Fitness landscapes of human microsatellites
Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, m...
Saved in:
Published in | PLoS genetics Vol. 20; no. 12; p. e1011524 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
30.12.2024
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites. |
---|---|
AbstractList | Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites. Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites. Microsatellites are repetitive DNA variants that have a long history of use in genetics. Mounting evidence suggests that some microsatellite variation is adaptive or deleterious. Yet, methods for characterizing natural selection on microsatellites are largely missing, perhaps because microsatellite mutation is complicated. We describe models that capture the relative fitnesses of microsatellite genotypes and enable reconstruction of the microsatellite fitness landscape. Fitting these models to genotypes for 200 individuals in eight human populations, we identify 43 microsatellites as targets of selection and visualize their fitness surfaces. Our results reveal that selection on microsatellites takes a variety of forms and emphasize the importance of taking mutation into account when considering the fitness of repetitive variation. Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites.Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites. |
Audience | Academic |
Author | Payseur, Bret A. Haasl, Ryan J. |
AuthorAffiliation | The University of Kansas, UNITED STATES OF AMERICA 2 Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America 1 Department of Biology, University of Wisconsin-Platteville, Platteville, Wisconsin, United States of America |
AuthorAffiliation_xml | – name: The University of Kansas, UNITED STATES OF AMERICA – name: 2 Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America – name: 1 Department of Biology, University of Wisconsin-Platteville, Platteville, Wisconsin, United States of America |
Author_xml | – sequence: 1 givenname: Ryan J. orcidid: 0009-0002-8996-9418 surname: Haasl fullname: Haasl, Ryan J. – sequence: 2 givenname: Bret A. orcidid: 0000-0003-3109-4778 surname: Payseur fullname: Payseur, Bret A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39775235$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl2LEzEUhoOsuB_6D0QKgqxIa76mSa5kWVwtLCz4dRsymZNpyjTpTjLi_nszti4d8EJykXDynJeTN-85OgkxAEIvCV4QJsj7TRz6YLrFroWwIJiQivIn6IxUFZsLjvnJ0fkUnae0wZhVUoln6JQpISrKqjP07sbnACnNOhOaZM0O0iy62XrYmjDbetvHZDJ0nc-QnqOnznQJXhz2C_T95uO368_z27tPq-ur27mtFM5z3tSKAAduKIYlaXgjZN2IWjIrKolrAUxSLJ0i1hKgtXMUhKBYcGkFc45doNVet4lmo3e935r-QUfj9Z9C7Ftt-uxtB9oqyYysQUhS3gnUAKkBjOK04QokLVof9lq7od5CYyHk3nQT0elN8Gvdxp-aEMG4osuicHlQ6OP9ACnrrU-2WGICxCFpRiomxVKpEX29R1tTZvPBxSJpR1xflVmWVDI2jrT4B1VWA8Xw8snOl_qk4e2koTAZfuXWDCnp1dcv_8_e_Ziyb47YNZgur1PshuxjSFPw1bGJj-79jVEB-B4Y85J6cI8IwXpMqz6kVY9p1Ye0st8IKNxM |
Cites_doi | 10.1016/j.mce.2018.10.021 10.1186/1479-7364-2-2-113 10.1016/j.nbd.2019.104533 10.1146/annurev-genet-072610-155046 10.3389/fnsyn.2022.1090865 10.1016/j.jphs.2016.10.002 10.1097/JTO.0b013e3181c6e330 10.1038/nature15393 10.1038/s41586-020-2493-4 10.1073/pnas.121176998 10.1007/s13311-019-00762-z 10.1534/genetics.116.193359 10.1186/s12915-017-0434-y 10.1093/nar/gkw219 10.1016/S0160-9327(97)01005-3 10.1006/tpbi.1997.1346 10.1101/gr.7113408 10.1038/35057062 10.1371/annotation/32c8d343-9e1d-46c6-bfd4-b0cd3fb7a97e 10.1093/bioinformatics/bty867 10.1186/s13059-022-02818-4 10.1111/j.1755-0998.2011.03014.x 10.1016/j.molcel.2014.08.027 10.1093/nar/gkz501 10.1101/gr.225672.117 10.1016/j.gene.2011.10.028 10.1016/j.cell.2018.01.012 10.1093/bioinformatics/btv684 10.1007/s00251-002-0459-3 10.1101/gr.177774.114 10.1159/000507759 10.1073/pnas.0408118101 10.1016/S0168-9525(97)01008-1 10.1093/bioinformatics/18.2.337 10.1007/s11033-012-2289-1 10.1182/blood-2006-12-063289 10.1098/rstb.2009.0219 10.7554/eLife.84043 10.1016/j.diff.2024.100757 10.1002/mds.29355 10.1093/molbev/msq198 10.1080/03008200600846564 10.1126/sciadv.aaz9115 10.1073/pnas.1102900108 10.1007/BF02460081 10.1093/oxfordjournals.molbev.a025901 10.1038/nature11247 10.1093/molbev/mss247 10.1101/gr.269530.120 10.1017/S0016672300015731 10.1093/nar/gkx1074 10.1093/hmg/2.8.1123 10.1073/pnas.75.6.2868 10.1093/emboj/20.10.2587 10.1111/mec.13339 10.1111/jeb.14106 10.1534/genetics.103.022665 10.1093/oxfordjournals.molbev.a004023 10.1016/j.ejcb.2017.02.007 10.1093/oxfordjournals.molbev.a004186 10.1093/bioinformatics/btw098 10.1534/genetics.107.081927 10.1016/j.nbd.2019.104635 10.1093/hmg/8.11.2047 10.1146/annurev-genet-111212-133526 10.1093/genetics/61.4.893 10.1111/evo.12460 10.1073/pnas.0909740107 10.1093/nar/gks011 10.1093/molbev/msq164 10.1038/s41598-023-33239-3 10.1111/j.1601-183X.2006.00273.x 10.1021/bi301416v 10.1101/gr.135780.111 10.1073/pnas.91.8.3166 10.1093/oxfordjournals.molbev.a026091 10.1002/jcb.20204 10.1001/archneur.61.8.1314 10.1074/jbc.M010664200 10.1016/S1672-0229(07)60009-6 10.1016/j.tig.2006.03.005 10.1002/ajmg.c.32038 10.1093/genetics/145.2.505 10.1016/j.lungcan.2010.02.012 10.1016/j.ajhg.2016.04.001 |
ContentType | Journal Article |
Copyright | Copyright: © 2024 Haasl, Payseur. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Haasl, Payseur 2024 Haasl, Payseur |
Copyright_xml | – notice: Copyright: © 2024 Haasl, Payseur. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Haasl, Payseur 2024 Haasl, Payseur |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1011524 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Fitness landscapes of human microsatellites |
EISSN | 1553-7404 |
ExternalDocumentID | oai_doaj_org_article_c983a8be781740e2ae1beea942d49e82 PMC11734926 A823628332 39775235 10_1371_journal_pgen_1011524 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM139412 – fundername: NHGRI NIH HHS grantid: R01 HG004498 – fundername: ; grantid: R01HG004498 – fundername: ; grantid: R35GM139412 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c590t-4db91e4e4a20e61d4d78bd7b83c7580b7e38208f91cc1e2bff2e7720748c73ff3 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Wed Aug 27 01:32:05 EDT 2025 Thu Aug 21 18:28:31 EDT 2025 Fri Jul 11 09:05:09 EDT 2025 Tue Jun 17 21:59:55 EDT 2025 Tue Jun 10 20:54:15 EDT 2025 Fri Jun 27 05:15:08 EDT 2025 Fri Jun 27 05:14:53 EDT 2025 Thu May 22 21:23:32 EDT 2025 Mon Jul 21 05:24:18 EDT 2025 Tue Jul 01 01:21:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Copyright: © 2024 Haasl, Payseur. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-4db91e4e4a20e61d4d78bd7b83c7580b7e38208f91cc1e2bff2e7720748c73ff3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0009-0002-8996-9418 0000-0003-3109-4778 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1011524 |
PMID | 39775235 |
PQID | 3153876996 |
PQPubID | 23479 |
PageCount | e1011524 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c983a8be781740e2ae1beea942d49e82 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11734926 proquest_miscellaneous_3153876996 gale_infotracmisc_A823628332 gale_infotracacademiconefile_A823628332 gale_incontextgauss_ISR_A823628332 gale_incontextgauss_IOV_A823628332 gale_healthsolutions_A823628332 pubmed_primary_39775235 crossref_primary_10_1371_journal_pgen_1011524 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-30 |
PublicationDateYYYYMMDD | 2024-12-30 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2024 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | RJ Haasl (pgen.1011524.ref082) 2024 J Yu (pgen.1011524.ref101) 2020; 83 BA Payseur (pgen.1011524.ref019) 2011; 28 SL Sabo (pgen.1011524.ref116) 2023; 14 R Koide (pgen.1011524.ref089) 1999; 8 AL Seyfert (pgen.1011524.ref014) 2008; 178 RJ Haasl (pgen.1011524.ref084) 2014; 68 R Srinivasan (pgen.1011524.ref038) 2020; 6 CA Horton (pgen.1011524.ref022) 2023; 381 A Di Rienzo (pgen.1011524.ref061) 1994; 91 J. Quilez (pgen.1011524.ref043) 2016; 44 H Fan (pgen.1011524.ref008) 2007; 5 EN Trifonov (pgen.1011524.ref054) 2004 E Dolzhenko (pgen.1011524.ref066) 2024 Y Lin (pgen.1011524.ref049) 2010; 107 V Selvaraj (pgen.1011524.ref095) 2024; 136 V. Rockman M (pgen.1011524.ref039) 2002; 19 P Pudlo (pgen.1011524.ref067) 2016; 32 N Mousavi (pgen.1011524.ref065) 2019; 47 X Xu (pgen.1011524.ref017) 2000; 24 ES Lander (pgen.1011524.ref021) 2001; 409 HG Lee (pgen.1011524.ref108) 2001; 276 HK Bayele (pgen.1011524.ref118) 2007; 110 TN Marriage (pgen.1011524.ref015) 2009; 103 Z Kavian (pgen.1011524.ref103) 2023; 13 Y Kashi (pgen.1011524.ref055) 2006; 22 CJ Steely (pgen.1011524.ref013) 2022; 23 DG King (pgen.1011524.ref056) 2009; 326 M Kimura (pgen.1011524.ref060) 1978; 75 RJ Haasl (pgen.1011524.ref083) 2010; 27 SE Wright (pgen.1011524.ref057) 2023; 12 R Gemayel (pgen.1011524.ref026) 2010; 44 AC Bruni (pgen.1011524.ref090) 2004; 61 T Raveh-Sadka (pgen.1011524.ref046) 2012; 44 E Venable (pgen.1011524.ref097) 2023; 193 Y Kashi (pgen.1011524.ref052) 1997; 13 RJ Haasl (pgen.1011524.ref004) 2016; 25 VR Krishnaswamy (pgen.1011524.ref087) 2017; 96 E. TRIFONOV (pgen.1011524.ref050) 1989; 51 E Dolzhenko (pgen.1011524.ref063) 2017; 27 S Endele (pgen.1011524.ref091) 2010; 42 XS Liu (pgen.1011524.ref047) 2018; 172 LA Sawyer (pgen.1011524.ref033) 1997; 278 MD Vinces (pgen.1011524.ref036) 2009; 324 R Sainudiin (pgen.1011524.ref010) 2004; 168 Y Vigouroux (pgen.1011524.ref018) 2002; 19 S Tavaré (pgen.1011524.ref078) 1997; 145 JK Pritchard (pgen.1011524.ref079) 1999; 16 JL Weber (pgen.1011524.ref009) 1993; 2 JJ Vitti (pgen.1011524.ref003) 2013; 47 YD Kelkar (pgen.1011524.ref020) 2008; 18 I Dunham (pgen.1011524.ref069) 2012; 489 LC Sutherland (pgen.1011524.ref100) 2010; 5 O Okamoto (pgen.1011524.ref086) 2006; 47 M. Kimura (pgen.1011524.ref006) 1969; 61 SC Goldstein DB (pgen.1011524.ref025) 1999 BJ O’Roak (pgen.1011524.ref093) 2012; 338 F Abascal (pgen.1011524.ref070) 2020; 583 Y Guo (pgen.1011524.ref107) 2019; 480 TK Oleksyk (pgen.1011524.ref002) 2010; 365 E Viguera (pgen.1011524.ref007) 2001; 20 MO Press (pgen.1011524.ref034) 2017; 205 MD Schug (pgen.1011524.ref016) 1998; 15 JJ Oh (pgen.1011524.ref099) 2010; 70 MH Schaefer (pgen.1011524.ref111) 2012; 40 B Nowak (pgen.1011524.ref113) 2023; 38 M Verbiest (pgen.1011524.ref027) 2023; 36 FR Wendt (pgen.1011524.ref030) 2022; 13 KJ Verstrepen (pgen.1011524.ref035) 2005; 37 T Gall-Duncan (pgen.1011524.ref028) 2022; 32 S Lanni (pgen.1011524.ref114) 2019; 132 N Garibaldi (pgen.1011524.ref096) 2022; 15 SF Fotsing (pgen.1011524.ref044) 2019; 51 R Batra (pgen.1011524.ref115) 2014; 56 I Mitra (pgen.1011524.ref012) 2021; 589 C Hu (pgen.1011524.ref085) 2016; 132 S Petrovski (pgen.1011524.ref117) 2013; 9 D Polychronopoulos (pgen.1011524.ref119) 2017; 45 JX Sun (pgen.1011524.ref011) 2012; 44 E Guichoux (pgen.1011524.ref073) B Huang (pgen.1011524.ref024) 2022 T Willems (pgen.1011524.ref023) 2016; 98 EAD Hammock (pgen.1011524.ref032) 2005; 308 Q Lu (pgen.1011524.ref037) 1993; 13 A Auton (pgen.1011524.ref068) 2015; 526 JW Fondon (pgen.1011524.ref031) 2004; 101 CB Volle (pgen.1011524.ref045) 2012; 51 T Willems (pgen.1011524.ref064) 2017; 14 LC Sutherland (pgen.1011524.ref098) 2005; 94 TR Booker (pgen.1011524.ref005) 2017; 15 T Li (pgen.1011524.ref105) 2022; 98 GS Erwin (pgen.1011524.ref029) 2022; 613 M Gymrek (pgen.1011524.ref041) 2015; 48 RJ Haasl (pgen.1011524.ref075) F Shahzad (pgen.1011524.ref104) 2022; 23 A Heidari (pgen.1011524.ref040) 2012; 492 S Taka (pgen.1011524.ref106) 2013; 40 DG King (pgen.1011524.ref051) 1994; 263 L Raynal (pgen.1011524.ref080) 2019; 35 CP Roberta (pgen.1011524.ref081) 2011; 108 MJ Friedman (pgen.1011524.ref110) 2007; 10 DG King (pgen.1011524.ref053) 1997; 21 HS McLoughlin (pgen.1011524.ref112) 2020; 134 S Rothenburg (pgen.1011524.ref048) 2001; 98 WM Bassuny (pgen.1011524.ref102) 2002; 54 T. Wiehe (pgen.1011524.ref062) 1998; 53 PR Staab (pgen.1011524.ref076) 2016; 32 RJ Haasl (pgen.1011524.ref058) 2013; 30 T Ohta (pgen.1011524.ref059) 1975; 25 J Ronald (pgen.1011524.ref001) 2005; 2 AJ Hannan (pgen.1011524.ref042) 2018; 19 Q Liu (pgen.1011524.ref109) 2019; 16 M Gymrek (pgen.1011524.ref071) 2012; 22 T Willems (pgen.1011524.ref072) 2014; 24 B Walsh (pgen.1011524.ref074) 2018 GC Fan (pgen.1011524.ref088) 2004; 287 KM Dorval (pgen.1011524.ref092) 2007; 6 RR Hudson (pgen.1011524.ref077) 2002; 18 HA Fachim (pgen.1011524.ref094) 2019; 11 |
References_xml | – volume: 480 start-page: 122 year: 2019 ident: pgen.1011524.ref107 article-title: Dermatopontin inhibits papillary thyroid cancer cell proliferation through MYC repression publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2018.10.021 – volume: 2 start-page: 113 year: 2005 ident: pgen.1011524.ref001 article-title: Genome-wide scans for loci under selection in humans publication-title: Hum Genomics doi: 10.1186/1479-7364-2-2-113 – volume: 132 start-page: 104533 year: 2019 ident: pgen.1011524.ref114 article-title: Molecular genetics of congenital myotonic dystrophy publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2019.104533 – volume: 44 start-page: 445 year: 2010 ident: pgen.1011524.ref026 article-title: Variable tandem repeats accelerate evolution of coding and regulatory sequences publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-072610-155046 – volume: 14 start-page: 1090865 year: 2023 ident: pgen.1011524.ref116 article-title: GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms. publication-title: Front Synaptic Neurosci doi: 10.3389/fnsyn.2022.1090865 – volume: 613 start-page: 96 year: 2022 ident: pgen.1011524.ref029 article-title: Recurrent repeat expansions in human cancer genomes publication-title: Nature 2022 613:7942. – volume: 132 start-page: 115 year: 2016 ident: pgen.1011524.ref085 article-title: Human GRIN2B variants in neurodevelopmental disorders. publication-title: J Pharmacol Sci doi: 10.1016/j.jphs.2016.10.002 – volume: 10 start-page: 1519 year: 2007 ident: pgen.1011524.ref110 article-title: Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration publication-title: Nature Neuroscience 2007 10:12. – start-page: 1 year: 2024 ident: pgen.1011524.ref066 article-title: Characterization and visualization of tandem repeats at genome scale publication-title: Nature Biotechnology 2024. – volume: 5 start-page: 294 year: 2010 ident: pgen.1011524.ref100 article-title: RBM5 as a Putative Tumor Suppressor Gene for Lung Cancer. publication-title: Journal of Thoracic Oncology doi: 10.1097/JTO.0b013e3181c6e330 – volume: 526 start-page: 68 year: 2015 ident: pgen.1011524.ref068 article-title: A global reference for human genetic variation publication-title: Nature doi: 10.1038/nature15393 – volume: 24 start-page: 396 year: 2000 ident: pgen.1011524.ref017 article-title: The direction of microsatellite mutations is dependent upon allele length publication-title: Nature Genetics 2000 24:4. – volume: 326 start-page: 229 year: 2009 ident: pgen.1011524.ref056 article-title: Heretical DNA Sequences? publication-title: Science (1979). – volume: 583 start-page: 699 year: 2020 ident: pgen.1011524.ref070 article-title: Expanded encyclopaedias of DNA elements in the human and mouse genomes publication-title: Nature doi: 10.1038/s41586-020-2493-4 – volume: 44 start-page: 1161 year: 2012 ident: pgen.1011524.ref011 article-title: A direct characterization of human mutation based on microsatellites publication-title: Nature Genetics 2012 44:10. – volume: 98 start-page: 8985 year: 2001 ident: pgen.1011524.ref048 article-title: A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.121176998 – volume-title: Oxford University Press year: 1999 ident: pgen.1011524.ref025 – volume: 16 start-page: 1097 year: 2019 ident: pgen.1011524.ref109 article-title: Molecular Mechanisms and Therapeutics for SCA17. publication-title: Neurotherapeutics doi: 10.1007/s13311-019-00762-z – volume: 205 start-page: 455 year: 2017 ident: pgen.1011524.ref034 article-title: Variability in a short tandem repeat mediates complex epistatic interactions in Arabidopsis thaliana publication-title: Genetics doi: 10.1534/genetics.116.193359 – volume: 15 start-page: 98 year: 2017 ident: pgen.1011524.ref005 article-title: Detecting positive selection in the genome publication-title: BMC Biol doi: 10.1186/s12915-017-0434-y – volume: 44 start-page: 3750 year: 2016 ident: pgen.1011524.ref043 article-title: Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw219 – volume: 21 start-page: 36 year: 1997 ident: pgen.1011524.ref053 article-title: Evolutionary tuning knobs publication-title: Endeavour doi: 10.1016/S0160-9327(97)01005-3 – volume: 53 start-page: 272 year: 1998 ident: pgen.1011524.ref062 article-title: The Effect of Selective Sweeps on the Variance of the Allele Distribution of a Linked Multiallele Locus: Hitchhiking of Microsatellites publication-title: Theor Popul Biol doi: 10.1006/tpbi.1997.1346 – volume: 18 start-page: 30 year: 2008 ident: pgen.1011524.ref020 article-title: The genome-wide determinants of human and chimpanzee microsatellite evolution publication-title: Genome Res doi: 10.1101/gr.7113408 – volume: 589 start-page: 246 year: 2021 ident: pgen.1011524.ref012 article-title: Patterns of de novo tandem repeat mutations and their role in autism publication-title: Nature 2020 589:7841. – ident: pgen.1011524.ref075 article-title: Nature in Silico: Population Genetic Simulation and its Evolutionary Interpretation Using C++ and R. publication-title: SpringerNature – volume: 15 year: 2022 ident: pgen.1011524.ref096 article-title: Dissecting the phenotypic variability of osteogenesis imperfecta. publication-title: DMM Disease Models and Mechanisms. – volume: 409 start-page: 860 year: 2001 ident: pgen.1011524.ref021 article-title: Initial sequencing and analysis of the human genome publication-title: Nature doi: 10.1038/35057062 – volume: 9 year: 2013 ident: pgen.1011524.ref117 article-title: Genic intolerance to functional variation and the interpretation of personal genomes. publication-title: PLoS Genet. doi: 10.1371/annotation/32c8d343-9e1d-46c6-bfd4-b0cd3fb7a97e – volume: 35 start-page: 1720 year: 2019 ident: pgen.1011524.ref080 article-title: ABC random forests for Bayesian parameter inference publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty867 – volume: 324 start-page: 1213 year: 2009 ident: pgen.1011524.ref036 article-title: Unstable tandem repeats in promoters confer transcriptional evolvability publication-title: Science (1979). – volume: 23 start-page: 1 year: 2022 ident: pgen.1011524.ref013 article-title: The mutational dynamics of short tandem repeats in large, multigenerational families publication-title: Genome Biol doi: 10.1186/s13059-022-02818-4 – volume: 98 year: 2022 ident: pgen.1011524.ref105 article-title: Polymorphisms of SLC11A1(NRAMP1) rs17235409 associated with and susceptibility to spinal tuberculosis in a southern Han Chinese population. publication-title: Infect Genet Evol – ident: pgen.1011524.ref073 article-title: Current trends in microsatellite genotyping doi: 10.1111/j.1755-0998.2011.03014.x – volume: 23 start-page: 85 year: 2022 ident: pgen.1011524.ref104 article-title: SLC11A1 genetic variation and low expression may cause immune response impairment in TB patients. publication-title: Genes & Immunity 2022 23:2. – volume: 56 start-page: 311 year: 2014 ident: pgen.1011524.ref115 article-title: Loss of MBNL Leads to Disruption of Developmentally Regulated Alternative Polyadenylation in RNA-Mediated Disease publication-title: Mol Cell doi: 10.1016/j.molcel.2014.08.027 – volume: 263 start-page: 595 year: 1994 ident: pgen.1011524.ref051 article-title: Triplet repeat DNA as a highly mutable regulatory mechanism publication-title: Science (1979). – volume: 47 start-page: e90 year: 2019 ident: pgen.1011524.ref065 article-title: Profiling the genome-wide landscape of tandem repeat expansions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz501 – year: 2018 ident: pgen.1011524.ref074 – volume: 27 start-page: 1895 year: 2017 ident: pgen.1011524.ref063 article-title: Detection of long repeat expansions from PCR-free whole-genome sequence data publication-title: Genome Res doi: 10.1101/gr.225672.117 – volume: 492 start-page: 195 year: 2012 ident: pgen.1011524.ref040 article-title: Core promoter STRs: Novel mechanism for inter-individual variation in gene expression in humans publication-title: Gene doi: 10.1016/j.gene.2011.10.028 – volume: 172 start-page: 979 year: 2018 ident: pgen.1011524.ref047 article-title: Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. publication-title: Cell doi: 10.1016/j.cell.2018.01.012 – volume: 32 start-page: 859 year: 2016 ident: pgen.1011524.ref067 article-title: Reliable ABC model choice via random forests publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv684 – volume: 54 start-page: 282 year: 2002 ident: pgen.1011524.ref102 article-title: Association study of the NRAMP1 gene promoter polymorphism and early-onset type 1 diabetes publication-title: Immunogenetics doi: 10.1007/s00251-002-0459-3 – volume: 24 start-page: 1894 year: 2014 ident: pgen.1011524.ref072 article-title: The landscape of human STR variation publication-title: Genome Res doi: 10.1101/gr.177774.114 – volume: 83 start-page: 242 year: 2020 ident: pgen.1011524.ref101 article-title: RBM5 Acts as Tumor Suppressor in Medulloblastoma through Regulating Wnt/β-Catenin Signaling publication-title: Eur Neurol doi: 10.1159/000507759 – volume: 101 start-page: 18058 year: 2004 ident: pgen.1011524.ref031 article-title: Molecular origins of rapid and continuous morphological evolution publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0408118101 – volume: 44 start-page: 743 year: 2012 ident: pgen.1011524.ref046 article-title: Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast publication-title: Nature Genetics 2012 44:7. – volume: 13 start-page: 74 year: 1997 ident: pgen.1011524.ref052 article-title: Simple sequence repeats as a source of quantitative genetic variation publication-title: Trends Genet doi: 10.1016/S0168-9525(97)01008-1 – volume: 308 start-page: 1630 year: 2005 ident: pgen.1011524.ref032 article-title: Genetics: Microsatellite instability generates diversity in brain and sociobehavioral traits publication-title: Science (1979). – volume: 18 start-page: 337 year: 2002 ident: pgen.1011524.ref077 article-title: Generating samples under a Wright–Fisher neutral model of genetic variation publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.2.337 – volume: 40 start-page: 2263 year: 2013 ident: pgen.1011524.ref106 article-title: Transcription factor ATF-3 regulates allele variation phenotypes of the human SLC11A1 gene publication-title: Mol Biol Rep doi: 10.1007/s11033-012-2289-1 – volume: 110 start-page: 3039 year: 2007 ident: pgen.1011524.ref118 article-title: HIF-1 regulates heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA–forming microsatellite publication-title: Blood doi: 10.1182/blood-2006-12-063289 – start-page: 2022.05.12.491726 volume-title: Genome-wide selection inference at short tandem repeats year: 2022 ident: pgen.1011524.ref024 – volume: 365 start-page: 185 year: 2010 ident: pgen.1011524.ref002 article-title: Genome-wide scans for footprints of natural selection publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences. doi: 10.1098/rstb.2009.0219 – volume: 12 year: 2023 ident: pgen.1011524.ref057 article-title: Native functions of short tandem repeats. publication-title: Elife doi: 10.7554/eLife.84043 – year: 2024 ident: pgen.1011524.ref082 article-title: Data from: Fitness landscapes of human microsatellites. publication-title: In: Dryad Digital Repository. – volume: 287 year: 2004 ident: pgen.1011524.ref088 article-title: Regulation of myocardial function by histidine-rich, calcium-binding protein publication-title: Am J Physiol Heart Circ Physiol – volume: 136 start-page: 100757 year: 2024 ident: pgen.1011524.ref095 article-title: Type 1 collagen: Synthesis, structure and key functions in bone mineralization publication-title: Differentiation doi: 10.1016/j.diff.2024.100757 – volume: 38 start-page: 526 year: 2023 ident: pgen.1011524.ref113 article-title: Atrophin-1 Function and Dysfunction in Dentatorubral–Pallidoluysian Atrophy publication-title: Movement Disorders doi: 10.1002/mds.29355 – volume: 28 start-page: 303 year: 2011 ident: pgen.1011524.ref019 article-title: A Genomic Portrait of Human Microsatellite Variation publication-title: Mol Biol Evol doi: 10.1093/molbev/msq198 – volume: 47 start-page: 177 year: 2006 ident: pgen.1011524.ref086 article-title: Dermatopontin, a novel player in the biology of the extracellular matrix publication-title: Connect Tissue Res doi: 10.1080/03008200600846564 – volume: 103 start-page: 310 year: 2009 ident: pgen.1011524.ref015 article-title: Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). publication-title: Heredity 2009 103:4. – volume: 6 year: 2020 ident: pgen.1011524.ref038 article-title: Zscan4 binds nucleosomal microsatellite DNA and protects mouse two-cell embryos from DNA damage publication-title: Sci Adv doi: 10.1126/sciadv.aaz9115 – volume: 51 start-page: 1652 year: 2019 ident: pgen.1011524.ref044 article-title: The impact of short tandem repeat variation on gene expression publication-title: Nature Genetics 2019 51:11. – volume: 11 start-page: 401 year: 2019 ident: pgen.1011524.ref094 article-title: GRIN2B promoter methylation deficits in early-onset schizophrenia and its association with cognitive function. – volume: 108 start-page: 15112 year: 2011 ident: pgen.1011524.ref081 article-title: Lack of confidence in approximate Bayesian computation model choice publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1102900108 – volume: 51 start-page: 417 year: 1989 ident: pgen.1011524.ref050 article-title: The multiple codes of nucleotide sequences. publication-title: Bull Math Biol doi: 10.1007/BF02460081 – volume: 338 start-page: 1619 year: 2012 ident: pgen.1011524.ref093 article-title: Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders publication-title: Science (1979). – volume: 15 start-page: 1751 year: 1998 ident: pgen.1011524.ref016 article-title: The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025901 – volume: 489 start-page: 57 year: 2012 ident: pgen.1011524.ref069 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 30 start-page: 285 year: 2013 ident: pgen.1011524.ref058 article-title: Microsatellites as Targets of Natural Selection publication-title: Mol Biol Evol doi: 10.1093/molbev/mss247 – volume: 32 start-page: 1 year: 2022 ident: pgen.1011524.ref028 article-title: Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences publication-title: Genome Res doi: 10.1101/gr.269530.120 – volume: 48 start-page: 22 year: 2015 ident: pgen.1011524.ref041 article-title: Abundant contribution of short tandem repeats to gene expression variation in humans publication-title: Nature Genetics 2015 48:1. – volume: 25 start-page: 313 year: 1975 ident: pgen.1011524.ref059 article-title: The effect of selected linked locus on heterozygosity of neutral alleles (the hitch-hiking effect)*. publication-title: Genet Res (Camb). doi: 10.1017/S0016672300015731 – volume: 45 start-page: 12611 year: 2017 ident: pgen.1011524.ref119 article-title: Conserved non-coding elements: developmental gene regulation meets genome organization publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1074 – volume: 14 start-page: 590 year: 2017 ident: pgen.1011524.ref064 article-title: Genome-wide profiling of heritable and de novo STR variations publication-title: Nature Methods 2017 14:6. – volume: 2 start-page: 1123 year: 1993 ident: pgen.1011524.ref009 article-title: Mutation of human short tandem repeats publication-title: Hum Mol Genet doi: 10.1093/hmg/2.8.1123 – start-page: 115 year: 2004 ident: pgen.1011524.ref054 article-title: Tuning Function of Tandemly Repeating Sequences: A Molecular Device for Fast Adaptation. publication-title: Evolutionary Theory and Processes: Modern Horizons. – volume: 75 start-page: 2868 year: 1978 ident: pgen.1011524.ref060 article-title: Stepwise mutation model and distribution of allelic frequencies in a finite population publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.75.6.2868 – volume: 20 start-page: 2587 year: 2001 ident: pgen.1011524.ref007 article-title: Replication slippage involves DNA polymerase pausing and dissociation publication-title: EMBO J doi: 10.1093/emboj/20.10.2587 – volume: 25 start-page: 5 year: 2016 ident: pgen.1011524.ref004 article-title: Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication publication-title: Mol Ecol doi: 10.1111/mec.13339 – volume: 36 start-page: 321 year: 2023 ident: pgen.1011524.ref027 article-title: Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species publication-title: J Evol Biol doi: 10.1111/jeb.14106 – volume: 168 start-page: 383 year: 2004 ident: pgen.1011524.ref010 article-title: Microsatellite Mutation Models: Insights From a Comparison of Humans and Chimpanzees publication-title: Genetics doi: 10.1534/genetics.103.022665 – volume: 19 start-page: 1991 year: 2002 ident: pgen.1011524.ref039 article-title: Abundant Raw Material for Cis-Regulatory Evolution in Humans publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a004023 – volume: 96 start-page: 266 year: 2017 ident: pgen.1011524.ref087 article-title: Dermatopontin augments angiogenesis and modulates the expression of transforming growth factor beta 1 and integrin alpha 3 beta 1 in endothelial cells publication-title: Eur J Cell Biol doi: 10.1016/j.ejcb.2017.02.007 – volume: 19 start-page: 1251 year: 2002 ident: pgen.1011524.ref018 article-title: Rate and Pattern of Mutation at Microsatellite Loci in Maize publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a004186 – volume: 32 start-page: 1903 year: 2016 ident: pgen.1011524.ref076 article-title: Coala: an R framework for coalescent simulation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw098 – volume: 178 start-page: 2113 year: 2008 ident: pgen.1011524.ref014 article-title: The Rate and Spectrum of Microsatellite Mutation in Caenorhabditis elegans and Daphnia pulex publication-title: Genetics doi: 10.1534/genetics.107.081927 – volume: 13 start-page: 2802 year: 1993 ident: pgen.1011524.ref037 article-title: (CT)n (GA)n Repeats and Heat Shock Elements Have Distinct Roles in Chromatin Structure and Transcriptional Activation of the Drosophila hsp26 Gene. publication-title: Mol Cell Biol – volume: 134 start-page: 104635 year: 2020 ident: pgen.1011524.ref112 article-title: Pathogenesis of SCA3 and implications for other polyglutamine diseases publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2019.104635 – volume: 19 start-page: 286 year: 2018 ident: pgen.1011524.ref042 article-title: Tandem repeats mediating genetic plasticity in health and disease publication-title: Nature Reviews Genetics 2018 19:5. – volume: 8 start-page: 2047 year: 1999 ident: pgen.1011524.ref089 article-title: A Neurological Disease Caused By an Expanded CAG Trinucleotide Repeat in The TATA-Binding Protein Gene: A New Polyglutamine Disease? publication-title: Hum Mol Genet doi: 10.1093/hmg/8.11.2047 – volume: 47 start-page: 97 year: 2013 ident: pgen.1011524.ref003 article-title: Detecting natural selection in genomic data publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-111212-133526 – volume: 61 start-page: 893 year: 1969 ident: pgen.1011524.ref006 article-title: The Number of Heterozygous Nucleotide Sites Maintained in a Finite Population Due to Steady Flux of Mutations publication-title: Genetics doi: 10.1093/genetics/61.4.893 – volume: 68 start-page: 2737 year: 2014 ident: pgen.1011524.ref084 article-title: Remarkable selective constraints on exonic dinucleotides publication-title: Evolution. doi: 10.1111/evo.12460 – volume: 107 start-page: 692 year: 2010 ident: pgen.1011524.ref049 article-title: R loops stimulate genetic instability of CTG·CAG repeats publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0909740107 – volume: 40 start-page: 4273 year: 2012 ident: pgen.1011524.ref111 article-title: Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks publication-title: Nucleic Acids Res doi: 10.1093/nar/gks011 – volume: 13 start-page: 1 year: 2022 ident: pgen.1011524.ref030 article-title: Phenome-wide association study of loci harboring de novo tandem repeat mutations in UK Biobank exomes publication-title: Nature Communications 2022 13:1. – volume: 27 start-page: 2702 year: 2010 ident: pgen.1011524.ref083 article-title: The Number of Alleles at a Microsatellite Defines the Allele Frequency Spectrum and Facilitates Fast Accurate Estimation of θ publication-title: Mol Biol Evol doi: 10.1093/molbev/msq164 – volume: 13 year: 2023 ident: pgen.1011524.ref103 article-title: Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus. publication-title: Sci Rep doi: 10.1038/s41598-023-33239-3 – volume: 37 start-page: 986 year: 2005 ident: pgen.1011524.ref035 article-title: Intragenic tandem repeats generate functional variability publication-title: Nature Genetics 2005 37:9. – volume: 381 year: 2023 ident: pgen.1011524.ref022 article-title: Short tandem repeats bind transcription factors to tune eukaryotic gene expression publication-title: Science (1979). – volume: 6 start-page: 444 year: 2007 ident: pgen.1011524.ref092 article-title: Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder publication-title: Genes Brain Behav doi: 10.1111/j.1601-183X.2006.00273.x – volume: 42 start-page: 1021 year: 2010 ident: pgen.1011524.ref091 article-title: Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes publication-title: Nature Genetics 2010 42:11. – volume: 51 start-page: 9814 year: 2012 ident: pgen.1011524.ref045 article-title: CAG/CTG repeats alter the affinity for the histone core and the positioning of DNA in the nucleosome publication-title: Biochemistry doi: 10.1021/bi301416v – volume: 22 start-page: 1154 year: 2012 ident: pgen.1011524.ref071 article-title: lobSTR: A short tandem repeat profiler for personal genomes publication-title: Genome Res doi: 10.1101/gr.135780.111 – volume: 91 start-page: 3166 year: 1994 ident: pgen.1011524.ref061 article-title: Mutational processes of simple-sequence repeat loci in human populations publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.91.8.3166 – volume: 16 start-page: 1791 year: 1999 ident: pgen.1011524.ref079 article-title: Population growth of human Y chromosomes: a study of Y chromosome microsatellites publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026091 – volume: 94 start-page: 5 year: 2005 ident: pgen.1011524.ref098 article-title: RNA binding motif (RBM) proteins: A novel family of apoptosis modulators? publication-title: J Cell Biochem doi: 10.1002/jcb.20204 – volume: 61 start-page: 1314 year: 2004 ident: pgen.1011524.ref090 article-title: Behavioral Disorder, Dementia, Ataxia, and Rigidity in a Large Family With TATA Box-Binding Protein Mutation publication-title: Arch Neurol doi: 10.1001/archneur.61.8.1314 – volume: 276 start-page: 39533 year: 2001 ident: pgen.1011524.ref108 article-title: Interaction of HRC (Histidine-rich Ca2+-Binding Protein) and Triadin in the Lumen of Sarcoplasmic Reticulum. publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M010664200 – volume: 5 start-page: 7 year: 2007 ident: pgen.1011524.ref008 article-title: A Brief Review of Short Tandem Repeat Mutation publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/S1672-0229(07)60009-6 – volume: 278 start-page: 2117 year: 1997 ident: pgen.1011524.ref033 article-title: Natural variation in a Drosophila clock gene and temperature compensation publication-title: Science (1979). – volume: 22 start-page: 253 year: 2006 ident: pgen.1011524.ref055 article-title: Simple sequence repeats as advantageous mutators in evolution publication-title: Trends in Genetics doi: 10.1016/j.tig.2006.03.005 – volume: 193 start-page: 147 year: 2023 ident: pgen.1011524.ref097 article-title: COL1A1 and COL1A2 variants in Ehlers-Danlos syndrome phenotypes and COL1-related overlap disorder publication-title: Am J Med Genet C Semin Med Genet doi: 10.1002/ajmg.c.32038 – volume: 145 start-page: 505 year: 1997 ident: pgen.1011524.ref078 article-title: Inferring Coalescence Times From DNA Sequence Data publication-title: Genetics doi: 10.1093/genetics/145.2.505 – volume: 70 start-page: 253 year: 2010 ident: pgen.1011524.ref099 article-title: RBM5/H37 tumor suppressor, located at the lung cancer hot spot 3p21.3, alters expression of genes involved in metastasis publication-title: Lung Cancer doi: 10.1016/j.lungcan.2010.02.012 – volume: 98 start-page: 919 year: 2016 ident: pgen.1011524.ref023 article-title: Population-Scale Sequencing Data Enable Precise Estimates of Y-STR Mutation Rates publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2016.04.001 |
SSID | ssj0035897 |
Score | 2.4595764 |
Snippet | Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1011524 |
SubjectTerms | Alleles Bayes Theorem Biology and Life Sciences Evolution, Molecular Fitness (Genetics) Genetic Fitness - genetics Genetics, Population Genome, Human Humans Microsatellite Repeats - genetics Microsatellites (Genetics) Models, Genetic Mutation Selection, Genetic |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuCCgfgVICQuKAQuOMEzvHFrEqSIAEFPVm2c6k9EC2IruH_ntm7OxqIw5w4Jh4Lnljz7xRxm-EeBlkV0LXQgEK20IF0xSu9VCEDsB3xPF1VOD7-Kk5PVMfzuvznVFf3BOW5IETcEehNeCMR22IO5dYOZQe0bWq6lSLJkZfynmbYirFYKhNGqtS11BoKuunS3Og5dHkozdX5CCuXSmBqVlSitr9f0bonRQ1b5_cyUeLO-L2RCTz4_QBd8UNHO6Jm2m05PW-eL24XHEUy-NdXu5yGvNln8eRfPlP7sIbXRTjJKp5X5wt3n17e1pMgxGKULflqlCdbyUqVK4qsZGd6rTxnfYGAtH_0msESuymb2UIEivf9xUSiya2YIKGvocHYm9YDvhI5A2CNxh60zgW3yO-rR1AUD02ytFTJooNMvYq6V_Y-BNMU92QvtQyknZCMhMnDN_WltWr4wvyqZ18av_m00w8Y_Btugq6PYP2mKezEx8CsngRLVjBYuAWmQu3Hkf7_vP3fzD6-mVm9Goy6pfkzeCmawkEDytjzSwPZpZ0DsNs-flmq1he4ua1AZfr0QJnFd1QZZmJh2nrbPFh_l1XUGfCzDbVDMD5ynD5I8qAS6lZWrJ5_D8gfyJuVUTXooRleSD2Vr_W-JTo1sofxpP1G624Jss priority: 102 providerName: Directory of Open Access Journals |
Title | Fitness landscapes of human microsatellites |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39775235 https://www.proquest.com/docview/3153876996 https://pubmed.ncbi.nlm.nih.gov/PMC11734926 https://doaj.org/article/c983a8be781740e2ae1beea942d49e82 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEF76A8EX8XdP6xlF8EFSstlNdvMg0kqPKrRK9eTelt3NpBbapF7uwP73zmxyR4MKfUx2kpAvO5lvktlvGHvjeZmIshCxkFDE0us8toUTsS-FcCVyfBUU-I5P8qOp_DzLZhts1bO1B7D9Z2pH_aSm84u937-uP6DDvw9dGxRfHbR3hZBTNoohSW6ybYxNilz1WK7_K4hMd-1WskzECtP9fjHd_84yCFZB0__vN_eN0DUsq7wRpyb32b2eYEb73Yx4wDagfsjudC0nrx-xd5PzBb3dorDGl6qf2qipotCqL7qk6rzWBpFOpKCP2XRy-P3jUdw3TIh9ViSLWJau4CBB2jSBnJeyVNqVymnhMS1InAKBAV9XBfeeQ-qqKgVk18gitFeiqsQTtlU3NeywKAfhNPhK55ZE-ZCHKyuElxXk0uLWiMUrZMxVp4thws8xhflEd6eGkDQ9kiN2QPCtbUnVOuxo5memdxLjCy2sdqA05kkJpBa4A7CFTEtZAF30JYFvuiWia980-9S1HXmSQIvXwYKULWoqnTmzy7Y1n778uIXRt9OB0dveqGrwaXrbL1dAeEgxa2C5O7BE__SD4VerqWJoiIraamiWrREUbVSOGeeIPe2mzhof4uVZKrIR04NJNQBwOFKf_wzy4JwrkpzMn90Gi-fsboo0LUhXJrtsazFfwgukWQs3ZptqpsZs--Dw5OvpOHysGAdv-gOx7Sj7 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitness+landscapes+of+human+microsatellites&rft.jtitle=PLoS+genetics&rft.au=Haasl%2C+Ryan+J&rft.au=Payseur%2C+Bret+A&rft.date=2024-12-30&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=20&rft.issue=12&rft.spage=e1011524&rft_id=info:doi/10.1371%2Fjournal.pgen.1011524&rft.externalDBID=IOV&rft.externalDocID=A823628332 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |