ref013
  article-title: The mutational dynamics of short tandem repeats in large, multigenerational families
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02818-4
– volume: 98
  year: 2022
  ident: pgen.1011524.ref105
  article-title: Polymorphisms of SLC11A1(NRAMP1) rs17235409 associated with and susceptibility to spinal tuberculosis in a southern Han Chinese population.
  publication-title: Infect Genet Evol
– ident: pgen.1011524.ref073
  article-title: Current trends in microsatellite genotyping
  doi: 10.1111/j.1755-0998.2011.03014.x
– volume: 23
  start-page: 85
  year: 2022
  ident: pgen.1011524.ref104
  article-title: SLC11A1 genetic variation and low expression may cause immune response impairment in TB patients.
  publication-title: Genes & Immunity 2022 23:2.
– volume: 56
  start-page: 311
  year: 2014
  ident: pgen.1011524.ref115
  article-title: Loss of MBNL Leads to Disruption of Developmentally Regulated Alternative Polyadenylation in RNA-Mediated Disease
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.08.027
– volume: 263
  start-page: 595
  year: 1994
  ident: pgen.1011524.ref051
  article-title: Triplet repeat DNA as a highly mutable regulatory mechanism
  publication-title: Science (1979).
– volume: 47
  start-page: e90
  year: 2019
  ident: pgen.1011524.ref065
  article-title: Profiling the genome-wide landscape of tandem repeat expansions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz501
– year: 2018
  ident: pgen.1011524.ref074
– volume: 27
  start-page: 1895
  year: 2017
  ident: pgen.1011524.ref063
  article-title: Detection of long repeat expansions from PCR-free whole-genome sequence data
  publication-title: Genome Res
  doi: 10.1101/gr.225672.117
– volume: 492
  start-page: 195
  year: 2012
  ident: pgen.1011524.ref040
  article-title: Core promoter STRs: Novel mechanism for inter-individual variation in gene expression in humans
  publication-title: Gene
  doi: 10.1016/j.gene.2011.10.028
– volume: 172
  start-page: 979
  year: 2018
  ident: pgen.1011524.ref047
  article-title: Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene.
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.012
– volume: 32
  start-page: 859
  year: 2016
  ident: pgen.1011524.ref067
  article-title: Reliable ABC model choice via random forests
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv684
– volume: 54
  start-page: 282
  year: 2002
  ident: pgen.1011524.ref102
  article-title: Association study of the NRAMP1 gene promoter polymorphism and early-onset type 1 diabetes
  publication-title: Immunogenetics
  doi: 10.1007/s00251-002-0459-3
– volume: 24
  start-page: 1894
  year: 2014
  ident: pgen.1011524.ref072
  article-title: The landscape of human STR variation
  publication-title: Genome Res
  doi: 10.1101/gr.177774.114
– volume: 83
  start-page: 242
  year: 2020
  ident: pgen.1011524.ref101
  article-title: RBM5 Acts as Tumor Suppressor in Medulloblastoma through Regulating Wnt/β-Catenin Signaling
  publication-title: Eur Neurol
  doi: 10.1159/000507759
– volume: 101
  start-page: 18058
  year: 2004
  ident: pgen.1011524.ref031
  article-title: Molecular origins of rapid and continuous morphological evolution
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0408118101
– volume: 44
  start-page: 743
  year: 2012
  ident: pgen.1011524.ref046
  article-title: Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast
  publication-title: Nature Genetics 2012 44:7.
– volume: 13
  start-page: 74
  year: 1997
  ident: pgen.1011524.ref052
  article-title: Simple sequence repeats as a source of quantitative genetic variation
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(97)01008-1
– volume: 308
  start-page: 1630
  year: 2005
  ident: pgen.1011524.ref032
  article-title: Genetics: Microsatellite instability generates diversity in brain and sociobehavioral traits
  publication-title: Science (1979).
– volume: 18
  start-page: 337
  year: 2002
  ident: pgen.1011524.ref077
  article-title: Generating samples under a Wright–Fisher neutral model of genetic variation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.2.337
– volume: 40
  start-page: 2263
  year: 2013
  ident: pgen.1011524.ref106
  article-title: Transcription factor ATF-3 regulates allele variation phenotypes of the human SLC11A1 gene
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-012-2289-1
– volume: 110
  start-page: 3039
  year: 2007
  ident: pgen.1011524.ref118
  article-title: HIF-1 regulates heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA–forming microsatellite
  publication-title: Blood
  doi: 10.1182/blood-2006-12-063289
– start-page: 2022.05.12.491726
  volume-title: Genome-wide selection inference at short tandem repeats
  year: 2022
  ident: pgen.1011524.ref024
– volume: 365
  start-page: 185
  year: 2010
  ident: pgen.1011524.ref002
  article-title: Genome-wide scans for footprints of natural selection
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences.
  doi: 10.1098/rstb.2009.0219
– volume: 12
  year: 2023
  ident: pgen.1011524.ref057
  article-title: Native functions of short tandem repeats.
  publication-title: Elife
  doi: 10.7554/eLife.84043
– year: 2024
  ident: pgen.1011524.ref082
  article-title: Data from: Fitness landscapes of human microsatellites.
  publication-title: In: Dryad Digital Repository.
– volume: 287
  year: 2004
  ident: pgen.1011524.ref088
  article-title: Regulation of myocardial function by histidine-rich, calcium-binding protein
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 136
  start-page: 100757
  year: 2024
  ident: pgen.1011524.ref095
  article-title: Type 1 collagen: Synthesis, structure and key functions in bone mineralization
  publication-title: Differentiation
  doi: 10.1016/j.diff.2024.100757
– volume: 38
  start-page: 526
  year: 2023
  ident: pgen.1011524.ref113
  article-title: Atrophin-1 Function and Dysfunction in Dentatorubral–Pallidoluysian Atrophy
  publication-title: Movement Disorders
  doi: 10.1002/mds.29355
– volume: 28
  start-page: 303
  year: 2011
  ident: pgen.1011524.ref019
  article-title: A Genomic Portrait of Human Microsatellite Variation
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msq198
– volume: 47
  start-page: 177
  year: 2006
  ident: pgen.1011524.ref086
  article-title: Dermatopontin, a novel player in the biology of the extracellular matrix
  publication-title: Connect Tissue Res
  doi: 10.1080/03008200600846564
– volume: 103
  start-page: 310
  year: 2009
  ident: pgen.1011524.ref015
  article-title: Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae).
  publication-title: Heredity 2009 103:4.
– volume: 6
  year: 2020
  ident: pgen.1011524.ref038
  article-title: Zscan4 binds nucleosomal microsatellite DNA and protects mouse two-cell embryos from DNA damage
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaz9115
– volume: 51
  start-page: 1652
  year: 2019
  ident: pgen.1011524.ref044
  article-title: The impact of short tandem repeat variation on gene expression
  publication-title: Nature Genetics 2019 51:11.
– volume: 11
  start-page: 401
  year: 2019
  ident: pgen.1011524.ref094
  article-title: GRIN2B promoter methylation deficits in early-onset schizophrenia and its association with cognitive function.
– volume: 108
  start-page: 15112
  year: 2011
  ident: pgen.1011524.ref081
  article-title: Lack of confidence in approximate Bayesian computation model choice
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1102900108
– volume: 51
  start-page: 417
  year: 1989
  ident: pgen.1011524.ref050
  article-title: The multiple codes of nucleotide sequences.
  publication-title: Bull Math Biol
  doi: 10.1007/BF02460081
– volume: 338
  start-page: 1619
  year: 2012
  ident: pgen.1011524.ref093
  article-title: Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders
  publication-title: Science (1979).
– volume: 15
  start-page: 1751
  year: 1998
  ident: pgen.1011524.ref016
  article-title: The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025901
– volume: 489
  start-page: 57
  year: 2012
  ident: pgen.1011524.ref069
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 30
  start-page: 285
  year: 2013
  ident: pgen.1011524.ref058
  article-title: Microsatellites as Targets of Natural Selection
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mss247
– volume: 32
  start-page: 1
  year: 2022
  ident: pgen.1011524.ref028
  article-title: Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences
  publication-title: Genome Res
  doi: 10.1101/gr.269530.120
– volume: 48
  start-page: 22
  year: 2015
  ident: pgen.1011524.ref041
  article-title: Abundant contribution of short tandem repeats to gene expression variation in humans
  publication-title: Nature Genetics 2015 48:1.
– volume: 25
  start-page: 313
  year: 1975
  ident: pgen.1011524.ref059
  article-title: The effect of selected linked locus on heterozygosity of neutral alleles (the hitch-hiking effect)*.
  publication-title: Genet Res (Camb).
  doi: 10.1017/S0016672300015731
– volume: 45
  start-page: 12611
  year: 2017
  ident: pgen.1011524.ref119
  article-title: Conserved non-coding elements: developmental gene regulation meets genome organization
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1074
– volume: 14
  start-page: 590
  year: 2017
  ident: pgen.1011524.ref064
  article-title: Genome-wide profiling of heritable and de novo STR variations
  publication-title: Nature Methods 2017 14:6.
– volume: 2
  start-page: 1123
  year: 1993
  ident: pgen.1011524.ref009
  article-title: Mutation of human short tandem repeats
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/2.8.1123
– start-page: 115
  year: 2004
  ident: pgen.1011524.ref054
  article-title: Tuning Function of Tandemly Repeating Sequences: A Molecular Device for Fast Adaptation.
  publication-title: Evolutionary Theory and Processes: Modern Horizons.
– volume: 75
  start-page: 2868
  year: 1978
  ident: pgen.1011524.ref060
  article-title: Stepwise mutation model and distribution of allelic frequencies in a finite population
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.75.6.2868
– volume: 20
  start-page: 2587
  year: 2001
  ident: pgen.1011524.ref007
  article-title: Replication slippage involves DNA polymerase pausing and dissociation
  publication-title: EMBO J
  doi: 10.1093/emboj/20.10.2587
– volume: 25
  start-page: 5
  year: 2016
  ident: pgen.1011524.ref004
  article-title: Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication
  publication-title: Mol Ecol
  doi: 10.1111/mec.13339
– volume: 36
  start-page: 321
  year: 2023
  ident: pgen.1011524.ref027
  article-title: Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species
  publication-title: J Evol Biol
  doi: 10.1111/jeb.14106
– volume: 168
  start-page: 383
  year: 2004
  ident: pgen.1011524.ref010
  article-title: Microsatellite Mutation Models: Insights From a Comparison of Humans and Chimpanzees
  publication-title: Genetics
  doi: 10.1534/genetics.103.022665
– volume: 19
  start-page: 1991
  year: 2002
  ident: pgen.1011524.ref039
  article-title: Abundant Raw Material for Cis-Regulatory Evolution in Humans
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004023
– volume: 96
  start-page: 266
  year: 2017
  ident: pgen.1011524.ref087
  article-title: Dermatopontin augments angiogenesis and modulates the expression of transforming growth factor beta 1 and integrin alpha 3 beta 1 in endothelial cells
  publication-title: Eur J Cell Biol
  doi: 10.1016/j.ejcb.2017.02.007
– volume: 19
  start-page: 1251
  year: 2002
  ident: pgen.1011524.ref018
  article-title: Rate and Pattern of Mutation at Microsatellite Loci in Maize
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004186
– volume: 32
  start-page: 1903
  year: 2016
  ident: pgen.1011524.ref076
  article-title: Coala: an R framework for coalescent simulation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw098
– volume: 178
  start-page: 2113
  year: 2008
  ident: pgen.1011524.ref014
  article-title: The Rate and Spectrum of Microsatellite Mutation in Caenorhabditis elegans and Daphnia pulex
  publication-title: Genetics
  doi: 10.1534/genetics.107.081927
– volume: 13
  start-page: 2802
  year: 1993
  ident: pgen.1011524.ref037
  article-title: (CT)n (GA)n Repeats and Heat Shock Elements Have Distinct Roles in Chromatin Structure and Transcriptional Activation of the Drosophila hsp26 Gene.
  publication-title: Mol Cell Biol
– volume: 134
  start-page: 104635
  year: 2020
  ident: pgen.1011524.ref112
  article-title: Pathogenesis of SCA3 and implications for other polyglutamine diseases
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2019.104635
– volume: 19
  start-page: 286
  year: 2018
  ident: pgen.1011524.ref042
  article-title: Tandem repeats mediating genetic plasticity in health and disease
  publication-title: Nature Reviews Genetics 2018 19:5.
– volume: 8
  start-page: 2047
  year: 1999
  ident: pgen.1011524.ref089
  article-title: A Neurological Disease Caused By an Expanded CAG Trinucleotide Repeat in The TATA-Binding Protein Gene: A New Polyglutamine Disease?
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/8.11.2047
– volume: 47
  start-page: 97
  year: 2013
  ident: pgen.1011524.ref003
  article-title: Detecting natural selection in genomic data
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-111212-133526
– volume: 61
  start-page: 893
  year: 1969
  ident: pgen.1011524.ref006
  article-title: The Number of Heterozygous Nucleotide Sites Maintained in a Finite Population Due to Steady Flux of Mutations
  publication-title: Genetics
  doi: 10.1093/genetics/61.4.893
– volume: 68
  start-page: 2737
  year: 2014
  ident: pgen.1011524.ref084
  article-title: Remarkable selective constraints on exonic dinucleotides
  publication-title: Evolution.
  doi: 10.1111/evo.12460
– volume: 107
  start-page: 692
  year: 2010
  ident: pgen.1011524.ref049
  article-title: R loops stimulate genetic instability of CTG·CAG repeats
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0909740107
– volume: 40
  start-page: 4273
  year: 2012
  ident: pgen.1011524.ref111
  article-title: Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks011
– volume: 13
  start-page: 1
  year: 2022
  ident: pgen.1011524.ref030
  article-title: Phenome-wide association study of loci harboring de novo tandem repeat mutations in UK Biobank exomes
  publication-title: Nature Communications 2022 13:1.
– volume: 27
  start-page: 2702
  year: 2010
  ident: pgen.1011524.ref083
  article-title: The Number of Alleles at a Microsatellite Defines the Allele Frequency Spectrum and Facilitates Fast Accurate Estimation of θ
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msq164
– volume: 13
  year: 2023
  ident: pgen.1011524.ref103
  article-title: Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus.
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-33239-3
– volume: 37
  start-page: 986
  year: 2005
  ident: pgen.1011524.ref035
  article-title: Intragenic tandem repeats generate functional variability
  publication-title: Nature Genetics 2005 37:9.
– volume: 381
  year: 2023
  ident: pgen.1011524.ref022
  article-title: Short tandem repeats bind transcription factors to tune eukaryotic gene expression
  publication-title: Science (1979).
– volume: 6
  start-page: 444
  year: 2007
  ident: pgen.1011524.ref092
  article-title: Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder
  publication-title: Genes Brain Behav
  doi: 10.1111/j.1601-183X.2006.00273.x
– volume: 42
  start-page: 1021
  year: 2010
  ident: pgen.1011524.ref091
  article-title: Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes
  publication-title: Nature Genetics 2010 42:11.
– volume: 51
  start-page: 9814
  year: 2012
  ident: pgen.1011524.ref045
  article-title: CAG/CTG repeats alter the affinity for the histone core and the positioning of DNA in the nucleosome
  publication-title: Biochemistry
  doi: 10.1021/bi301416v
– volume: 22
  start-page: 1154
  year: 2012
  ident: pgen.1011524.ref071
  article-title: lobSTR: A short tandem repeat profiler for personal genomes
  publication-title: Genome Res
  doi: 10.1101/gr.135780.111
– volume: 91
  start-page: 3166
  year: 1994
  ident: pgen.1011524.ref061
  article-title: Mutational processes of simple-sequence repeat loci in human populations
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.91.8.3166
– volume: 16
  start-page: 1791
  year: 1999
  ident: pgen.1011524.ref079
  article-title: Population growth of human Y chromosomes: a study of Y chromosome microsatellites
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026091
– volume: 94
  start-page: 5
  year: 2005
  ident: pgen.1011524.ref098
  article-title: RNA binding motif (RBM) proteins: A novel family of apoptosis modulators?
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.20204
– volume: 61
  start-page: 1314
  year: 2004
  ident: pgen.1011524.ref090
  article-title: Behavioral Disorder, Dementia, Ataxia, and Rigidity in a Large Family With TATA Box-Binding Protein Mutation
  publication-title: Arch Neurol
  doi: 10.1001/archneur.61.8.1314
– volume: 276
  start-page: 39533
  year: 2001
  ident: pgen.1011524.ref108
  article-title: Interaction of HRC (Histidine-rich Ca2+-Binding Protein) and Triadin in the Lumen of Sarcoplasmic Reticulum.
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M010664200
– volume: 5
  start-page: 7
  year: 2007
  ident: pgen.1011524.ref008
  article-title: A Brief Review of Short Tandem Repeat Mutation
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/S1672-0229(07)60009-6
– volume: 278
  start-page: 2117
  year: 1997
  ident: pgen.1011524.ref033
  article-title: Natural variation in a Drosophila clock gene and temperature compensation
  publication-title: Science (1979).
– volume: 22
  start-page: 253
  year: 2006
  ident: pgen.1011524.ref055
  article-title: Simple sequence repeats as advantageous mutators in evolution
  publication-title: Trends in Genetics
  doi: 10.1016/j.tig.2006.03.005
– volume: 193
  start-page: 147
  year: 2023
  ident: pgen.1011524.ref097
  article-title: COL1A1 and COL1A2 variants in Ehlers-Danlos syndrome phenotypes and COL1-related overlap disorder
  publication-title: Am J Med Genet C Semin Med Genet
  doi: 10.1002/ajmg.c.32038
– volume: 145
  start-page: 505
  year: 1997
  ident: pgen.1011524.ref078
  article-title: Inferring Coalescence Times From DNA Sequence Data
  publication-title: Genetics
  doi: 10.1093/genetics/145.2.505
– volume: 70
  start-page: 253
  year: 2010
  ident: pgen.1011524.ref099
  article-title: RBM5/H37 tumor suppressor, located at the lung cancer hot spot 3p21.3, alters expression of genes involved in metastasis
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2010.02.012
– volume: 98
  start-page: 919
  year: 2016
  ident: pgen.1011524.ref023
  article-title: Population-Scale Sequencing Data Enable Precise Estimates of Y-STR Mutation Rates
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2016.04.001
SSID ssj0035897
Score 2.4595764
Snippet Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1011524
SubjectTerms Alleles
Bayes Theorem
Biology and Life Sciences
Evolution, Molecular
Fitness (Genetics)
Genetic Fitness - genetics
Genetics, Population
Genome, Human
Humans
Microsatellite Repeats - genetics
Microsatellites (Genetics)
Models, Genetic
Mutation
Selection, Genetic
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuCCgfgVICQuKAQuOMEzvHFrEqSIAEFPVm2c6k9EC2IruH_ntm7OxqIw5w4Jh4Lnljz7xRxm-EeBlkV0LXQgEK20IF0xSu9VCEDsB3xPF1VOD7-Kk5PVMfzuvznVFf3BOW5IETcEehNeCMR22IO5dYOZQe0bWq6lSLJkZfynmbYirFYKhNGqtS11BoKuunS3Og5dHkozdX5CCuXSmBqVlSitr9f0bonRQ1b5_cyUeLO-L2RCTz4_QBd8UNHO6Jm2m05PW-eL24XHEUy-NdXu5yGvNln8eRfPlP7sIbXRTjJKp5X5wt3n17e1pMgxGKULflqlCdbyUqVK4qsZGd6rTxnfYGAtH_0msESuymb2UIEivf9xUSiya2YIKGvocHYm9YDvhI5A2CNxh60zgW3yO-rR1AUD02ytFTJooNMvYq6V_Y-BNMU92QvtQyknZCMhMnDN_WltWr4wvyqZ18av_m00w8Y_Btugq6PYP2mKezEx8CsngRLVjBYuAWmQu3Hkf7_vP3fzD6-mVm9Goy6pfkzeCmawkEDytjzSwPZpZ0DsNs-flmq1he4ua1AZfr0QJnFd1QZZmJh2nrbPFh_l1XUGfCzDbVDMD5ynD5I8qAS6lZWrJ5_D8gfyJuVUTXooRleSD2Vr_W-JTo1sofxpP1G624Jss
  priority: 102
  providerName: Directory of Open Access Journals
Title Fitness landscapes of human microsatellites
URI https://www.ncbi.nlm.nih.gov/pubmed/39775235
https://www.proquest.com/docview/3153876996
https://pubmed.ncbi.nlm.nih.gov/PMC11734926
https://doaj.org/article/c983a8be781740e2ae1beea942d49e82
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEF76A8EX8XdP6xlF8EFSstlNdvMg0kqPKrRK9eTelt3NpBbapF7uwP73zmxyR4MKfUx2kpAvO5lvktlvGHvjeZmIshCxkFDE0us8toUTsS-FcCVyfBUU-I5P8qOp_DzLZhts1bO1B7D9Z2pH_aSm84u937-uP6DDvw9dGxRfHbR3hZBTNoohSW6ybYxNilz1WK7_K4hMd-1WskzECtP9fjHd_84yCFZB0__vN_eN0DUsq7wRpyb32b2eYEb73Yx4wDagfsjudC0nrx-xd5PzBb3dorDGl6qf2qipotCqL7qk6rzWBpFOpKCP2XRy-P3jUdw3TIh9ViSLWJau4CBB2jSBnJeyVNqVymnhMS1InAKBAV9XBfeeQ-qqKgVk18gitFeiqsQTtlU3NeywKAfhNPhK55ZE-ZCHKyuElxXk0uLWiMUrZMxVp4thws8xhflEd6eGkDQ9kiN2QPCtbUnVOuxo5memdxLjCy2sdqA05kkJpBa4A7CFTEtZAF30JYFvuiWia980-9S1HXmSQIvXwYKULWoqnTmzy7Y1n778uIXRt9OB0dveqGrwaXrbL1dAeEgxa2C5O7BE__SD4VerqWJoiIraamiWrREUbVSOGeeIPe2mzhof4uVZKrIR04NJNQBwOFKf_wzy4JwrkpzMn90Gi-fsboo0LUhXJrtsazFfwgukWQs3ZptqpsZs--Dw5OvpOHysGAdv-gOx7Sj7
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitness+landscapes+of+human+microsatellites&rft.jtitle=PLoS+genetics&rft.au=Haasl%2C+Ryan+J&rft.au=Payseur%2C+Bret+A&rft.date=2024-12-30&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=20&rft.issue=12&rft.spage=e1011524&rft_id=info:doi/10.1371%2Fjournal.pgen.1011524&rft.externalDBID=IOV&rft.externalDocID=A823628332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon