The Transcription Factor STAT-1 Couples Macrophage Synthesis of 25-Hydroxycholesterol to the Interferon Antiviral Response

Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage product...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 38; no. 1; pp. 106 - 118
Main Authors Blanc, Mathieu, Hsieh, Wei Yuan, Robertson, Kevin A., Kropp, Kai A., Forster, Thorsten, Shui, Guanghou, Lacaze, Paul, Watterson, Steven, Griffiths, Samantha J., Spann, Nathanael J., Meljon, Anna, Talbot, Simon, Krishnan, Kathiresan, Covey, Douglas F., Wenk, Markus R., Craigon, Marie, Ruzsics, Zsolts, Haas, Jürgen, Angulo, Ana, Griffiths, William J., Glass, Christopher K., Wang, Yuqin, Ghazal, Peter
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.01.2013
Elsevier Limited
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway. [Display omitted] ► Macrophage PRR sensing of virus or IFN activation induce 25HC synthesis and secretion ► Stat1 rapidly binds and activates the promoter of cholesterol-25-hydroxylase (Ch25h) ► 25HC exerts multilevel antiviral function for a range of different viruses ► 25HC is an intrinsic paracrine and autocrine effector of the IFN antiviral response
AbstractList Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.
Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3 beta ,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.
Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.
Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.
Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupledCh25hregulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.
Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway. [Display omitted] ► Macrophage PRR sensing of virus or IFN activation induce 25HC synthesis and secretion ► Stat1 rapidly binds and activates the promoter of cholesterol-25-hydroxylase (Ch25h) ► 25HC exerts multilevel antiviral function for a range of different viruses ► 25HC is an intrinsic paracrine and autocrine effector of the IFN antiviral response
Author Shui, Guanghou
Hsieh, Wei Yuan
Blanc, Mathieu
Craigon, Marie
Robertson, Kevin A.
Lacaze, Paul
Griffiths, William J.
Watterson, Steven
Haas, Jürgen
Ghazal, Peter
Griffiths, Samantha J.
Meljon, Anna
Ruzsics, Zsolts
Spann, Nathanael J.
Covey, Douglas F.
Kropp, Kai A.
Talbot, Simon
Krishnan, Kathiresan
Wang, Yuqin
Wenk, Markus R.
Forster, Thorsten
Angulo, Ana
Glass, Christopher K.
AuthorAffiliation 8 Facultad de Medicina, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, Barcelona 08036, Spain
3 Departments of Biochemistry and Biological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
4 Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
5 Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
2 SynthSys (Synthetic and Systems Biology), University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JD, UK
1 Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
6 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63011, USA
7 Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Genzentrum, Feodor Lynen Str. 25, 81377 Munich, Germany
AuthorAffiliation_xml – name: 6 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63011, USA
– name: 2 SynthSys (Synthetic and Systems Biology), University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JD, UK
– name: 3 Departments of Biochemistry and Biological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
– name: 5 Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
– name: 7 Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Genzentrum, Feodor Lynen Str. 25, 81377 Munich, Germany
– name: 8 Facultad de Medicina, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, Barcelona 08036, Spain
– name: 1 Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– name: 4 Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
Author_xml – sequence: 1
  givenname: Mathieu
  surname: Blanc
  fullname: Blanc, Mathieu
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 2
  givenname: Wei Yuan
  surname: Hsieh
  fullname: Hsieh, Wei Yuan
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 3
  givenname: Kevin A.
  surname: Robertson
  fullname: Robertson, Kevin A.
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 4
  givenname: Kai A.
  surname: Kropp
  fullname: Kropp, Kai A.
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 5
  givenname: Thorsten
  surname: Forster
  fullname: Forster, Thorsten
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 6
  givenname: Guanghou
  surname: Shui
  fullname: Shui, Guanghou
  organization: Departments of Biochemistry and Biological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
– sequence: 7
  givenname: Paul
  surname: Lacaze
  fullname: Lacaze, Paul
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 8
  givenname: Steven
  surname: Watterson
  fullname: Watterson, Steven
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 9
  givenname: Samantha J.
  surname: Griffiths
  fullname: Griffiths, Samantha J.
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 10
  givenname: Nathanael J.
  surname: Spann
  fullname: Spann, Nathanael J.
  organization: Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
– sequence: 11
  givenname: Anna
  surname: Meljon
  fullname: Meljon, Anna
  organization: Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
– sequence: 12
  givenname: Simon
  surname: Talbot
  fullname: Talbot, Simon
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 13
  givenname: Kathiresan
  surname: Krishnan
  fullname: Krishnan, Kathiresan
  organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63011, USA
– sequence: 14
  givenname: Douglas F.
  surname: Covey
  fullname: Covey, Douglas F.
  organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63011, USA
– sequence: 15
  givenname: Markus R.
  surname: Wenk
  fullname: Wenk, Markus R.
  organization: Departments of Biochemistry and Biological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
– sequence: 16
  givenname: Marie
  surname: Craigon
  fullname: Craigon, Marie
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 17
  givenname: Zsolts
  surname: Ruzsics
  fullname: Ruzsics, Zsolts
  organization: Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Genzentrum, Feodor Lynen Str. 25, 81377 Munich, Germany
– sequence: 18
  givenname: Jürgen
  surname: Haas
  fullname: Haas, Jürgen
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
– sequence: 19
  givenname: Ana
  surname: Angulo
  fullname: Angulo, Ana
  organization: Facultad de Medicina, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, Barcelona 08036, Spain
– sequence: 20
  givenname: William J.
  surname: Griffiths
  fullname: Griffiths, William J.
  organization: Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
– sequence: 21
  givenname: Christopher K.
  surname: Glass
  fullname: Glass, Christopher K.
  organization: Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
– sequence: 22
  givenname: Yuqin
  surname: Wang
  fullname: Wang, Yuqin
  organization: Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
– sequence: 23
  givenname: Peter
  surname: Ghazal
  fullname: Ghazal, Peter
  email: p.ghazal@ed.ac.uk
  organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23273843$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhUeoiD7gHyBkiQ2bCb4ee-xhgRRFlFYqQqJhbbmeO42jiT3YMxHh1-MooYIu6Mqv7x4d33PPixMfPBbFa6AzoFC_X8_cZjN5N2MU2AxgRil_VpwBbWTJQdGT_V7yUtZQnRbnKa0pBS4a-qI4ZRWTleLVWfFruUKyjMYnG90wuuDJpbFjiOR2OV-WQBZhGnpM5IuxMQwrc4_kdufHFSaXSOgIE-XVro3h586uQgZHjKEnYyAZIdc-H7t848ncj27rounJN0xD8AlfFs870yd8dVwviu-Xn5aLq_Lm6-frxfymtNnsWEJHwVpZd3e0RcUYRxDdHYLspEGu2nwQkqGqO8UtMNVQpiQAbw0TxrS8uig-HnSH6W6DrUU_Zht6iG5j4k4H4_S_L96t9H3Y6kqIWiqWBd4dBWL4MeUv6o1LFvveeAxT0iAEb4RQjXwaZYoJYHVdZ_TtI3QdpuhzJ7JgVTcVVWpv_s3f5h9c_0kwA_wA5HhSitg9IED1flD0Wh8GRe8HRQPoPCi57MOjMutGs88_t8D1TxUfO4o5tq3DqJN16C22LqIddRvc_wV-AwRm3Pg
CitedBy_id crossref_primary_10_1016_j_prp_2023_154783
crossref_primary_10_1038_s41598_024_76281_5
crossref_primary_10_1002_rmv_2268
crossref_primary_10_4049_jimmunol_2200273
crossref_primary_10_3892_mmr_2016_5519
crossref_primary_10_1016_j_canlet_2017_08_037
crossref_primary_10_1016_j_freeradbiomed_2019_08_031
crossref_primary_10_1111_febs_15727
crossref_primary_10_1016_j_jsbmb_2021_105854
crossref_primary_10_1016_j_coviro_2016_07_005
crossref_primary_10_1016_j_antiviral_2023_105634
crossref_primary_10_1183_13993003_02417_2022
crossref_primary_10_15252_embr_202357238
crossref_primary_10_3390_ijms221910467
crossref_primary_10_1016_j_jbc_2022_102733
crossref_primary_10_1074_jbc_RA119_007555
crossref_primary_10_3389_fimmu_2023_1268104
crossref_primary_10_1016_j_immuni_2013_01_002
crossref_primary_10_2217_fon_2022_0819
crossref_primary_10_1038_s41467_019_08332_9
crossref_primary_10_1126_scisignal_aam8104
crossref_primary_10_1038_s41392_022_01125_5
crossref_primary_10_1093_jleuko_qiac011
crossref_primary_10_1073_pnas_2012197117
crossref_primary_10_1128_mBio_01808_16
crossref_primary_10_1189_jlb_3RU0215_074R
crossref_primary_10_1016_j_jsbmb_2016_04_015
crossref_primary_10_1016_j_ab_2017_01_009
crossref_primary_10_1016_j_neuro_2019_08_007
crossref_primary_10_1074_jbc_M114_558817
crossref_primary_10_1128_mBio_01115_18
crossref_primary_10_3389_fendo_2020_559674
crossref_primary_10_1016_j_biotechadv_2021_107703
crossref_primary_10_1016_j_bmcl_2016_09_029
crossref_primary_10_1084_jem_20131335
crossref_primary_10_1128_JVI_01444_16
crossref_primary_10_1146_annurev_immunol_032713_120231
crossref_primary_10_1016_j_antiviral_2022_105368
crossref_primary_10_1016_j_cmet_2017_06_019
crossref_primary_10_1039_D0FO02462G
crossref_primary_10_1371_journal_pone_0239925
crossref_primary_10_1016_j_tcb_2020_09_006
crossref_primary_10_3390_pathogens12030437
crossref_primary_10_3389_fimmu_2022_791267
crossref_primary_10_1038_s41590_020_0712_7
crossref_primary_10_4049_jimmunol_1201393
crossref_primary_10_1093_jmcb_mjab066
crossref_primary_10_1194_jlr_RA120000924
crossref_primary_10_1007_s00430_015_0402_5
crossref_primary_10_1097_QAD_0000000000002591
crossref_primary_10_1016_j_jsbmb_2022_106092
crossref_primary_10_1016_j_freeradbiomed_2021_10_008
crossref_primary_10_1128_mBio_00576_17
crossref_primary_10_3233_JAD_160152
crossref_primary_10_1016_j_antiviral_2022_105497
crossref_primary_10_1371_journal_ppat_1003911
crossref_primary_10_1038_s41598_020_71198_1
crossref_primary_10_3389_fendo_2018_00509
crossref_primary_10_3389_fmicb_2019_00355
crossref_primary_10_1016_j_it_2016_09_001
crossref_primary_10_1371_journal_pone_0095276
crossref_primary_10_1016_j_jsbmb_2015_11_017
crossref_primary_10_1038_s41467_022_33041_1
crossref_primary_10_3389_fnagi_2018_00048
crossref_primary_10_1016_j_immuni_2023_10_001
crossref_primary_10_1016_j_cell_2017_09_029
crossref_primary_10_2217_clp_14_50
crossref_primary_10_1016_j_cmet_2020_05_003
crossref_primary_10_1016_j_antiviral_2019_05_002
crossref_primary_10_1038_s41467_022_34532_x
crossref_primary_10_3390_pathogens11050538
crossref_primary_10_1093_nar_gkt589
crossref_primary_10_1194_jlr_M080440
crossref_primary_10_1073_pnas_1404271111
crossref_primary_10_1111_bph_15311
crossref_primary_10_1128_MCB_00364_19
crossref_primary_10_4049_jimmunol_1500204
crossref_primary_10_1016_j_jsbmb_2019_105424
crossref_primary_10_1073_pnas_2406492121
crossref_primary_10_1074_jbc_M113_519637
crossref_primary_10_3389_fcimb_2019_00116
crossref_primary_10_1042_BST20180135
crossref_primary_10_1002_advs_202307201
crossref_primary_10_1146_annurev_pharmtox_010715_103233
crossref_primary_10_1111_cpr_12854
crossref_primary_10_1038_srep25520
crossref_primary_10_3724_abbs_2022030
crossref_primary_10_31083_j_jin2102073
crossref_primary_10_1016_j_bbrc_2017_02_003
crossref_primary_10_32604_or_2024_047933
crossref_primary_10_1038_s41564_020_0701_5
crossref_primary_10_1128_JVI_00767_19
crossref_primary_10_1111_joim_12855
crossref_primary_10_1002_jmv_28658
crossref_primary_10_3389_fcimb_2022_945865
crossref_primary_10_1093_infdis_jix540
crossref_primary_10_1016_j_jnutbio_2019_02_003
crossref_primary_10_1126_sciimmunol_abb6444
crossref_primary_10_1016_j_bbamem_2020_183413
crossref_primary_10_1002_ejlt_201700047
crossref_primary_10_1038_ni_2681
crossref_primary_10_1128_JVI_00587_15
crossref_primary_10_1172_JCI96313
crossref_primary_10_33380_2305_2066_2024_13_4_1867
crossref_primary_10_1002_eji_201444493
crossref_primary_10_3851_IMP3232
crossref_primary_10_1016_j_cell_2018_11_045
crossref_primary_10_2217_fvl_2017_0160
crossref_primary_10_1038_s42003_021_02310_y
crossref_primary_10_1074_jbc_X118_005918
crossref_primary_10_1021_acsnano_4c06369
crossref_primary_10_3389_fimmu_2022_923024
crossref_primary_10_3389_fimmu_2014_00526
crossref_primary_10_1074_jbc_M113_540351
crossref_primary_10_3389_fimmu_2017_01184
crossref_primary_10_1016_j_jaut_2014_10_001
crossref_primary_10_1042_BST20150255
crossref_primary_10_1038_ncomms13129
crossref_primary_10_1155_2020_8893305
crossref_primary_10_1371_journal_ppat_1004897
crossref_primary_10_1371_journal_pone_0257576
crossref_primary_10_1016_j_molcel_2024_08_014
crossref_primary_10_1371_journal_pbio_1002364
crossref_primary_10_1016_j_steroids_2015_02_022
crossref_primary_10_1016_j_celrep_2021_109195
crossref_primary_10_3389_fendo_2020_591819
crossref_primary_10_1089_vim_2017_0046
crossref_primary_10_1016_j_chemphyslip_2020_104872
crossref_primary_10_1038_s41423_019_0326_x
crossref_primary_10_1038_s41577_024_01079_5
crossref_primary_10_3389_fphys_2021_750544
crossref_primary_10_1194_jlr_M084558
crossref_primary_10_3390_ani14213062
crossref_primary_10_3389_fimmu_2017_00062
crossref_primary_10_1128_AEM_01530_19
crossref_primary_10_1038_s41598_019_56038_1
crossref_primary_10_1016_j_chom_2013_04_002
crossref_primary_10_1007_s00705_019_04415_6
crossref_primary_10_1038_nchembio_1940
crossref_primary_10_1038_srep07487
crossref_primary_10_1097_QCO_0b013e32835fb8bf
crossref_primary_10_1042_CS20201394
crossref_primary_10_1038_srep07242
crossref_primary_10_1002_1873_3468_12702
crossref_primary_10_1016_j_vetmic_2019_108456
crossref_primary_10_1016_j_cell_2015_11_045
crossref_primary_10_12688_f1000research_15500_1
crossref_primary_10_1016_j_chom_2013_09_010
crossref_primary_10_1186_s12950_017_0159_2
crossref_primary_10_3389_fgene_2014_00311
crossref_primary_10_7554_eLife_83534
crossref_primary_10_1016_j_plipres_2016_09_002
crossref_primary_10_1038_s41385_019_0140_x
crossref_primary_10_1099_jgv_0_000797
crossref_primary_10_1016_j_jsbmb_2024_106634
crossref_primary_10_1038_nri_2015_8
crossref_primary_10_1002_open_201800281
crossref_primary_10_1016_j_vetmic_2020_108658
crossref_primary_10_3389_fimmu_2023_1247432
crossref_primary_10_1097_IN9_0000000000000042
crossref_primary_10_3389_fimmu_2023_1228811
crossref_primary_10_1038_s41422_018_0122_7
crossref_primary_10_1080_27694127_2024_2379193
crossref_primary_10_1128_JVI_00827_17
crossref_primary_10_3389_fimmu_2016_00634
crossref_primary_10_1002_jmv_27929
crossref_primary_10_1016_j_bbamcr_2018_09_012
crossref_primary_10_1038_s41467_019_09453_x
crossref_primary_10_3389_fimmu_2016_00630
crossref_primary_10_1007_s00253_018_9239_3
crossref_primary_10_1155_2013_164203
crossref_primary_10_1101_cshperspect_a041263
crossref_primary_10_1172_JCI144225
crossref_primary_10_3390_v12121381
crossref_primary_10_1016_j_ijbiomac_2024_139168
crossref_primary_10_1016_j_bjid_2014_10_007
crossref_primary_10_1038_s41598_025_90149_2
crossref_primary_10_1152_ajpgi_00313_2015
crossref_primary_10_1186_s12864_016_2418_7
crossref_primary_10_1371_journal_pone_0175581
crossref_primary_10_1161_CIRCULATIONAHA_117_027462
crossref_primary_10_1128_mBio_02907_21
crossref_primary_10_1186_s12917_022_03531_x
crossref_primary_10_3389_fimmu_2023_1241262
crossref_primary_10_1111_imr_13318
crossref_primary_10_1016_j_ejphar_2022_175033
crossref_primary_10_1146_annurev_virology_100114_055249
crossref_primary_10_1016_j_celrep_2022_111738
crossref_primary_10_1152_ajpendo_00218_2016
crossref_primary_10_3389_fimmu_2022_1007718
crossref_primary_10_3390_ijms232012400
crossref_primary_10_3390_v11020119
crossref_primary_10_1128_spectrum_03609_23
crossref_primary_10_1042_NS20190068
crossref_primary_10_1189_jlb_4VMR0316_103R
crossref_primary_10_1016_j_jconrel_2023_08_034
crossref_primary_10_1099_jgv_0_001861
crossref_primary_10_23868_gc562791
crossref_primary_10_1139_cjm_2015_0292
crossref_primary_10_1186_s12864_019_6221_0
crossref_primary_10_1016_j_prostaglandins_2019_106381
crossref_primary_10_1016_j_immuni_2024_03_021
crossref_primary_10_1016_j_immuni_2019_11_015
crossref_primary_10_1038_nri3755
crossref_primary_10_1146_annurev_virology_092818_015756
crossref_primary_10_1165_rcmb_2016_0011PS
crossref_primary_10_1111_tra_12280
crossref_primary_10_3389_fimmu_2021_581786
crossref_primary_10_1161_CIRCULATIONAHA_122_059062
crossref_primary_10_3390_v12070727
crossref_primary_10_1128_mbio_02100_24
crossref_primary_10_1016_j_antiviral_2022_105418
crossref_primary_10_1016_j_jsbmb_2018_10_018
crossref_primary_10_1038_s41574_024_00990_0
crossref_primary_10_1016_j_ijcard_2016_01_210
crossref_primary_10_1016_j_it_2024_09_013
crossref_primary_10_1016_j_neuropharm_2018_01_029
crossref_primary_10_3390_v15122406
crossref_primary_10_1002_eji_202048825
crossref_primary_10_1016_j_antiviral_2017_04_004
crossref_primary_10_1111_raq_12521
crossref_primary_10_1126_science_1254790
crossref_primary_10_1371_journal_ppat_1006347
crossref_primary_10_1042_BJ20150318
crossref_primary_10_3389_fragi_2024_1480886
crossref_primary_10_1002_sscp_201700021
crossref_primary_10_1038_s41590_020_0695_4
crossref_primary_10_1002_eji_202048944
crossref_primary_10_1016_j_clim_2024_110290
crossref_primary_10_3390_cells12040570
crossref_primary_10_1016_j_ccell_2018_12_001
crossref_primary_10_3389_fendo_2019_00204
crossref_primary_10_1186_1471_2318_14_36
crossref_primary_10_1093_ecco_jcc_jjz039
crossref_primary_10_4049_jimmunol_1800848
crossref_primary_10_1002_hep_27913
crossref_primary_10_1016_j_bbagen_2015_10_024
crossref_primary_10_1099_jgv_0_001178
crossref_primary_10_1128_JVI_00110_16
crossref_primary_10_4049_jimmunol_2101029
crossref_primary_10_1177_1087057113496848
crossref_primary_10_1016_j_molimm_2024_03_011
crossref_primary_10_1016_j_virs_2022_09_009
crossref_primary_10_1194_jlr_M093229
crossref_primary_10_3389_fphys_2021_723224
crossref_primary_10_1016_j_mam_2016_04_003
crossref_primary_10_1002_eji_202350501
crossref_primary_10_1111_bph_15073
crossref_primary_10_1016_j_antiviral_2017_08_003
crossref_primary_10_3390_cells11081251
crossref_primary_10_1111_bph_15191
crossref_primary_10_1155_2018_5906819
crossref_primary_10_3389_fimmu_2022_780839
crossref_primary_10_1016_j_celrep_2017_05_093
crossref_primary_10_1016_j_immuni_2021_09_004
crossref_primary_10_1007_s12035_018_1388_y
crossref_primary_10_1038_nri3665
crossref_primary_10_1007_s12035_016_0281_9
crossref_primary_10_1128_JVI_01047_18
crossref_primary_10_1016_j_immuni_2019_12_017
crossref_primary_10_1016_j_prp_2023_154737
crossref_primary_10_2217_fvl_13_88
crossref_primary_10_1373_clinchem_2014_231332
crossref_primary_10_1038_s42255_024_01149_x
crossref_primary_10_1016_j_jlr_2021_100165
crossref_primary_10_1038_s41467_018_08015_x
crossref_primary_10_1111_jcmm_13820
crossref_primary_10_1080_14789450_2020_1847086
crossref_primary_10_3390_ijms23084095
crossref_primary_10_1016_j_bcp_2013_01_027
crossref_primary_10_3389_fimmu_2018_00320
crossref_primary_10_1165_rcmb_2023_0007OC
crossref_primary_10_1016_j_jsbmb_2021_105939
crossref_primary_10_1016_j_vetmic_2019_03_004
crossref_primary_10_12688_f1000research_12450_1
crossref_primary_10_3389_fmicb_2019_00344
crossref_primary_10_3390_jmp5010009
crossref_primary_10_1016_j_vetmic_2017_09_011
crossref_primary_10_1128_JVI_00638_14
crossref_primary_10_1016_j_jsbmb_2019_105482
crossref_primary_10_3390_ijms241411860
crossref_primary_10_1523_JNEUROSCI_1502_21_2021
crossref_primary_10_3390_v13030522
crossref_primary_10_3390_v11020097
crossref_primary_10_1016_j_coviro_2014_03_006
crossref_primary_10_1002_jmv_28834
crossref_primary_10_1016_j_antiviral_2025_106113
crossref_primary_10_3389_fncel_2016_00269
crossref_primary_10_1371_journal_pone_0147179
crossref_primary_10_1016_j_smim_2016_10_007
crossref_primary_10_1016_j_cmet_2015_03_002
crossref_primary_10_1038_s41423_021_00827_0
crossref_primary_10_1016_j_isci_2021_103212
crossref_primary_10_3390_ijms23063021
crossref_primary_10_1016_j_bbrc_2014_01_069
crossref_primary_10_3390_ijms22084076
crossref_primary_10_1016_j_bbrc_2018_02_019
crossref_primary_10_1194_jlr_M050864
crossref_primary_10_1128_aac_01172_24
crossref_primary_10_4161_jkst_24189
crossref_primary_10_1016_j_immuni_2017_02_012
crossref_primary_10_1016_j_chom_2014_10_003
crossref_primary_10_1038_s41380_023_02348_w
crossref_primary_10_1080_08830185_2024_2314577
crossref_primary_10_1016_j_micpath_2019_103919
crossref_primary_10_1016_j_virol_2023_109875
crossref_primary_10_3389_fimmu_2019_00322
crossref_primary_10_3389_fcimb_2019_00042
crossref_primary_10_1016_j_jmb_2021_167438
crossref_primary_10_1111_brv_12959
crossref_primary_10_1016_j_cell_2015_12_004
crossref_primary_10_1111_imr_13200
crossref_primary_10_1186_s12989_016_0181_1
crossref_primary_10_1128_AEM_00660_15
crossref_primary_10_3390_cells11020201
Cites_doi 10.1189/jlb.0610318
10.1016/S1097-2765(03)00384-8
10.1128/JVI.06467-11
10.1084/jem.20040061
10.1021/ja211305j
10.1016/j.cmet.2005.01.001
10.1016/j.cub.2010.01.044
10.1038/nbt.1500
10.1016/B978-0-12-024914-5.50008-5
10.1128/AAC.45.4.1231-1237.2001
10.1128/JVI.00373-11
10.1371/journal.pone.0038202
10.1073/pnas.0700907104
10.1073/pnas.0700899104
10.1016/j.immuni.2012.06.015
10.1038/nature10280
10.1038/nature10742
10.1161/01.CIR.0000109485.79183.81
10.1016/j.micinf.2008.01.009
10.1172/JCI17704
10.1002/jlb.58.5.607
10.1074/jbc.M410302200
10.1128/JVI.77.22.12285-12298.2003
10.1172/JCI0215593
10.1016/j.molcel.2005.04.004
10.1038/82219
10.1073/pnas.1114981109
10.1074/jbc.M108348200
10.1038/nature10226
10.1194/jlr.M900107-JLR200
10.1128/JVI.00337-11
10.1126/science.1598578
10.1038/89058
10.1073/pnas.0909142106
10.1073/pnas.2237238100
10.1146/annurev.genet.41.110306.130315
10.1073/pnas.162488899
10.1016/j.cmet.2011.04.001
10.1128/JVI.02630-10
10.1016/j.cmet.2005.11.014
10.1371/journal.pbio.1000598
10.1002/hep.25631
10.1074/jbc.M308619200
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 24, 2013
2013 ELL & Excerpta Medica. 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 24, 2013
– notice: 2013 ELL & Excerpta Medica. 2013 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2012.11.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
MEDLINE

Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 118
ExternalDocumentID PMC3556782
3337133421
23273843
10_1016_j_immuni_2012_11_004
S1074761312005092
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL067773
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H0010181
– fundername: Wellcome Trust
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/C515771/2
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H001018/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/C5157712
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/I0017351
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/D019621/1
– fundername: NHLBI NIH HHS
  grantid: HL67773
– fundername: British Heart Foundation
  grantid: FS/05/022
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
3V.
4.4
457
4G.
53G
5GY
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGGSO
AGHFR
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
.55
.GJ
29I
AALRI
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AHHHB
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c590t-1f01cc76fb0de8224e15fbe17f7ae48d5fb572e86f84c12890287114da25aad43
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Thu Aug 21 13:56:49 EDT 2025
Thu Jul 10 22:08:29 EDT 2025
Fri Jul 11 16:25:19 EDT 2025
Fri Jul 25 11:07:29 EDT 2025
Mon Jul 21 05:29:43 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Fri Jul 04 04:46:10 EDT 2025
Fri Feb 23 02:28:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/3.0
Copyright © 2013 Elsevier Inc. All rights reserved.
Open Access under CC BY 3.0 license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-1f01cc76fb0de8224e15fbe17f7ae48d5fb572e86f84c12890287114da25aad43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1074761312005092
PMID 23273843
PQID 1536930884
PQPubID 2031079
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3556782
proquest_miscellaneous_1554955897
proquest_miscellaneous_1282512666
proquest_journals_1536930884
pubmed_primary_23273843
crossref_primary_10_1016_j_immuni_2012_11_004
crossref_citationtrail_10_1016_j_immuni_2012_11_004
elsevier_sciencedirect_doi_10_1016_j_immuni_2012_11_004
PublicationCentury 2000
PublicationDate 2013-01-24
PublicationDateYYYYMMDD 2013-01-24
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2013
Publisher Elsevier Inc
Elsevier Limited
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Cell Press
References Deraeve, Guo, Bon, Blankenfeldt, DiLucrezia, Wolf, Menninger, Stigter, Wetzel, Choidas (bib11) 2012; 134
Vestal, Maki, Buss (bib37) 1995; 58
Gong, Lee, Lee, Goldstein, Brown, Ye (bib15) 2006; 3
Sun, Seemann, Goldstein, Brown (bib35) 2007; 104
Yu, Maguire, Alwine (bib44) 2012; 86
Rusiñol, Thewke, Liu, Freeman, Panini, Sinensky (bib32) 2004; 279
Bordier, Ohkanda, Liu, Lee, Salazar, Marion, Ohashi, Meuse, Kay, Casey (bib5) 2003; 112
Yi, Wang, Kelly, An, Xu, Sailer, Gustafsson, Russell, Cyster (bib43) 2012; 37
Wang, Gale, Keller, Huang, Brown, Goldstein, Ye (bib38) 2005; 18
Castrillo, Joseph, Vaidya, Haberland, Fogelman, Cheng, Tontonoz (bib6) 2003; 12
Yabe, Brown, Goldstein (bib41) 2002; 99
Watterson, Guerriero, Blanc, Mazein, Loewe, Robertson, Gibbs, Shui, Wenk, Hillston, Ghazal (bib39) 2012
Liu, Sanchez, Aliyari, Lu, Cheng (bib24) 2012; 109
Spencer, Schafer, Moorman, Munger (bib34) 2011; 85
Glenn, Watson, Havel, White (bib14) 1992; 256
Adams, Reitz, De Brabander, Feramisco, Li, Brown, Goldstein (bib1) 2004; 279
Park, Scott (bib27) 2010; 88
Espenshade, Hughes (bib13) 2007; 41
Liu, Yang, Wu, Kuei, Mani, Zhang, Yu, Sutton, Qin, Banie (bib23) 2011; 475
Potena, Frascaroli, Grigioni, Lazzarotto, Magnani, Tomasi, Coccolo, Gabrielli, Magelli, Landini, Branzi (bib29) 2004; 109
Taylor, Linde, Khatua, Popik, Hildreth (bib36) 2011; 85
Clark, Thompson, Vock, Kratz, Tolun, Muir, McHutchison, Subramanian, Millington, Kelley, Patel (bib7) 2012; 56
del Real, Jiménez-Baranda, Mira, Lacalle, Lucas, Gómez-Moutón, Alegret, Peña, Rodríguez-Zapata, Alvarez-Mon (bib10) 2004; 200
Song, Javitt, DeBose-Boyd (bib33) 2005; 1
Contreras, Ernst, Haberkant, Björkholm, Lindahl, Gönen, Tischer, Elofsson, von Heijne, Thiele (bib9) 2012; 481
Munger, Bennett, Parikh, Feng, McArdle, Rabitz, Shenk, Rabinowitz (bib25) 2008; 26
Clase, Lyman, del Rio, Randall, Calton, Enquist, Banfield (bib8) 2003; 77
Diczfalusy, Olofsson, Carlsson, Gong, Golenbock, Rooyackers, Fläring, Björkbacka (bib12) 2009; 50
Peña, Harris (bib28) 2012; 7
Hannedouche, Zhang, Yi, Shen, Nguyen, Pereira, Guerini, Baumgarten, Roggo, Wen (bib17) 2011; 475
Rodwell, Nordstrom, Mitschelen (bib31) 1976; 14
Weitz-Schmidt, Welzenbach, Brinkmann, Kamata, Kallen, Bruns, Cottens, Takada, Hommel (bib40) 2001; 7
Horton, Goldstein, Brown (bib18) 2002; 109
Blanc, Hsieh, Robertson, Watterson, Shui, Lacaze, Khondoker, Dickinson, Sing, Rodríguez-Martín (bib4) 2011; 9
Janowski, Shan, Russell (bib20) 2001; 276
Kwak, Mulhaupt, Myit, Mach (bib22) 2000; 6
Radhakrishnan, Ikeda, Kwon, Brown, Goldstein (bib30) 2007; 104
Amet, Nonaka, Dewan, Saitoh, Qi, Ichinose, Yamamoto, Yamaoka (bib2) 2008; 10
Kropp, Robertson, Sing, Rodriguez-Martin, Blanc, Lacaze, Hassim, Khondoker, Busche, Dickinson (bib21) 2011; 85
Gower, Graham (bib16) 2001; 45
Im, Yousef, Blaschitz, Liu, Edwards, Young, Raffatellu, Osborne (bib19) 2011; 13
O’Neill, Bowie (bib26) 2010; 20
Ye, Wang, Sumpter, Brown, Goldstein, Gale (bib42) 2003; 100
Bauman, Bitmansour, McDonald, Thompson, Liang, Russell (bib3) 2009; 106
Contreras (10.1016/j.immuni.2012.11.004_bib9) 2012; 481
Munger (10.1016/j.immuni.2012.11.004_bib25) 2008; 26
O’Neill (10.1016/j.immuni.2012.11.004_bib26) 2010; 20
Spencer (10.1016/j.immuni.2012.11.004_bib34) 2011; 85
Yabe (10.1016/j.immuni.2012.11.004_bib41) 2002; 99
Peña (10.1016/j.immuni.2012.11.004_bib28) 2012; 7
Clase (10.1016/j.immuni.2012.11.004_bib8) 2003; 77
Castrillo (10.1016/j.immuni.2012.11.004_bib6) 2003; 12
Im (10.1016/j.immuni.2012.11.004_bib19) 2011; 13
Sun (10.1016/j.immuni.2012.11.004_bib35) 2007; 104
Glenn (10.1016/j.immuni.2012.11.004_bib14) 1992; 256
Amet (10.1016/j.immuni.2012.11.004_bib2) 2008; 10
Park (10.1016/j.immuni.2012.11.004_bib27) 2010; 88
Weitz-Schmidt (10.1016/j.immuni.2012.11.004_bib40) 2001; 7
Watterson (10.1016/j.immuni.2012.11.004_bib39) 2012
Rodwell (10.1016/j.immuni.2012.11.004_bib31) 1976; 14
Horton (10.1016/j.immuni.2012.11.004_bib18) 2002; 109
Clark (10.1016/j.immuni.2012.11.004_bib7) 2012; 56
Bordier (10.1016/j.immuni.2012.11.004_bib5) 2003; 112
Hannedouche (10.1016/j.immuni.2012.11.004_bib17) 2011; 475
Rusiñol (10.1016/j.immuni.2012.11.004_bib32) 2004; 279
Song (10.1016/j.immuni.2012.11.004_bib33) 2005; 1
Kwak (10.1016/j.immuni.2012.11.004_bib22) 2000; 6
Bauman (10.1016/j.immuni.2012.11.004_bib3) 2009; 106
Deraeve (10.1016/j.immuni.2012.11.004_bib11) 2012; 134
Diczfalusy (10.1016/j.immuni.2012.11.004_bib12) 2009; 50
Liu (10.1016/j.immuni.2012.11.004_bib24) 2012; 109
Vestal (10.1016/j.immuni.2012.11.004_bib37) 1995; 58
Janowski (10.1016/j.immuni.2012.11.004_bib20) 2001; 276
Taylor (10.1016/j.immuni.2012.11.004_bib36) 2011; 85
Wang (10.1016/j.immuni.2012.11.004_bib38) 2005; 18
Adams (10.1016/j.immuni.2012.11.004_bib1) 2004; 279
Espenshade (10.1016/j.immuni.2012.11.004_bib13) 2007; 41
Potena (10.1016/j.immuni.2012.11.004_bib29) 2004; 109
Radhakrishnan (10.1016/j.immuni.2012.11.004_bib30) 2007; 104
Gong (10.1016/j.immuni.2012.11.004_bib15) 2006; 3
Kropp (10.1016/j.immuni.2012.11.004_bib21) 2011; 85
Ye (10.1016/j.immuni.2012.11.004_bib42) 2003; 100
Gower (10.1016/j.immuni.2012.11.004_bib16) 2001; 45
del Real (10.1016/j.immuni.2012.11.004_bib10) 2004; 200
Liu (10.1016/j.immuni.2012.11.004_bib23) 2011; 475
Blanc (10.1016/j.immuni.2012.11.004_bib4) 2011; 9
Yi (10.1016/j.immuni.2012.11.004_bib43) 2012; 37
Yu (10.1016/j.immuni.2012.11.004_bib44) 2012; 86
23352217 - Immunity. 2013 Jan 24;38(1):3-5. doi: 10.1016/j.immuni.2013.01.002.
References_xml – volume: 9
  start-page: e1000598
  year: 2011
  ident: bib4
  article-title: Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis
  publication-title: PLoS Biol.
– volume: 475
  start-page: 519
  year: 2011
  end-page: 523
  ident: bib23
  article-title: Oxysterols direct B-cell migration through EBI2
  publication-title: Nature
– volume: 100
  start-page: 15865
  year: 2003
  end-page: 15870
  ident: bib42
  article-title: Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 279
  start-page: 52772
  year: 2004
  end-page: 52780
  ident: bib1
  article-title: Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs
  publication-title: J. Biol. Chem.
– volume: 41
  start-page: 401
  year: 2007
  end-page: 427
  ident: bib13
  article-title: Regulation of sterol synthesis in eukaryotes
  publication-title: Annu. Rev. Genet.
– volume: 85
  start-page: 5814
  year: 2011
  end-page: 5824
  ident: bib34
  article-title: Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication
  publication-title: J. Virol.
– year: 2012
  ident: bib39
  article-title: A model of flux regulation in the cholesterol biosynthesis pathway: Immune mediated graduated flux reduction versus statin-like led stepped flux reduction
  publication-title: Biochimie
– volume: 7
  start-page: e38202
  year: 2012
  ident: bib28
  article-title: Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway
  publication-title: PLoS ONE
– volume: 10
  start-page: 471
  year: 2008
  end-page: 480
  ident: bib2
  article-title: Statin-induced inhibition of HIV-1 release from latently infected U1 cells reveals a critical role for protein prenylation in HIV-1 replication
  publication-title: Microbes Infect.
– volume: 77
  start-page: 12285
  year: 2003
  end-page: 12298
  ident: bib8
  article-title: The pseudorabies virus Us2 protein, a virion tegument component, is prenylated in infected cells
  publication-title: J. Virol.
– volume: 14
  start-page: 1
  year: 1976
  end-page: 74
  ident: bib31
  article-title: Regulation of HMG-CoA reductase
  publication-title: Adv. Lipid Res.
– volume: 13
  start-page: 540
  year: 2011
  end-page: 549
  ident: bib19
  article-title: Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a
  publication-title: Cell Metab.
– volume: 50
  start-page: 2258
  year: 2009
  end-page: 2264
  ident: bib12
  article-title: Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide
  publication-title: J. Lipid Res.
– volume: 26
  start-page: 1179
  year: 2008
  end-page: 1186
  ident: bib25
  article-title: Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy
  publication-title: Nat. Biotechnol.
– volume: 56
  start-page: 49
  year: 2012
  end-page: 56
  ident: bib7
  article-title: Hepatitis C virus selectively perturbs the distal cholesterol synthesis pathway in a genotype-specific manner
  publication-title: Hepatology
– volume: 109
  start-page: 1125
  year: 2002
  end-page: 1131
  ident: bib18
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J. Clin. Invest.
– volume: 481
  start-page: 525
  year: 2012
  end-page: 529
  ident: bib9
  article-title: Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain
  publication-title: Nature
– volume: 3
  start-page: 15
  year: 2006
  end-page: 24
  ident: bib15
  article-title: Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake
  publication-title: Cell Metab.
– volume: 1
  start-page: 179
  year: 2005
  end-page: 189
  ident: bib33
  article-title: Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol
  publication-title: Cell Metab.
– volume: 256
  start-page: 1331
  year: 1992
  end-page: 1333
  ident: bib14
  article-title: Identification of a prenylation site in delta virus large antigen
  publication-title: Science
– volume: 104
  start-page: 6519
  year: 2007
  end-page: 6526
  ident: bib35
  article-title: Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 109
  start-page: 4239
  year: 2012
  end-page: 4244
  ident: bib24
  article-title: Systematic identification of type I and type II interferon-induced antiviral factors
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: R328
  year: 2010
  end-page: R333
  ident: bib26
  article-title: Sensing and signaling in antiviral innate immunity
  publication-title: Curr. Biol.
– volume: 7
  start-page: 687
  year: 2001
  end-page: 692
  ident: bib40
  article-title: Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site
  publication-title: Nat. Med.
– volume: 37
  start-page: 535
  year: 2012
  end-page: 548
  ident: bib43
  article-title: Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses
  publication-title: Immunity
– volume: 134
  start-page: 7384
  year: 2012
  end-page: 7391
  ident: bib11
  article-title: Psoromic acid is a selective and covalent Rab-prenylation inhibitor targeting autoinhibited RabGGTase
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 1231
  year: 2001
  end-page: 1237
  ident: bib16
  article-title: Antiviral activity of lovastatin against respiratory syncytial virus in vivo and in vitro
  publication-title: Antimicrob. Agents Chemother.
– volume: 85
  start-page: 10286
  year: 2011
  end-page: 10299
  ident: bib21
  article-title: Reversible inhibition of murine cytomegalovirus replication by gamma interferon (IFN-γ) in primary macrophages involves a primed type I IFN-signaling subnetwork for full establishment of an immediate-early antiviral state
  publication-title: J. Virol.
– volume: 12
  start-page: 805
  year: 2003
  end-page: 816
  ident: bib6
  article-title: Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism
  publication-title: Mol. Cell
– volume: 112
  start-page: 407
  year: 2003
  end-page: 414
  ident: bib5
  article-title: In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus
  publication-title: J. Clin. Invest.
– volume: 58
  start-page: 607
  year: 1995
  end-page: 615
  ident: bib37
  article-title: Induction of a prenylated 65-kd protein in macrophages by interferon or lipopolysaccharide
  publication-title: J. Leukoc. Biol.
– volume: 88
  start-page: 1081
  year: 2010
  end-page: 1087
  ident: bib27
  article-title: Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons
  publication-title: J. Leukoc. Biol.
– volume: 85
  start-page: 7699
  year: 2011
  end-page: 7709
  ident: bib36
  article-title: Sterol regulatory element-binding protein 2 couples HIV-1 transcription to cholesterol homeostasis and T cell activation
  publication-title: J. Virol.
– volume: 86
  start-page: 2942
  year: 2012
  end-page: 2949
  ident: bib44
  article-title: Human cytomegalovirus infection induces adipocyte-like lipogenesis through activation of sterol regulatory element binding protein 1
  publication-title: J. Virol.
– volume: 475
  start-page: 524
  year: 2011
  end-page: 527
  ident: bib17
  article-title: Oxysterols direct immune cell migration via EBI2
  publication-title: Nature
– volume: 6
  start-page: 1399
  year: 2000
  end-page: 1402
  ident: bib22
  article-title: Statins as a newly recognized type of immunomodulator
  publication-title: Nat. Med.
– volume: 109
  start-page: 532
  year: 2004
  end-page: 536
  ident: bib29
  article-title: Hydroxymethyl-glutaryl coenzyme a reductase inhibition limits cytomegalovirus infection in human endothelial cells
  publication-title: Circulation
– volume: 99
  start-page: 12753
  year: 2002
  end-page: 12758
  ident: bib41
  article-title: Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 425
  year: 2005
  end-page: 434
  ident: bib38
  article-title: Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication
  publication-title: Mol. Cell
– volume: 276
  start-page: 45408
  year: 2001
  end-page: 45416
  ident: bib20
  article-title: The hypocholesterolemic agent LY295427 reverses suppression of sterol regulatory element-binding protein processing mediated by oxysterols
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 16764
  year: 2009
  end-page: 16769
  ident: bib3
  article-title: 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 279
  start-page: 1392
  year: 2004
  end-page: 1399
  ident: bib32
  article-title: AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis
  publication-title: J. Biol. Chem.
– volume: 200
  start-page: 541
  year: 2004
  end-page: 547
  ident: bib10
  article-title: Statins inhibit HIV-1 infection by down-regulating Rho activity
  publication-title: J. Exp. Med.
– volume: 104
  start-page: 6511
  year: 2007
  end-page: 6518
  ident: bib30
  article-title: Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 88
  start-page: 1081
  year: 2010
  ident: 10.1016/j.immuni.2012.11.004_bib27
  article-title: Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0610318
– volume: 12
  start-page: 805
  year: 2003
  ident: 10.1016/j.immuni.2012.11.004_bib6
  article-title: Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00384-8
– volume: 86
  start-page: 2942
  year: 2012
  ident: 10.1016/j.immuni.2012.11.004_bib44
  article-title: Human cytomegalovirus infection induces adipocyte-like lipogenesis through activation of sterol regulatory element binding protein 1
  publication-title: J. Virol.
  doi: 10.1128/JVI.06467-11
– volume: 200
  start-page: 541
  year: 2004
  ident: 10.1016/j.immuni.2012.11.004_bib10
  article-title: Statins inhibit HIV-1 infection by down-regulating Rho activity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20040061
– volume: 134
  start-page: 7384
  year: 2012
  ident: 10.1016/j.immuni.2012.11.004_bib11
  article-title: Psoromic acid is a selective and covalent Rab-prenylation inhibitor targeting autoinhibited RabGGTase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211305j
– volume: 1
  start-page: 179
  year: 2005
  ident: 10.1016/j.immuni.2012.11.004_bib33
  article-title: Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.01.001
– volume: 20
  start-page: R328
  year: 2010
  ident: 10.1016/j.immuni.2012.11.004_bib26
  article-title: Sensing and signaling in antiviral innate immunity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.01.044
– volume: 26
  start-page: 1179
  year: 2008
  ident: 10.1016/j.immuni.2012.11.004_bib25
  article-title: Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1500
– volume: 14
  start-page: 1
  year: 1976
  ident: 10.1016/j.immuni.2012.11.004_bib31
  article-title: Regulation of HMG-CoA reductase
  publication-title: Adv. Lipid Res.
  doi: 10.1016/B978-0-12-024914-5.50008-5
– volume: 45
  start-page: 1231
  year: 2001
  ident: 10.1016/j.immuni.2012.11.004_bib16
  article-title: Antiviral activity of lovastatin against respiratory syncytial virus in vivo and in vitro
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.45.4.1231-1237.2001
– volume: 85
  start-page: 10286
  year: 2011
  ident: 10.1016/j.immuni.2012.11.004_bib21
  article-title: Reversible inhibition of murine cytomegalovirus replication by gamma interferon (IFN-γ) in primary macrophages involves a primed type I IFN-signaling subnetwork for full establishment of an immediate-early antiviral state
  publication-title: J. Virol.
  doi: 10.1128/JVI.00373-11
– volume: 7
  start-page: e38202
  year: 2012
  ident: 10.1016/j.immuni.2012.11.004_bib28
  article-title: Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0038202
– volume: 104
  start-page: 6519
  year: 2007
  ident: 10.1016/j.immuni.2012.11.004_bib35
  article-title: Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0700907104
– volume: 104
  start-page: 6511
  year: 2007
  ident: 10.1016/j.immuni.2012.11.004_bib30
  article-title: Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0700899104
– volume: 37
  start-page: 535
  year: 2012
  ident: 10.1016/j.immuni.2012.11.004_bib43
  article-title: Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.06.015
– volume: 475
  start-page: 524
  year: 2011
  ident: 10.1016/j.immuni.2012.11.004_bib17
  article-title: Oxysterols direct immune cell migration via EBI2
  publication-title: Nature
  doi: 10.1038/nature10280
– volume: 481
  start-page: 525
  year: 2012
  ident: 10.1016/j.immuni.2012.11.004_bib9
  article-title: Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain
  publication-title: Nature
  doi: 10.1038/nature10742
– volume: 109
  start-page: 532
  year: 2004
  ident: 10.1016/j.immuni.2012.11.004_bib29
  article-title: Hydroxymethyl-glutaryl coenzyme a reductase inhibition limits cytomegalovirus infection in human endothelial cells
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000109485.79183.81
– year: 2012
  ident: 10.1016/j.immuni.2012.11.004_bib39
  article-title: A model of flux regulation in the cholesterol biosynthesis pathway: Immune mediated graduated flux reduction versus statin-like led stepped flux reduction
  publication-title: Biochimie
– volume: 10
  start-page: 471
  year: 2008
  ident: 10.1016/j.immuni.2012.11.004_bib2
  article-title: Statin-induced inhibition of HIV-1 release from latently infected U1 cells reveals a critical role for protein prenylation in HIV-1 replication
  publication-title: Microbes Infect.
  doi: 10.1016/j.micinf.2008.01.009
– volume: 112
  start-page: 407
  year: 2003
  ident: 10.1016/j.immuni.2012.11.004_bib5
  article-title: In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI17704
– volume: 58
  start-page: 607
  year: 1995
  ident: 10.1016/j.immuni.2012.11.004_bib37
  article-title: Induction of a prenylated 65-kd protein in macrophages by interferon or lipopolysaccharide
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/jlb.58.5.607
– volume: 279
  start-page: 52772
  year: 2004
  ident: 10.1016/j.immuni.2012.11.004_bib1
  article-title: Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M410302200
– volume: 77
  start-page: 12285
  year: 2003
  ident: 10.1016/j.immuni.2012.11.004_bib8
  article-title: The pseudorabies virus Us2 protein, a virion tegument component, is prenylated in infected cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.22.12285-12298.2003
– volume: 109
  start-page: 1125
  year: 2002
  ident: 10.1016/j.immuni.2012.11.004_bib18
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215593
– volume: 18
  start-page: 425
  year: 2005
  ident: 10.1016/j.immuni.2012.11.004_bib38
  article-title: Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.04.004
– volume: 6
  start-page: 1399
  year: 2000
  ident: 10.1016/j.immuni.2012.11.004_bib22
  article-title: Statins as a newly recognized type of immunomodulator
  publication-title: Nat. Med.
  doi: 10.1038/82219
– volume: 109
  start-page: 4239
  year: 2012
  ident: 10.1016/j.immuni.2012.11.004_bib24
  article-title: Systematic identification of type I and type II interferon-induced antiviral factors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1114981109
– volume: 276
  start-page: 45408
  year: 2001
  ident: 10.1016/j.immuni.2012.11.004_bib20
  article-title: The hypocholesterolemic agent LY295427 reverses suppression of sterol regulatory element-binding protein processing mediated by oxysterols
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M108348200
– volume: 475
  start-page: 519
  year: 2011
  ident: 10.1016/j.immuni.2012.11.004_bib23
  article-title: Oxysterols direct B-cell migration through EBI2
  publication-title: Nature
  doi: 10.1038/nature10226
– volume: 50
  start-page: 2258
  year: 2009
  ident: 10.1016/j.immuni.2012.11.004_bib12
  article-title: Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M900107-JLR200
– volume: 85
  start-page: 7699
  year: 2011
  ident: 10.1016/j.immuni.2012.11.004_bib36
  article-title: Sterol regulatory element-binding protein 2 couples HIV-1 transcription to cholesterol homeostasis and T cell activation
  publication-title: J. Virol.
  doi: 10.1128/JVI.00337-11
– volume: 256
  start-page: 1331
  year: 1992
  ident: 10.1016/j.immuni.2012.11.004_bib14
  article-title: Identification of a prenylation site in delta virus large antigen
  publication-title: Science
  doi: 10.1126/science.1598578
– volume: 7
  start-page: 687
  year: 2001
  ident: 10.1016/j.immuni.2012.11.004_bib40
  article-title: Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site
  publication-title: Nat. Med.
  doi: 10.1038/89058
– volume: 106
  start-page: 16764
  year: 2009
  ident: 10.1016/j.immuni.2012.11.004_bib3
  article-title: 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0909142106
– volume: 100
  start-page: 15865
  year: 2003
  ident: 10.1016/j.immuni.2012.11.004_bib42
  article-title: Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2237238100
– volume: 41
  start-page: 401
  year: 2007
  ident: 10.1016/j.immuni.2012.11.004_bib13
  article-title: Regulation of sterol synthesis in eukaryotes
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.41.110306.130315
– volume: 99
  start-page: 12753
  year: 2002
  ident: 10.1016/j.immuni.2012.11.004_bib41
  article-title: Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.162488899
– volume: 13
  start-page: 540
  year: 2011
  ident: 10.1016/j.immuni.2012.11.004_bib19
  article-title: Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.04.001
– volume: 85
  start-page: 5814
  year: 2011
  ident: 10.1016/j.immuni.2012.11.004_bib34
  article-title: Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication
  publication-title: J. Virol.
  doi: 10.1128/JVI.02630-10
– volume: 3
  start-page: 15
  year: 2006
  ident: 10.1016/j.immuni.2012.11.004_bib15
  article-title: Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.11.014
– volume: 9
  start-page: e1000598
  year: 2011
  ident: 10.1016/j.immuni.2012.11.004_bib4
  article-title: Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000598
– volume: 56
  start-page: 49
  year: 2012
  ident: 10.1016/j.immuni.2012.11.004_bib7
  article-title: Hepatitis C virus selectively perturbs the distal cholesterol synthesis pathway in a genotype-specific manner
  publication-title: Hepatology
  doi: 10.1002/hep.25631
– volume: 279
  start-page: 1392
  year: 2004
  ident: 10.1016/j.immuni.2012.11.004_bib32
  article-title: AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308619200
– reference: 23352217 - Immunity. 2013 Jan 24;38(1):3-5. doi: 10.1016/j.immuni.2013.01.002.
SSID ssj0014590
Score 2.5568364
Snippet Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106
SubjectTerms Animals
Antiviral Agents - pharmacology
Binding Sites
Biosynthesis
Bone Marrow Cells - drug effects
Bone Marrow Cells - immunology
Bone Marrow Cells - metabolism
Bone Marrow Cells - virology
Cholesterol
Deoxyribonucleic acid
DNA
Experiments
Gene Expression Regulation
Genes
Genomes
Hydroxycholesterols - metabolism
Hydroxycholesterols - pharmacology
Infections
Interferons - pharmacology
Lipids
Liver X Receptors
Macrophage Activation - drug effects
Macrophage Activation - immunology
Macrophages - drug effects
Macrophages - immunology
Macrophages - metabolism
Macrophages - virology
Metabolism
Metabolites
Mevalonic Acid - metabolism
Mice
Orphan Nuclear Receptors - metabolism
Promoter Regions, Genetic
Protein Binding
Regulation
STAT1 Transcription Factor - metabolism
Steroid Hydroxylases - genetics
Sterols
Transcription factors
Viral infections
Virus Replication - drug effects
Title The Transcription Factor STAT-1 Couples Macrophage Synthesis of 25-Hydroxycholesterol to the Interferon Antiviral Response
URI https://dx.doi.org/10.1016/j.immuni.2012.11.004
https://www.ncbi.nlm.nih.gov/pubmed/23273843
https://www.proquest.com/docview/1536930884
https://www.proquest.com/docview/1282512666
https://www.proquest.com/docview/1554955897
https://pubmed.ncbi.nlm.nih.gov/PMC3556782
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIRAvCMZXx5iMxGto7dix81gqqoqpPKyd6JvlJLaWqUoq2j6Uv353zocoICbx2PgiOT7f3c_17-4I-WitgqCtsMw-qEEUHG0uK6IkdoCvAQEoiwfF-bdkdiO-ruTqhEy6XBikVba-v_HpwVu3T4btag43ZTlcIJUQDuEx46GICfrhWOiQxLf63N8kCJmOet4hSHfpc4HjVYYcDCR48U9Yy7Nt1_aX8PQn_PydRflLWJo-J89aPEnHzZRfkBNXnZHHTYfJwxl5Mm_vzl-Sn7AjaAhNnaOg09Bshy6W42XE6KTeb9ZuS-cW23rdgqOhi0MFAHFbbmntKZfR7FAg7QVdZqiwUK_prqYgQsM_ix6eVHRcYUcKmCu9bgi47hW5mX5ZTmZR23khymG5dhHzI5bnKvHZqHDIM3VM-swx5ZV1QhfwQyrudOK1yFm4q4SDFxOF5dLaQsSvyWlVV-4toV77lGUyyUZg-SrWVsa584kUwirvXTogcbfgJm_LkmN3jLXp-Gd3plGTQTXBicWAmgYk6t_aNGU5HpBXnS7N0fYyEDkeePOiU71pzXtrIExgC0mtYfhDPwyGibcttnL1HmRCVjDgn-QfMgDmUil1qgbkTbOb-s8BqAvLJWKY-tE-6wWwMPjxSFXehgLhgCEBg_Dz__7od-QpD20_WMTFBTnd_di79wC-dtkleTS-uv5-dRms7B48VzAw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVWi_i4IFi-CgsYiWto7dhxciwVVRe2e6BdqTfLSWxtUJVUtD2UX8-M40QUECtxbDyRHI8981w_zyPkvTEKkrbCMvvgBlFyXHN5GSWxBXwNCEAZ3CjOr5LZtfi8kqsTMunuwiCtMsT-Nqb7aB2eDMNoDjdVNVwglRA24THjvogJxOE7gAYU6jdcrD72RwlCZqOeeAjm3f05T_Kq_CUMZHjxD1jMM-i1_SU__Yk_f6dR_pKXpo_IwwAo6bjt82NyYuszcreVmDyckXvzcHj-hPyAKUF9buoiBZ16tR26WI6XEaOTZr9Z2y2dG9T1uoFIQxeHGhDittrSxlEuo9mhRN4LxkxfYqFZ011DwYT6vxYdPKnpuEZJCugr_doycO1Tcj39tJzMoiC9EBUwXLuIuRErCpW4fFRaJJpaJl1umXLKWJGW8EMqbtPEpaJg_rASdl5MlIZLY0oRPyOndVPbF4S61GUsl0k-gqWv4tTIuLAukUIY5ZzNBiTuBlwXoS45ymOsdUdA-6ZbN2l0E2xZNLhpQKL-rU1bl-MWe9X5Uh_NLw2p45Y3zzvX67C-txryBGpIpik0v-ubYWXicYupbbMHG38tGABQ8g8bQHOZlGmmBuR5O5v6zwGsC8MlYuj60TzrDbAy-HFLXd34CuEAIgGE8Jf__dFvyf3Zcn6pLy-uvrwiD7jXAGERF-fkdPd9b18DEtvlb_xK-wnpojGs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Transcription+Factor+STAT-1+Couples+Macrophage+Synthesis+of+25-Hydroxycholesterol+to+the+Interferon+Antiviral+Response&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Blanc%2C+Mathieu&rft.au=Hsieh%2C+Wei+Yuan&rft.au=Robertson%2C+Kevin+A&rft.au=Kropp%2C+Kai+A&rft.date=2013-01-24&rft.issn=1074-7613&rft.volume=38&rft.issue=1&rft.spage=106&rft.epage=118&rft_id=info:doi/10.1016%2Fj.immuni.2012.11.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon