Evolution of ventricular myocyte electrophysiology

1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 3 Department of Physiology and Nora Eccles Harrison Cardiovascu...

Full description

Saved in:
Bibliographic Details
Published inPhysiological genomics Vol. 35; no. 3; pp. 262 - 272
Main Authors Rosati, Barbara, Dong, Min, Cheng, Lan, Liou, Shian-Ren, Yan, Qinghong, Park, Ji Young, Shiang, Elaine, Sanguinetti, Michael, Wang, Hong-Sheng, McKinnon, David
Format Journal Article
LanguageEnglish
Published United States Am Physiological Soc 01.11.2008
American Physiological Society
Subjects
Online AccessGet full text
ISSN1094-8341
1531-2267
1531-2267
DOI10.1152/physiolgenomics.00159.2007

Cover

Loading…
Abstract 1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 3 Department of Physiology and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 4 Institute of Molecular Cardiology, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis -regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved. ion channel; gene regulation; ion transport; cardiac myocyte
AbstractList The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis-regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved.
The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis-regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved.The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis-regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved.
1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 3 Department of Physiology and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 4 Institute of Molecular Cardiology, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis -regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved. ion channel; gene regulation; ion transport; cardiac myocyte
The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis -regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved.
Author McKinnon, David
Rosati, Barbara
Liou, Shian-Ren
Sanguinetti, Michael
Cheng, Lan
Yan, Qinghong
Dong, Min
Shiang, Elaine
Park, Ji Young
Wang, Hong-Sheng
AuthorAffiliation 1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
4 Institute of Molecular Cardiology, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
3 Department of Physiology and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
AuthorAffiliation_xml – name: 1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
– name: 2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
– name: 3 Department of Physiology and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
– name: 4 Institute of Molecular Cardiology, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
Author_xml – sequence: 1
  fullname: Rosati, Barbara
– sequence: 2
  fullname: Dong, Min
– sequence: 3
  fullname: Cheng, Lan
– sequence: 4
  fullname: Liou, Shian-Ren
– sequence: 5
  fullname: Yan, Qinghong
– sequence: 6
  fullname: Park, Ji Young
– sequence: 7
  fullname: Shiang, Elaine
– sequence: 8
  fullname: Sanguinetti, Michael
– sequence: 9
  fullname: Wang, Hong-Sheng
– sequence: 10
  fullname: McKinnon, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18765860$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAYhC3Uin7AX0ArDtyy-NsOByiqWqhUiUs5W47zetfIiZc4Wci_J2G3BbZC6smWPM-MNXOGjtrUAkKvCV4SIujbzXrMIcUVtKkJLi8xJqJcUozVM3RKBCMFpVIdTXdc8kIzTk7QWc7fJh1XWjxHJ0QrKbTEp4hebVMc-pDaRfKLLbR9F9wQbbdoxuTGHhYQwfVd2oem1fgCHXsbM7zcn-fo6_XV3eXn4vbLp5vLj7eFEyXuCypFpTzWipZEV5QpUte89r7UQCSRNcas4rwEwrlQHnBV86pSzEtlOXDr2Tl6v_PdDFUDtZv_ZqPZdKGx3WiSDebflzaszSptDRVaYKIngzd7gy59HyD3pgnZQYy2hTRkI0s19cBm4au_kx4i7muaBBc7getSzh1440Jv59am4BANwWZexhwsY34vY-ZlJot3BxYPKU-B2Q5eh9X6R-jA_JnjEceEYYZKOlEf_k9dDzHewc_-EL-nzab27Bfhn8gl
CitedBy_id crossref_primary_10_1109_TBME_2011_2170987
crossref_primary_10_1113_JP282126
crossref_primary_10_1007_s00360_020_01313_1
crossref_primary_10_1242_jeb_128439
crossref_primary_10_1074_jbc_M114_597930
crossref_primary_10_1371_journal_pone_0120785
crossref_primary_10_1016_j_tiv_2009_12_027
crossref_primary_10_1111_mms_12915
crossref_primary_10_1007_s00424_018_2193_1
crossref_primary_10_1111_bph_17394
crossref_primary_10_1186_s42826_021_00102_3
crossref_primary_10_1007_s10741_019_09769_2
crossref_primary_10_3184_175815512X13443528281545
crossref_primary_10_1098_rstb_2021_0332
crossref_primary_10_1021_acs_jproteome_6b00149
crossref_primary_10_1113_jphysiol_2011_210237
crossref_primary_10_17816_humeco626830
crossref_primary_10_3389_fphys_2018_00958
crossref_primary_10_1086_678954
crossref_primary_10_1073_pnas_1114516109
crossref_primary_10_1016_j_jacep_2021_02_016
crossref_primary_10_1016_j_molmed_2011_05_001
crossref_primary_10_3389_fphar_2021_651050
crossref_primary_10_1016_j_mbs_2011_06_008
crossref_primary_10_1152_ajpheart_00272_2020
crossref_primary_10_1016_j_ijpara_2020_01_006
crossref_primary_10_1021_pr9011393
crossref_primary_10_1016_j_pbiomolbio_2016_09_012
crossref_primary_10_1152_ajpheart_00164_2022
crossref_primary_10_1016_j_cbpa_2022_111204
crossref_primary_10_1016_j_jtbi_2016_09_024
crossref_primary_10_1093_cvr_cvab098
crossref_primary_10_1111_j_1525_142X_2009_00367_x
crossref_primary_10_1371_journal_pone_0138320
crossref_primary_10_1016_j_tria_2022_100162
crossref_primary_10_1016_j_bpj_2021_06_040
crossref_primary_10_1016_j_compbiomed_2021_104240
crossref_primary_10_1016_j_rvsc_2017_09_010
crossref_primary_10_1016_j_fct_2022_113589
crossref_primary_10_1085_jgp_201210826
crossref_primary_10_1016_j_lfs_2020_117814
crossref_primary_10_1016_j_chemosphere_2023_138562
crossref_primary_10_2139_ssrn_4142260
Cites_doi 10.1152/ajpheart.00081.2006
10.1042/BJ20050068
10.1085/jgp.67.6.621
10.1113/jphysiol.2002.033704
10.1152/jappl.1967.22.3.453
10.1152/ajpheart.01120.2003
10.1172/JCI8757
10.1124/pr.57.4.13
10.1152/ajpregu.1991.261.1.R126
10.1152/physrev.00002.2005
10.1161/01.RES.0000196559.63223.aa
10.1161/01.RES.79.4.659
10.1113/jphysiol.1995.sp020995
10.1113/jphysiol.2004.077263
10.1016/S0022-2828(03)00119-6
10.1016/S0165-0270(01)00368-5
10.1038/nrg2063
10.1161/01.RES.68.6.1495
10.1093/nar/gkh458
10.1161/hc3401.093151
10.1016/j.yjmcc.2005.11.002
10.1016/S1050-1738(01)00127-X
10.2144/04362MT03
10.1152/ajpheart.00060.2004
10.1073/pnas.082121299
10.1152/ajpheart.00084.2006
10.1152/ajpregu.00349.2001
10.1085/jgp.88.6.777
10.1523/JNEUROSCI.17-24-09423.1997
10.1159/000016320
10.1371/journal.pone.0000085
10.1038/384080a0
10.1016/0092-8674(95)90340-2
10.1161/CIRCULATIONAHA.105.580811
10.1152/ajplegacy.1968.215.3.704
10.1017/CBO9781139167826
10.1161/01.RES.80.2.261
10.1016/S0006-3495(01)75943-7
10.1161/01.CIR.0000033970.22130.93
10.1161/01.RES.73.5.820
10.1113/jphysiol.1994.sp020130
10.1016/S0959-4388(03)00066-7
10.1161/01.RES.85.2.168
10.1038/415198a
10.3109/714041017
10.1111/j.1558-5646.2007.00105.x
10.1016/S0022-2828(02)00290-0
10.1007/BF00230179
10.1113/jphysiol.2006.127480
ContentType Journal Article
Copyright Copyright © 1094-8341/08 $8.00
Copyright_xml – notice: Copyright © 1094-8341/08 $8.00
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/physiolgenomics.00159.2007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1531-2267
EndPage 272
ExternalDocumentID PMC2585018
18765860
10_1152_physiolgenomics_00159_2007
physiolgenomics_35_3_262
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL-65299
– fundername: NHLBI NIH HHS
  grantid: HL-084539
– fundername: NINDS NIH HHS
  grantid: NS-29755
– fundername: NHLBI NIH HHS
  grantid: HL-28958
GroupedDBID -
123
29O
2WC
39C
4.4
53G
5VS
AAPBV
ABPTK
ACGFS
ACPRK
ADACO
ADBBV
AENEX
AGCAB
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
KQ8
O0-
OK1
P2P
R.V
RAP
RHF
RHI
WOQ
---
.GJ
AAFWJ
AAYXX
ABHWK
ABJNI
ABKWE
ADFNX
BTFSW
CITATION
EMOBN
H13
ITBOX
RPRKH
TR2
W8F
XSW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c590t-265b7f0872918b2371dd4dff98e1616d003b449e14457fe0bd4bb73f67a4e4af3
ISSN 1094-8341
1531-2267
IngestDate Thu Aug 21 14:07:06 EDT 2025
Fri Jul 11 09:12:24 EDT 2025
Thu Apr 03 07:02:05 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Jul 01 01:03:41 EDT 2025
Mon May 06 12:30:09 EDT 2019
Tue Jan 05 18:11:57 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c590t-265b7f0872918b2371dd4dff98e1616d003b449e14457fe0bd4bb73f67a4e4af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Address for reprint requests and other correspondence: D. McKinnon, Dept. of Physiology and Biophysics, BST Rm. 124, Level 6, Stony Brook Univ., Stony Brook, NY 11794-8661 (e-mail: dmckinnon@notes.cc.sunysb.edu).
The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
OpenAccessLink http://doi.org/10.1152/physiolgenomics.00159.2007
PMID 18765860
PQID 69787638
PQPubID 23479
PageCount 11
ParticipantIDs highwire_physiology_physiolgenomics_35_3_262
crossref_citationtrail_10_1152_physiolgenomics_00159_2007
proquest_miscellaneous_69787638
pubmed_primary_18765860
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2585018
crossref_primary_10_1152_physiolgenomics_00159_2007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physiological genomics
PublicationTitleAlternate Physiol Genomics
PublicationYear 2008
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R53
R12
R11
R14
R13
R16
R15
R18
R17
R19
12818566 - J Mol Cell Cardiol. 2003 Jul;35(7):761-7
8900283 - Nature. 1996 Nov 7;384(6604):80-3
11709283 - Trends Cardiovasc Med. 2001 Oct;11(7):286-94
11514385 - Circulation. 2001 Aug 21;104(8):951-6
5671010 - Am J Physiol. 1968 Sep;215(3):704-15
10417398 - Circ Res. 1999 Jul 23;85(2):168-73
12598586 - J Physiol. 2003 May 1;548(Pt 3):815-22
14989097 - Biotechniques. 2004 Feb;36(2):316-22
16382097 - Pharmacol Rev. 2005 Dec;57(4):387-95
510954 - Growth. 1979 Sep;43(3):139-50
11459616 - J Neurosci Methods. 2001 Jul 15;108(1):39-48
12403671 - Circulation. 2002 Oct 29;106(18):2385-91
10575201 - Cell Physiol Biochem. 1999;9(4-5):242-69
10772652 - J Clin Invest. 2000 Apr;105(8):1077-84
8831489 - Circ Res. 1996 Oct;79(4):659-68
16565319 - Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H631-7
17304246 - Nat Rev Genet. 2007 Mar;8(3):206-16
11972032 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6210-5
1656210 - Mol Cell Biochem. 1991 Aug 14;106(2):133-41
8046643 - J Physiol. 1994 Apr 15;476(2):279-93
8403253 - Circ Res. 1993 Nov;73(5):820-8
16293790 - Circ Res. 2005 Dec 9;97(12):1342-50
11805843 - Nature. 2002 Jan 10;415(6868):198-205
2432158 - J Gen Physiol. 1986 Dec;88(6):777-98
17492956 - Evolution. 2007 May;61(5):995-1016
11893625 - Am J Physiol Regul Integr Comp Physiol. 2002 Apr;282(4):R1191-9
17218348 - J Physiol. 2007 Mar 1;579(Pt 2):465-71
17183716 - PLoS One. 2006;1:e85
15649977 - J Physiol. 2005 Apr 15;564(Pt 2):411-9
16415376 - Circulation. 2006 Jan 24;113(3):338-44
9012748 - Circ Res. 1997 Feb;80(2):261-8
2036707 - Circ Res. 1991 Jun;68(6):1495-500
9390998 - J Neurosci. 1997 Dec 15;17(24):9423-32
7736582 - Cell. 1995 Apr 21;81(2):299-307
16679403 - Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H762-9
15215394 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W273-9
12850214 - Curr Opin Neurobiol. 2003 Jun;13(3):298-307
12042340 - J Exp Biol. 2002 Jun;205(Pt 12):1819-30
8576853 - J Physiol. 1995 Nov 1;488 ( Pt 3):623-31
15117716 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1149-59
16000021 - PLoS Biol. 2005 Jul;3(7):e245
14698964 - Receptors Channels. 2003;9(6):363-77
11720973 - Biophys J. 2001 Dec;81(6):3029-51
16412459 - J Mol Cell Cardiol. 2006 Feb;40(2):295-302
1858938 - Am J Physiol. 1991 Jul;261(1 Pt 2):R126-33
6020227 - J Appl Physiol. 1967 Mar;22(3):453-60
16183911 - Physiol Rev. 2005 Oct;85(4):1205-53
12606256 - J Mol Cell Cardiol. 2003 Feb;35(2):153-63
15105172 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1276-85
15801907 - Biochem J. 2005 Jul 1;389(Pt 1):151-9
945323 - J Gen Physiol. 1976 Jun;67(6):621-38
References_xml – ident: R29
  doi: 10.1152/ajpheart.00081.2006
– ident: R45
  doi: 10.1042/BJ20050068
– ident: R14
  doi: 10.1085/jgp.67.6.621
– ident: R34
  doi: 10.1113/jphysiol.2002.033704
– ident: R41
  doi: 10.1152/jappl.1967.22.3.453
– ident: R51
  doi: 10.1152/ajpheart.01120.2003
– ident: R18
  doi: 10.1172/JCI8757
– ident: R52
  doi: 10.1124/pr.57.4.13
– ident: R48
  doi: 10.1152/ajpregu.1991.261.1.R126
– ident: R24
  doi: 10.1152/physrev.00002.2005
– ident: R13
  doi: 10.1161/01.RES.0000196559.63223.aa
– ident: R9
  doi: 10.1161/01.RES.79.4.659
– ident: R39
  doi: 10.1113/jphysiol.1995.sp020995
– ident: R44
  doi: 10.1113/jphysiol.2004.077263
– ident: R43
  doi: 10.1016/S0022-2828(03)00119-6
– ident: R27
  doi: 10.1016/S0165-0270(01)00368-5
– ident: R49
  doi: 10.1038/nrg2063
– ident: R11
  doi: 10.1161/01.RES.68.6.1495
– ident: R12
  doi: 10.1093/nar/gkh458
– ident: R22
  doi: 10.1161/hc3401.093151
– ident: R33
  doi: 10.1016/j.yjmcc.2005.11.002
– ident: R28
  doi: 10.1016/S1050-1738(01)00127-X
– ident: R32
  doi: 10.2144/04362MT03
– ident: R21
  doi: 10.1152/ajpheart.00060.2004
– ident: R26
  doi: 10.1073/pnas.082121299
– ident: R6
– ident: R10
  doi: 10.1152/ajpheart.00084.2006
– ident: R46
  doi: 10.1152/ajpregu.00349.2001
– ident: R20
  doi: 10.1085/jgp.88.6.777
– ident: R7
– ident: R40
  doi: 10.1523/JNEUROSCI.17-24-09423.1997
– ident: R42
  doi: 10.1159/000016320
– ident: R8
  doi: 10.1371/journal.pone.0000085
– ident: R36
  doi: 10.1038/384080a0
– ident: R37
  doi: 10.1016/0092-8674(95)90340-2
– ident: R4
  doi: 10.1161/CIRCULATIONAHA.105.580811
– ident: R17
  doi: 10.1152/ajplegacy.1968.215.3.704
– ident: R35
– ident: R38
  doi: 10.1017/CBO9781139167826
– ident: R50
  doi: 10.1161/01.RES.80.2.261
– ident: R25
  doi: 10.1016/S0006-3495(01)75943-7
– ident: R53
  doi: 10.1161/01.CIR.0000033970.22130.93
– ident: R19
  doi: 10.1161/01.RES.73.5.820
– ident: R2
  doi: 10.1113/jphysiol.1994.sp020130
– ident: R1
  doi: 10.1016/S0959-4388(03)00066-7
– ident: R47
  doi: 10.1161/01.RES.85.2.168
– ident: R3
  doi: 10.1038/415198a
– ident: R23
  doi: 10.3109/714041017
– ident: R16
  doi: 10.1111/j.1558-5646.2007.00105.x
– ident: R5
  doi: 10.1016/S0022-2828(02)00290-0
– ident: R15
  doi: 10.1007/BF00230179
– ident: R30
– ident: R31
  doi: 10.1113/jphysiol.2006.127480
– reference: 10772652 - J Clin Invest. 2000 Apr;105(8):1077-84
– reference: 6020227 - J Appl Physiol. 1967 Mar;22(3):453-60
– reference: 16565319 - Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H631-7
– reference: 11720973 - Biophys J. 2001 Dec;81(6):3029-51
– reference: 8403253 - Circ Res. 1993 Nov;73(5):820-8
– reference: 5671010 - Am J Physiol. 1968 Sep;215(3):704-15
– reference: 10575201 - Cell Physiol Biochem. 1999;9(4-5):242-69
– reference: 12403671 - Circulation. 2002 Oct 29;106(18):2385-91
– reference: 15117716 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1149-59
– reference: 17183716 - PLoS One. 2006;1:e85
– reference: 16412459 - J Mol Cell Cardiol. 2006 Feb;40(2):295-302
– reference: 9012748 - Circ Res. 1997 Feb;80(2):261-8
– reference: 12042340 - J Exp Biol. 2002 Jun;205(Pt 12):1819-30
– reference: 945323 - J Gen Physiol. 1976 Jun;67(6):621-38
– reference: 12850214 - Curr Opin Neurobiol. 2003 Jun;13(3):298-307
– reference: 8576853 - J Physiol. 1995 Nov 1;488 ( Pt 3):623-31
– reference: 15801907 - Biochem J. 2005 Jul 1;389(Pt 1):151-9
– reference: 14989097 - Biotechniques. 2004 Feb;36(2):316-22
– reference: 17492956 - Evolution. 2007 May;61(5):995-1016
– reference: 16415376 - Circulation. 2006 Jan 24;113(3):338-44
– reference: 8046643 - J Physiol. 1994 Apr 15;476(2):279-93
– reference: 10417398 - Circ Res. 1999 Jul 23;85(2):168-73
– reference: 14698964 - Receptors Channels. 2003;9(6):363-77
– reference: 11893625 - Am J Physiol Regul Integr Comp Physiol. 2002 Apr;282(4):R1191-9
– reference: 15215394 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W273-9
– reference: 7736582 - Cell. 1995 Apr 21;81(2):299-307
– reference: 11972032 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6210-5
– reference: 16293790 - Circ Res. 2005 Dec 9;97(12):1342-50
– reference: 11805843 - Nature. 2002 Jan 10;415(6868):198-205
– reference: 2432158 - J Gen Physiol. 1986 Dec;88(6):777-98
– reference: 17218348 - J Physiol. 2007 Mar 1;579(Pt 2):465-71
– reference: 17304246 - Nat Rev Genet. 2007 Mar;8(3):206-16
– reference: 12598586 - J Physiol. 2003 May 1;548(Pt 3):815-22
– reference: 1858938 - Am J Physiol. 1991 Jul;261(1 Pt 2):R126-33
– reference: 15649977 - J Physiol. 2005 Apr 15;564(Pt 2):411-9
– reference: 8831489 - Circ Res. 1996 Oct;79(4):659-68
– reference: 16183911 - Physiol Rev. 2005 Oct;85(4):1205-53
– reference: 9390998 - J Neurosci. 1997 Dec 15;17(24):9423-32
– reference: 11514385 - Circulation. 2001 Aug 21;104(8):951-6
– reference: 15105172 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1276-85
– reference: 510954 - Growth. 1979 Sep;43(3):139-50
– reference: 16382097 - Pharmacol Rev. 2005 Dec;57(4):387-95
– reference: 12606256 - J Mol Cell Cardiol. 2003 Feb;35(2):153-63
– reference: 2036707 - Circ Res. 1991 Jun;68(6):1495-500
– reference: 1656210 - Mol Cell Biochem. 1991 Aug 14;106(2):133-41
– reference: 16679403 - Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H762-9
– reference: 16000021 - PLoS Biol. 2005 Jul;3(7):e245
– reference: 11459616 - J Neurosci Methods. 2001 Jul 15;108(1):39-48
– reference: 12818566 - J Mol Cell Cardiol. 2003 Jul;35(7):761-7
– reference: 11709283 - Trends Cardiovasc Med. 2001 Oct;11(7):286-94
– reference: 8900283 - Nature. 1996 Nov 7;384(6604):80-3
SSID ssj0014785
Score 2.0935621
Snippet 1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 2 Department of Pharmacology and...
The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 262
SubjectTerms Action Potentials - physiology
Animals
Biological Evolution
Body Weight
Cattle
Electrophysiology - methods
Ferrets
Guinea Pigs
Heart Rate
Humans
Mice
Muscle Cells - cytology
Muscle Cells - physiology
Myocardium - cytology
Potassium Channels, Voltage-Gated - physiology
Rabbits
Rats
Species Specificity
Title Evolution of ventricular myocyte electrophysiology
URI http://physiolgenomics.physiology.org/cgi/content/abstract/35/3/262
https://www.ncbi.nlm.nih.gov/pubmed/18765860
https://www.proquest.com/docview/69787638
https://pubmed.ncbi.nlm.nih.gov/PMC2585018
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCMELgvEVPvPA2wgksR07j6gamoAhQJ20NyuJbbUSTaqRIpW_nrNjJ2nWSYOXqHJ6dnP36-Xu7LtD6A28NDIWqzzCskgjIitp9GAe8UpiWulSVto4iqdfs5Mz8umcnvuW8C67pC3fVX_25pX8j1RhDORqsmT_QbL9pDAAn0G-cAUJw_VaMj7-7aY3Jp85uGijecXF0WrbVNtWHbkmNzZ8McTPnS36zY9aOZliravx0ffGnPMZbUn0Jq87xHu67HE1W6hu7MvohM-y2djQ6gIAGP1wGWc-vsBdop19PXidmERgpbGx0uxqjDhw4LEG7JTrZc1MTaVX97z-kcw-ELXpQmxMBFxer6zMElDWlHcdByZ1sf2tm-hWCi6Cadvx-fuwg0QYp67ILCz9_uqFTdlYN9WubeLrRe_zPaZHaEc2yfw-uuecifBDh4wH6IaqD9Htrr3o9hDdmflufg9R2mMlbHQ4wkrosBJewsojdPbxeD47iVy_jKiiedxGaUZLpmMO_lLCyxSzREoitc65Ars-k6DAS0JyBT40ZVrFpSRlybDOWEEUKTR-jA7qplZPUWh2i4EhJFM6JTLJioqntJBUwaTgYvAA5Z5TonLF5E1Pk5_COpU0FROGC8tw0_SUBQj3tOuupMq1qLgXiBg4IUygZg7AmFJiKrAALIq11AF6u490upYnCdBrL28BQjIbaEWtms0vkeXMFHCEp3_SSX_4_Q5BAWI7uOi_YKq4796plwtbzT0FVscJf3blnM_R3eF_-QIdtBcb9RIs4bZ8ZSH_F_PRvUI
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+ventricular+myocyte+electrophysiology&rft.jtitle=Physiological+genomics&rft.au=Rosati%2C+Barbara&rft.au=Dong%2C+Min&rft.au=Cheng%2C+Lan&rft.au=Liou%2C+Shian-Ren&rft.date=2008-11-01&rft.eissn=1531-2267&rft.volume=35&rft.issue=3&rft.spage=262&rft_id=info:doi/10.1152%2Fphysiolgenomics.00159.2007&rft_id=info%3Apmid%2F18765860&rft.externalDocID=18765860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-8341&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-8341&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-8341&client=summon