Reachy, a 3D-Printed Human-Like Robotic Arm as a Testbed for Human-Robot Control Strategies
To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testi...
Saved in:
Published in | Frontiers in neurorobotics Vol. 13; p. 65 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
14.08.2019
Frontiers Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot. |
---|---|
AbstractList | To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human “pilot” with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot. To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot. To this day, despite the increasingmotor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human “pilot” with efficient ways to drive such a robotic armrequires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is thereforemore suitable for studying reaching thanmanipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure andoff-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control.In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot. To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human ``pilot'' with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or vision-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot. |
Author | Mick, Sébastien Lapeyre, Mattieu Halgand, Christophe de Rugy, Aymar Paclet, Florent Cattaert, Daniel Benois-Pineau, Jenny Rouanet, Pierre Oudeyer, Pierre-Yves |
AuthorAffiliation | 4 Inria Bordeaux Sud-Ouest , Talence , France 5 Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland , Brisbane, QLD , Australia 2 Pollen Robotics , Bordeaux , France 3 Laboratoire Bordelais de Recherche en Informatique, UMR 5800, CNRS & Univ. Bordeaux & Bordeaux INP , Talence , France 1 Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS & Univ. Bordeaux , Bordeaux , France |
AuthorAffiliation_xml | – name: 3 Laboratoire Bordelais de Recherche en Informatique, UMR 5800, CNRS & Univ. Bordeaux & Bordeaux INP , Talence , France – name: 1 Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS & Univ. Bordeaux , Bordeaux , France – name: 5 Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland , Brisbane, QLD , Australia – name: 2 Pollen Robotics , Bordeaux , France – name: 4 Inria Bordeaux Sud-Ouest , Talence , France |
Author_xml | – sequence: 1 givenname: Sébastien surname: Mick fullname: Mick, Sébastien – sequence: 2 givenname: Mattieu surname: Lapeyre fullname: Lapeyre, Mattieu – sequence: 3 givenname: Pierre surname: Rouanet fullname: Rouanet, Pierre – sequence: 4 givenname: Christophe surname: Halgand fullname: Halgand, Christophe – sequence: 5 givenname: Jenny surname: Benois-Pineau fullname: Benois-Pineau, Jenny – sequence: 6 givenname: Florent surname: Paclet fullname: Paclet, Florent – sequence: 7 givenname: Daniel surname: Cattaert fullname: Cattaert, Daniel – sequence: 8 givenname: Pierre-Yves surname: Oudeyer fullname: Oudeyer, Pierre-Yves – sequence: 9 givenname: Aymar surname: de Rugy fullname: de Rugy, Aymar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31474846$$D View this record in MEDLINE/PubMed https://hal.science/hal-02326321$$DView record in HAL |
BookMark | eNp1kttr2zAUxsXoWC_b-56GYS8bzJkuliy_FEJ2SSGw0XVPexCydJwos61Osgv97ycn6WgDe5KQfuc7t-8cnfS-B4ReEzxjTFYfm772w4xiUs0wxoI_Q2dECJpzSuTJo_spOo9xmwgquHyBThkpykIW4gz9ugZtNvcfMp2xT_n34PoBbLYcO93nK_cbsmufUjiTzUOX6ZiwG4hDnZjGhwO3Q7KF74fg2-zHEPQAawfxJXre6DbCq8N5gX5--XyzWOarb1-vFvNVbniFh5yVZVmbSjBpuaUS6waYxaSuhOS2plpYIuqyYYUA2TDGreUaOHAMDKQxhF2gq72u9XqrboPrdLhXXju1e_BhrXRIPbSg6poZTCyxEvOiolwaKhrQQtrKWFKypHW517od6w6sgdSUbp-IPv3p3Uat_Z0SJWZY4iTwfi-wOQpbzldqesOUUcEouZsKf3dIFvyfMc1VdS4aaFvdgx-jolQyRnlR8oS-PUK3fgx9GmuiUt1smmKi3jyu_l_-h30nQOwBE3yMARpl3KAHN-1Ou1YRrCZjqZ2x1GQstTNWCsRHgQ_a_w35CwHrzyM |
CitedBy_id | crossref_primary_10_7554_eLife_87317_3 crossref_primary_10_1177_00368504231172667 crossref_primary_10_3389_fnbot_2020_00028 crossref_primary_10_48175_IJARSCT_638 crossref_primary_10_1080_15397734_2022_2063889 crossref_primary_10_1002_aisy_202300607 crossref_primary_10_3390_buildings10120231 crossref_primary_10_3390_polym13111895 crossref_primary_10_1088_1741_2552_ad628c crossref_primary_10_3390_prosthesis7020026 crossref_primary_10_3390_biomimetics9090532 crossref_primary_10_1109_TRO_2024_3386615 crossref_primary_10_1002_cta_3025 crossref_primary_10_3389_fnbot_2022_836772 crossref_primary_10_1177_0018720820941619 crossref_primary_10_32388_R4KHPY crossref_primary_10_3389_frobt_2024_1330812 crossref_primary_10_1109_TRO_2024_3390057 crossref_primary_10_7736_JKSPE_024_008 crossref_primary_10_1109_JBHI_2024_3430810 crossref_primary_10_3390_biomimetics8040367 crossref_primary_10_7554_eLife_87317 crossref_primary_10_1177_00202940241270906 crossref_primary_10_3389_fmats_2024_1304339 crossref_primary_10_3390_jimaging8020044 crossref_primary_10_3390_app11136104 crossref_primary_10_3389_fmech_2020_550328 crossref_primary_10_25046_aj080509 crossref_primary_10_1007_s13369_024_09796_8 crossref_primary_10_1016_j_ohx_2023_e00436 crossref_primary_10_1109_ACCESS_2024_3474731 crossref_primary_10_1186_s12984_020_00793_0 |
Cites_doi | 10.1109/TNSRE.2013.2294685 10.1080/03093640600994581 10.1109/TBME.2012.2185494 10.1109/IROS.2011.6095019 10.1109/ICORR.2013.6650441 10.1109/VR.2015.7223441 10.1007/s11370-015-0165-2 10.1016/j.robot.2015.05.010 10.1155/2016/5720163 10.1186/1743-0003-8-29 10.1109/HUMANOIDS.2013.7030002 10.1016/j.patcog.2018.11.013 10.1016/j.cviu.2017.03.001 10.1016/j.protcy.2013.12.451 10.1088/1741-2552/aa620a 10.1109/ICRA.2011.5980371 10.13140/2.1.3118.4640 10.1145/2909824.3020254 10.1016/j.robot.2014.08.012 10.1002/rob.21570 10.1109/IROS.2016.7759835 10.3389/fnins.2014.00123 10.1088/1741-2560/11/4/046001 10.1109/TNSRE.2018.2847565 10.1080/17483107.2016.1253117 10.1109/TNSRE.2013.2251664 10.1007/978-1-4471-3750-4 10.15607/RSS.2018.XIV.043 10.1109/IJCNN.2010.5596525 10.1109/TSMCC.2012.2226444 10.1109/ICRA.2018.8460506 10.1109/TNSRE.2015.2440177 10.1007/978-1-4614-3064-3_2 10.1016/j.jelekin.2015.06.010 10.1109/TNSRE.2007.891369 10.1088/1741-2560/12/6/066022 10.3389/fnins.2016.00209 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2019 Mick, Lapeyre, Rouanet, Halgand, Benois-Pineau, Paclet, Cattaert, Oudeyer and de Rugy. 2019 Mick, Lapeyre, Rouanet, Halgand, Benois-Pineau, Paclet, Cattaert, Oudeyer and de Rugy |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2019 Mick, Lapeyre, Rouanet, Halgand, Benois-Pineau, Paclet, Cattaert, Oudeyer and de Rugy. 2019 Mick, Lapeyre, Rouanet, Halgand, Benois-Pineau, Paclet, Cattaert, Oudeyer and de Rugy |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC 5PM DOA |
DOI | 10.3389/fnbot.2019.00065 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1662-5218 |
ExternalDocumentID | oai_doaj_org_article_bb3c01d1d80549258c26fea68d9cd173 PMC6703080 oai_HAL_hal_02326321v1 31474846 10_3389_fnbot_2019_00065 |
Genre | Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GrantInformation_xml | – fundername: Centre National de la Recherche Scientifique |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFS ACXDI ADBBV ADDVE ADMLS ADRAZ AEGXH AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 1XC PUEGO 5PM |
ID | FETCH-LOGICAL-c590t-3777bc9638d5d280afe3d01b9685db2a6d16b7f346e8f335dd5ae5e50e3e8cc13 |
IEDL.DBID | M48 |
ISSN | 1662-5218 |
IngestDate | Wed Aug 27 01:31:09 EDT 2025 Thu Aug 21 18:30:32 EDT 2025 Sat Aug 30 06:24:01 EDT 2025 Fri Jul 11 04:50:30 EDT 2025 Fri Jul 25 11:46:39 EDT 2025 Wed Feb 19 02:33:03 EST 2025 Tue Jul 01 02:32:18 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | rehabilitation engineering open-source research testbed humanoid robot 3D printing robotic arm Open-source Robotic arm Rehabilitation engineering Research testbed Humanoid robot |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-3777bc9638d5d280afe3d01b9685db2a6d16b7f346e8f335dd5ae5e50e3e8cc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC6703080 Edited by: Alex Pitti, Université de Cergy-Pontoise, France Reviewed by: Arnaud Blanchard, École Nationale Supérieure de l'électronique et de ses Applications, France; Davide Marocco, University of Naples Federico II, Italy |
ORCID | 0000-0002-9404-7613 0000-0002-1277-130X 0000-0003-0659-8894 0000-0002-8561-3855 0000-0001-5645-3680 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnbot.2019.00065 |
PMID | 31474846 |
PQID | 2273333777 |
PQPubID | 4424403 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bb3c01d1d80549258c26fea68d9cd173 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6703080 hal_primary_oai_HAL_hal_02326321v1 proquest_miscellaneous_2283325475 proquest_journals_2273333777 pubmed_primary_31474846 crossref_citationtrail_10_3389_fnbot_2019_00065 crossref_primary_10_3389_fnbot_2019_00065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-14 |
PublicationDateYYYYMMDD | 2019-08-14 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neurorobotics |
PublicationTitleAlternate | Front Neurorobot |
PublicationYear | 2019 |
Publisher | Frontiers Research Foundation Frontiers Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers – name: Frontiers Media S.A |
References | Rakita (B46) 2017 Markovic (B39) 2015; 12 Corbett (B12) 2013; 21 Hild (B26) 2012 Cordella (B14) 2016; 10 Duchowski (B17) 2003 Blana (B7) 2016; 29 Cipriani (B11) 2011; 8 Biddiss (B6) 2007; 31 Zucker (B53) 2015; 32 Losier (B35) 2011 Merad (B43) 2016 Phelan (B45) 2015 ten Kate (B51) 2017; 12 Abadi (B1) 2015 Almusawi (B2) 2016; 2016 Meeker (B42) 2018 Duka (B18) 2014; 12 Krausz (B32) 2016; 24 Astanin (B3) 2016 Lapeyre (B34) 2013 Bouganis (B8) 2010 Corbett (B13) 2014; 8 Ly (B36) 2011 Stoelen (B50) 2016 Bae (B4) 2015; 8 McMullen (B41) 2014; 22 Reed (B48) 1998 Kanitz (B30) 2018; 26 Ha (B24) 2011 Novak (B44) 2015; 73 Hortal (B27) 2015; 72 Hauschild (B25) 2007; 15 Rakita (B47) 2018 Dawson (B15) 2014; 14 Bridges (B9) 2011; 30 B10 Lapeyre (B33) 2014 Schwarz (B49) 2013 de San Roman (B16) 2017; 164 Frisoli (B20) 2012; 42 Kaliki (B29) 2013; 60 González-Díaz (B22) 2019; 88 Markovic (B38) 2014; 11 Grebenstein (B23) 2011 Freese (B19) 2015 Wang (B52) 2015 Kluyver (B31) 2016 Gigli (B21) 2017 Belter (B5) 2013 Johannes (B28) 2011; 30 Manceron (B37) 2015 Markovic (B40) 2017; 14 |
References_xml | – volume: 30 start-page: 207 year: 2011 ident: B28 article-title: An overview of the developmental process for the Modular Prosthetic Limb publication-title: Johns Hopkins APL Techn. Digest – volume: 22 start-page: 784 year: 2014 ident: B41 article-title: Demonstration of a semi-autonomous hybrid brain–machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2294685 – volume: 31 start-page: 236 year: 2007 ident: B6 article-title: Upper limb prosthesis use and abandonment: a survey of the last 25 years publication-title: Prosthet. Orthot. Int. doi: 10.1080/03093640600994581 – volume: 60 start-page: 792 year: 2013 ident: B29 article-title: Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2185494 – start-page: 1465 volume-title: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) year: 2011 ident: B36 article-title: Bio-inspired vertebral column, compliance and semi-passive dynamics in a lightweight humanoid robot doi: 10.1109/IROS.2011.6095019 – volume-title: An Inverse Kinematics Library Aiming Performance and Modularity year: 2015 ident: B37 – start-page: 1 volume-title: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR) year: 2013 ident: B5 article-title: Novel differential mechanism enabling two DoF from a single actuator: application to a prosthetic hand doi: 10.1109/ICORR.2013.6650441 – start-page: 353 volume-title: Virtual Reality (VR), 2015 year: 2015 ident: B45 article-title: Exploring virtual reality and prosthetic training doi: 10.1109/VR.2015.7223441 – volume: 8 start-page: 93 year: 2015 ident: B4 article-title: Task space control considering passive muscle stiffness for redundant robotic arms publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-015-0165-2 – volume-title: TensorFlow: Large-scale Machine Learning on Heterogeneous Systems year: 2015 ident: B1 – volume: 72 start-page: 181 year: 2015 ident: B27 article-title: Combining a brain–machine interface and an electrooculography interface to perform pick and place tasks with a robotic arm publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2015.05.010 – volume: 2016 start-page: 5720163 year: 2016 ident: B2 article-title: A new artificial neural network approach in solving inverse kinematics of robotic arm (Denso VP6242) publication-title: Comput. Intell. Neurosci doi: 10.1155/2016/5720163 – volume: 8 start-page: 29 year: 2011 ident: B11 article-title: The SmartHand transradial prosthesis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-8-29 – start-page: 376 volume-title: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) year: 2013 ident: B34 article-title: Poppy humanoid platform: experimental evaluation of the role of a bio-inspired thigh shape doi: 10.1109/HUMANOIDS.2013.7030002 – volume: 88 start-page: 223 year: 2019 ident: B22 article-title: Perceptually-guided deep neural networks for ego-action prediction: object grasping publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2018.11.013 – volume: 164 start-page: 82 year: 2017 ident: B16 article-title: Saliency driven object recognition in egocentric videos with deep CNN: toward application in assistance to neuroprostheses publication-title: Comput. Vis. Image Understand. doi: 10.1016/j.cviu.2017.03.001 – volume: 12 start-page: 20 year: 2014 ident: B18 article-title: Neural network based inverse kinematics solution for trajectory tracking of a robotic arm publication-title: Proc. Technol. doi: 10.1016/j.protcy.2013.12.451 – volume: 14 start-page: 036007 year: 2017 ident: B40 article-title: GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa620a – start-page: 3175 volume-title: 2011 IEEE International Conference on Robotics and Automation year: 2011 ident: B23 article-title: The DLR hand arm system doi: 10.1109/ICRA.2011.5980371 – volume-title: Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks year: 1998 ident: B48 – volume: 14 start-page: 60 year: 2014 ident: B15 article-title: Development of the Bento Arm: an improved robotic arm for myoelectric training and research publication-title: Proc. MEC doi: 10.13140/2.1.3118.4640 – start-page: 361 volume-title: Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction year: 2017 ident: B46 article-title: A motion retargeting method for effective mimicry-based teleoperation of robot arms doi: 10.1145/2909824.3020254 – volume: 73 start-page: 155 year: 2015 ident: B44 article-title: A survey of sensor fusion methods in wearable robotics publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.08.012 – volume-title: arXiv[Preprint]. arXiv:1709.02236 year: 2017 ident: B21 article-title: Visual cues to improve myoelectric control of upper limb prostheses – start-page: 244 volume-title: International Conference on Simulation of Adaptive Behavior year: 2016 ident: B50 article-title: Co-exploring actuator antagonism and bio-inspired control in a printable robot arm – start-page: 87 volume-title: Positioning and Power in Academic Publishing: Players, Agents and Agendas year: 2016 ident: B31 article-title: Jupyter notebooks – a publishing format for reproducible computational workflows – volume: 32 start-page: 336 year: 2015 ident: B53 article-title: A general-purpose system for teleoperation of the DRC-HUBO humanoid robot publication-title: J. Field Robot. doi: 10.1002/rob.21570 – start-page: 5677 volume-title: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) year: 2016 ident: B43 article-title: Intuitive prosthetic control using upper limb inter-joint coordinations and IMU-based shoulder angles measurement: a pilot study doi: 10.1109/IROS.2016.7759835 – ident: B10 – volume: 8 start-page: 123 year: 2014 ident: B13 article-title: Multimodal decoding and congruent sensory information enhance reaching performance in subjects with cervical spinal cord injury publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00123 – volume: 11 start-page: 046001 year: 2014 ident: B38 article-title: Stereovision and augmented reality for closed-loop control of grasping in hand prostheses publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/4/046001 – volume: 26 start-page: 1407 year: 2018 ident: B30 article-title: Compliant prosthetic wrists entail more natural use than stiff wrists during reaching, not (necessarily) during manipulation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2847565 – volume: 12 start-page: 300 year: 2017 ident: B51 article-title: 3D-printed upper limb prostheses: a review publication-title: Disabil. Rehabil. doi: 10.1080/17483107.2016.1253117 – volume: 30 start-page: 217 year: 2011 ident: B9 article-title: Control system architecture for the Modular Prosthetic Limb publication-title: Johns Hopkins APL Techn. Digest – start-page: 568 volume-title: Robot Soccer World Cup year: 2013 ident: B49 article-title: Humanoid teen-size open platform NimbRo-OP – volume: 21 start-page: 674 year: 2013 ident: B12 article-title: Real-time evaluation of a noninvasive neuroprosthetic interface for control of reach publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2251664 – volume-title: Eye Tracking Methodology: Theory and Practice year: 2003 ident: B17 doi: 10.1007/978-1-4471-3750-4 – volume-title: Proceedings of Robotics: Science and Systems year: 2018 ident: B47 article-title: RelaxedIK: Real-time synthesis of accurate and feasible robot arm motion doi: 10.15607/RSS.2018.XIV.043 – start-page: 1 volume-title: 2010 International Joint Conference on Neural Networks (IJCNN) year: 2010 ident: B8 article-title: Training a spiking neural network to control a 4-DoF robotic arm based on spike timing-dependent plasticity doi: 10.1109/IJCNN.2010.5596525 – volume: 42 start-page: 1169 year: 2012 ident: B20 article-title: A new gaze-bci-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks publication-title: IEEE Trans. Syst. Man Cybern. Part C doi: 10.1109/TSMCC.2012.2226444 – volume-title: Presented at the Myoelectric Controls Symposium year: 2011 ident: B35 article-title: An overview of the UNB hand system – volume-title: arXiv[Preprint] arXiv:1802.04349 year: 2018 ident: B42 article-title: Intuitive hand teleoperation by novice operators using a continuous teleoperation subspace doi: 10.1109/ICRA.2018.8460506 – start-page: 1476 volume-title: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE year: 2015 ident: B52 article-title: Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task – volume-title: A Pure Python Library to Receive Motion Capture Data From OptiTrack Streaming Engine year: 2016 ident: B3 – volume: 24 start-page: 562 year: 2016 ident: B32 article-title: Design and fabrication of a six degree-of-freedom open source hand publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2440177 – start-page: 25 volume-title: Language Grounding in Robots year: 2012 ident: B26 article-title: Myon, a new humanoid doi: 10.1007/978-1-4614-3064-3_2 – volume: 29 start-page: 21 year: 2016 ident: B7 article-title: Feasibility of using combined EMG and kinematic signals for prosthesis control: a simulation study using a virtual reality environment publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2015.06.010 – volume: 15 start-page: 9 year: 2007 ident: B25 article-title: A virtual reality environment for designing and fitting neural prosthetic limbs publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.891369 – start-page: 6 volume-title: Digital Intelligence 2014 year: 2014 ident: B33 article-title: Poppy project: open-source fabrication of 3D-printed humanoid robot for science, education and art – volume-title: Virtual Robot Experimentation Platform year: 2015 ident: B19 – start-page: 2178 volume-title: 2011 Proceedings of SICE Annual Conference (SICE) year: 2011 ident: B24 article-title: Development of open humanoid platform DARwIn-OP – volume: 12 start-page: 066022 year: 2015 ident: B39 article-title: Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/6/066022 – volume: 10 start-page: 209 year: 2016 ident: B14 article-title: Literature review on needs of upper limb prosthesis users publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00209 |
SSID | ssj0062658 |
Score | 2.3283513 |
Snippet | To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of... To this day, despite the increasingmotor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 65 |
SubjectTerms | 3D printing Arm Computer Science Design Electroencephalography humanoid robot Interfaces International conferences Kinematics Multimedia open-source Performance evaluation Product development Professional soccer Prostheses Rehabilitation rehabilitation engineering research testbed Researchers robotic arm Robotics Robotics and AI Robots Virtual reality Wrist |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ30QtX6sVknFF8Hlks3mYx9rbTlKFSktFHwI-aRHdU96V8H_3pns3nGnoC_u42Y2O_wyycxkZ38h5I3onPZY1N7xqOsWPHrdeQ-LoU9csaw7U_7i__hJTS_ak0t5uXHUF9aEDfTAA3AT70VgPPJoGJKJSRMalZNTJnYhcl14PsHnrZKpYQ2GKF2a4aMkpGDdJPd-joWTHMkpGTqSDSdUuPrBtVxhJeSfYebv1ZIb7uf4Abk_xo30YND3IbmT-kfk3gab4C75coaVkT_fUUfFh_rzDTJBRFp26evT2XWiZ3PQbxagk2_ULUDsHDTwIAOB6yhXROjhUL9OV9S1afGYXBwfnR9O6_HshDrIji1h3dDaB5xdUcbGMJeTiIz7ThkZfeNU5MrrLFqVTBZCxihdkkmyJJIJgYsnZKef9-kZoTyo3EJWEUKTWxhXJ6VjwWWFhzSlbCoyWYFpw0gsjudbfLWQYCD8tsBvEX5b4K_I2_UT3wdSjb_IvsfxWcshHXa5AUZiRyOx_zKSiryG0d3qY3pwavEexCxIWc9_8IrsrQbfjhN5YRsI7-ACNCuyv26GKYjfVVyf5rcoY4SARFuDsk8HW1m_SvAW2VpVRfSWFW3pst3Sz64KzbfCxdiw5_8DgBfkLkKKm-G83SM7y5vb9BKiqaV_VSbOL-ZFG98 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5Be4FDxRtDQQZxQcKK1-t9-ITa0ipCpaqiVqrEYbVPGkHtkqRI_Htm7E1IQKqP9sQezey8diffEPKONUZabGpvqJdFDRG9aKwFZ2gDFWWUjer_xf_lRIzP688X_CJtuM1TW-XSJ_aO2ncO98hHFcRZuKSUH69_Fjg1Ck9X0wiNu2QbXLCC4mt7__DkdLL0xZCtczUcTkIp1oxiaztsoKQIUlliQFkLRj1mP4SYS-yI_D_d_Ldrci0MHT0gOyl_zPcGhT8kd0L7iNxfQxV8TL5OsEPy94fc5OxTcTpDRAif97v1xfH0e8gnHfA3dfCSq9zMgewMOLBAAwlsoutJ8oOhjz1fQtiG-RNyfnR4djAu0gyFwvGmXBQoMOvQyjz3lSpNDMyX1DZCcW8rIzwVVkZWi6AiY9x7bgIPvAwsKOcoe0q22q4Nz0lOnYg1VBfOVbEG_RrOTelMFDisKUSVkdFSmNolgHGcc_FDQ6GB4te9-DWKX_fiz8j71S-uB3CNW2j3UT8rOoTF7m90s286WZm2lrmSeupVichzXLlKxGCE8o3zVLKMvAXtbrxjvHes8R7kLghdT3_RjOwula-TQc_13-WXkTerx2CKeL5i2tDdII1iDApuCcw-G9bK6lOM1ojaKjIiN1bRBi-bT9rpZQ_3LdApq_LF7Wy9JPdQWLjdTetdsrWY3YRXkC8t7OtkFH8AevIUsg priority: 102 providerName: ProQuest |
Title | Reachy, a 3D-Printed Human-Like Robotic Arm as a Testbed for Human-Robot Control Strategies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31474846 https://www.proquest.com/docview/2273333777 https://www.proquest.com/docview/2283325475 https://hal.science/hal-02326321 https://pubmed.ncbi.nlm.nih.gov/PMC6703080 https://doaj.org/article/bb3c01d1d80549258c26fea68d9cd173 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglVA5IJ4lUFYBcUEiNI5jxzkg1JaWFWqratWVVuIQ-RW6oiSwu0X03zPjPGig4kAOOcRjx_LMeGbs8WdCXrJcZRqT2nNqsygFix7lWsNkqB0VcZnl0p_iPzoW42n6ccZnv49HtwO4vDa0w_ukpovzNz-_X74DhX-LESfY2-2y0jWmRVKEngSTepOsg13KUE2P0n5PATx3LpuNymtrbZBbjKYIrSkGNspD-YPlOcNEyb-90D-TKa9Yp4O75E7rVoY7jRzcIzdcdZ_cvgI2-IB8mmDi5OXrUIXsfXSyQKAIG_pF_Ohw_sWFkxq6OjfQyNdQLYHsFHqggQb82pbOk4R7TXp72CHbuuVDMj3YP90bR-3VCpHhebyCaSXLtEHls9wmMlalYzamOheSW50oYanQWclS4WTJGLeWK8cdjx1z0hjKHpG1qq7cYxJSI8oUgg5jkjIFtivOVWxUKfAOJ1fKgGx3g1mYFnccr784LyD-QE4UnhMFcqLwnAjIq77GtwZz4x-0u8ifng7Rsv2HevG5aJWv0JqZmFpqZYyAdFyaRJROCWlzY2nGAvICuDtoY7xzWOA3cGkQ0Z7-oAHZ6phfdGJaJOD9wQOjGZDnfTFoKG67qMrVF0gjGYM4PIPObjay0v-qk7iAZAMpGvRlWFLNzzwKuMC5WsZP_rvmU7KB44gL5DTdImurxYV7Bh7WSo_I-u7-8clk5Fco4P1hRkdemX4B8HwnvA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEG8MBQyCAxJWvF7ven1AqE-lNI2qKJUq9bDsyzQCnJKkoP4pfiMzfoQEpN7qoz1ej2Zn57E7_oaQNyzXmcGi9py6LErBo0e5MWAMjaciLrJcVn_xHw5E7zj9dMJP1sjv9l8YLKtsbWJlqN3E4h55NwE_C1eWZR_Pf0TYNQpPV9sWGrVaHPjLX5CyzT7s78D8vk2Svd3Rdi9qugpElufxPMIhjEW9c9wlMtaFZy6mJheSO5No4agwWcFS4WXBGHeOa889jz3z0lrKYNwbZD1lkMp0yPrW7uBo2Np-yA64rA9DIfXLu0VpJliwSREUM0YHtuT8qh4B4NLOsALz__D23yrNJbe3d5fcaeLVcLNWsHtkzZf3ye0lFMMH5HSIFZmX70Mdsp3oaIoIFC6sTgei_virD4cT4G9sYZDvoZ4B2Qg4MEADAXNDV5GE23XdfNhC5vrZQ3J8LdJ9RDrlpPRPSEitKFLIZqxNihT0SXOuY6sLgc2hfCED0m2FqWwDaI59Nb4pSGxQ_KoSv0Lxq0r8AXm3eOO8BvO4gnYL52dBhzDc1Y3J9ItqVrUyhtmYOupkjEh3XNpEFF4L6XLraMYC8hpmd2WM3mZf4T2IlRAqn_6kAdloJ181BmSm_qp7QF4tHsPSx_McXfrJBdJIxiDBz4DZx7WuLD7FaIoosSIg2YoWrfCy-qQcn1Xw4gKdgIyfXs3WS3KzNzrsq_7-4OAZuYWCw612mm6Qznx64Z9DrDY3L5oFEpLP170m_wAGcVIz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJwQLwxFDAIDkhY8Xq96_UBobZplNIQRVErVeJg9mUatdglSUH9a_w6ZvwICUi91Ud7vB7Nzs5jd_wNIW9YqhKNRe0ptUkQg0cPUq3BGGpHRZgnqaz-4v88EoOj-NMxP94gv9t_YbCssrWJlaG2pcE98m4EfhauJEm6eVMWMe71P57_CLCDFJ60tu00ahU5cJe_IH2bf9jvwVy_jaL-3uHuIGg6DASGp-EiwOG0QR203EYyVLljNqQ6FZJbHSlhqdBJzmLhZM4Yt5Yrxx0PHXPSGMpg3BtkM4GsKOyQzZ290XjS-gHIFLisD0YhDUy7eaFLLN6kCJAZojNbcYRVvwBwbydYjfl_qPtvxeaKC-zfJXea2NXfrpXtHtlwxX1yewXR8AH5MsHqzMv3vvJZLxjPEI3C-tVJQTCcnjp_UgJ_UwODfPfVHMgOgQMNNBA8N3QVib9b19D7LXyumz8kR9ci3UekU5SFe0J8akQeQ2ZjTJTHoFuKcxUalQtsFOVy6ZFuK8zMNODm2GPjLIMkB8WfVeLPUPxZJX6PvFu-cV4De1xBu4Pzs6RDSO7qRjn7ljUrPNOamZBaamWIqHdcmkjkTglpU2NpwjzyGmZ3bYzB9jDDexA3IWw-_Uk9stVOftYYk3n2V_U98mr5GMwAnu2owpUXSCMZg2Q_AWYf17qy_BSjMSLGCo8ka1q0xsv6k2J6UkGNC3QIMnx6NVsvyU1Yi9lwf3TwjNxCueGuO423SGcxu3DPIWxb6BfN-vDJ1-tekn8AssBWaA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reachy%2C+a+3D-Printed+Human-Like+Robotic+Arm+as+a+Testbed+for+Human-Robot+Control+Strategies&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Mick%2C+S%C3%A9bastien&rft.au=Lapeyre%2C+Mattieu&rft.au=Rouanet%2C+Pierre&rft.au=Halgand%2C+Christophe&rft.date=2019-08-14&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5218&rft.volume=13&rft_id=info:doi/10.3389%2Ffnbot.2019.00065&rft_id=info%3Apmid%2F31474846&rft.externalDocID=PMC6703080 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon |