Reachy, a 3D-Printed Human-Like Robotic Arm as a Testbed for Human-Robot Control Strategies

To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testi...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neurorobotics Vol. 13; p. 65
Main Authors Mick, Sébastien, Lapeyre, Mattieu, Rouanet, Pierre, Halgand, Christophe, Benois-Pineau, Jenny, Paclet, Florent, Cattaert, Daniel, Oudeyer, Pierre-Yves, de Rugy, Aymar
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 14.08.2019
Frontiers
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.
AbstractList To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human “pilot” with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.
To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.
To this day, despite the increasingmotor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human “pilot” with efficient ways to drive such a robotic armrequires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is thereforemore suitable for studying reaching thanmanipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure andoff-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control.In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.
To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human ``pilot'' with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or vision-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.
Author Mick, Sébastien
Lapeyre, Mattieu
Halgand, Christophe
de Rugy, Aymar
Paclet, Florent
Cattaert, Daniel
Benois-Pineau, Jenny
Rouanet, Pierre
Oudeyer, Pierre-Yves
AuthorAffiliation 4 Inria Bordeaux Sud-Ouest , Talence , France
5 Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland , Brisbane, QLD , Australia
2 Pollen Robotics , Bordeaux , France
3 Laboratoire Bordelais de Recherche en Informatique, UMR 5800, CNRS & Univ. Bordeaux & Bordeaux INP , Talence , France
1 Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS & Univ. Bordeaux , Bordeaux , France
AuthorAffiliation_xml – name: 3 Laboratoire Bordelais de Recherche en Informatique, UMR 5800, CNRS & Univ. Bordeaux & Bordeaux INP , Talence , France
– name: 1 Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS & Univ. Bordeaux , Bordeaux , France
– name: 5 Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland , Brisbane, QLD , Australia
– name: 2 Pollen Robotics , Bordeaux , France
– name: 4 Inria Bordeaux Sud-Ouest , Talence , France
Author_xml – sequence: 1
  givenname: Sébastien
  surname: Mick
  fullname: Mick, Sébastien
– sequence: 2
  givenname: Mattieu
  surname: Lapeyre
  fullname: Lapeyre, Mattieu
– sequence: 3
  givenname: Pierre
  surname: Rouanet
  fullname: Rouanet, Pierre
– sequence: 4
  givenname: Christophe
  surname: Halgand
  fullname: Halgand, Christophe
– sequence: 5
  givenname: Jenny
  surname: Benois-Pineau
  fullname: Benois-Pineau, Jenny
– sequence: 6
  givenname: Florent
  surname: Paclet
  fullname: Paclet, Florent
– sequence: 7
  givenname: Daniel
  surname: Cattaert
  fullname: Cattaert, Daniel
– sequence: 8
  givenname: Pierre-Yves
  surname: Oudeyer
  fullname: Oudeyer, Pierre-Yves
– sequence: 9
  givenname: Aymar
  surname: de Rugy
  fullname: de Rugy, Aymar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31474846$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02326321$$DView record in HAL
BookMark eNp1kttr2zAUxsXoWC_b-56GYS8bzJkuliy_FEJ2SSGw0XVPexCydJwos61Osgv97ycn6WgDe5KQfuc7t-8cnfS-B4ReEzxjTFYfm772w4xiUs0wxoI_Q2dECJpzSuTJo_spOo9xmwgquHyBThkpykIW4gz9ugZtNvcfMp2xT_n34PoBbLYcO93nK_cbsmufUjiTzUOX6ZiwG4hDnZjGhwO3Q7KF74fg2-zHEPQAawfxJXre6DbCq8N5gX5--XyzWOarb1-vFvNVbniFh5yVZVmbSjBpuaUS6waYxaSuhOS2plpYIuqyYYUA2TDGreUaOHAMDKQxhF2gq72u9XqrboPrdLhXXju1e_BhrXRIPbSg6poZTCyxEvOiolwaKhrQQtrKWFKypHW517od6w6sgdSUbp-IPv3p3Uat_Z0SJWZY4iTwfi-wOQpbzldqesOUUcEouZsKf3dIFvyfMc1VdS4aaFvdgx-jolQyRnlR8oS-PUK3fgx9GmuiUt1smmKi3jyu_l_-h30nQOwBE3yMARpl3KAHN-1Ou1YRrCZjqZ2x1GQstTNWCsRHgQ_a_w35CwHrzyM
CitedBy_id crossref_primary_10_7554_eLife_87317_3
crossref_primary_10_1177_00368504231172667
crossref_primary_10_3389_fnbot_2020_00028
crossref_primary_10_48175_IJARSCT_638
crossref_primary_10_1080_15397734_2022_2063889
crossref_primary_10_1002_aisy_202300607
crossref_primary_10_3390_buildings10120231
crossref_primary_10_3390_polym13111895
crossref_primary_10_1088_1741_2552_ad628c
crossref_primary_10_3390_prosthesis7020026
crossref_primary_10_3390_biomimetics9090532
crossref_primary_10_1109_TRO_2024_3386615
crossref_primary_10_1002_cta_3025
crossref_primary_10_3389_fnbot_2022_836772
crossref_primary_10_1177_0018720820941619
crossref_primary_10_32388_R4KHPY
crossref_primary_10_3389_frobt_2024_1330812
crossref_primary_10_1109_TRO_2024_3390057
crossref_primary_10_7736_JKSPE_024_008
crossref_primary_10_1109_JBHI_2024_3430810
crossref_primary_10_3390_biomimetics8040367
crossref_primary_10_7554_eLife_87317
crossref_primary_10_1177_00202940241270906
crossref_primary_10_3389_fmats_2024_1304339
crossref_primary_10_3390_jimaging8020044
crossref_primary_10_3390_app11136104
crossref_primary_10_3389_fmech_2020_550328
crossref_primary_10_25046_aj080509
crossref_primary_10_1007_s13369_024_09796_8
crossref_primary_10_1016_j_ohx_2023_e00436
crossref_primary_10_1109_ACCESS_2024_3474731
crossref_primary_10_1186_s12984_020_00793_0
Cites_doi 10.1109/TNSRE.2013.2294685
10.1080/03093640600994581
10.1109/TBME.2012.2185494
10.1109/IROS.2011.6095019
10.1109/ICORR.2013.6650441
10.1109/VR.2015.7223441
10.1007/s11370-015-0165-2
10.1016/j.robot.2015.05.010
10.1155/2016/5720163
10.1186/1743-0003-8-29
10.1109/HUMANOIDS.2013.7030002
10.1016/j.patcog.2018.11.013
10.1016/j.cviu.2017.03.001
10.1016/j.protcy.2013.12.451
10.1088/1741-2552/aa620a
10.1109/ICRA.2011.5980371
10.13140/2.1.3118.4640
10.1145/2909824.3020254
10.1016/j.robot.2014.08.012
10.1002/rob.21570
10.1109/IROS.2016.7759835
10.3389/fnins.2014.00123
10.1088/1741-2560/11/4/046001
10.1109/TNSRE.2018.2847565
10.1080/17483107.2016.1253117
10.1109/TNSRE.2013.2251664
10.1007/978-1-4471-3750-4
10.15607/RSS.2018.XIV.043
10.1109/IJCNN.2010.5596525
10.1109/TSMCC.2012.2226444
10.1109/ICRA.2018.8460506
10.1109/TNSRE.2015.2440177
10.1007/978-1-4614-3064-3_2
10.1016/j.jelekin.2015.06.010
10.1109/TNSRE.2007.891369
10.1088/1741-2560/12/6/066022
10.3389/fnins.2016.00209
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2019 Mick, Lapeyre, Rouanet, Halgand, Benois-Pineau, Paclet, Cattaert, Oudeyer and de Rugy. 2019 Mick, Lapeyre, Rouanet, Halgand, Benois-Pineau, Paclet, Cattaert, Oudeyer and de Rugy
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2019 Mick, Lapeyre, Rouanet, Halgand, Benois-Pineau, Paclet, Cattaert, Oudeyer and de Rugy. 2019 Mick, Lapeyre, Rouanet, Halgand, Benois-Pineau, Paclet, Cattaert, Oudeyer and de Rugy
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
5PM
DOA
DOI 10.3389/fnbot.2019.00065
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1662-5218
ExternalDocumentID oai_doaj_org_article_bb3c01d1d80549258c26fea68d9cd173
PMC6703080
oai_HAL_hal_02326321v1
31474846
10_3389_fnbot_2019_00065
Genre Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GrantInformation_xml – fundername: Centre National de la Recherche Scientifique
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFS
ACXDI
ADBBV
ADDVE
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
1XC
PUEGO
5PM
ID FETCH-LOGICAL-c590t-3777bc9638d5d280afe3d01b9685db2a6d16b7f346e8f335dd5ae5e50e3e8cc13
IEDL.DBID M48
ISSN 1662-5218
IngestDate Wed Aug 27 01:31:09 EDT 2025
Thu Aug 21 18:30:32 EDT 2025
Sat Aug 30 06:24:01 EDT 2025
Fri Jul 11 04:50:30 EDT 2025
Fri Jul 25 11:46:39 EDT 2025
Wed Feb 19 02:33:03 EST 2025
Tue Jul 01 02:32:18 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords rehabilitation engineering
open-source
research testbed
humanoid robot
3D printing
robotic arm
Open-source
Robotic arm
Rehabilitation engineering
Research testbed
Humanoid robot
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-3777bc9638d5d280afe3d01b9685db2a6d16b7f346e8f335dd5ae5e50e3e8cc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC6703080
Edited by: Alex Pitti, Université de Cergy-Pontoise, France
Reviewed by: Arnaud Blanchard, École Nationale Supérieure de l'électronique et de ses Applications, France; Davide Marocco, University of Naples Federico II, Italy
ORCID 0000-0002-9404-7613
0000-0002-1277-130X
0000-0003-0659-8894
0000-0002-8561-3855
0000-0001-5645-3680
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnbot.2019.00065
PMID 31474846
PQID 2273333777
PQPubID 4424403
ParticipantIDs doaj_primary_oai_doaj_org_article_bb3c01d1d80549258c26fea68d9cd173
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6703080
hal_primary_oai_HAL_hal_02326321v1
proquest_miscellaneous_2283325475
proquest_journals_2273333777
pubmed_primary_31474846
crossref_citationtrail_10_3389_fnbot_2019_00065
crossref_primary_10_3389_fnbot_2019_00065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-14
PublicationDateYYYYMMDD 2019-08-14
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-14
  day: 14
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neurorobotics
PublicationTitleAlternate Front Neurorobot
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers
– name: Frontiers Media S.A
References Rakita (B46) 2017
Markovic (B39) 2015; 12
Corbett (B12) 2013; 21
Hild (B26) 2012
Cordella (B14) 2016; 10
Duchowski (B17) 2003
Blana (B7) 2016; 29
Cipriani (B11) 2011; 8
Biddiss (B6) 2007; 31
Zucker (B53) 2015; 32
Losier (B35) 2011
Merad (B43) 2016
Phelan (B45) 2015
ten Kate (B51) 2017; 12
Abadi (B1) 2015
Almusawi (B2) 2016; 2016
Meeker (B42) 2018
Duka (B18) 2014; 12
Krausz (B32) 2016; 24
Astanin (B3) 2016
Lapeyre (B34) 2013
Bouganis (B8) 2010
Corbett (B13) 2014; 8
Ly (B36) 2011
Stoelen (B50) 2016
Bae (B4) 2015; 8
McMullen (B41) 2014; 22
Reed (B48) 1998
Kanitz (B30) 2018; 26
Ha (B24) 2011
Novak (B44) 2015; 73
Hortal (B27) 2015; 72
Hauschild (B25) 2007; 15
Rakita (B47) 2018
Dawson (B15) 2014; 14
Bridges (B9) 2011; 30
B10
Lapeyre (B33) 2014
Schwarz (B49) 2013
de San Roman (B16) 2017; 164
Frisoli (B20) 2012; 42
Kaliki (B29) 2013; 60
González-Díaz (B22) 2019; 88
Markovic (B38) 2014; 11
Grebenstein (B23) 2011
Freese (B19) 2015
Wang (B52) 2015
Kluyver (B31) 2016
Gigli (B21) 2017
Belter (B5) 2013
Johannes (B28) 2011; 30
Manceron (B37) 2015
Markovic (B40) 2017; 14
References_xml – volume: 30
  start-page: 207
  year: 2011
  ident: B28
  article-title: An overview of the developmental process for the Modular Prosthetic Limb
  publication-title: Johns Hopkins APL Techn. Digest
– volume: 22
  start-page: 784
  year: 2014
  ident: B41
  article-title: Demonstration of a semi-autonomous hybrid brain–machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2294685
– volume: 31
  start-page: 236
  year: 2007
  ident: B6
  article-title: Upper limb prosthesis use and abandonment: a survey of the last 25 years
  publication-title: Prosthet. Orthot. Int.
  doi: 10.1080/03093640600994581
– volume: 60
  start-page: 792
  year: 2013
  ident: B29
  article-title: Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2185494
– start-page: 1465
  volume-title: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
  year: 2011
  ident: B36
  article-title: Bio-inspired vertebral column, compliance and semi-passive dynamics in a lightweight humanoid robot
  doi: 10.1109/IROS.2011.6095019
– volume-title: An Inverse Kinematics Library Aiming Performance and Modularity
  year: 2015
  ident: B37
– start-page: 1
  volume-title: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR)
  year: 2013
  ident: B5
  article-title: Novel differential mechanism enabling two DoF from a single actuator: application to a prosthetic hand
  doi: 10.1109/ICORR.2013.6650441
– start-page: 353
  volume-title: Virtual Reality (VR), 2015
  year: 2015
  ident: B45
  article-title: Exploring virtual reality and prosthetic training
  doi: 10.1109/VR.2015.7223441
– volume: 8
  start-page: 93
  year: 2015
  ident: B4
  article-title: Task space control considering passive muscle stiffness for redundant robotic arms
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-015-0165-2
– volume-title: TensorFlow: Large-scale Machine Learning on Heterogeneous Systems
  year: 2015
  ident: B1
– volume: 72
  start-page: 181
  year: 2015
  ident: B27
  article-title: Combining a brain–machine interface and an electrooculography interface to perform pick and place tasks with a robotic arm
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2015.05.010
– volume: 2016
  start-page: 5720163
  year: 2016
  ident: B2
  article-title: A new artificial neural network approach in solving inverse kinematics of robotic arm (Denso VP6242)
  publication-title: Comput. Intell. Neurosci
  doi: 10.1155/2016/5720163
– volume: 8
  start-page: 29
  year: 2011
  ident: B11
  article-title: The SmartHand transradial prosthesis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-8-29
– start-page: 376
  volume-title: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids)
  year: 2013
  ident: B34
  article-title: Poppy humanoid platform: experimental evaluation of the role of a bio-inspired thigh shape
  doi: 10.1109/HUMANOIDS.2013.7030002
– volume: 88
  start-page: 223
  year: 2019
  ident: B22
  article-title: Perceptually-guided deep neural networks for ego-action prediction: object grasping
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.11.013
– volume: 164
  start-page: 82
  year: 2017
  ident: B16
  article-title: Saliency driven object recognition in egocentric videos with deep CNN: toward application in assistance to neuroprostheses
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1016/j.cviu.2017.03.001
– volume: 12
  start-page: 20
  year: 2014
  ident: B18
  article-title: Neural network based inverse kinematics solution for trajectory tracking of a robotic arm
  publication-title: Proc. Technol.
  doi: 10.1016/j.protcy.2013.12.451
– volume: 14
  start-page: 036007
  year: 2017
  ident: B40
  article-title: GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa620a
– start-page: 3175
  volume-title: 2011 IEEE International Conference on Robotics and Automation
  year: 2011
  ident: B23
  article-title: The DLR hand arm system
  doi: 10.1109/ICRA.2011.5980371
– volume-title: Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks
  year: 1998
  ident: B48
– volume: 14
  start-page: 60
  year: 2014
  ident: B15
  article-title: Development of the Bento Arm: an improved robotic arm for myoelectric training and research
  publication-title: Proc. MEC
  doi: 10.13140/2.1.3118.4640
– start-page: 361
  volume-title: Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction
  year: 2017
  ident: B46
  article-title: A motion retargeting method for effective mimicry-based teleoperation of robot arms
  doi: 10.1145/2909824.3020254
– volume: 73
  start-page: 155
  year: 2015
  ident: B44
  article-title: A survey of sensor fusion methods in wearable robotics
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.08.012
– volume-title: arXiv[Preprint]. arXiv:1709.02236
  year: 2017
  ident: B21
  article-title: Visual cues to improve myoelectric control of upper limb prostheses
– start-page: 244
  volume-title: International Conference on Simulation of Adaptive Behavior
  year: 2016
  ident: B50
  article-title: Co-exploring actuator antagonism and bio-inspired control in a printable robot arm
– start-page: 87
  volume-title: Positioning and Power in Academic Publishing: Players, Agents and Agendas
  year: 2016
  ident: B31
  article-title: Jupyter notebooks – a publishing format for reproducible computational workflows
– volume: 32
  start-page: 336
  year: 2015
  ident: B53
  article-title: A general-purpose system for teleoperation of the DRC-HUBO humanoid robot
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21570
– start-page: 5677
  volume-title: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
  year: 2016
  ident: B43
  article-title: Intuitive prosthetic control using upper limb inter-joint coordinations and IMU-based shoulder angles measurement: a pilot study
  doi: 10.1109/IROS.2016.7759835
– ident: B10
– volume: 8
  start-page: 123
  year: 2014
  ident: B13
  article-title: Multimodal decoding and congruent sensory information enhance reaching performance in subjects with cervical spinal cord injury
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00123
– volume: 11
  start-page: 046001
  year: 2014
  ident: B38
  article-title: Stereovision and augmented reality for closed-loop control of grasping in hand prostheses
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/4/046001
– volume: 26
  start-page: 1407
  year: 2018
  ident: B30
  article-title: Compliant prosthetic wrists entail more natural use than stiff wrists during reaching, not (necessarily) during manipulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2847565
– volume: 12
  start-page: 300
  year: 2017
  ident: B51
  article-title: 3D-printed upper limb prostheses: a review
  publication-title: Disabil. Rehabil.
  doi: 10.1080/17483107.2016.1253117
– volume: 30
  start-page: 217
  year: 2011
  ident: B9
  article-title: Control system architecture for the Modular Prosthetic Limb
  publication-title: Johns Hopkins APL Techn. Digest
– start-page: 568
  volume-title: Robot Soccer World Cup
  year: 2013
  ident: B49
  article-title: Humanoid teen-size open platform NimbRo-OP
– volume: 21
  start-page: 674
  year: 2013
  ident: B12
  article-title: Real-time evaluation of a noninvasive neuroprosthetic interface for control of reach
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2251664
– volume-title: Eye Tracking Methodology: Theory and Practice
  year: 2003
  ident: B17
  doi: 10.1007/978-1-4471-3750-4
– volume-title: Proceedings of Robotics: Science and Systems
  year: 2018
  ident: B47
  article-title: RelaxedIK: Real-time synthesis of accurate and feasible robot arm motion
  doi: 10.15607/RSS.2018.XIV.043
– start-page: 1
  volume-title: 2010 International Joint Conference on Neural Networks (IJCNN)
  year: 2010
  ident: B8
  article-title: Training a spiking neural network to control a 4-DoF robotic arm based on spike timing-dependent plasticity
  doi: 10.1109/IJCNN.2010.5596525
– volume: 42
  start-page: 1169
  year: 2012
  ident: B20
  article-title: A new gaze-bci-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks
  publication-title: IEEE Trans. Syst. Man Cybern. Part C
  doi: 10.1109/TSMCC.2012.2226444
– volume-title: Presented at the Myoelectric Controls Symposium
  year: 2011
  ident: B35
  article-title: An overview of the UNB hand system
– volume-title: arXiv[Preprint] arXiv:1802.04349
  year: 2018
  ident: B42
  article-title: Intuitive hand teleoperation by novice operators using a continuous teleoperation subspace
  doi: 10.1109/ICRA.2018.8460506
– start-page: 1476
  volume-title: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
  year: 2015
  ident: B52
  article-title: Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task
– volume-title: A Pure Python Library to Receive Motion Capture Data From OptiTrack Streaming Engine
  year: 2016
  ident: B3
– volume: 24
  start-page: 562
  year: 2016
  ident: B32
  article-title: Design and fabrication of a six degree-of-freedom open source hand
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2440177
– start-page: 25
  volume-title: Language Grounding in Robots
  year: 2012
  ident: B26
  article-title: Myon, a new humanoid
  doi: 10.1007/978-1-4614-3064-3_2
– volume: 29
  start-page: 21
  year: 2016
  ident: B7
  article-title: Feasibility of using combined EMG and kinematic signals for prosthesis control: a simulation study using a virtual reality environment
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2015.06.010
– volume: 15
  start-page: 9
  year: 2007
  ident: B25
  article-title: A virtual reality environment for designing and fitting neural prosthetic limbs
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.891369
– start-page: 6
  volume-title: Digital Intelligence 2014
  year: 2014
  ident: B33
  article-title: Poppy project: open-source fabrication of 3D-printed humanoid robot for science, education and art
– volume-title: Virtual Robot Experimentation Platform
  year: 2015
  ident: B19
– start-page: 2178
  volume-title: 2011 Proceedings of SICE Annual Conference (SICE)
  year: 2011
  ident: B24
  article-title: Development of open humanoid platform DARwIn-OP
– volume: 12
  start-page: 066022
  year: 2015
  ident: B39
  article-title: Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/6/066022
– volume: 10
  start-page: 209
  year: 2016
  ident: B14
  article-title: Literature review on needs of upper limb prosthesis users
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00209
SSID ssj0062658
Score 2.3283513
Snippet To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of...
To this day, despite the increasingmotor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 65
SubjectTerms 3D printing
Arm
Computer Science
Design
Electroencephalography
humanoid robot
Interfaces
International conferences
Kinematics
Multimedia
open-source
Performance evaluation
Product development
Professional soccer
Prostheses
Rehabilitation
rehabilitation engineering
research testbed
Researchers
robotic arm
Robotics
Robotics and AI
Robots
Virtual reality
Wrist
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ30QtX6sVknFF8Hlks3mYx9rbTlKFSktFHwI-aRHdU96V8H_3pns3nGnoC_u42Y2O_wyycxkZ38h5I3onPZY1N7xqOsWPHrdeQ-LoU9csaw7U_7i__hJTS_ak0t5uXHUF9aEDfTAA3AT70VgPPJoGJKJSRMalZNTJnYhcl14PsHnrZKpYQ2GKF2a4aMkpGDdJPd-joWTHMkpGTqSDSdUuPrBtVxhJeSfYebv1ZIb7uf4Abk_xo30YND3IbmT-kfk3gab4C75coaVkT_fUUfFh_rzDTJBRFp26evT2XWiZ3PQbxagk2_ULUDsHDTwIAOB6yhXROjhUL9OV9S1afGYXBwfnR9O6_HshDrIji1h3dDaB5xdUcbGMJeTiIz7ThkZfeNU5MrrLFqVTBZCxihdkkmyJJIJgYsnZKef9-kZoTyo3EJWEUKTWxhXJ6VjwWWFhzSlbCoyWYFpw0gsjudbfLWQYCD8tsBvEX5b4K_I2_UT3wdSjb_IvsfxWcshHXa5AUZiRyOx_zKSiryG0d3qY3pwavEexCxIWc9_8IrsrQbfjhN5YRsI7-ACNCuyv26GKYjfVVyf5rcoY4SARFuDsk8HW1m_SvAW2VpVRfSWFW3pst3Sz64KzbfCxdiw5_8DgBfkLkKKm-G83SM7y5vb9BKiqaV_VSbOL-ZFG98
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5Be4FDxRtDQQZxQcKK1-t9-ITa0ipCpaqiVqrEYbVPGkHtkqRI_Htm7E1IQKqP9sQezey8diffEPKONUZabGpvqJdFDRG9aKwFZ2gDFWWUjer_xf_lRIzP688X_CJtuM1TW-XSJ_aO2ncO98hHFcRZuKSUH69_Fjg1Ck9X0wiNu2QbXLCC4mt7__DkdLL0xZCtczUcTkIp1oxiaztsoKQIUlliQFkLRj1mP4SYS-yI_D_d_Ldrci0MHT0gOyl_zPcGhT8kd0L7iNxfQxV8TL5OsEPy94fc5OxTcTpDRAif97v1xfH0e8gnHfA3dfCSq9zMgewMOLBAAwlsoutJ8oOhjz1fQtiG-RNyfnR4djAu0gyFwvGmXBQoMOvQyjz3lSpNDMyX1DZCcW8rIzwVVkZWi6AiY9x7bgIPvAwsKOcoe0q22q4Nz0lOnYg1VBfOVbEG_RrOTelMFDisKUSVkdFSmNolgHGcc_FDQ6GB4te9-DWKX_fiz8j71S-uB3CNW2j3UT8rOoTF7m90s286WZm2lrmSeupVichzXLlKxGCE8o3zVLKMvAXtbrxjvHes8R7kLghdT3_RjOwula-TQc_13-WXkTerx2CKeL5i2tDdII1iDApuCcw-G9bK6lOM1ojaKjIiN1bRBi-bT9rpZQ_3LdApq_LF7Wy9JPdQWLjdTetdsrWY3YRXkC8t7OtkFH8AevIUsg
  priority: 102
  providerName: ProQuest
Title Reachy, a 3D-Printed Human-Like Robotic Arm as a Testbed for Human-Robot Control Strategies
URI https://www.ncbi.nlm.nih.gov/pubmed/31474846
https://www.proquest.com/docview/2273333777
https://www.proquest.com/docview/2283325475
https://hal.science/hal-02326321
https://pubmed.ncbi.nlm.nih.gov/PMC6703080
https://doaj.org/article/bb3c01d1d80549258c26fea68d9cd173
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglVA5IJ4lUFYBcUEiNI5jxzkg1JaWFWqratWVVuIQ-RW6oiSwu0X03zPjPGig4kAOOcRjx_LMeGbs8WdCXrJcZRqT2nNqsygFix7lWsNkqB0VcZnl0p_iPzoW42n6ccZnv49HtwO4vDa0w_ukpovzNz-_X74DhX-LESfY2-2y0jWmRVKEngSTepOsg13KUE2P0n5PATx3LpuNymtrbZBbjKYIrSkGNspD-YPlOcNEyb-90D-TKa9Yp4O75E7rVoY7jRzcIzdcdZ_cvgI2-IB8mmDi5OXrUIXsfXSyQKAIG_pF_Ohw_sWFkxq6OjfQyNdQLYHsFHqggQb82pbOk4R7TXp72CHbuuVDMj3YP90bR-3VCpHhebyCaSXLtEHls9wmMlalYzamOheSW50oYanQWclS4WTJGLeWK8cdjx1z0hjKHpG1qq7cYxJSI8oUgg5jkjIFtivOVWxUKfAOJ1fKgGx3g1mYFnccr784LyD-QE4UnhMFcqLwnAjIq77GtwZz4x-0u8ifng7Rsv2HevG5aJWv0JqZmFpqZYyAdFyaRJROCWlzY2nGAvICuDtoY7xzWOA3cGkQ0Z7-oAHZ6phfdGJaJOD9wQOjGZDnfTFoKG67qMrVF0gjGYM4PIPObjay0v-qk7iAZAMpGvRlWFLNzzwKuMC5WsZP_rvmU7KB44gL5DTdImurxYV7Bh7WSo_I-u7-8clk5Fco4P1hRkdemX4B8HwnvA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEG8MBQyCAxJWvF7ven1AqE-lNI2qKJUq9bDsyzQCnJKkoP4pfiMzfoQEpN7qoz1ej2Zn57E7_oaQNyzXmcGi9py6LErBo0e5MWAMjaciLrJcVn_xHw5E7zj9dMJP1sjv9l8YLKtsbWJlqN3E4h55NwE_C1eWZR_Pf0TYNQpPV9sWGrVaHPjLX5CyzT7s78D8vk2Svd3Rdi9qugpElufxPMIhjEW9c9wlMtaFZy6mJheSO5No4agwWcFS4WXBGHeOa889jz3z0lrKYNwbZD1lkMp0yPrW7uBo2Np-yA64rA9DIfXLu0VpJliwSREUM0YHtuT8qh4B4NLOsALz__D23yrNJbe3d5fcaeLVcLNWsHtkzZf3ye0lFMMH5HSIFZmX70Mdsp3oaIoIFC6sTgei_virD4cT4G9sYZDvoZ4B2Qg4MEADAXNDV5GE23XdfNhC5vrZQ3J8LdJ9RDrlpPRPSEitKFLIZqxNihT0SXOuY6sLgc2hfCED0m2FqWwDaI59Nb4pSGxQ_KoSv0Lxq0r8AXm3eOO8BvO4gnYL52dBhzDc1Y3J9ItqVrUyhtmYOupkjEh3XNpEFF4L6XLraMYC8hpmd2WM3mZf4T2IlRAqn_6kAdloJ181BmSm_qp7QF4tHsPSx_McXfrJBdJIxiDBz4DZx7WuLD7FaIoosSIg2YoWrfCy-qQcn1Xw4gKdgIyfXs3WS3KzNzrsq_7-4OAZuYWCw612mm6Qznx64Z9DrDY3L5oFEpLP170m_wAGcVIz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJwQLwxFDAIDkhY8Xq96_UBobZplNIQRVErVeJg9mUatdglSUH9a_w6ZvwICUi91Ud7vB7Nzs5jd_wNIW9YqhKNRe0ptUkQg0cPUq3BGGpHRZgnqaz-4v88EoOj-NMxP94gv9t_YbCssrWJlaG2pcE98m4EfhauJEm6eVMWMe71P57_CLCDFJ60tu00ahU5cJe_IH2bf9jvwVy_jaL-3uHuIGg6DASGp-EiwOG0QR203EYyVLljNqQ6FZJbHSlhqdBJzmLhZM4Yt5Yrxx0PHXPSGMpg3BtkM4GsKOyQzZ290XjS-gHIFLisD0YhDUy7eaFLLN6kCJAZojNbcYRVvwBwbydYjfl_qPtvxeaKC-zfJXea2NXfrpXtHtlwxX1yewXR8AH5MsHqzMv3vvJZLxjPEI3C-tVJQTCcnjp_UgJ_UwODfPfVHMgOgQMNNBA8N3QVib9b19D7LXyumz8kR9ci3UekU5SFe0J8akQeQ2ZjTJTHoFuKcxUalQtsFOVy6ZFuK8zMNODm2GPjLIMkB8WfVeLPUPxZJX6PvFu-cV4De1xBu4Pzs6RDSO7qRjn7ljUrPNOamZBaamWIqHdcmkjkTglpU2NpwjzyGmZ3bYzB9jDDexA3IWw-_Uk9stVOftYYk3n2V_U98mr5GMwAnu2owpUXSCMZg2Q_AWYf17qy_BSjMSLGCo8ka1q0xsv6k2J6UkGNC3QIMnx6NVsvyU1Yi9lwf3TwjNxCueGuO423SGcxu3DPIWxb6BfN-vDJ1-tekn8AssBWaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reachy%2C+a+3D-Printed+Human-Like+Robotic+Arm+as+a+Testbed+for+Human-Robot+Control+Strategies&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Mick%2C+S%C3%A9bastien&rft.au=Lapeyre%2C+Mattieu&rft.au=Rouanet%2C+Pierre&rft.au=Halgand%2C+Christophe&rft.date=2019-08-14&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5218&rft.volume=13&rft_id=info:doi/10.3389%2Ffnbot.2019.00065&rft_id=info%3Apmid%2F31474846&rft.externalDocID=PMC6703080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon