The Transcription Factor STAT-1 Couples Macrophage Synthesis of 25-Hydroxycholesterol to the Interferon Antiviral Response
Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage product...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 38; no. 1; pp. 106 - 118 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.01.2013
Elsevier Limited Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.
[Display omitted]
► Macrophage PRR sensing of virus or IFN activation induce 25HC synthesis and secretion ► Stat1 rapidly binds and activates the promoter of cholesterol-25-hydroxylase (Ch25h) ► 25HC exerts multilevel antiviral function for a range of different viruses ► 25HC is an intrinsic paracrine and autocrine effector of the IFN antiviral response |
---|---|
AbstractList | Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway. Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3 beta ,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway. Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway. Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway. Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupledCh25hregulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway. Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway. [Display omitted] ► Macrophage PRR sensing of virus or IFN activation induce 25HC synthesis and secretion ► Stat1 rapidly binds and activates the promoter of cholesterol-25-hydroxylase (Ch25h) ► 25HC exerts multilevel antiviral function for a range of different viruses ► 25HC is an intrinsic paracrine and autocrine effector of the IFN antiviral response |
Author | Shui, Guanghou Hsieh, Wei Yuan Blanc, Mathieu Craigon, Marie Robertson, Kevin A. Lacaze, Paul Griffiths, William J. Watterson, Steven Haas, Jürgen Ghazal, Peter Griffiths, Samantha J. Meljon, Anna Ruzsics, Zsolts Spann, Nathanael J. Covey, Douglas F. Kropp, Kai A. Talbot, Simon Krishnan, Kathiresan Wang, Yuqin Wenk, Markus R. Forster, Thorsten Angulo, Ana Glass, Christopher K. |
AuthorAffiliation | 8 Facultad de Medicina, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, Barcelona 08036, Spain 3 Departments of Biochemistry and Biological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 4 Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA 5 Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK 2 SynthSys (Synthetic and Systems Biology), University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JD, UK 1 Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK 6 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63011, USA 7 Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Genzentrum, Feodor Lynen Str. 25, 81377 Munich, Germany |
AuthorAffiliation_xml | – name: 6 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63011, USA – name: 2 SynthSys (Synthetic and Systems Biology), University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JD, UK – name: 3 Departments of Biochemistry and Biological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 – name: 5 Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK – name: 7 Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Genzentrum, Feodor Lynen Str. 25, 81377 Munich, Germany – name: 8 Facultad de Medicina, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, Barcelona 08036, Spain – name: 1 Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – name: 4 Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA |
Author_xml | – sequence: 1 givenname: Mathieu surname: Blanc fullname: Blanc, Mathieu organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 2 givenname: Wei Yuan surname: Hsieh fullname: Hsieh, Wei Yuan organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 3 givenname: Kevin A. surname: Robertson fullname: Robertson, Kevin A. organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 4 givenname: Kai A. surname: Kropp fullname: Kropp, Kai A. organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 5 givenname: Thorsten surname: Forster fullname: Forster, Thorsten organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 6 givenname: Guanghou surname: Shui fullname: Shui, Guanghou organization: Departments of Biochemistry and Biological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 – sequence: 7 givenname: Paul surname: Lacaze fullname: Lacaze, Paul organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 8 givenname: Steven surname: Watterson fullname: Watterson, Steven organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 9 givenname: Samantha J. surname: Griffiths fullname: Griffiths, Samantha J. organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 10 givenname: Nathanael J. surname: Spann fullname: Spann, Nathanael J. organization: Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA – sequence: 11 givenname: Anna surname: Meljon fullname: Meljon, Anna organization: Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK – sequence: 12 givenname: Simon surname: Talbot fullname: Talbot, Simon organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 13 givenname: Kathiresan surname: Krishnan fullname: Krishnan, Kathiresan organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63011, USA – sequence: 14 givenname: Douglas F. surname: Covey fullname: Covey, Douglas F. organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63011, USA – sequence: 15 givenname: Markus R. surname: Wenk fullname: Wenk, Markus R. organization: Departments of Biochemistry and Biological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 – sequence: 16 givenname: Marie surname: Craigon fullname: Craigon, Marie organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 17 givenname: Zsolts surname: Ruzsics fullname: Ruzsics, Zsolts organization: Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Genzentrum, Feodor Lynen Str. 25, 81377 Munich, Germany – sequence: 18 givenname: Jürgen surname: Haas fullname: Haas, Jürgen organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK – sequence: 19 givenname: Ana surname: Angulo fullname: Angulo, Ana organization: Facultad de Medicina, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Rosselló 149-153, Barcelona 08036, Spain – sequence: 20 givenname: William J. surname: Griffiths fullname: Griffiths, William J. organization: Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK – sequence: 21 givenname: Christopher K. surname: Glass fullname: Glass, Christopher K. organization: Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA – sequence: 22 givenname: Yuqin surname: Wang fullname: Wang, Yuqin organization: Institute of Mass Spectrometry, College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK – sequence: 23 givenname: Peter surname: Ghazal fullname: Ghazal, Peter email: p.ghazal@ed.ac.uk organization: Division of Pathway Medicine and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH16 4SB, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23273843$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhUeoiD7gHyBkiQ2bCb4ee-xhgRRFlFYqQqJhbbmeO42jiT3YMxHh1-MooYIu6Mqv7x4d33PPixMfPBbFa6AzoFC_X8_cZjN5N2MU2AxgRil_VpwBbWTJQdGT_V7yUtZQnRbnKa0pBS4a-qI4ZRWTleLVWfFruUKyjMYnG90wuuDJpbFjiOR2OV-WQBZhGnpM5IuxMQwrc4_kdufHFSaXSOgIE-XVro3h586uQgZHjKEnYyAZIdc-H7t848ncj27rounJN0xD8AlfFs870yd8dVwviu-Xn5aLq_Lm6-frxfymtNnsWEJHwVpZd3e0RcUYRxDdHYLspEGu2nwQkqGqO8UtMNVQpiQAbw0TxrS8uig-HnSH6W6DrUU_Zht6iG5j4k4H4_S_L96t9H3Y6kqIWiqWBd4dBWL4MeUv6o1LFvveeAxT0iAEb4RQjXwaZYoJYHVdZ_TtI3QdpuhzJ7JgVTcVVWpv_s3f5h9c_0kwA_wA5HhSitg9IED1flD0Wh8GRe8HRQPoPCi57MOjMutGs88_t8D1TxUfO4o5tq3DqJN16C22LqIddRvc_wV-AwRm3Pg |
CitedBy_id | crossref_primary_10_1016_j_prp_2023_154783 crossref_primary_10_1038_s41598_024_76281_5 crossref_primary_10_1002_rmv_2268 crossref_primary_10_4049_jimmunol_2200273 crossref_primary_10_3892_mmr_2016_5519 crossref_primary_10_1016_j_canlet_2017_08_037 crossref_primary_10_1016_j_freeradbiomed_2019_08_031 crossref_primary_10_1111_febs_15727 crossref_primary_10_1016_j_jsbmb_2021_105854 crossref_primary_10_1016_j_coviro_2016_07_005 crossref_primary_10_1016_j_antiviral_2023_105634 crossref_primary_10_1183_13993003_02417_2022 crossref_primary_10_15252_embr_202357238 crossref_primary_10_3390_ijms221910467 crossref_primary_10_1016_j_jbc_2022_102733 crossref_primary_10_1074_jbc_RA119_007555 crossref_primary_10_3389_fimmu_2023_1268104 crossref_primary_10_1016_j_immuni_2013_01_002 crossref_primary_10_2217_fon_2022_0819 crossref_primary_10_1038_s41467_019_08332_9 crossref_primary_10_1126_scisignal_aam8104 crossref_primary_10_1038_s41392_022_01125_5 crossref_primary_10_1093_jleuko_qiac011 crossref_primary_10_1073_pnas_2012197117 crossref_primary_10_1128_mBio_01808_16 crossref_primary_10_1189_jlb_3RU0215_074R crossref_primary_10_1016_j_jsbmb_2016_04_015 crossref_primary_10_1016_j_ab_2017_01_009 crossref_primary_10_1016_j_neuro_2019_08_007 crossref_primary_10_1074_jbc_M114_558817 crossref_primary_10_1128_mBio_01115_18 crossref_primary_10_3389_fendo_2020_559674 crossref_primary_10_1016_j_biotechadv_2021_107703 crossref_primary_10_1016_j_bmcl_2016_09_029 crossref_primary_10_1084_jem_20131335 crossref_primary_10_1128_JVI_01444_16 crossref_primary_10_1146_annurev_immunol_032713_120231 crossref_primary_10_1016_j_antiviral_2022_105368 crossref_primary_10_1016_j_cmet_2017_06_019 crossref_primary_10_1039_D0FO02462G crossref_primary_10_1371_journal_pone_0239925 crossref_primary_10_1016_j_tcb_2020_09_006 crossref_primary_10_3390_pathogens12030437 crossref_primary_10_3389_fimmu_2022_791267 crossref_primary_10_1038_s41590_020_0712_7 crossref_primary_10_4049_jimmunol_1201393 crossref_primary_10_1093_jmcb_mjab066 crossref_primary_10_1194_jlr_RA120000924 crossref_primary_10_1007_s00430_015_0402_5 crossref_primary_10_1097_QAD_0000000000002591 crossref_primary_10_1016_j_jsbmb_2022_106092 crossref_primary_10_1016_j_freeradbiomed_2021_10_008 crossref_primary_10_1128_mBio_00576_17 crossref_primary_10_3233_JAD_160152 crossref_primary_10_1016_j_antiviral_2022_105497 crossref_primary_10_1371_journal_ppat_1003911 crossref_primary_10_1038_s41598_020_71198_1 crossref_primary_10_3389_fendo_2018_00509 crossref_primary_10_3389_fmicb_2019_00355 crossref_primary_10_1016_j_it_2016_09_001 crossref_primary_10_1371_journal_pone_0095276 crossref_primary_10_1016_j_jsbmb_2015_11_017 crossref_primary_10_1038_s41467_022_33041_1 crossref_primary_10_3389_fnagi_2018_00048 crossref_primary_10_1016_j_immuni_2023_10_001 crossref_primary_10_1016_j_cell_2017_09_029 crossref_primary_10_2217_clp_14_50 crossref_primary_10_1016_j_cmet_2020_05_003 crossref_primary_10_1016_j_antiviral_2019_05_002 crossref_primary_10_1038_s41467_022_34532_x crossref_primary_10_3390_pathogens11050538 crossref_primary_10_1093_nar_gkt589 crossref_primary_10_1194_jlr_M080440 crossref_primary_10_1073_pnas_1404271111 crossref_primary_10_1111_bph_15311 crossref_primary_10_1128_MCB_00364_19 crossref_primary_10_4049_jimmunol_1500204 crossref_primary_10_1016_j_jsbmb_2019_105424 crossref_primary_10_1073_pnas_2406492121 crossref_primary_10_1074_jbc_M113_519637 crossref_primary_10_3389_fcimb_2019_00116 crossref_primary_10_1042_BST20180135 crossref_primary_10_1002_advs_202307201 crossref_primary_10_1146_annurev_pharmtox_010715_103233 crossref_primary_10_1111_cpr_12854 crossref_primary_10_1038_srep25520 crossref_primary_10_3724_abbs_2022030 crossref_primary_10_31083_j_jin2102073 crossref_primary_10_1016_j_bbrc_2017_02_003 crossref_primary_10_32604_or_2024_047933 crossref_primary_10_1038_s41564_020_0701_5 crossref_primary_10_1128_JVI_00767_19 crossref_primary_10_1111_joim_12855 crossref_primary_10_1002_jmv_28658 crossref_primary_10_3389_fcimb_2022_945865 crossref_primary_10_1093_infdis_jix540 crossref_primary_10_1016_j_jnutbio_2019_02_003 crossref_primary_10_1126_sciimmunol_abb6444 crossref_primary_10_1016_j_bbamem_2020_183413 crossref_primary_10_1002_ejlt_201700047 crossref_primary_10_1038_ni_2681 crossref_primary_10_1128_JVI_00587_15 crossref_primary_10_1172_JCI96313 crossref_primary_10_33380_2305_2066_2024_13_4_1867 crossref_primary_10_1002_eji_201444493 crossref_primary_10_3851_IMP3232 crossref_primary_10_1016_j_cell_2018_11_045 crossref_primary_10_2217_fvl_2017_0160 crossref_primary_10_1038_s42003_021_02310_y crossref_primary_10_1074_jbc_X118_005918 crossref_primary_10_1021_acsnano_4c06369 crossref_primary_10_3389_fimmu_2022_923024 crossref_primary_10_3389_fimmu_2014_00526 crossref_primary_10_1074_jbc_M113_540351 crossref_primary_10_3389_fimmu_2017_01184 crossref_primary_10_1016_j_jaut_2014_10_001 crossref_primary_10_1042_BST20150255 crossref_primary_10_1038_ncomms13129 crossref_primary_10_1155_2020_8893305 crossref_primary_10_1371_journal_ppat_1004897 crossref_primary_10_1371_journal_pone_0257576 crossref_primary_10_1016_j_molcel_2024_08_014 crossref_primary_10_1371_journal_pbio_1002364 crossref_primary_10_1016_j_steroids_2015_02_022 crossref_primary_10_1016_j_celrep_2021_109195 crossref_primary_10_3389_fendo_2020_591819 crossref_primary_10_1089_vim_2017_0046 crossref_primary_10_1016_j_chemphyslip_2020_104872 crossref_primary_10_1038_s41423_019_0326_x crossref_primary_10_1038_s41577_024_01079_5 crossref_primary_10_3389_fphys_2021_750544 crossref_primary_10_1194_jlr_M084558 crossref_primary_10_3390_ani14213062 crossref_primary_10_3389_fimmu_2017_00062 crossref_primary_10_1128_AEM_01530_19 crossref_primary_10_1038_s41598_019_56038_1 crossref_primary_10_1016_j_chom_2013_04_002 crossref_primary_10_1007_s00705_019_04415_6 crossref_primary_10_1038_nchembio_1940 crossref_primary_10_1038_srep07487 crossref_primary_10_1097_QCO_0b013e32835fb8bf crossref_primary_10_1042_CS20201394 crossref_primary_10_1038_srep07242 crossref_primary_10_1002_1873_3468_12702 crossref_primary_10_1016_j_vetmic_2019_108456 crossref_primary_10_1016_j_cell_2015_11_045 crossref_primary_10_12688_f1000research_15500_1 crossref_primary_10_1016_j_chom_2013_09_010 crossref_primary_10_1186_s12950_017_0159_2 crossref_primary_10_3389_fgene_2014_00311 crossref_primary_10_7554_eLife_83534 crossref_primary_10_1016_j_plipres_2016_09_002 crossref_primary_10_1038_s41385_019_0140_x crossref_primary_10_1099_jgv_0_000797 crossref_primary_10_1016_j_jsbmb_2024_106634 crossref_primary_10_1038_nri_2015_8 crossref_primary_10_1002_open_201800281 crossref_primary_10_1016_j_vetmic_2020_108658 crossref_primary_10_3389_fimmu_2023_1247432 crossref_primary_10_1097_IN9_0000000000000042 crossref_primary_10_3389_fimmu_2023_1228811 crossref_primary_10_1038_s41422_018_0122_7 crossref_primary_10_1080_27694127_2024_2379193 crossref_primary_10_1128_JVI_00827_17 crossref_primary_10_3389_fimmu_2016_00634 crossref_primary_10_1002_jmv_27929 crossref_primary_10_1016_j_bbamcr_2018_09_012 crossref_primary_10_1038_s41467_019_09453_x crossref_primary_10_3389_fimmu_2016_00630 crossref_primary_10_1007_s00253_018_9239_3 crossref_primary_10_1155_2013_164203 crossref_primary_10_1101_cshperspect_a041263 crossref_primary_10_1172_JCI144225 crossref_primary_10_3390_v12121381 crossref_primary_10_1016_j_ijbiomac_2024_139168 crossref_primary_10_1016_j_bjid_2014_10_007 crossref_primary_10_1038_s41598_025_90149_2 crossref_primary_10_1152_ajpgi_00313_2015 crossref_primary_10_1186_s12864_016_2418_7 crossref_primary_10_1371_journal_pone_0175581 crossref_primary_10_1161_CIRCULATIONAHA_117_027462 crossref_primary_10_1128_mBio_02907_21 crossref_primary_10_1186_s12917_022_03531_x crossref_primary_10_3389_fimmu_2023_1241262 crossref_primary_10_1111_imr_13318 crossref_primary_10_1016_j_ejphar_2022_175033 crossref_primary_10_1146_annurev_virology_100114_055249 crossref_primary_10_1016_j_celrep_2022_111738 crossref_primary_10_1152_ajpendo_00218_2016 crossref_primary_10_3389_fimmu_2022_1007718 crossref_primary_10_3390_ijms232012400 crossref_primary_10_3390_v11020119 crossref_primary_10_1128_spectrum_03609_23 crossref_primary_10_1042_NS20190068 crossref_primary_10_1189_jlb_4VMR0316_103R crossref_primary_10_1016_j_jconrel_2023_08_034 crossref_primary_10_1099_jgv_0_001861 crossref_primary_10_23868_gc562791 crossref_primary_10_1139_cjm_2015_0292 crossref_primary_10_1186_s12864_019_6221_0 crossref_primary_10_1016_j_prostaglandins_2019_106381 crossref_primary_10_1016_j_immuni_2024_03_021 crossref_primary_10_1016_j_immuni_2019_11_015 crossref_primary_10_1038_nri3755 crossref_primary_10_1146_annurev_virology_092818_015756 crossref_primary_10_1165_rcmb_2016_0011PS crossref_primary_10_1111_tra_12280 crossref_primary_10_3389_fimmu_2021_581786 crossref_primary_10_1161_CIRCULATIONAHA_122_059062 crossref_primary_10_3390_v12070727 crossref_primary_10_1128_mbio_02100_24 crossref_primary_10_1016_j_antiviral_2022_105418 crossref_primary_10_1016_j_jsbmb_2018_10_018 crossref_primary_10_1038_s41574_024_00990_0 crossref_primary_10_1016_j_ijcard_2016_01_210 crossref_primary_10_1016_j_it_2024_09_013 crossref_primary_10_1016_j_neuropharm_2018_01_029 crossref_primary_10_3390_v15122406 crossref_primary_10_1002_eji_202048825 crossref_primary_10_1016_j_antiviral_2017_04_004 crossref_primary_10_1111_raq_12521 crossref_primary_10_1126_science_1254790 crossref_primary_10_1371_journal_ppat_1006347 crossref_primary_10_1042_BJ20150318 crossref_primary_10_3389_fragi_2024_1480886 crossref_primary_10_1002_sscp_201700021 crossref_primary_10_1038_s41590_020_0695_4 crossref_primary_10_1002_eji_202048944 crossref_primary_10_1016_j_clim_2024_110290 crossref_primary_10_3390_cells12040570 crossref_primary_10_1016_j_ccell_2018_12_001 crossref_primary_10_3389_fendo_2019_00204 crossref_primary_10_1186_1471_2318_14_36 crossref_primary_10_1093_ecco_jcc_jjz039 crossref_primary_10_4049_jimmunol_1800848 crossref_primary_10_1002_hep_27913 crossref_primary_10_1016_j_bbagen_2015_10_024 crossref_primary_10_1099_jgv_0_001178 crossref_primary_10_1128_JVI_00110_16 crossref_primary_10_4049_jimmunol_2101029 crossref_primary_10_1177_1087057113496848 crossref_primary_10_1016_j_molimm_2024_03_011 crossref_primary_10_1016_j_virs_2022_09_009 crossref_primary_10_1194_jlr_M093229 crossref_primary_10_3389_fphys_2021_723224 crossref_primary_10_1016_j_mam_2016_04_003 crossref_primary_10_1002_eji_202350501 crossref_primary_10_1111_bph_15073 crossref_primary_10_1016_j_antiviral_2017_08_003 crossref_primary_10_3390_cells11081251 crossref_primary_10_1111_bph_15191 crossref_primary_10_1155_2018_5906819 crossref_primary_10_3389_fimmu_2022_780839 crossref_primary_10_1016_j_celrep_2017_05_093 crossref_primary_10_1016_j_immuni_2021_09_004 crossref_primary_10_1007_s12035_018_1388_y crossref_primary_10_1038_nri3665 crossref_primary_10_1007_s12035_016_0281_9 crossref_primary_10_1128_JVI_01047_18 crossref_primary_10_1016_j_immuni_2019_12_017 crossref_primary_10_1016_j_prp_2023_154737 crossref_primary_10_2217_fvl_13_88 crossref_primary_10_1373_clinchem_2014_231332 crossref_primary_10_1038_s42255_024_01149_x crossref_primary_10_1016_j_jlr_2021_100165 crossref_primary_10_1038_s41467_018_08015_x crossref_primary_10_1111_jcmm_13820 crossref_primary_10_1080_14789450_2020_1847086 crossref_primary_10_3390_ijms23084095 crossref_primary_10_1016_j_bcp_2013_01_027 crossref_primary_10_3389_fimmu_2018_00320 crossref_primary_10_1165_rcmb_2023_0007OC crossref_primary_10_1016_j_jsbmb_2021_105939 crossref_primary_10_1016_j_vetmic_2019_03_004 crossref_primary_10_12688_f1000research_12450_1 crossref_primary_10_3389_fmicb_2019_00344 crossref_primary_10_3390_jmp5010009 crossref_primary_10_1016_j_vetmic_2017_09_011 crossref_primary_10_1128_JVI_00638_14 crossref_primary_10_1016_j_jsbmb_2019_105482 crossref_primary_10_3390_ijms241411860 crossref_primary_10_1523_JNEUROSCI_1502_21_2021 crossref_primary_10_3390_v13030522 crossref_primary_10_3390_v11020097 crossref_primary_10_1016_j_coviro_2014_03_006 crossref_primary_10_1002_jmv_28834 crossref_primary_10_1016_j_antiviral_2025_106113 crossref_primary_10_3389_fncel_2016_00269 crossref_primary_10_1371_journal_pone_0147179 crossref_primary_10_1016_j_smim_2016_10_007 crossref_primary_10_1016_j_cmet_2015_03_002 crossref_primary_10_1038_s41423_021_00827_0 crossref_primary_10_1016_j_isci_2021_103212 crossref_primary_10_3390_ijms23063021 crossref_primary_10_1016_j_bbrc_2014_01_069 crossref_primary_10_3390_ijms22084076 crossref_primary_10_1016_j_bbrc_2018_02_019 crossref_primary_10_1194_jlr_M050864 crossref_primary_10_1128_aac_01172_24 crossref_primary_10_4161_jkst_24189 crossref_primary_10_1016_j_immuni_2017_02_012 crossref_primary_10_1016_j_chom_2014_10_003 crossref_primary_10_1038_s41380_023_02348_w crossref_primary_10_1080_08830185_2024_2314577 crossref_primary_10_1016_j_micpath_2019_103919 crossref_primary_10_1016_j_virol_2023_109875 crossref_primary_10_3389_fimmu_2019_00322 crossref_primary_10_3389_fcimb_2019_00042 crossref_primary_10_1016_j_jmb_2021_167438 crossref_primary_10_1111_brv_12959 crossref_primary_10_1016_j_cell_2015_12_004 crossref_primary_10_1111_imr_13200 crossref_primary_10_1186_s12989_016_0181_1 crossref_primary_10_1128_AEM_00660_15 crossref_primary_10_3390_cells11020201 |
Cites_doi | 10.1189/jlb.0610318 10.1016/S1097-2765(03)00384-8 10.1128/JVI.06467-11 10.1084/jem.20040061 10.1021/ja211305j 10.1016/j.cmet.2005.01.001 10.1016/j.cub.2010.01.044 10.1038/nbt.1500 10.1016/B978-0-12-024914-5.50008-5 10.1128/AAC.45.4.1231-1237.2001 10.1128/JVI.00373-11 10.1371/journal.pone.0038202 10.1073/pnas.0700907104 10.1073/pnas.0700899104 10.1016/j.immuni.2012.06.015 10.1038/nature10280 10.1038/nature10742 10.1161/01.CIR.0000109485.79183.81 10.1016/j.micinf.2008.01.009 10.1172/JCI17704 10.1002/jlb.58.5.607 10.1074/jbc.M410302200 10.1128/JVI.77.22.12285-12298.2003 10.1172/JCI0215593 10.1016/j.molcel.2005.04.004 10.1038/82219 10.1073/pnas.1114981109 10.1074/jbc.M108348200 10.1038/nature10226 10.1194/jlr.M900107-JLR200 10.1128/JVI.00337-11 10.1126/science.1598578 10.1038/89058 10.1073/pnas.0909142106 10.1073/pnas.2237238100 10.1146/annurev.genet.41.110306.130315 10.1073/pnas.162488899 10.1016/j.cmet.2011.04.001 10.1128/JVI.02630-10 10.1016/j.cmet.2005.11.014 10.1371/journal.pbio.1000598 10.1002/hep.25631 10.1074/jbc.M308619200 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 24, 2013 2013 ELL & Excerpta Medica. 2013 Elsevier Inc. |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 24, 2013 – notice: 2013 ELL & Excerpta Medica. 2013 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2012.11.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 118 |
ExternalDocumentID | PMC3556782 3337133421 23273843 10_1016_j_immuni_2012_11_004 S1074761312005092 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL067773 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H0010181 – fundername: Wellcome Trust – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/C515771/2 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H001018/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/C5157712 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/I0017351 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/D019621/1 – fundername: NHLBI NIH HHS grantid: HL67773 – fundername: British Heart Foundation grantid: FS/05/022 |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 3V. 4.4 457 4G. 53G 5GY 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAQFI AAUCE AAVLU AAXJY AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGHFR AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 OVD P2P PQQKQ PROAC RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I AALRI AAMRU AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- UHS X7M Y6R ZGI CGR CUY CVF ECM EFKBS EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c590t-1f01cc76fb0de8224e15fbe17f7ae48d5fb572e86f84c12890287114da25aad43 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 13:56:49 EDT 2025 Thu Jul 10 22:08:29 EDT 2025 Fri Jul 11 16:25:19 EDT 2025 Fri Jul 25 11:07:29 EDT 2025 Mon Jul 21 05:29:43 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Fri Jul 04 04:46:10 EDT 2025 Fri Feb 23 02:28:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/3.0 Copyright © 2013 Elsevier Inc. All rights reserved. Open Access under CC BY 3.0 license |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-1f01cc76fb0de8224e15fbe17f7ae48d5fb572e86f84c12890287114da25aad43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1074761312005092 |
PMID | 23273843 |
PQID | 1536930884 |
PQPubID | 2031079 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3556782 proquest_miscellaneous_1554955897 proquest_miscellaneous_1282512666 proquest_journals_1536930884 pubmed_primary_23273843 crossref_primary_10_1016_j_immuni_2012_11_004 crossref_citationtrail_10_1016_j_immuni_2012_11_004 elsevier_sciencedirect_doi_10_1016_j_immuni_2012_11_004 |
PublicationCentury | 2000 |
PublicationDate | 2013-01-24 |
PublicationDateYYYYMMDD | 2013-01-24 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Limited Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Cell Press |
References | Deraeve, Guo, Bon, Blankenfeldt, DiLucrezia, Wolf, Menninger, Stigter, Wetzel, Choidas (bib11) 2012; 134 Vestal, Maki, Buss (bib37) 1995; 58 Gong, Lee, Lee, Goldstein, Brown, Ye (bib15) 2006; 3 Sun, Seemann, Goldstein, Brown (bib35) 2007; 104 Yu, Maguire, Alwine (bib44) 2012; 86 Rusiñol, Thewke, Liu, Freeman, Panini, Sinensky (bib32) 2004; 279 Bordier, Ohkanda, Liu, Lee, Salazar, Marion, Ohashi, Meuse, Kay, Casey (bib5) 2003; 112 Yi, Wang, Kelly, An, Xu, Sailer, Gustafsson, Russell, Cyster (bib43) 2012; 37 Wang, Gale, Keller, Huang, Brown, Goldstein, Ye (bib38) 2005; 18 Castrillo, Joseph, Vaidya, Haberland, Fogelman, Cheng, Tontonoz (bib6) 2003; 12 Yabe, Brown, Goldstein (bib41) 2002; 99 Watterson, Guerriero, Blanc, Mazein, Loewe, Robertson, Gibbs, Shui, Wenk, Hillston, Ghazal (bib39) 2012 Liu, Sanchez, Aliyari, Lu, Cheng (bib24) 2012; 109 Spencer, Schafer, Moorman, Munger (bib34) 2011; 85 Glenn, Watson, Havel, White (bib14) 1992; 256 Adams, Reitz, De Brabander, Feramisco, Li, Brown, Goldstein (bib1) 2004; 279 Park, Scott (bib27) 2010; 88 Espenshade, Hughes (bib13) 2007; 41 Liu, Yang, Wu, Kuei, Mani, Zhang, Yu, Sutton, Qin, Banie (bib23) 2011; 475 Potena, Frascaroli, Grigioni, Lazzarotto, Magnani, Tomasi, Coccolo, Gabrielli, Magelli, Landini, Branzi (bib29) 2004; 109 Taylor, Linde, Khatua, Popik, Hildreth (bib36) 2011; 85 Clark, Thompson, Vock, Kratz, Tolun, Muir, McHutchison, Subramanian, Millington, Kelley, Patel (bib7) 2012; 56 del Real, Jiménez-Baranda, Mira, Lacalle, Lucas, Gómez-Moutón, Alegret, Peña, Rodríguez-Zapata, Alvarez-Mon (bib10) 2004; 200 Song, Javitt, DeBose-Boyd (bib33) 2005; 1 Contreras, Ernst, Haberkant, Björkholm, Lindahl, Gönen, Tischer, Elofsson, von Heijne, Thiele (bib9) 2012; 481 Munger, Bennett, Parikh, Feng, McArdle, Rabitz, Shenk, Rabinowitz (bib25) 2008; 26 Clase, Lyman, del Rio, Randall, Calton, Enquist, Banfield (bib8) 2003; 77 Diczfalusy, Olofsson, Carlsson, Gong, Golenbock, Rooyackers, Fläring, Björkbacka (bib12) 2009; 50 Peña, Harris (bib28) 2012; 7 Hannedouche, Zhang, Yi, Shen, Nguyen, Pereira, Guerini, Baumgarten, Roggo, Wen (bib17) 2011; 475 Rodwell, Nordstrom, Mitschelen (bib31) 1976; 14 Weitz-Schmidt, Welzenbach, Brinkmann, Kamata, Kallen, Bruns, Cottens, Takada, Hommel (bib40) 2001; 7 Horton, Goldstein, Brown (bib18) 2002; 109 Blanc, Hsieh, Robertson, Watterson, Shui, Lacaze, Khondoker, Dickinson, Sing, Rodríguez-Martín (bib4) 2011; 9 Janowski, Shan, Russell (bib20) 2001; 276 Kwak, Mulhaupt, Myit, Mach (bib22) 2000; 6 Radhakrishnan, Ikeda, Kwon, Brown, Goldstein (bib30) 2007; 104 Amet, Nonaka, Dewan, Saitoh, Qi, Ichinose, Yamamoto, Yamaoka (bib2) 2008; 10 Kropp, Robertson, Sing, Rodriguez-Martin, Blanc, Lacaze, Hassim, Khondoker, Busche, Dickinson (bib21) 2011; 85 Gower, Graham (bib16) 2001; 45 Im, Yousef, Blaschitz, Liu, Edwards, Young, Raffatellu, Osborne (bib19) 2011; 13 O’Neill, Bowie (bib26) 2010; 20 Ye, Wang, Sumpter, Brown, Goldstein, Gale (bib42) 2003; 100 Bauman, Bitmansour, McDonald, Thompson, Liang, Russell (bib3) 2009; 106 Contreras (10.1016/j.immuni.2012.11.004_bib9) 2012; 481 Munger (10.1016/j.immuni.2012.11.004_bib25) 2008; 26 O’Neill (10.1016/j.immuni.2012.11.004_bib26) 2010; 20 Spencer (10.1016/j.immuni.2012.11.004_bib34) 2011; 85 Yabe (10.1016/j.immuni.2012.11.004_bib41) 2002; 99 Peña (10.1016/j.immuni.2012.11.004_bib28) 2012; 7 Clase (10.1016/j.immuni.2012.11.004_bib8) 2003; 77 Castrillo (10.1016/j.immuni.2012.11.004_bib6) 2003; 12 Im (10.1016/j.immuni.2012.11.004_bib19) 2011; 13 Sun (10.1016/j.immuni.2012.11.004_bib35) 2007; 104 Glenn (10.1016/j.immuni.2012.11.004_bib14) 1992; 256 Amet (10.1016/j.immuni.2012.11.004_bib2) 2008; 10 Park (10.1016/j.immuni.2012.11.004_bib27) 2010; 88 Weitz-Schmidt (10.1016/j.immuni.2012.11.004_bib40) 2001; 7 Watterson (10.1016/j.immuni.2012.11.004_bib39) 2012 Rodwell (10.1016/j.immuni.2012.11.004_bib31) 1976; 14 Horton (10.1016/j.immuni.2012.11.004_bib18) 2002; 109 Clark (10.1016/j.immuni.2012.11.004_bib7) 2012; 56 Bordier (10.1016/j.immuni.2012.11.004_bib5) 2003; 112 Hannedouche (10.1016/j.immuni.2012.11.004_bib17) 2011; 475 Rusiñol (10.1016/j.immuni.2012.11.004_bib32) 2004; 279 Song (10.1016/j.immuni.2012.11.004_bib33) 2005; 1 Kwak (10.1016/j.immuni.2012.11.004_bib22) 2000; 6 Bauman (10.1016/j.immuni.2012.11.004_bib3) 2009; 106 Deraeve (10.1016/j.immuni.2012.11.004_bib11) 2012; 134 Diczfalusy (10.1016/j.immuni.2012.11.004_bib12) 2009; 50 Liu (10.1016/j.immuni.2012.11.004_bib24) 2012; 109 Vestal (10.1016/j.immuni.2012.11.004_bib37) 1995; 58 Janowski (10.1016/j.immuni.2012.11.004_bib20) 2001; 276 Taylor (10.1016/j.immuni.2012.11.004_bib36) 2011; 85 Wang (10.1016/j.immuni.2012.11.004_bib38) 2005; 18 Adams (10.1016/j.immuni.2012.11.004_bib1) 2004; 279 Espenshade (10.1016/j.immuni.2012.11.004_bib13) 2007; 41 Potena (10.1016/j.immuni.2012.11.004_bib29) 2004; 109 Radhakrishnan (10.1016/j.immuni.2012.11.004_bib30) 2007; 104 Gong (10.1016/j.immuni.2012.11.004_bib15) 2006; 3 Kropp (10.1016/j.immuni.2012.11.004_bib21) 2011; 85 Ye (10.1016/j.immuni.2012.11.004_bib42) 2003; 100 Gower (10.1016/j.immuni.2012.11.004_bib16) 2001; 45 del Real (10.1016/j.immuni.2012.11.004_bib10) 2004; 200 Liu (10.1016/j.immuni.2012.11.004_bib23) 2011; 475 Blanc (10.1016/j.immuni.2012.11.004_bib4) 2011; 9 Yi (10.1016/j.immuni.2012.11.004_bib43) 2012; 37 Yu (10.1016/j.immuni.2012.11.004_bib44) 2012; 86 23352217 - Immunity. 2013 Jan 24;38(1):3-5. doi: 10.1016/j.immuni.2013.01.002. |
References_xml | – volume: 9 start-page: e1000598 year: 2011 ident: bib4 article-title: Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis publication-title: PLoS Biol. – volume: 475 start-page: 519 year: 2011 end-page: 523 ident: bib23 article-title: Oxysterols direct B-cell migration through EBI2 publication-title: Nature – volume: 100 start-page: 15865 year: 2003 end-page: 15870 ident: bib42 article-title: Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation publication-title: Proc. Natl. Acad. Sci. USA – volume: 279 start-page: 52772 year: 2004 end-page: 52780 ident: bib1 article-title: Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs publication-title: J. Biol. Chem. – volume: 41 start-page: 401 year: 2007 end-page: 427 ident: bib13 article-title: Regulation of sterol synthesis in eukaryotes publication-title: Annu. Rev. Genet. – volume: 85 start-page: 5814 year: 2011 end-page: 5824 ident: bib34 article-title: Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication publication-title: J. Virol. – year: 2012 ident: bib39 article-title: A model of flux regulation in the cholesterol biosynthesis pathway: Immune mediated graduated flux reduction versus statin-like led stepped flux reduction publication-title: Biochimie – volume: 7 start-page: e38202 year: 2012 ident: bib28 article-title: Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway publication-title: PLoS ONE – volume: 10 start-page: 471 year: 2008 end-page: 480 ident: bib2 article-title: Statin-induced inhibition of HIV-1 release from latently infected U1 cells reveals a critical role for protein prenylation in HIV-1 replication publication-title: Microbes Infect. – volume: 77 start-page: 12285 year: 2003 end-page: 12298 ident: bib8 article-title: The pseudorabies virus Us2 protein, a virion tegument component, is prenylated in infected cells publication-title: J. Virol. – volume: 14 start-page: 1 year: 1976 end-page: 74 ident: bib31 article-title: Regulation of HMG-CoA reductase publication-title: Adv. Lipid Res. – volume: 13 start-page: 540 year: 2011 end-page: 549 ident: bib19 article-title: Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a publication-title: Cell Metab. – volume: 50 start-page: 2258 year: 2009 end-page: 2264 ident: bib12 article-title: Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide publication-title: J. Lipid Res. – volume: 26 start-page: 1179 year: 2008 end-page: 1186 ident: bib25 article-title: Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy publication-title: Nat. Biotechnol. – volume: 56 start-page: 49 year: 2012 end-page: 56 ident: bib7 article-title: Hepatitis C virus selectively perturbs the distal cholesterol synthesis pathway in a genotype-specific manner publication-title: Hepatology – volume: 109 start-page: 1125 year: 2002 end-page: 1131 ident: bib18 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J. Clin. Invest. – volume: 481 start-page: 525 year: 2012 end-page: 529 ident: bib9 article-title: Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain publication-title: Nature – volume: 3 start-page: 15 year: 2006 end-page: 24 ident: bib15 article-title: Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake publication-title: Cell Metab. – volume: 1 start-page: 179 year: 2005 end-page: 189 ident: bib33 article-title: Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol publication-title: Cell Metab. – volume: 256 start-page: 1331 year: 1992 end-page: 1333 ident: bib14 article-title: Identification of a prenylation site in delta virus large antigen publication-title: Science – volume: 104 start-page: 6519 year: 2007 end-page: 6526 ident: bib35 article-title: Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins publication-title: Proc. Natl. Acad. Sci. USA – volume: 109 start-page: 4239 year: 2012 end-page: 4244 ident: bib24 article-title: Systematic identification of type I and type II interferon-induced antiviral factors publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: R328 year: 2010 end-page: R333 ident: bib26 article-title: Sensing and signaling in antiviral innate immunity publication-title: Curr. Biol. – volume: 7 start-page: 687 year: 2001 end-page: 692 ident: bib40 article-title: Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site publication-title: Nat. Med. – volume: 37 start-page: 535 year: 2012 end-page: 548 ident: bib43 article-title: Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses publication-title: Immunity – volume: 134 start-page: 7384 year: 2012 end-page: 7391 ident: bib11 article-title: Psoromic acid is a selective and covalent Rab-prenylation inhibitor targeting autoinhibited RabGGTase publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 1231 year: 2001 end-page: 1237 ident: bib16 article-title: Antiviral activity of lovastatin against respiratory syncytial virus in vivo and in vitro publication-title: Antimicrob. Agents Chemother. – volume: 85 start-page: 10286 year: 2011 end-page: 10299 ident: bib21 article-title: Reversible inhibition of murine cytomegalovirus replication by gamma interferon (IFN-γ) in primary macrophages involves a primed type I IFN-signaling subnetwork for full establishment of an immediate-early antiviral state publication-title: J. Virol. – volume: 12 start-page: 805 year: 2003 end-page: 816 ident: bib6 article-title: Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism publication-title: Mol. Cell – volume: 112 start-page: 407 year: 2003 end-page: 414 ident: bib5 article-title: In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus publication-title: J. Clin. Invest. – volume: 58 start-page: 607 year: 1995 end-page: 615 ident: bib37 article-title: Induction of a prenylated 65-kd protein in macrophages by interferon or lipopolysaccharide publication-title: J. Leukoc. Biol. – volume: 88 start-page: 1081 year: 2010 end-page: 1087 ident: bib27 article-title: Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons publication-title: J. Leukoc. Biol. – volume: 85 start-page: 7699 year: 2011 end-page: 7709 ident: bib36 article-title: Sterol regulatory element-binding protein 2 couples HIV-1 transcription to cholesterol homeostasis and T cell activation publication-title: J. Virol. – volume: 86 start-page: 2942 year: 2012 end-page: 2949 ident: bib44 article-title: Human cytomegalovirus infection induces adipocyte-like lipogenesis through activation of sterol regulatory element binding protein 1 publication-title: J. Virol. – volume: 475 start-page: 524 year: 2011 end-page: 527 ident: bib17 article-title: Oxysterols direct immune cell migration via EBI2 publication-title: Nature – volume: 6 start-page: 1399 year: 2000 end-page: 1402 ident: bib22 article-title: Statins as a newly recognized type of immunomodulator publication-title: Nat. Med. – volume: 109 start-page: 532 year: 2004 end-page: 536 ident: bib29 article-title: Hydroxymethyl-glutaryl coenzyme a reductase inhibition limits cytomegalovirus infection in human endothelial cells publication-title: Circulation – volume: 99 start-page: 12753 year: 2002 end-page: 12758 ident: bib41 article-title: Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 425 year: 2005 end-page: 434 ident: bib38 article-title: Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication publication-title: Mol. Cell – volume: 276 start-page: 45408 year: 2001 end-page: 45416 ident: bib20 article-title: The hypocholesterolemic agent LY295427 reverses suppression of sterol regulatory element-binding protein processing mediated by oxysterols publication-title: J. Biol. Chem. – volume: 106 start-page: 16764 year: 2009 end-page: 16769 ident: bib3 article-title: 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production publication-title: Proc. Natl. Acad. Sci. USA – volume: 279 start-page: 1392 year: 2004 end-page: 1399 ident: bib32 article-title: AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis publication-title: J. Biol. Chem. – volume: 200 start-page: 541 year: 2004 end-page: 547 ident: bib10 article-title: Statins inhibit HIV-1 infection by down-regulating Rho activity publication-title: J. Exp. Med. – volume: 104 start-page: 6511 year: 2007 end-page: 6518 ident: bib30 article-title: Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig publication-title: Proc. Natl. Acad. Sci. USA – volume: 88 start-page: 1081 year: 2010 ident: 10.1016/j.immuni.2012.11.004_bib27 article-title: Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0610318 – volume: 12 start-page: 805 year: 2003 ident: 10.1016/j.immuni.2012.11.004_bib6 article-title: Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00384-8 – volume: 86 start-page: 2942 year: 2012 ident: 10.1016/j.immuni.2012.11.004_bib44 article-title: Human cytomegalovirus infection induces adipocyte-like lipogenesis through activation of sterol regulatory element binding protein 1 publication-title: J. Virol. doi: 10.1128/JVI.06467-11 – volume: 200 start-page: 541 year: 2004 ident: 10.1016/j.immuni.2012.11.004_bib10 article-title: Statins inhibit HIV-1 infection by down-regulating Rho activity publication-title: J. Exp. Med. doi: 10.1084/jem.20040061 – volume: 134 start-page: 7384 year: 2012 ident: 10.1016/j.immuni.2012.11.004_bib11 article-title: Psoromic acid is a selective and covalent Rab-prenylation inhibitor targeting autoinhibited RabGGTase publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211305j – volume: 1 start-page: 179 year: 2005 ident: 10.1016/j.immuni.2012.11.004_bib33 article-title: Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.01.001 – volume: 20 start-page: R328 year: 2010 ident: 10.1016/j.immuni.2012.11.004_bib26 article-title: Sensing and signaling in antiviral innate immunity publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.01.044 – volume: 26 start-page: 1179 year: 2008 ident: 10.1016/j.immuni.2012.11.004_bib25 article-title: Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1500 – volume: 14 start-page: 1 year: 1976 ident: 10.1016/j.immuni.2012.11.004_bib31 article-title: Regulation of HMG-CoA reductase publication-title: Adv. Lipid Res. doi: 10.1016/B978-0-12-024914-5.50008-5 – volume: 45 start-page: 1231 year: 2001 ident: 10.1016/j.immuni.2012.11.004_bib16 article-title: Antiviral activity of lovastatin against respiratory syncytial virus in vivo and in vitro publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.45.4.1231-1237.2001 – volume: 85 start-page: 10286 year: 2011 ident: 10.1016/j.immuni.2012.11.004_bib21 article-title: Reversible inhibition of murine cytomegalovirus replication by gamma interferon (IFN-γ) in primary macrophages involves a primed type I IFN-signaling subnetwork for full establishment of an immediate-early antiviral state publication-title: J. Virol. doi: 10.1128/JVI.00373-11 – volume: 7 start-page: e38202 year: 2012 ident: 10.1016/j.immuni.2012.11.004_bib28 article-title: Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway publication-title: PLoS ONE doi: 10.1371/journal.pone.0038202 – volume: 104 start-page: 6519 year: 2007 ident: 10.1016/j.immuni.2012.11.004_bib35 article-title: Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0700907104 – volume: 104 start-page: 6511 year: 2007 ident: 10.1016/j.immuni.2012.11.004_bib30 article-title: Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0700899104 – volume: 37 start-page: 535 year: 2012 ident: 10.1016/j.immuni.2012.11.004_bib43 article-title: Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses publication-title: Immunity doi: 10.1016/j.immuni.2012.06.015 – volume: 475 start-page: 524 year: 2011 ident: 10.1016/j.immuni.2012.11.004_bib17 article-title: Oxysterols direct immune cell migration via EBI2 publication-title: Nature doi: 10.1038/nature10280 – volume: 481 start-page: 525 year: 2012 ident: 10.1016/j.immuni.2012.11.004_bib9 article-title: Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain publication-title: Nature doi: 10.1038/nature10742 – volume: 109 start-page: 532 year: 2004 ident: 10.1016/j.immuni.2012.11.004_bib29 article-title: Hydroxymethyl-glutaryl coenzyme a reductase inhibition limits cytomegalovirus infection in human endothelial cells publication-title: Circulation doi: 10.1161/01.CIR.0000109485.79183.81 – year: 2012 ident: 10.1016/j.immuni.2012.11.004_bib39 article-title: A model of flux regulation in the cholesterol biosynthesis pathway: Immune mediated graduated flux reduction versus statin-like led stepped flux reduction publication-title: Biochimie – volume: 10 start-page: 471 year: 2008 ident: 10.1016/j.immuni.2012.11.004_bib2 article-title: Statin-induced inhibition of HIV-1 release from latently infected U1 cells reveals a critical role for protein prenylation in HIV-1 replication publication-title: Microbes Infect. doi: 10.1016/j.micinf.2008.01.009 – volume: 112 start-page: 407 year: 2003 ident: 10.1016/j.immuni.2012.11.004_bib5 article-title: In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus publication-title: J. Clin. Invest. doi: 10.1172/JCI17704 – volume: 58 start-page: 607 year: 1995 ident: 10.1016/j.immuni.2012.11.004_bib37 article-title: Induction of a prenylated 65-kd protein in macrophages by interferon or lipopolysaccharide publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.58.5.607 – volume: 279 start-page: 52772 year: 2004 ident: 10.1016/j.immuni.2012.11.004_bib1 article-title: Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs publication-title: J. Biol. Chem. doi: 10.1074/jbc.M410302200 – volume: 77 start-page: 12285 year: 2003 ident: 10.1016/j.immuni.2012.11.004_bib8 article-title: The pseudorabies virus Us2 protein, a virion tegument component, is prenylated in infected cells publication-title: J. Virol. doi: 10.1128/JVI.77.22.12285-12298.2003 – volume: 109 start-page: 1125 year: 2002 ident: 10.1016/j.immuni.2012.11.004_bib18 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J. Clin. Invest. doi: 10.1172/JCI0215593 – volume: 18 start-page: 425 year: 2005 ident: 10.1016/j.immuni.2012.11.004_bib38 article-title: Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.04.004 – volume: 6 start-page: 1399 year: 2000 ident: 10.1016/j.immuni.2012.11.004_bib22 article-title: Statins as a newly recognized type of immunomodulator publication-title: Nat. Med. doi: 10.1038/82219 – volume: 109 start-page: 4239 year: 2012 ident: 10.1016/j.immuni.2012.11.004_bib24 article-title: Systematic identification of type I and type II interferon-induced antiviral factors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1114981109 – volume: 276 start-page: 45408 year: 2001 ident: 10.1016/j.immuni.2012.11.004_bib20 article-title: The hypocholesterolemic agent LY295427 reverses suppression of sterol regulatory element-binding protein processing mediated by oxysterols publication-title: J. Biol. Chem. doi: 10.1074/jbc.M108348200 – volume: 475 start-page: 519 year: 2011 ident: 10.1016/j.immuni.2012.11.004_bib23 article-title: Oxysterols direct B-cell migration through EBI2 publication-title: Nature doi: 10.1038/nature10226 – volume: 50 start-page: 2258 year: 2009 ident: 10.1016/j.immuni.2012.11.004_bib12 article-title: Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide publication-title: J. Lipid Res. doi: 10.1194/jlr.M900107-JLR200 – volume: 85 start-page: 7699 year: 2011 ident: 10.1016/j.immuni.2012.11.004_bib36 article-title: Sterol regulatory element-binding protein 2 couples HIV-1 transcription to cholesterol homeostasis and T cell activation publication-title: J. Virol. doi: 10.1128/JVI.00337-11 – volume: 256 start-page: 1331 year: 1992 ident: 10.1016/j.immuni.2012.11.004_bib14 article-title: Identification of a prenylation site in delta virus large antigen publication-title: Science doi: 10.1126/science.1598578 – volume: 7 start-page: 687 year: 2001 ident: 10.1016/j.immuni.2012.11.004_bib40 article-title: Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site publication-title: Nat. Med. doi: 10.1038/89058 – volume: 106 start-page: 16764 year: 2009 ident: 10.1016/j.immuni.2012.11.004_bib3 article-title: 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0909142106 – volume: 100 start-page: 15865 year: 2003 ident: 10.1016/j.immuni.2012.11.004_bib42 article-title: Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2237238100 – volume: 41 start-page: 401 year: 2007 ident: 10.1016/j.immuni.2012.11.004_bib13 article-title: Regulation of sterol synthesis in eukaryotes publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.41.110306.130315 – volume: 99 start-page: 12753 year: 2002 ident: 10.1016/j.immuni.2012.11.004_bib41 article-title: Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.162488899 – volume: 13 start-page: 540 year: 2011 ident: 10.1016/j.immuni.2012.11.004_bib19 article-title: Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.04.001 – volume: 85 start-page: 5814 year: 2011 ident: 10.1016/j.immuni.2012.11.004_bib34 article-title: Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication publication-title: J. Virol. doi: 10.1128/JVI.02630-10 – volume: 3 start-page: 15 year: 2006 ident: 10.1016/j.immuni.2012.11.004_bib15 article-title: Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.11.014 – volume: 9 start-page: e1000598 year: 2011 ident: 10.1016/j.immuni.2012.11.004_bib4 article-title: Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000598 – volume: 56 start-page: 49 year: 2012 ident: 10.1016/j.immuni.2012.11.004_bib7 article-title: Hepatitis C virus selectively perturbs the distal cholesterol synthesis pathway in a genotype-specific manner publication-title: Hepatology doi: 10.1002/hep.25631 – volume: 279 start-page: 1392 year: 2004 ident: 10.1016/j.immuni.2012.11.004_bib32 article-title: AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308619200 – reference: 23352217 - Immunity. 2013 Jan 24;38(1):3-5. doi: 10.1016/j.immuni.2013.01.002. |
SSID | ssj0014590 |
Score | 2.5568364 |
Snippet | Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106 |
SubjectTerms | Animals Antiviral Agents - pharmacology Binding Sites Biosynthesis Bone Marrow Cells - drug effects Bone Marrow Cells - immunology Bone Marrow Cells - metabolism Bone Marrow Cells - virology Cholesterol Deoxyribonucleic acid DNA Experiments Gene Expression Regulation Genes Genomes Hydroxycholesterols - metabolism Hydroxycholesterols - pharmacology Infections Interferons - pharmacology Lipids Liver X Receptors Macrophage Activation - drug effects Macrophage Activation - immunology Macrophages - drug effects Macrophages - immunology Macrophages - metabolism Macrophages - virology Metabolism Metabolites Mevalonic Acid - metabolism Mice Orphan Nuclear Receptors - metabolism Promoter Regions, Genetic Protein Binding Regulation STAT1 Transcription Factor - metabolism Steroid Hydroxylases - genetics Sterols Transcription factors Viral infections Virus Replication - drug effects |
Title | The Transcription Factor STAT-1 Couples Macrophage Synthesis of 25-Hydroxycholesterol to the Interferon Antiviral Response |
URI | https://dx.doi.org/10.1016/j.immuni.2012.11.004 https://www.ncbi.nlm.nih.gov/pubmed/23273843 https://www.proquest.com/docview/1536930884 https://www.proquest.com/docview/1282512666 https://www.proquest.com/docview/1554955897 https://pubmed.ncbi.nlm.nih.gov/PMC3556782 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIRAvCMZXx5iMxGto7dix81gqqoqpPKyd6JvlJLaWqUoq2j6Uv353zocoICbx2PgiOT7f3c_17-4I-WitgqCtsMw-qEEUHG0uK6IkdoCvAQEoiwfF-bdkdiO-ruTqhEy6XBikVba-v_HpwVu3T4btag43ZTlcIJUQDuEx46GICfrhWOiQxLf63N8kCJmOet4hSHfpc4HjVYYcDCR48U9Yy7Nt1_aX8PQn_PydRflLWJo-J89aPEnHzZRfkBNXnZHHTYfJwxl5Mm_vzl-Sn7AjaAhNnaOg09Bshy6W42XE6KTeb9ZuS-cW23rdgqOhi0MFAHFbbmntKZfR7FAg7QVdZqiwUK_prqYgQsM_ix6eVHRcYUcKmCu9bgi47hW5mX5ZTmZR23khymG5dhHzI5bnKvHZqHDIM3VM-swx5ZV1QhfwQyrudOK1yFm4q4SDFxOF5dLaQsSvyWlVV-4toV77lGUyyUZg-SrWVsa584kUwirvXTogcbfgJm_LkmN3jLXp-Gd3plGTQTXBicWAmgYk6t_aNGU5HpBXnS7N0fYyEDkeePOiU71pzXtrIExgC0mtYfhDPwyGibcttnL1HmRCVjDgn-QfMgDmUil1qgbkTbOb-s8BqAvLJWKY-tE-6wWwMPjxSFXehgLhgCEBg_Dz__7od-QpD20_WMTFBTnd_di79wC-dtkleTS-uv5-dRms7B48VzAw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVWi_i4IFi-CgsYiWto7dhxciwVVRe2e6BdqTfLSWxtUJVUtD2UX8-M40QUECtxbDyRHI8981w_zyPkvTEKkrbCMvvgBlFyXHN5GSWxBXwNCEAZ3CjOr5LZtfi8kqsTMunuwiCtMsT-Nqb7aB2eDMNoDjdVNVwglRA24THjvogJxOE7gAYU6jdcrD72RwlCZqOeeAjm3f05T_Kq_CUMZHjxD1jMM-i1_SU__Yk_f6dR_pKXpo_IwwAo6bjt82NyYuszcreVmDyckXvzcHj-hPyAKUF9buoiBZ16tR26WI6XEaOTZr9Z2y2dG9T1uoFIQxeHGhDittrSxlEuo9mhRN4LxkxfYqFZ011DwYT6vxYdPKnpuEZJCugr_doycO1Tcj39tJzMoiC9EBUwXLuIuRErCpW4fFRaJJpaJl1umXLKWJGW8EMqbtPEpaJg_rASdl5MlIZLY0oRPyOndVPbF4S61GUsl0k-gqWv4tTIuLAukUIY5ZzNBiTuBlwXoS45ymOsdUdA-6ZbN2l0E2xZNLhpQKL-rU1bl-MWe9X5Uh_NLw2p45Y3zzvX67C-txryBGpIpik0v-ubYWXicYupbbMHG38tGABQ8g8bQHOZlGmmBuR5O5v6zwGsC8MlYuj60TzrDbAy-HFLXd34CuEAIgGE8Jf__dFvyf3Zcn6pLy-uvrwiD7jXAGERF-fkdPd9b18DEtvlb_xK-wnpojGs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Transcription+Factor+STAT-1+Couples+Macrophage+Synthesis+of+25-Hydroxycholesterol+to+the+Interferon+Antiviral+Response&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Blanc%2C+Mathieu&rft.au=Hsieh%2C+Wei+Yuan&rft.au=Robertson%2C+Kevin+A&rft.au=Kropp%2C+Kai+A&rft.date=2013-01-24&rft.issn=1074-7613&rft.volume=38&rft.issue=1&rft.spage=106&rft.epage=118&rft_id=info:doi/10.1016%2Fj.immuni.2012.11.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |