A versatile site-directed gene trap strategy to manipulate gene activity and control gene expression in Caenorhabditis elegans
The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans , there are no genetic approaches to generate mutations that sim...
Saved in:
Published in | PLoS genetics Vol. 21; no. 1; p. e1011541 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
22.01.2025
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for
Caenorhabditis elegans
, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for
C
.
elegans
. We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered
in vivo
to easily swap cGAL with other bipartite expression systems’ drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in
C
.
elegans
, which will ultimately provide new insights into how genes in the genome control the biology of an organism. |
---|---|
AbstractList | The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C. elegans. We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems' drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C. elegans, which will ultimately provide new insights into how genes in the genome control the biology of an organism. The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C. elegans. We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems' drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C. elegans, which will ultimately provide new insights into how genes in the genome control the biology of an organism.The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C. elegans. We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems' drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C. elegans, which will ultimately provide new insights into how genes in the genome control the biology of an organism. The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans , there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C . elegans . We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems’ drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C . elegans , which will ultimately provide new insights into how genes in the genome control the biology of an organism. Genetic tools are critical to understanding how genes function to control the biology of an organism. Here we use a bipartite expression system to develop the first gene trap strategy for the model organism Caenorhabditis elegans— a powerful and versatile genetic tool that can specifically disrupt virtually any gene and precisely control transgene expression at the same time. Gene trap strains can be used to reveal endogenous expression patterns, perform genetic rescue experiments, and manipulate cell-specific activity; they can also be easily converted to gene traps with other bipartite expression systems. Our site-specific, robust, and swappable gene trap strategy will greatly facilitate genetic studies in C . elegans and can potentially be applied to other model organisms due to its versatility. The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans , there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C . elegans . We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems’ drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C . elegans , which will ultimately provide new insights into how genes in the genome control the biology of an organism. |
Audience | Academic |
Author | Khan, Haania Raj, Vishnu Wang, Han Huang, Xinyu |
AuthorAffiliation | 2 Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America UC Davis, UNITED STATES OF AMERICA 1 Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America |
AuthorAffiliation_xml | – name: 1 Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America – name: 2 Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America – name: UC Davis, UNITED STATES OF AMERICA |
Author_xml | – sequence: 1 givenname: Haania orcidid: 0000-0002-9948-9306 surname: Khan fullname: Khan, Haania – sequence: 2 givenname: Xinyu orcidid: 0009-0000-9618-3910 surname: Huang fullname: Huang, Xinyu – sequence: 3 givenname: Vishnu orcidid: 0000-0002-2162-7836 surname: Raj fullname: Raj, Vishnu – sequence: 4 givenname: Han orcidid: 0000-0002-1933-5762 surname: Wang fullname: Wang, Han |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39841730$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk0uL2zAQgE3Z0n20_6AUQ6G0h6SSZVv2aQmhj8DCQl9XIUtjR0GRXEkOm0t_e-U6XWLooRhkW_PpQ6PRXCcXxhpIkpcYLTGh-P3ODs5wvew7MEuMMC5y_CS5wkVBFjRH-cXZ92Vy7f0OIVJUNX2WXJK6yjEl6Cr5tUoP4DwPSkPqVYCFVA5EAJlGL6TB8T71cQzQHdNg0z03qh90_J8ALoI6qHBMuZGpsCY4q6cIPPQOvFfWpMqkaw7Gui1vpArKp6Ch48Y_T562XHt4cXrfJN8_fvi2_ry4u_-0Wa_uFqKoUViQuo6bL4msIaO0LXmTkUIIVNYNbduCokziGC_HMKlbqGRT0UyIrMJ5I7KS3CSbySst37HeqT13R2a5Yn8mrOsYd0EJDaypM1kBtBSRPG9RxgURlZQEZzgaRRZdt5OrH5o9SAExZ65n0nnEqC3r7IFhTIuYRB4Nb08GZ38O4APbKy9Aa27ADp4RXFS0yOu6jujrCe143JsyrY1KMeJsVRFCS1qSMb3lP6j4SNirWBRoY3nnC97NFoyFg4fQ8cF7tvn65f_Z-x9z9s0ZuwWuw9ZbPYR4C_wcfHV-iI-n9_dmRiCfAOGs9w7aRwQjNjYAOzUAGxuAnRqA_AbtIvrR |
Cites_doi | 10.1038/nrg794 10.1534/g3.112.003830 10.1534/genetics.115.178335 10.1534/genetics.120.303388 10.1016/S0379-4172(06)60039-5 10.1534/genetics.115.176099 10.1016/j.isci.2018.12.023 10.1073/pnas.1400615111 10.1038/ng1115 10.1534/genetics.115.184275 10.1093/bfgp/3.3.199 10.1093/genetics/77.1.71 10.1534/genetics.119.301506 10.1016/0092-8674(93)90139-H 10.1038/39908 10.1534/g3.118.200662 10.1073/pnas.0803617105 10.1093/genetics/iyab206 10.1038/35093548 10.1093/genetics/135.2.385 10.1016/j.cub.2013.03.049 10.7554/eLife.08469 10.1038/nmeth.1929 10.1073/pnas.1720063115 10.1016/j.celrep.2015.01.059 10.1895/wormbook.1.167.1 10.1038/ng.248 10.1002/j.1460-2075.1991.tb04966.x 10.1038/nmeth.4109 10.1016/j.cub.2008.08.013 10.1016/j.cub.2007.08.031 10.1126/sciadv.adg0506 10.1073/pnas.2221680120 10.1534/g3.118.200778 10.1038/nmeth.2889 10.1093/genetics/iyad072 |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Khan et al 2025 Khan et al |
Copyright_xml | – notice: Copyright: © 2025 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Khan et al 2025 Khan et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1011541 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Gene trap for C. elegans |
EISSN | 1553-7404 |
ExternalDocumentID | oai_doaj_org_article_b92d8eef70344f02ac3c8dd31212ccc2 PMC11753634 A833767636 39841730 10_1371_journal_pgen_1011541 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R00 GM126137 – fundername: NIGMS NIH HHS grantid: R35 GM150658 – fundername: NIGMS NIH HHS grantid: K99 GM126137 – fundername: NIH HHS grantid: P40 OD010440 – fundername: ; – fundername: ; grantid: R35GM150658 – fundername: ; grantid: K99/R00GM126137 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c590t-39900363d9e277f6ab235cc069b7ff5702d103669e2739fe8db872cc2814bc263 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Wed Aug 27 00:58:41 EDT 2025 Thu Aug 21 18:41:07 EDT 2025 Fri Jul 11 04:59:37 EDT 2025 Tue Jun 17 21:55:59 EDT 2025 Tue Jun 10 20:53:23 EDT 2025 Fri Jun 27 05:15:17 EDT 2025 Fri Jun 27 05:14:57 EDT 2025 Thu May 22 21:23:39 EDT 2025 Mon Jul 21 05:43:12 EDT 2025 Tue Jul 01 01:21:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Copyright: © 2025 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-39900363d9e277f6ab235cc069b7ff5702d103669e2739fe8db872cc2814bc263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America The authors have declared that no competing interests exist. |
ORCID | 0000-0002-1933-5762 0000-0002-2162-7836 0000-0002-9948-9306 0009-0000-9618-3910 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1011541 |
PMID | 39841730 |
PQID | 3158754999 |
PQPubID | 23479 |
PageCount | e1011541 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b92d8eef70344f02ac3c8dd31212ccc2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11753634 proquest_miscellaneous_3158754999 gale_infotracmisc_A833767636 gale_infotracacademiconefile_A833767636 gale_incontextgauss_ISR_A833767636 gale_incontextgauss_IOV_A833767636 gale_healthsolutions_A833767636 pubmed_primary_39841730 crossref_primary_10_1371_journal_pgen_1011541 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-22 |
PublicationDateYYYYMMDD | 2025-01-22 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2025 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | M. Nonet (pgen.1011541.ref021) 2021 ML Schwartz (pgen.1011541.ref019) 2016; 202 N Pokala (pgen.1011541.ref025) 2014; 111 EM Jorgensen (pgen.1011541.ref005) 2002; 3 S Nava (pgen.1011541.ref038) 2023; 120 DJ Dickinson (pgen.1011541.ref040) 2018 H Wang (pgen.1011541.ref037) 2018; 115 Y-Y Li (pgen.1011541.ref016) 2006; 33 P-T Lee (pgen.1011541.ref031) 2018; 7 SL McIntire (pgen.1011541.ref026) 1997; 389 C. elegans Deletion Mutant Consortium (pgen.1011541.ref006) 2012; 2 C Frøkjaer-Jensen (pgen.1011541.ref009) 2008; 40 H Wang (pgen.1011541.ref014) 2017; 14 TR Mahoney (pgen.1011541.ref022) 2008; 105 DJ Dickinson (pgen.1011541.ref010) 2015; 200 C Frøkjær-Jensen (pgen.1011541.ref039) 2014; 11 ML Nonet (pgen.1011541.ref011) 2020; 215 CC Mello (pgen.1011541.ref008) 1991; 10 A Ghaddar (pgen.1011541.ref024) 2023; 9 S. Brenner (pgen.1011541.ref004) 1974; 77 V Au (pgen.1011541.ref030) 2019; 9 F-J Yang (pgen.1011541.ref012) 2021; 220 J Spieth (pgen.1011541.ref020) 1993; 73 MA Peters (pgen.1011541.ref027) 2007; 17 X Wei (pgen.1011541.ref013) 2012; 9 ML Nonet (pgen.1011541.ref028) 2023 C Merritt (pgen.1011541.ref036) 2008; 18 AK Corsi (pgen.1011541.ref001) 2015; 200 FF Diao (pgen.1011541.ref034) 2015; 10 S El Mouridi (pgen.1011541.ref042) 2021; 2021 LM Kutscher (pgen.1011541.ref003) 2014 S Nagarkar-Jaiswal (pgen.1011541.ref033) 2015; 4 S Mao (pgen.1011541.ref015) 2019; 11 J Nance (pgen.1011541.ref002) 2019; 212 WL Stanford (pgen.1011541.ref017) 2001; 2 A Nagy (pgen.1011541.ref018) 2003; 33 PG Okkema (pgen.1011541.ref035) 1993; 135 J Macías-León (pgen.1011541.ref029) 2018; 2018 G Huang (pgen.1011541.ref041) 2021; 2021 H Wang (pgen.1011541.ref023) 2013; 23 H Wang (pgen.1011541.ref007) 2018; 8 T. Blumenthal (pgen.1011541.ref032) 2004; 3 |
References_xml | – volume: 3 start-page: 356 year: 2002 ident: pgen.1011541.ref005 article-title: The art and design of genetic screens: Caenorhabditis elegans publication-title: Nat Rev Genet doi: 10.1038/nrg794 – volume: 2 start-page: 1415 year: 2012 ident: pgen.1011541.ref006 article-title: Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. publication-title: G3: Genes, Genomes, Genetics. doi: 10.1534/g3.112.003830 – volume: 7 start-page: 1 year: 2018 ident: pgen.1011541.ref031 article-title: A gene-specific T2A-GAL4 library for Drosophila. publication-title: eLife – volume: 200 start-page: 1035 year: 2015 ident: pgen.1011541.ref010 article-title: Streamlined genome engineering with a self-excising drug selection cassette publication-title: Genetics doi: 10.1534/genetics.115.178335 – volume: 215 start-page: 903 year: 2020 ident: pgen.1011541.ref011 article-title: Efficient Transgenesis in Caenorhabditis elegans Using Flp Recombinase-Mediated Cassette Exchange publication-title: Genetics doi: 10.1534/genetics.120.303388 – volume: 2021 year: 2021 ident: pgen.1011541.ref041 article-title: Improved CRISPR/Cas9 knock-in efficiency via the self-excising cassette (SEC) selection method in C. elegans publication-title: MicroPubl Biol. – volume: 33 start-page: 189 year: 2006 ident: pgen.1011541.ref016 article-title: Gene Trapping Techniques and Current Progress publication-title: Acta Genetica Sinica doi: 10.1016/S0379-4172(06)60039-5 – volume: 2021 year: 2021 ident: pgen.1011541.ref042 article-title: A histamine-gated channel is an efficient negative selection marker for C. elegans transgenesis. publication-title: MicroPubl Biol – volume: 200 start-page: 387 year: 2015 ident: pgen.1011541.ref001 article-title: A Transparent Window into Biology: A Primer on Caenorhabditis elegans publication-title: Genetics doi: 10.1534/genetics.115.176099 – volume: 11 start-page: 224 year: 2019 ident: pgen.1011541.ref015 article-title: A Tet/Q Hybrid System for Robust and Versatile Control of Transgene Expression in C. elegans. publication-title: iScience doi: 10.1016/j.isci.2018.12.023 – volume: 111 start-page: 2770 year: 2014 ident: pgen.1011541.ref025 article-title: Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1400615111 – volume: 33 start-page: 276 year: 2003 ident: pgen.1011541.ref018 article-title: Tailoring the genome: the power of genetic approaches publication-title: Nat Genet doi: 10.1038/ng1115 – volume: 202 start-page: 1277 year: 2016 ident: pgen.1011541.ref019 article-title: SapTrap, a toolkit for high-throughput CRISPR/Cas9 gene modification in Caenorhabditis elegans publication-title: Genetics doi: 10.1534/genetics.115.184275 – volume: 3 start-page: 199 year: 2004 ident: pgen.1011541.ref032 article-title: Operons in eukaryotes publication-title: Briefings in Functional Genomics doi: 10.1093/bfgp/3.3.199 – volume: 77 start-page: 71 year: 1974 ident: pgen.1011541.ref004 article-title: The genetics of Caenorhabditis elegans publication-title: Genetics doi: 10.1093/genetics/77.1.71 – volume: 212 year: 2019 ident: pgen.1011541.ref002 article-title: The Caenorhabditis elegans transgenic toolbox publication-title: Genetics doi: 10.1534/genetics.119.301506 – volume: 73 start-page: 521 year: 1993 ident: pgen.1011541.ref020 article-title: Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions publication-title: Cell doi: 10.1016/0092-8674(93)90139-H – volume: 389 start-page: 870 year: 1997 ident: pgen.1011541.ref026 article-title: Identification and characterization of the vesicular GABA transporter publication-title: Nature doi: 10.1038/39908 – volume: 8 start-page: 3607 year: 2018 ident: pgen.1011541.ref007 article-title: An Efficient Genome Editing Strategy to Generate Putative Null Mutants in Caenorhabditis elegans Using CRISPR/Cas9 publication-title: G3: Genes, Genomes, Genetics. doi: 10.1534/g3.118.200662 – volume: 105 start-page: 16350 year: 2008 ident: pgen.1011541.ref022 article-title: Intestinal signaling to GABAergic neurons regulates a rhythmic behavior in Caenorhabditis elegans publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0803617105 – volume: 220 start-page: iyab206 year: 2021 ident: pgen.1011541.ref012 article-title: phiC31 integrase for recombination-mediated single-copy insertion and genome manipulation in Caenorhabditis elegans publication-title: Genetics doi: 10.1093/genetics/iyab206 – volume: 2 start-page: 756 year: 2001 ident: pgen.1011541.ref017 article-title: Gene-trap mutagenesis: past, present and beyond publication-title: Nat Rev Genet doi: 10.1038/35093548 – volume: 135 start-page: 385 year: 1993 ident: pgen.1011541.ref035 article-title: Sequence Requirements for Myosin Gene Expression and Regulation in Caenorhabditis elegans publication-title: Genetics doi: 10.1093/genetics/135.2.385 – start-page: 2018 year: 2018 ident: pgen.1011541.ref040 publication-title: SapTrap assembly of repair templates for Cas9-triggered homologous recombination with a self-excising cassette – volume: 23 start-page: 746 year: 2013 ident: pgen.1011541.ref023 article-title: Neuropeptide secreted from a pacemaker activates neurons to control a rhythmic behavior publication-title: Curr Biol doi: 10.1016/j.cub.2013.03.049 – volume: 4 start-page: e08469 year: 2015 ident: pgen.1011541.ref033 article-title: A genetic toolkit for tagging intronic MiMIC containing genes. publication-title: eLife doi: 10.7554/eLife.08469 – volume: 9 start-page: 391 year: 2012 ident: pgen.1011541.ref013 article-title: Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans publication-title: Nature Methods doi: 10.1038/nmeth.1929 – volume: 115 start-page: 3900 year: 2018 ident: pgen.1011541.ref037 article-title: Split cGAL, an intersectional strategy using a split intein for refined spatiotemporal transgene control in Caenorhabditis elegans publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1720063115 – volume: 10 start-page: 1410 year: 2015 ident: pgen.1011541.ref034 article-title: Plug-and-play genetic access to Drosophila cell types using exchangeable exon cassettes publication-title: Cell Reports doi: 10.1016/j.celrep.2015.01.059 – start-page: 1 year: 2014 ident: pgen.1011541.ref003 article-title: Forward and reverse mutagenesis in Celegans. publication-title: WormBook doi: 10.1895/wormbook.1.167.1 – volume: 40 start-page: 1375 year: 2008 ident: pgen.1011541.ref009 article-title: Single-copy insertion of transgenes in Caenorhabditis elegans publication-title: Nat Genet doi: 10.1038/ng.248 – volume: 10 start-page: 3959 year: 1991 ident: pgen.1011541.ref008 article-title: Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences publication-title: EMBO J doi: 10.1002/j.1460-2075.1991.tb04966.x – volume: 14 start-page: 145 year: 2017 ident: pgen.1011541.ref014 article-title: cGAL, a temperature-robust GAL4-UAS system for Caenorhabditis elegans publication-title: Nat Methods doi: 10.1038/nmeth.4109 – volume: 18 start-page: 1476 year: 2008 ident: pgen.1011541.ref036 article-title: 3′ UTRs Are the Primary Regulators of Gene Expression in the C. elegans Germline publication-title: Curr Biol doi: 10.1016/j.cub.2008.08.013 – volume: 2018 year: 2018 ident: pgen.1011541.ref029 article-title: Efficient FLP-mediated germ-line recombination in C. elegans. publication-title: MicroPubl Biol – volume: 17 start-page: 1601 year: 2007 ident: pgen.1011541.ref027 article-title: A calcium wave mediated by gap junctions coordinates a rhythmic behavior in C. elegans publication-title: Curr Biol doi: 10.1016/j.cub.2007.08.031 – start-page: 2021 year: 2021 ident: pgen.1011541.ref021 article-title: Improved GAL4 and Tet OFF drivers for C. elegans bipartite expression. publication-title: MicroPubl Biol – volume: 9 start-page: eadg0506 year: 2023 ident: pgen.1011541.ref024 article-title: Whole-body gene expression atlas of an adult metazoan publication-title: Science Advances doi: 10.1126/sciadv.adg0506 – volume: 120 start-page: e2221680120 year: 2023 ident: pgen.1011541.ref038 article-title: A cGAL-UAS bipartite expression toolkit for Caenorhabditis elegans sensory neurons publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2221680120 – volume: 9 start-page: 135 year: 2019 ident: pgen.1011541.ref030 article-title: CRISPR/Cas9 Methodology for the Generation of Knockout Deletions in Caenorhabditis elegans. G3 publication-title: Genes|Genomes|Genetics doi: 10.1534/g3.118.200778 – volume: 11 start-page: 529 year: 2014 ident: pgen.1011541.ref039 article-title: Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. publication-title: Nat Methods. doi: 10.1038/nmeth.2889 – start-page: iyad072 year: 2023 ident: pgen.1011541.ref028 article-title: Rapid generation of C. elegans single-copy transgenes combining RMCE and drug selection publication-title: Genetics doi: 10.1093/genetics/iyad072 |
SSID | ssj0035897 |
Score | 2.4614992 |
Snippet | The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1011541 |
SubjectTerms | Animals Animals, Genetically Modified Biology and Life Sciences Caenorhabditis elegans Caenorhabditis elegans - genetics Caenorhabditis elegans Proteins - genetics CRISPR-Cas Systems - genetics Gene Editing - methods Gene expression Gene Expression Regulation Genetic aspects Genetic engineering Genetic research Methods Operon Research and Analysis Methods Transgenes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRv12tGkXwKXY3ySbZx7NYqqCCWulb2M2HLUju6N2Bfenf3plN7rjFB33w8W6G5W5-k5kMO_MbQl7XPGoZgmAekg-TMno2qKFmxvjIo_Nw1nFQ-NNndXwiP562pzurvrAnLNMDZ8MdDB33JoSokZsu1rx3whnvRQMx1zk3Rl_IeZtiKsdg0Zq8VqVtBdNQ1pehOaGbg4LR2wUAhLUr3CGaSVIaufv_jNA7KWraPrmTj47ukNvlIkln-Q_cJTdCukdu5tWSl_fJ1YxiwwXY_Veg-IaY5eQVPIVfFCg8ckGXmZr2kq7mFHkwxl1eISvgwAPulaB98rQ0tGdJ-F2aZxM9T_SwD2l-cdYPHtmRKK6xgOz3gJwcvf9-eMzKrgXm2q5eMbinIDWN8F3gWkfVD1y0ztWqG3SMra65b0CuUCy6GIwfjAYAuGnk4LgSD8lemqfwmNBOBfjcQebvWqlq3cva6Oi1VMEAjk1F2MbYdpEpNez4Xk1DKZKNZxEcW8CpyDtEZKuLhNjjF-AmtriJ_ZubVOQF4mnzdOn2WNuZEchno4SqyKtRA0kxEnbd_OzXy6X98OXHPyh9-zpRelOU4hxwdH2ZdADzINnWRHN_oglH203ELzfeZ1GE_XApzNdLK5oWCk2sVivyKHvj1j6iM7KBwF0RM_HTiQGnknR-NjKLj7ytSsgn_8PkT8ktjsuS64Zxvk_2Vhfr8AxucKvh-XhYrwHdw0Xo priority: 102 providerName: Directory of Open Access Journals |
Title | A versatile site-directed gene trap strategy to manipulate gene activity and control gene expression in Caenorhabditis elegans |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39841730 https://www.proquest.com/docview/3158754999 https://pubmed.ncbi.nlm.nih.gov/PMC11753634 https://doaj.org/article/b92d8eef70344f02ac3c8dd31212ccc2 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qi-CL-N1oPVcRfNqS7Ca7mweRa2mpQqtUT-4tJPvRFkpyXu6g9-Lf7kw2dzSoID7ezWQJMzs3O7czvx8hb2PuVeqcYBaSD0tTb1klq5hpbT33xkKs46Dw6Zk8maSfptl0i6w5W3sDtn8s7ZBPajK_3r_5sfoAAf--Y21Qyfqh_RmYHKtROBVAPbQDuUkhp8FpurlXEJkOdCtZJpiCcr8fpvvbKoNk1WH6__7LfSt1Ddsqb-Wp4wfkfn_ApOOwIx6SLVc_IncD5eTqMfk5ptiIAf64dhRvjllIas5SeCNHYckZbQNk7YouGor4GB3HlwsKOAiBfBO0rC3tG92DxN30TbU1varpYenqZn5ZVhZRkyjSW0BWfEImx0ffDk9Yz8HATJbHCwbnF4SsETZ3XCkvy4qLzJhY5pXyPlMxtwnIJYpF7p22lVbcGK6TtDJciqdku25qt0toLh18zuFEkGepjFWZxlp5q1LptPMqiQhbG7uYBaiNortvU1CiBOMV6Jyid05EDtAjG10Eyu6-aOYXRR93RZVzqx0sj9CGPualEUZbKxJI2QZeMyKv0J9FmDrdhHsx1gJxbqSQEXnTaSBYRo3dOBflsm2Lj5-__4PS1_OB0rteyTfgR1P2ExBgHgThGmjuDTQh5M1A_Hq9-woUYZ9c7ZplW4gkgwIUq9iIPAu7cWMfkWuICBFHRA_26cCAQ0l9ddkhjnd4rlKkz___0RfkHkfq5DhhnO-R7cV86V7CeW5RjcgdNVUjsnNwdPblfNT9KzLqwvYXeQdRtw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+versatile+site-directed+gene+trap+strategy+to+manipulate+gene+activity+and+control+gene+expression+in+Caenorhabditis+elegans&rft.jtitle=PLoS+genetics&rft.au=Khan%2C+Haania&rft.au=Huang%2C+Xinyu&rft.au=Raj%2C+Vishnu&rft.au=Wang%2C+Han&rft.date=2025-01-22&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pgen.1011541&rft.externalDocID=PMC11753634 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |