A versatile site-directed gene trap strategy to manipulate gene activity and control gene expression in Caenorhabditis elegans

The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans , there are no genetic approaches to generate mutations that sim...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 21; no. 1; p. e1011541
Main Authors Khan, Haania, Huang, Xinyu, Raj, Vishnu, Wang, Han
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 22.01.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans , there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C . elegans . We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems’ drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C . elegans , which will ultimately provide new insights into how genes in the genome control the biology of an organism.
AbstractList The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C. elegans. We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems' drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C. elegans, which will ultimately provide new insights into how genes in the genome control the biology of an organism.
The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C. elegans. We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems' drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C. elegans, which will ultimately provide new insights into how genes in the genome control the biology of an organism.The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C. elegans. We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems' drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C. elegans, which will ultimately provide new insights into how genes in the genome control the biology of an organism.
The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans , there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C . elegans . We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems’ drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C . elegans , which will ultimately provide new insights into how genes in the genome control the biology of an organism. Genetic tools are critical to understanding how genes function to control the biology of an organism. Here we use a bipartite expression system to develop the first gene trap strategy for the model organism Caenorhabditis elegans— a powerful and versatile genetic tool that can specifically disrupt virtually any gene and precisely control transgene expression at the same time. Gene trap strains can be used to reveal endogenous expression patterns, perform genetic rescue experiments, and manipulate cell-specific activity; they can also be easily converted to gene traps with other bipartite expression systems. Our site-specific, robust, and swappable gene trap strategy will greatly facilitate genetic studies in C . elegans and can potentially be applied to other model organisms due to its versatility.
The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans , there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C . elegans . We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems’ drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C . elegans , which will ultimately provide new insights into how genes in the genome control the biology of an organism.
Audience Academic
Author Khan, Haania
Raj, Vishnu
Wang, Han
Huang, Xinyu
AuthorAffiliation 2 Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
UC Davis, UNITED STATES OF AMERICA
1 Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
AuthorAffiliation_xml – name: 1 Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
– name: 2 Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
– name: UC Davis, UNITED STATES OF AMERICA
Author_xml – sequence: 1
  givenname: Haania
  orcidid: 0000-0002-9948-9306
  surname: Khan
  fullname: Khan, Haania
– sequence: 2
  givenname: Xinyu
  orcidid: 0009-0000-9618-3910
  surname: Huang
  fullname: Huang, Xinyu
– sequence: 3
  givenname: Vishnu
  orcidid: 0000-0002-2162-7836
  surname: Raj
  fullname: Raj, Vishnu
– sequence: 4
  givenname: Han
  orcidid: 0000-0002-1933-5762
  surname: Wang
  fullname: Wang, Han
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39841730$$D View this record in MEDLINE/PubMed
BookMark eNqNk0uL2zAQgE3Z0n20_6AUQ6G0h6SSZVv2aQmhj8DCQl9XIUtjR0GRXEkOm0t_e-U6XWLooRhkW_PpQ6PRXCcXxhpIkpcYLTGh-P3ODs5wvew7MEuMMC5y_CS5wkVBFjRH-cXZ92Vy7f0OIVJUNX2WXJK6yjEl6Cr5tUoP4DwPSkPqVYCFVA5EAJlGL6TB8T71cQzQHdNg0z03qh90_J8ALoI6qHBMuZGpsCY4q6cIPPQOvFfWpMqkaw7Gui1vpArKp6Ch48Y_T562XHt4cXrfJN8_fvi2_ry4u_-0Wa_uFqKoUViQuo6bL4msIaO0LXmTkUIIVNYNbduCokziGC_HMKlbqGRT0UyIrMJ5I7KS3CSbySst37HeqT13R2a5Yn8mrOsYd0EJDaypM1kBtBSRPG9RxgURlZQEZzgaRRZdt5OrH5o9SAExZ65n0nnEqC3r7IFhTIuYRB4Nb08GZ38O4APbKy9Aa27ADp4RXFS0yOu6jujrCe143JsyrY1KMeJsVRFCS1qSMb3lP6j4SNirWBRoY3nnC97NFoyFg4fQ8cF7tvn65f_Z-x9z9s0ZuwWuw9ZbPYR4C_wcfHV-iI-n9_dmRiCfAOGs9w7aRwQjNjYAOzUAGxuAnRqA_AbtIvrR
Cites_doi 10.1038/nrg794
10.1534/g3.112.003830
10.1534/genetics.115.178335
10.1534/genetics.120.303388
10.1016/S0379-4172(06)60039-5
10.1534/genetics.115.176099
10.1016/j.isci.2018.12.023
10.1073/pnas.1400615111
10.1038/ng1115
10.1534/genetics.115.184275
10.1093/bfgp/3.3.199
10.1093/genetics/77.1.71
10.1534/genetics.119.301506
10.1016/0092-8674(93)90139-H
10.1038/39908
10.1534/g3.118.200662
10.1073/pnas.0803617105
10.1093/genetics/iyab206
10.1038/35093548
10.1093/genetics/135.2.385
10.1016/j.cub.2013.03.049
10.7554/eLife.08469
10.1038/nmeth.1929
10.1073/pnas.1720063115
10.1016/j.celrep.2015.01.059
10.1895/wormbook.1.167.1
10.1038/ng.248
10.1002/j.1460-2075.1991.tb04966.x
10.1038/nmeth.4109
10.1016/j.cub.2008.08.013
10.1016/j.cub.2007.08.031
10.1126/sciadv.adg0506
10.1073/pnas.2221680120
10.1534/g3.118.200778
10.1038/nmeth.2889
10.1093/genetics/iyad072
ContentType Journal Article
Copyright Copyright: © 2025 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Khan et al 2025 Khan et al
Copyright_xml – notice: Copyright: © 2025 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Khan et al 2025 Khan et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1011541
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic




CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Gene trap for C. elegans
EISSN 1553-7404
ExternalDocumentID oai_doaj_org_article_b92d8eef70344f02ac3c8dd31212ccc2
PMC11753634
A833767636
39841730
10_1371_journal_pgen_1011541
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R00 GM126137
– fundername: NIGMS NIH HHS
  grantid: R35 GM150658
– fundername: NIGMS NIH HHS
  grantid: K99 GM126137
– fundername: NIH HHS
  grantid: P40 OD010440
– fundername: ;
– fundername: ;
  grantid: R35GM150658
– fundername: ;
  grantid: K99/R00GM126137
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c590t-39900363d9e277f6ab235cc069b7ff5702d103669e2739fe8db872cc2814bc263
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Wed Aug 27 00:58:41 EDT 2025
Thu Aug 21 18:41:07 EDT 2025
Fri Jul 11 04:59:37 EDT 2025
Tue Jun 17 21:55:59 EDT 2025
Tue Jun 10 20:53:23 EDT 2025
Fri Jun 27 05:15:17 EDT 2025
Fri Jun 27 05:14:57 EDT 2025
Thu May 22 21:23:39 EDT 2025
Mon Jul 21 05:43:12 EDT 2025
Tue Jul 01 01:21:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright: © 2025 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-39900363d9e277f6ab235cc069b7ff5702d103669e2739fe8db872cc2814bc263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
The authors have declared that no competing interests exist.
ORCID 0000-0002-1933-5762
0000-0002-2162-7836
0000-0002-9948-9306
0009-0000-9618-3910
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1011541
PMID 39841730
PQID 3158754999
PQPubID 23479
PageCount e1011541
ParticipantIDs doaj_primary_oai_doaj_org_article_b92d8eef70344f02ac3c8dd31212ccc2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11753634
proquest_miscellaneous_3158754999
gale_infotracmisc_A833767636
gale_infotracacademiconefile_A833767636
gale_incontextgauss_ISR_A833767636
gale_incontextgauss_IOV_A833767636
gale_healthsolutions_A833767636
pubmed_primary_39841730
crossref_primary_10_1371_journal_pgen_1011541
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-22
PublicationDateYYYYMMDD 2025-01-22
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M. Nonet (pgen.1011541.ref021) 2021
ML Schwartz (pgen.1011541.ref019) 2016; 202
N Pokala (pgen.1011541.ref025) 2014; 111
EM Jorgensen (pgen.1011541.ref005) 2002; 3
S Nava (pgen.1011541.ref038) 2023; 120
DJ Dickinson (pgen.1011541.ref040) 2018
H Wang (pgen.1011541.ref037) 2018; 115
Y-Y Li (pgen.1011541.ref016) 2006; 33
P-T Lee (pgen.1011541.ref031) 2018; 7
SL McIntire (pgen.1011541.ref026) 1997; 389
C. elegans Deletion Mutant Consortium (pgen.1011541.ref006) 2012; 2
C Frøkjaer-Jensen (pgen.1011541.ref009) 2008; 40
H Wang (pgen.1011541.ref014) 2017; 14
TR Mahoney (pgen.1011541.ref022) 2008; 105
DJ Dickinson (pgen.1011541.ref010) 2015; 200
C Frøkjær-Jensen (pgen.1011541.ref039) 2014; 11
ML Nonet (pgen.1011541.ref011) 2020; 215
CC Mello (pgen.1011541.ref008) 1991; 10
A Ghaddar (pgen.1011541.ref024) 2023; 9
S. Brenner (pgen.1011541.ref004) 1974; 77
V Au (pgen.1011541.ref030) 2019; 9
F-J Yang (pgen.1011541.ref012) 2021; 220
J Spieth (pgen.1011541.ref020) 1993; 73
MA Peters (pgen.1011541.ref027) 2007; 17
X Wei (pgen.1011541.ref013) 2012; 9
ML Nonet (pgen.1011541.ref028) 2023
C Merritt (pgen.1011541.ref036) 2008; 18
AK Corsi (pgen.1011541.ref001) 2015; 200
FF Diao (pgen.1011541.ref034) 2015; 10
S El Mouridi (pgen.1011541.ref042) 2021; 2021
LM Kutscher (pgen.1011541.ref003) 2014
S Nagarkar-Jaiswal (pgen.1011541.ref033) 2015; 4
S Mao (pgen.1011541.ref015) 2019; 11
J Nance (pgen.1011541.ref002) 2019; 212
WL Stanford (pgen.1011541.ref017) 2001; 2
A Nagy (pgen.1011541.ref018) 2003; 33
PG Okkema (pgen.1011541.ref035) 1993; 135
J Macías-León (pgen.1011541.ref029) 2018; 2018
G Huang (pgen.1011541.ref041) 2021; 2021
H Wang (pgen.1011541.ref023) 2013; 23
H Wang (pgen.1011541.ref007) 2018; 8
T. Blumenthal (pgen.1011541.ref032) 2004; 3
References_xml – volume: 3
  start-page: 356
  year: 2002
  ident: pgen.1011541.ref005
  article-title: The art and design of genetic screens: Caenorhabditis elegans
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg794
– volume: 2
  start-page: 1415
  year: 2012
  ident: pgen.1011541.ref006
  article-title: Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome.
  publication-title: G3: Genes, Genomes, Genetics.
  doi: 10.1534/g3.112.003830
– volume: 7
  start-page: 1
  year: 2018
  ident: pgen.1011541.ref031
  article-title: A gene-specific T2A-GAL4 library for Drosophila.
  publication-title: eLife
– volume: 200
  start-page: 1035
  year: 2015
  ident: pgen.1011541.ref010
  article-title: Streamlined genome engineering with a self-excising drug selection cassette
  publication-title: Genetics
  doi: 10.1534/genetics.115.178335
– volume: 215
  start-page: 903
  year: 2020
  ident: pgen.1011541.ref011
  article-title: Efficient Transgenesis in Caenorhabditis elegans Using Flp Recombinase-Mediated Cassette Exchange
  publication-title: Genetics
  doi: 10.1534/genetics.120.303388
– volume: 2021
  year: 2021
  ident: pgen.1011541.ref041
  article-title: Improved CRISPR/Cas9 knock-in efficiency via the self-excising cassette (SEC) selection method in C. elegans
  publication-title: MicroPubl Biol.
– volume: 33
  start-page: 189
  year: 2006
  ident: pgen.1011541.ref016
  article-title: Gene Trapping Techniques and Current Progress
  publication-title: Acta Genetica Sinica
  doi: 10.1016/S0379-4172(06)60039-5
– volume: 2021
  year: 2021
  ident: pgen.1011541.ref042
  article-title: A histamine-gated channel is an efficient negative selection marker for C. elegans transgenesis.
  publication-title: MicroPubl Biol
– volume: 200
  start-page: 387
  year: 2015
  ident: pgen.1011541.ref001
  article-title: A Transparent Window into Biology: A Primer on Caenorhabditis elegans
  publication-title: Genetics
  doi: 10.1534/genetics.115.176099
– volume: 11
  start-page: 224
  year: 2019
  ident: pgen.1011541.ref015
  article-title: A Tet/Q Hybrid System for Robust and Versatile Control of Transgene Expression in C. elegans.
  publication-title: iScience
  doi: 10.1016/j.isci.2018.12.023
– volume: 111
  start-page: 2770
  year: 2014
  ident: pgen.1011541.ref025
  article-title: Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1400615111
– volume: 33
  start-page: 276
  year: 2003
  ident: pgen.1011541.ref018
  article-title: Tailoring the genome: the power of genetic approaches
  publication-title: Nat Genet
  doi: 10.1038/ng1115
– volume: 202
  start-page: 1277
  year: 2016
  ident: pgen.1011541.ref019
  article-title: SapTrap, a toolkit for high-throughput CRISPR/Cas9 gene modification in Caenorhabditis elegans
  publication-title: Genetics
  doi: 10.1534/genetics.115.184275
– volume: 3
  start-page: 199
  year: 2004
  ident: pgen.1011541.ref032
  article-title: Operons in eukaryotes
  publication-title: Briefings in Functional Genomics
  doi: 10.1093/bfgp/3.3.199
– volume: 77
  start-page: 71
  year: 1974
  ident: pgen.1011541.ref004
  article-title: The genetics of Caenorhabditis elegans
  publication-title: Genetics
  doi: 10.1093/genetics/77.1.71
– volume: 212
  year: 2019
  ident: pgen.1011541.ref002
  article-title: The Caenorhabditis elegans transgenic toolbox
  publication-title: Genetics
  doi: 10.1534/genetics.119.301506
– volume: 73
  start-page: 521
  year: 1993
  ident: pgen.1011541.ref020
  article-title: Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90139-H
– volume: 389
  start-page: 870
  year: 1997
  ident: pgen.1011541.ref026
  article-title: Identification and characterization of the vesicular GABA transporter
  publication-title: Nature
  doi: 10.1038/39908
– volume: 8
  start-page: 3607
  year: 2018
  ident: pgen.1011541.ref007
  article-title: An Efficient Genome Editing Strategy to Generate Putative Null Mutants in Caenorhabditis elegans Using CRISPR/Cas9
  publication-title: G3: Genes, Genomes, Genetics.
  doi: 10.1534/g3.118.200662
– volume: 105
  start-page: 16350
  year: 2008
  ident: pgen.1011541.ref022
  article-title: Intestinal signaling to GABAergic neurons regulates a rhythmic behavior in Caenorhabditis elegans
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0803617105
– volume: 220
  start-page: iyab206
  year: 2021
  ident: pgen.1011541.ref012
  article-title: phiC31 integrase for recombination-mediated single-copy insertion and genome manipulation in Caenorhabditis elegans
  publication-title: Genetics
  doi: 10.1093/genetics/iyab206
– volume: 2
  start-page: 756
  year: 2001
  ident: pgen.1011541.ref017
  article-title: Gene-trap mutagenesis: past, present and beyond
  publication-title: Nat Rev Genet
  doi: 10.1038/35093548
– volume: 135
  start-page: 385
  year: 1993
  ident: pgen.1011541.ref035
  article-title: Sequence Requirements for Myosin Gene Expression and Regulation in Caenorhabditis elegans
  publication-title: Genetics
  doi: 10.1093/genetics/135.2.385
– start-page: 2018
  year: 2018
  ident: pgen.1011541.ref040
  publication-title: SapTrap assembly of repair templates for Cas9-triggered homologous recombination with a self-excising cassette
– volume: 23
  start-page: 746
  year: 2013
  ident: pgen.1011541.ref023
  article-title: Neuropeptide secreted from a pacemaker activates neurons to control a rhythmic behavior
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2013.03.049
– volume: 4
  start-page: e08469
  year: 2015
  ident: pgen.1011541.ref033
  article-title: A genetic toolkit for tagging intronic MiMIC containing genes.
  publication-title: eLife
  doi: 10.7554/eLife.08469
– volume: 9
  start-page: 391
  year: 2012
  ident: pgen.1011541.ref013
  article-title: Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1929
– volume: 115
  start-page: 3900
  year: 2018
  ident: pgen.1011541.ref037
  article-title: Split cGAL, an intersectional strategy using a split intein for refined spatiotemporal transgene control in Caenorhabditis elegans
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1720063115
– volume: 10
  start-page: 1410
  year: 2015
  ident: pgen.1011541.ref034
  article-title: Plug-and-play genetic access to Drosophila cell types using exchangeable exon cassettes
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2015.01.059
– start-page: 1
  year: 2014
  ident: pgen.1011541.ref003
  article-title: Forward and reverse mutagenesis in Celegans.
  publication-title: WormBook
  doi: 10.1895/wormbook.1.167.1
– volume: 40
  start-page: 1375
  year: 2008
  ident: pgen.1011541.ref009
  article-title: Single-copy insertion of transgenes in Caenorhabditis elegans
  publication-title: Nat Genet
  doi: 10.1038/ng.248
– volume: 10
  start-page: 3959
  year: 1991
  ident: pgen.1011541.ref008
  article-title: Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1991.tb04966.x
– volume: 14
  start-page: 145
  year: 2017
  ident: pgen.1011541.ref014
  article-title: cGAL, a temperature-robust GAL4-UAS system for Caenorhabditis elegans
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4109
– volume: 18
  start-page: 1476
  year: 2008
  ident: pgen.1011541.ref036
  article-title: 3′ UTRs Are the Primary Regulators of Gene Expression in the C. elegans Germline
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2008.08.013
– volume: 2018
  year: 2018
  ident: pgen.1011541.ref029
  article-title: Efficient FLP-mediated germ-line recombination in C. elegans.
  publication-title: MicroPubl Biol
– volume: 17
  start-page: 1601
  year: 2007
  ident: pgen.1011541.ref027
  article-title: A calcium wave mediated by gap junctions coordinates a rhythmic behavior in C. elegans
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.08.031
– start-page: 2021
  year: 2021
  ident: pgen.1011541.ref021
  article-title: Improved GAL4 and Tet OFF drivers for C. elegans bipartite expression.
  publication-title: MicroPubl Biol
– volume: 9
  start-page: eadg0506
  year: 2023
  ident: pgen.1011541.ref024
  article-title: Whole-body gene expression atlas of an adult metazoan
  publication-title: Science Advances
  doi: 10.1126/sciadv.adg0506
– volume: 120
  start-page: e2221680120
  year: 2023
  ident: pgen.1011541.ref038
  article-title: A cGAL-UAS bipartite expression toolkit for Caenorhabditis elegans sensory neurons
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2221680120
– volume: 9
  start-page: 135
  year: 2019
  ident: pgen.1011541.ref030
  article-title: CRISPR/Cas9 Methodology for the Generation of Knockout Deletions in Caenorhabditis elegans. G3
  publication-title: Genes|Genomes|Genetics
  doi: 10.1534/g3.118.200778
– volume: 11
  start-page: 529
  year: 2014
  ident: pgen.1011541.ref039
  article-title: Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon.
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.2889
– start-page: iyad072
  year: 2023
  ident: pgen.1011541.ref028
  article-title: Rapid generation of C. elegans single-copy transgenes combining RMCE and drug selection
  publication-title: Genetics
  doi: 10.1093/genetics/iyad072
SSID ssj0035897
Score 2.4614992
Snippet The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1011541
SubjectTerms Animals
Animals, Genetically Modified
Biology and Life Sciences
Caenorhabditis elegans
Caenorhabditis elegans - genetics
Caenorhabditis elegans Proteins - genetics
CRISPR-Cas Systems - genetics
Gene Editing - methods
Gene expression
Gene Expression Regulation
Genetic aspects
Genetic engineering
Genetic research
Methods
Operon
Research and Analysis Methods
Transgenes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRv12tGkXwKXY3ySbZx7NYqqCCWulb2M2HLUju6N2Bfenf3plN7rjFB33w8W6G5W5-k5kMO_MbQl7XPGoZgmAekg-TMno2qKFmxvjIo_Nw1nFQ-NNndXwiP562pzurvrAnLNMDZ8MdDB33JoSokZsu1rx3whnvRQMx1zk3Rl_IeZtiKsdg0Zq8VqVtBdNQ1pehOaGbg4LR2wUAhLUr3CGaSVIaufv_jNA7KWraPrmTj47ukNvlIkln-Q_cJTdCukdu5tWSl_fJ1YxiwwXY_Veg-IaY5eQVPIVfFCg8ckGXmZr2kq7mFHkwxl1eISvgwAPulaB98rQ0tGdJ-F2aZxM9T_SwD2l-cdYPHtmRKK6xgOz3gJwcvf9-eMzKrgXm2q5eMbinIDWN8F3gWkfVD1y0ztWqG3SMra65b0CuUCy6GIwfjAYAuGnk4LgSD8lemqfwmNBOBfjcQebvWqlq3cva6Oi1VMEAjk1F2MbYdpEpNez4Xk1DKZKNZxEcW8CpyDtEZKuLhNjjF-AmtriJ_ZubVOQF4mnzdOn2WNuZEchno4SqyKtRA0kxEnbd_OzXy6X98OXHPyh9-zpRelOU4hxwdH2ZdADzINnWRHN_oglH203ELzfeZ1GE_XApzNdLK5oWCk2sVivyKHvj1j6iM7KBwF0RM_HTiQGnknR-NjKLj7ytSsgn_8PkT8ktjsuS64Zxvk_2Vhfr8AxucKvh-XhYrwHdw0Xo
  priority: 102
  providerName: Directory of Open Access Journals
Title A versatile site-directed gene trap strategy to manipulate gene activity and control gene expression in Caenorhabditis elegans
URI https://www.ncbi.nlm.nih.gov/pubmed/39841730
https://www.proquest.com/docview/3158754999
https://pubmed.ncbi.nlm.nih.gov/PMC11753634
https://doaj.org/article/b92d8eef70344f02ac3c8dd31212ccc2
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qi-CL-N1oPVcRfNqS7Ca7mweRa2mpQqtUT-4tJPvRFkpyXu6g9-Lf7kw2dzSoID7ezWQJMzs3O7czvx8hb2PuVeqcYBaSD0tTb1klq5hpbT33xkKs46Dw6Zk8maSfptl0i6w5W3sDtn8s7ZBPajK_3r_5sfoAAf--Y21Qyfqh_RmYHKtROBVAPbQDuUkhp8FpurlXEJkOdCtZJpiCcr8fpvvbKoNk1WH6__7LfSt1Ddsqb-Wp4wfkfn_ApOOwIx6SLVc_IncD5eTqMfk5ptiIAf64dhRvjllIas5SeCNHYckZbQNk7YouGor4GB3HlwsKOAiBfBO0rC3tG92DxN30TbU1varpYenqZn5ZVhZRkyjSW0BWfEImx0ffDk9Yz8HATJbHCwbnF4SsETZ3XCkvy4qLzJhY5pXyPlMxtwnIJYpF7p22lVbcGK6TtDJciqdku25qt0toLh18zuFEkGepjFWZxlp5q1LptPMqiQhbG7uYBaiNortvU1CiBOMV6Jyid05EDtAjG10Eyu6-aOYXRR93RZVzqx0sj9CGPualEUZbKxJI2QZeMyKv0J9FmDrdhHsx1gJxbqSQEXnTaSBYRo3dOBflsm2Lj5-__4PS1_OB0rteyTfgR1P2ExBgHgThGmjuDTQh5M1A_Hq9-woUYZ9c7ZplW4gkgwIUq9iIPAu7cWMfkWuICBFHRA_26cCAQ0l9ddkhjnd4rlKkz___0RfkHkfq5DhhnO-R7cV86V7CeW5RjcgdNVUjsnNwdPblfNT9KzLqwvYXeQdRtw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+versatile+site-directed+gene+trap+strategy+to+manipulate+gene+activity+and+control+gene+expression+in+Caenorhabditis+elegans&rft.jtitle=PLoS+genetics&rft.au=Khan%2C+Haania&rft.au=Huang%2C+Xinyu&rft.au=Raj%2C+Vishnu&rft.au=Wang%2C+Han&rft.date=2025-01-22&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pgen.1011541&rft.externalDocID=PMC11753634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon