Evolution of ventricular myocyte electrophysiology
1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 3 Department of Physiology and Nora Eccles Harrison Cardiovascu...
Saved in:
Published in | Physiological genomics Vol. 35; no. 3; pp. 262 - 272 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Physiological Soc
01.11.2008
American Physiological Society |
Subjects | |
Online Access | Get full text |
ISSN | 1094-8341 1531-2267 1531-2267 |
DOI | 10.1152/physiolgenomics.00159.2007 |
Cover
Loading…
Abstract | 1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
3 Department of Physiology and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
4 Institute of Molecular Cardiology, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis -regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved.
ion channel; gene regulation; ion transport; cardiac myocyte |
---|---|
AbstractList | The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis-regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved. The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis-regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved.The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis-regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved. 1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 3 Department of Physiology and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 4 Institute of Molecular Cardiology, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis -regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved. ion channel; gene regulation; ion transport; cardiac myocyte The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis -regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved. |
Author | McKinnon, David Rosati, Barbara Liou, Shian-Ren Sanguinetti, Michael Cheng, Lan Yan, Qinghong Dong, Min Shiang, Elaine Park, Ji Young Wang, Hong-Sheng |
AuthorAffiliation | 1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 4 Institute of Molecular Cardiology, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 3 Department of Physiology and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio |
AuthorAffiliation_xml | – name: 1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York – name: 2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio – name: 3 Department of Physiology and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah – name: 4 Institute of Molecular Cardiology, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York |
Author_xml | – sequence: 1 fullname: Rosati, Barbara – sequence: 2 fullname: Dong, Min – sequence: 3 fullname: Cheng, Lan – sequence: 4 fullname: Liou, Shian-Ren – sequence: 5 fullname: Yan, Qinghong – sequence: 6 fullname: Park, Ji Young – sequence: 7 fullname: Shiang, Elaine – sequence: 8 fullname: Sanguinetti, Michael – sequence: 9 fullname: Wang, Hong-Sheng – sequence: 10 fullname: McKinnon, David |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18765860$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAYhC3Uin7AX0ArDtyy-NsOByiqWqhUiUs5W47zetfIiZc4Wci_J2G3BbZC6smWPM-MNXOGjtrUAkKvCV4SIujbzXrMIcUVtKkJLi8xJqJcUozVM3RKBCMFpVIdTXdc8kIzTk7QWc7fJh1XWjxHJ0QrKbTEp4hebVMc-pDaRfKLLbR9F9wQbbdoxuTGHhYQwfVd2oem1fgCHXsbM7zcn-fo6_XV3eXn4vbLp5vLj7eFEyXuCypFpTzWipZEV5QpUte89r7UQCSRNcas4rwEwrlQHnBV86pSzEtlOXDr2Tl6v_PdDFUDtZv_ZqPZdKGx3WiSDebflzaszSptDRVaYKIngzd7gy59HyD3pgnZQYy2hTRkI0s19cBm4au_kx4i7muaBBc7getSzh1440Jv59am4BANwWZexhwsY34vY-ZlJot3BxYPKU-B2Q5eh9X6R-jA_JnjEceEYYZKOlEf_k9dDzHewc_-EL-nzab27Bfhn8gl |
CitedBy_id | crossref_primary_10_1109_TBME_2011_2170987 crossref_primary_10_1113_JP282126 crossref_primary_10_1007_s00360_020_01313_1 crossref_primary_10_1242_jeb_128439 crossref_primary_10_1074_jbc_M114_597930 crossref_primary_10_1371_journal_pone_0120785 crossref_primary_10_1016_j_tiv_2009_12_027 crossref_primary_10_1111_mms_12915 crossref_primary_10_1007_s00424_018_2193_1 crossref_primary_10_1111_bph_17394 crossref_primary_10_1186_s42826_021_00102_3 crossref_primary_10_1007_s10741_019_09769_2 crossref_primary_10_3184_175815512X13443528281545 crossref_primary_10_1098_rstb_2021_0332 crossref_primary_10_1021_acs_jproteome_6b00149 crossref_primary_10_1113_jphysiol_2011_210237 crossref_primary_10_17816_humeco626830 crossref_primary_10_3389_fphys_2018_00958 crossref_primary_10_1086_678954 crossref_primary_10_1073_pnas_1114516109 crossref_primary_10_1016_j_jacep_2021_02_016 crossref_primary_10_1016_j_molmed_2011_05_001 crossref_primary_10_3389_fphar_2021_651050 crossref_primary_10_1016_j_mbs_2011_06_008 crossref_primary_10_1152_ajpheart_00272_2020 crossref_primary_10_1016_j_ijpara_2020_01_006 crossref_primary_10_1021_pr9011393 crossref_primary_10_1016_j_pbiomolbio_2016_09_012 crossref_primary_10_1152_ajpheart_00164_2022 crossref_primary_10_1016_j_cbpa_2022_111204 crossref_primary_10_1016_j_jtbi_2016_09_024 crossref_primary_10_1093_cvr_cvab098 crossref_primary_10_1111_j_1525_142X_2009_00367_x crossref_primary_10_1371_journal_pone_0138320 crossref_primary_10_1016_j_tria_2022_100162 crossref_primary_10_1016_j_bpj_2021_06_040 crossref_primary_10_1016_j_compbiomed_2021_104240 crossref_primary_10_1016_j_rvsc_2017_09_010 crossref_primary_10_1016_j_fct_2022_113589 crossref_primary_10_1085_jgp_201210826 crossref_primary_10_1016_j_lfs_2020_117814 crossref_primary_10_1016_j_chemosphere_2023_138562 crossref_primary_10_2139_ssrn_4142260 |
Cites_doi | 10.1152/ajpheart.00081.2006 10.1042/BJ20050068 10.1085/jgp.67.6.621 10.1113/jphysiol.2002.033704 10.1152/jappl.1967.22.3.453 10.1152/ajpheart.01120.2003 10.1172/JCI8757 10.1124/pr.57.4.13 10.1152/ajpregu.1991.261.1.R126 10.1152/physrev.00002.2005 10.1161/01.RES.0000196559.63223.aa 10.1161/01.RES.79.4.659 10.1113/jphysiol.1995.sp020995 10.1113/jphysiol.2004.077263 10.1016/S0022-2828(03)00119-6 10.1016/S0165-0270(01)00368-5 10.1038/nrg2063 10.1161/01.RES.68.6.1495 10.1093/nar/gkh458 10.1161/hc3401.093151 10.1016/j.yjmcc.2005.11.002 10.1016/S1050-1738(01)00127-X 10.2144/04362MT03 10.1152/ajpheart.00060.2004 10.1073/pnas.082121299 10.1152/ajpheart.00084.2006 10.1152/ajpregu.00349.2001 10.1085/jgp.88.6.777 10.1523/JNEUROSCI.17-24-09423.1997 10.1159/000016320 10.1371/journal.pone.0000085 10.1038/384080a0 10.1016/0092-8674(95)90340-2 10.1161/CIRCULATIONAHA.105.580811 10.1152/ajplegacy.1968.215.3.704 10.1017/CBO9781139167826 10.1161/01.RES.80.2.261 10.1016/S0006-3495(01)75943-7 10.1161/01.CIR.0000033970.22130.93 10.1161/01.RES.73.5.820 10.1113/jphysiol.1994.sp020130 10.1016/S0959-4388(03)00066-7 10.1161/01.RES.85.2.168 10.1038/415198a 10.3109/714041017 10.1111/j.1558-5646.2007.00105.x 10.1016/S0022-2828(02)00290-0 10.1007/BF00230179 10.1113/jphysiol.2006.127480 |
ContentType | Journal Article |
Copyright | Copyright © 1094-8341/08 $8.00 |
Copyright_xml | – notice: Copyright © 1094-8341/08 $8.00 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/physiolgenomics.00159.2007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1531-2267 |
EndPage | 272 |
ExternalDocumentID | PMC2585018 18765860 10_1152_physiolgenomics_00159_2007 physiolgenomics_35_3_262 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL-65299 – fundername: NHLBI NIH HHS grantid: HL-084539 – fundername: NINDS NIH HHS grantid: NS-29755 – fundername: NHLBI NIH HHS grantid: HL-28958 |
GroupedDBID | - 123 29O 2WC 39C 4.4 53G 5VS AAPBV ABPTK ACGFS ACPRK ADACO ADBBV AENEX AGCAB ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P KQ8 O0- OK1 P2P R.V RAP RHF RHI WOQ --- .GJ AAFWJ AAYXX ABHWK ABJNI ABKWE ADFNX BTFSW CITATION EMOBN H13 ITBOX RPRKH TR2 W8F XSW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c590t-265b7f0872918b2371dd4dff98e1616d003b449e14457fe0bd4bb73f67a4e4af3 |
ISSN | 1094-8341 1531-2267 |
IngestDate | Thu Aug 21 14:07:06 EDT 2025 Fri Jul 11 09:12:24 EDT 2025 Thu Apr 03 07:02:05 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Jul 01 01:03:41 EDT 2025 Mon May 06 12:30:09 EDT 2019 Tue Jan 05 18:11:57 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c590t-265b7f0872918b2371dd4dff98e1616d003b449e14457fe0bd4bb73f67a4e4af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Address for reprint requests and other correspondence: D. McKinnon, Dept. of Physiology and Biophysics, BST Rm. 124, Level 6, Stony Brook Univ., Stony Brook, NY 11794-8661 (e-mail: dmckinnon@notes.cc.sunysb.edu). The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. |
OpenAccessLink | http://doi.org/10.1152/physiolgenomics.00159.2007 |
PMID | 18765860 |
PQID | 69787638 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | highwire_physiology_physiolgenomics_35_3_262 crossref_citationtrail_10_1152_physiolgenomics_00159_2007 proquest_miscellaneous_69787638 pubmed_primary_18765860 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2585018 crossref_primary_10_1152_physiolgenomics_00159_2007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-11-01 |
PublicationDateYYYYMMDD | 2008-11-01 |
PublicationDate_xml | – month: 11 year: 2008 text: 2008-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physiological genomics |
PublicationTitleAlternate | Physiol Genomics |
PublicationYear | 2008 |
Publisher | Am Physiological Soc American Physiological Society |
Publisher_xml | – name: Am Physiological Soc – name: American Physiological Society |
References | R21 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R53 R12 R11 R14 R13 R16 R15 R18 R17 R19 12818566 - J Mol Cell Cardiol. 2003 Jul;35(7):761-7 8900283 - Nature. 1996 Nov 7;384(6604):80-3 11709283 - Trends Cardiovasc Med. 2001 Oct;11(7):286-94 11514385 - Circulation. 2001 Aug 21;104(8):951-6 5671010 - Am J Physiol. 1968 Sep;215(3):704-15 10417398 - Circ Res. 1999 Jul 23;85(2):168-73 12598586 - J Physiol. 2003 May 1;548(Pt 3):815-22 14989097 - Biotechniques. 2004 Feb;36(2):316-22 16382097 - Pharmacol Rev. 2005 Dec;57(4):387-95 510954 - Growth. 1979 Sep;43(3):139-50 11459616 - J Neurosci Methods. 2001 Jul 15;108(1):39-48 12403671 - Circulation. 2002 Oct 29;106(18):2385-91 10575201 - Cell Physiol Biochem. 1999;9(4-5):242-69 10772652 - J Clin Invest. 2000 Apr;105(8):1077-84 8831489 - Circ Res. 1996 Oct;79(4):659-68 16565319 - Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H631-7 17304246 - Nat Rev Genet. 2007 Mar;8(3):206-16 11972032 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6210-5 1656210 - Mol Cell Biochem. 1991 Aug 14;106(2):133-41 8046643 - J Physiol. 1994 Apr 15;476(2):279-93 8403253 - Circ Res. 1993 Nov;73(5):820-8 16293790 - Circ Res. 2005 Dec 9;97(12):1342-50 11805843 - Nature. 2002 Jan 10;415(6868):198-205 2432158 - J Gen Physiol. 1986 Dec;88(6):777-98 17492956 - Evolution. 2007 May;61(5):995-1016 11893625 - Am J Physiol Regul Integr Comp Physiol. 2002 Apr;282(4):R1191-9 17218348 - J Physiol. 2007 Mar 1;579(Pt 2):465-71 17183716 - PLoS One. 2006;1:e85 15649977 - J Physiol. 2005 Apr 15;564(Pt 2):411-9 16415376 - Circulation. 2006 Jan 24;113(3):338-44 9012748 - Circ Res. 1997 Feb;80(2):261-8 2036707 - Circ Res. 1991 Jun;68(6):1495-500 9390998 - J Neurosci. 1997 Dec 15;17(24):9423-32 7736582 - Cell. 1995 Apr 21;81(2):299-307 16679403 - Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H762-9 15215394 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W273-9 12850214 - Curr Opin Neurobiol. 2003 Jun;13(3):298-307 12042340 - J Exp Biol. 2002 Jun;205(Pt 12):1819-30 8576853 - J Physiol. 1995 Nov 1;488 ( Pt 3):623-31 15117716 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1149-59 16000021 - PLoS Biol. 2005 Jul;3(7):e245 14698964 - Receptors Channels. 2003;9(6):363-77 11720973 - Biophys J. 2001 Dec;81(6):3029-51 16412459 - J Mol Cell Cardiol. 2006 Feb;40(2):295-302 1858938 - Am J Physiol. 1991 Jul;261(1 Pt 2):R126-33 6020227 - J Appl Physiol. 1967 Mar;22(3):453-60 16183911 - Physiol Rev. 2005 Oct;85(4):1205-53 12606256 - J Mol Cell Cardiol. 2003 Feb;35(2):153-63 15105172 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1276-85 15801907 - Biochem J. 2005 Jul 1;389(Pt 1):151-9 945323 - J Gen Physiol. 1976 Jun;67(6):621-38 |
References_xml | – ident: R29 doi: 10.1152/ajpheart.00081.2006 – ident: R45 doi: 10.1042/BJ20050068 – ident: R14 doi: 10.1085/jgp.67.6.621 – ident: R34 doi: 10.1113/jphysiol.2002.033704 – ident: R41 doi: 10.1152/jappl.1967.22.3.453 – ident: R51 doi: 10.1152/ajpheart.01120.2003 – ident: R18 doi: 10.1172/JCI8757 – ident: R52 doi: 10.1124/pr.57.4.13 – ident: R48 doi: 10.1152/ajpregu.1991.261.1.R126 – ident: R24 doi: 10.1152/physrev.00002.2005 – ident: R13 doi: 10.1161/01.RES.0000196559.63223.aa – ident: R9 doi: 10.1161/01.RES.79.4.659 – ident: R39 doi: 10.1113/jphysiol.1995.sp020995 – ident: R44 doi: 10.1113/jphysiol.2004.077263 – ident: R43 doi: 10.1016/S0022-2828(03)00119-6 – ident: R27 doi: 10.1016/S0165-0270(01)00368-5 – ident: R49 doi: 10.1038/nrg2063 – ident: R11 doi: 10.1161/01.RES.68.6.1495 – ident: R12 doi: 10.1093/nar/gkh458 – ident: R22 doi: 10.1161/hc3401.093151 – ident: R33 doi: 10.1016/j.yjmcc.2005.11.002 – ident: R28 doi: 10.1016/S1050-1738(01)00127-X – ident: R32 doi: 10.2144/04362MT03 – ident: R21 doi: 10.1152/ajpheart.00060.2004 – ident: R26 doi: 10.1073/pnas.082121299 – ident: R6 – ident: R10 doi: 10.1152/ajpheart.00084.2006 – ident: R46 doi: 10.1152/ajpregu.00349.2001 – ident: R20 doi: 10.1085/jgp.88.6.777 – ident: R7 – ident: R40 doi: 10.1523/JNEUROSCI.17-24-09423.1997 – ident: R42 doi: 10.1159/000016320 – ident: R8 doi: 10.1371/journal.pone.0000085 – ident: R36 doi: 10.1038/384080a0 – ident: R37 doi: 10.1016/0092-8674(95)90340-2 – ident: R4 doi: 10.1161/CIRCULATIONAHA.105.580811 – ident: R17 doi: 10.1152/ajplegacy.1968.215.3.704 – ident: R35 – ident: R38 doi: 10.1017/CBO9781139167826 – ident: R50 doi: 10.1161/01.RES.80.2.261 – ident: R25 doi: 10.1016/S0006-3495(01)75943-7 – ident: R53 doi: 10.1161/01.CIR.0000033970.22130.93 – ident: R19 doi: 10.1161/01.RES.73.5.820 – ident: R2 doi: 10.1113/jphysiol.1994.sp020130 – ident: R1 doi: 10.1016/S0959-4388(03)00066-7 – ident: R47 doi: 10.1161/01.RES.85.2.168 – ident: R3 doi: 10.1038/415198a – ident: R23 doi: 10.3109/714041017 – ident: R16 doi: 10.1111/j.1558-5646.2007.00105.x – ident: R5 doi: 10.1016/S0022-2828(02)00290-0 – ident: R15 doi: 10.1007/BF00230179 – ident: R30 – ident: R31 doi: 10.1113/jphysiol.2006.127480 – reference: 10772652 - J Clin Invest. 2000 Apr;105(8):1077-84 – reference: 6020227 - J Appl Physiol. 1967 Mar;22(3):453-60 – reference: 16565319 - Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H631-7 – reference: 11720973 - Biophys J. 2001 Dec;81(6):3029-51 – reference: 8403253 - Circ Res. 1993 Nov;73(5):820-8 – reference: 5671010 - Am J Physiol. 1968 Sep;215(3):704-15 – reference: 10575201 - Cell Physiol Biochem. 1999;9(4-5):242-69 – reference: 12403671 - Circulation. 2002 Oct 29;106(18):2385-91 – reference: 15117716 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1149-59 – reference: 17183716 - PLoS One. 2006;1:e85 – reference: 16412459 - J Mol Cell Cardiol. 2006 Feb;40(2):295-302 – reference: 9012748 - Circ Res. 1997 Feb;80(2):261-8 – reference: 12042340 - J Exp Biol. 2002 Jun;205(Pt 12):1819-30 – reference: 945323 - J Gen Physiol. 1976 Jun;67(6):621-38 – reference: 12850214 - Curr Opin Neurobiol. 2003 Jun;13(3):298-307 – reference: 8576853 - J Physiol. 1995 Nov 1;488 ( Pt 3):623-31 – reference: 15801907 - Biochem J. 2005 Jul 1;389(Pt 1):151-9 – reference: 14989097 - Biotechniques. 2004 Feb;36(2):316-22 – reference: 17492956 - Evolution. 2007 May;61(5):995-1016 – reference: 16415376 - Circulation. 2006 Jan 24;113(3):338-44 – reference: 8046643 - J Physiol. 1994 Apr 15;476(2):279-93 – reference: 10417398 - Circ Res. 1999 Jul 23;85(2):168-73 – reference: 14698964 - Receptors Channels. 2003;9(6):363-77 – reference: 11893625 - Am J Physiol Regul Integr Comp Physiol. 2002 Apr;282(4):R1191-9 – reference: 15215394 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W273-9 – reference: 7736582 - Cell. 1995 Apr 21;81(2):299-307 – reference: 11972032 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6210-5 – reference: 16293790 - Circ Res. 2005 Dec 9;97(12):1342-50 – reference: 11805843 - Nature. 2002 Jan 10;415(6868):198-205 – reference: 2432158 - J Gen Physiol. 1986 Dec;88(6):777-98 – reference: 17218348 - J Physiol. 2007 Mar 1;579(Pt 2):465-71 – reference: 17304246 - Nat Rev Genet. 2007 Mar;8(3):206-16 – reference: 12598586 - J Physiol. 2003 May 1;548(Pt 3):815-22 – reference: 1858938 - Am J Physiol. 1991 Jul;261(1 Pt 2):R126-33 – reference: 15649977 - J Physiol. 2005 Apr 15;564(Pt 2):411-9 – reference: 8831489 - Circ Res. 1996 Oct;79(4):659-68 – reference: 16183911 - Physiol Rev. 2005 Oct;85(4):1205-53 – reference: 9390998 - J Neurosci. 1997 Dec 15;17(24):9423-32 – reference: 11514385 - Circulation. 2001 Aug 21;104(8):951-6 – reference: 15105172 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1276-85 – reference: 510954 - Growth. 1979 Sep;43(3):139-50 – reference: 16382097 - Pharmacol Rev. 2005 Dec;57(4):387-95 – reference: 12606256 - J Mol Cell Cardiol. 2003 Feb;35(2):153-63 – reference: 2036707 - Circ Res. 1991 Jun;68(6):1495-500 – reference: 1656210 - Mol Cell Biochem. 1991 Aug 14;106(2):133-41 – reference: 16679403 - Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H762-9 – reference: 16000021 - PLoS Biol. 2005 Jul;3(7):e245 – reference: 11459616 - J Neurosci Methods. 2001 Jul 15;108(1):39-48 – reference: 12818566 - J Mol Cell Cardiol. 2003 Jul;35(7):761-7 – reference: 11709283 - Trends Cardiovasc Med. 2001 Oct;11(7):286-94 – reference: 8900283 - Nature. 1996 Nov 7;384(6604):80-3 |
SSID | ssj0014785 |
Score | 2.0935621 |
Snippet | 1 Institute of Molecular Cardiology, Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
2 Department of Pharmacology and... The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 262 |
SubjectTerms | Action Potentials - physiology Animals Biological Evolution Body Weight Cattle Electrophysiology - methods Ferrets Guinea Pigs Heart Rate Humans Mice Muscle Cells - cytology Muscle Cells - physiology Myocardium - cytology Potassium Channels, Voltage-Gated - physiology Rabbits Rats Species Specificity |
Title | Evolution of ventricular myocyte electrophysiology |
URI | http://physiolgenomics.physiology.org/cgi/content/abstract/35/3/262 https://www.ncbi.nlm.nih.gov/pubmed/18765860 https://www.proquest.com/docview/69787638 https://pubmed.ncbi.nlm.nih.gov/PMC2585018 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCMELgvEVPvPA2wgksR07j6gamoAhQJ20NyuJbbUSTaqRIpW_nrNjJ2nWSYOXqHJ6dnP36-Xu7LtD6A28NDIWqzzCskgjIitp9GAe8UpiWulSVto4iqdfs5Mz8umcnvuW8C67pC3fVX_25pX8j1RhDORqsmT_QbL9pDAAn0G-cAUJw_VaMj7-7aY3Jp85uGijecXF0WrbVNtWHbkmNzZ8McTPnS36zY9aOZliravx0ffGnPMZbUn0Jq87xHu67HE1W6hu7MvohM-y2djQ6gIAGP1wGWc-vsBdop19PXidmERgpbGx0uxqjDhw4LEG7JTrZc1MTaVX97z-kcw-ELXpQmxMBFxer6zMElDWlHcdByZ1sf2tm-hWCi6Cadvx-fuwg0QYp67ILCz9_uqFTdlYN9WubeLrRe_zPaZHaEc2yfw-uuecifBDh4wH6IaqD9Htrr3o9hDdmflufg9R2mMlbHQ4wkrosBJewsojdPbxeD47iVy_jKiiedxGaUZLpmMO_lLCyxSzREoitc65Ars-k6DAS0JyBT40ZVrFpSRlybDOWEEUKTR-jA7qplZPUWh2i4EhJFM6JTLJioqntJBUwaTgYvAA5Z5TonLF5E1Pk5_COpU0FROGC8tw0_SUBQj3tOuupMq1qLgXiBg4IUygZg7AmFJiKrAALIq11AF6u490upYnCdBrL28BQjIbaEWtms0vkeXMFHCEp3_SSX_4_Q5BAWI7uOi_YKq4796plwtbzT0FVscJf3blnM_R3eF_-QIdtBcb9RIs4bZ8ZSH_F_PRvUI |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+ventricular+myocyte+electrophysiology&rft.jtitle=Physiological+genomics&rft.au=Rosati%2C+Barbara&rft.au=Dong%2C+Min&rft.au=Cheng%2C+Lan&rft.au=Liou%2C+Shian-Ren&rft.date=2008-11-01&rft.eissn=1531-2267&rft.volume=35&rft.issue=3&rft.spage=262&rft_id=info:doi/10.1152%2Fphysiolgenomics.00159.2007&rft_id=info%3Apmid%2F18765860&rft.externalDocID=18765860 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-8341&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-8341&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-8341&client=summon |