Calcium-Activated Chloride Channels (CaCCs) Regulate Action Potential and Synaptic Response in Hippocampal Neurons

Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling open...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 74; no. 1; pp. 179 - 192
Main Authors Huang, Wendy C., Xiao, Shaohua, Huang, Fen, Harfe, Brian D., Jan, Yuh Nung, Jan, Lily Yeh
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.04.2012
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here, we report a mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory. ► There are calcium-activated chloride channels in hippocampal pyramidal neurons ► CaCCs shorten action potential duration ► CaCCs dampen EPSP, impede summation, and raise threshold for EPSP-spike coupling ► TMEM16B, not TMEM16A, is important for CaCC function in hippocampal pyramidal neurons Neuronal signaling via action potentials and synaptic potentials may be subject to feedback regulation by ion channels activated by calcium. Huang et al. show that the TMEM16B calcium-activated chloride channels control action potential waveform and synaptic efficacy in hippocampal neurons.
AbstractList Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here, we report a mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory.
Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here, we report a mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory. ► There are calcium-activated chloride channels in hippocampal pyramidal neurons ► CaCCs shorten action potential duration ► CaCCs dampen EPSP, impede summation, and raise threshold for EPSP-spike coupling ► TMEM16B, not TMEM16A, is important for CaCC function in hippocampal pyramidal neurons Neuronal signaling via action potentials and synaptic potentials may be subject to feedback regulation by ion channels activated by calcium. Huang et al. show that the TMEM16B calcium-activated chloride channels control action potential waveform and synaptic efficacy in hippocampal neurons.
Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here we report a novel mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present the first evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory.
Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here, we report a mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory.Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here, we report a mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory.
Author Jan, Yuh Nung
Xiao, Shaohua
Huang, Fen
Harfe, Brian D.
Huang, Wendy C.
Jan, Lily Yeh
AuthorAffiliation 2 Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
3 Department of Molecular Genetics and Microbiology, The Genetics Institute, University, of Florida, Gainesville, FL 32610, USA
1 Graduate Program in Neuroscience, University of California, San Francisco, San, Francisco, CA 94158, USA
AuthorAffiliation_xml – name: 3 Department of Molecular Genetics and Microbiology, The Genetics Institute, University, of Florida, Gainesville, FL 32610, USA
– name: 2 Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 1 Graduate Program in Neuroscience, University of California, San Francisco, San, Francisco, CA 94158, USA
Author_xml – sequence: 1
  givenname: Wendy C.
  surname: Huang
  fullname: Huang, Wendy C.
  organization: Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 2
  givenname: Shaohua
  surname: Xiao
  fullname: Xiao, Shaohua
  organization: Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 3
  givenname: Fen
  surname: Huang
  fullname: Huang, Fen
  organization: Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 4
  givenname: Brian D.
  surname: Harfe
  fullname: Harfe, Brian D.
  organization: Department of Molecular Genetics and Microbiology, The Genetics Institute, University of Florida, Gainesville, FL 32610, USA
– sequence: 5
  givenname: Yuh Nung
  surname: Jan
  fullname: Jan, Yuh Nung
  organization: Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
– sequence: 6
  givenname: Lily Yeh
  surname: Jan
  fullname: Jan, Lily Yeh
  email: lily.jan@ucsf.edu
  organization: Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22500639$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFN0AoEpt2keCfxIlZVKoiSpEqQNC95do3rUeOHexkpL49ns4UQRfAwrIlf_f4-N5zhA588IDQa4Irggl_t648LDH4imJCK0wqzNgztCJYtGVNhDhAK9wJXnLaskN0lNIaY1I3grxAh5Q2GHMmVij2ymm7jOW5nu1GzWCK_s6FaA3kg_IeXCpOetX36bT4BreLy0yxhYMvvoYZ_GyVK5Q3xfd7r6bZ6oylKfgEhfXFpZ2moNU4Zejzg9_0Ej0flEvwar8fo-uLD9f9ZXn15eOn_vyq1I3Ac0k0E2IQzKgOblpTdw0X9aC7gTWk1bThhHaUMoMVo8Q0tNWDwVoMXS0E4zU7Rmc72Wm5GcHo7DQqJ6doRxXvZVBW_nnj7Z28DRvJGBXiQeBkLxDDjwXSLEebNDinPIQlyTyFmmDKePcfKCaiwS0WGX37BF2HJfrcCEkazLq8eJupN7-b_-X6cXAZeL8DdAwpRRiktrPaTiX_xbr84tYfl2u5S4ncpkRiInNKcnH9pPhR_x9l-47mTMDGQpRJW_AajI2gZ2mC_bvAT-fO2D8
CitedBy_id crossref_primary_10_1038_s41467_018_07918_z
crossref_primary_10_1523_ENEURO_0179_21_2021
crossref_primary_10_1134_S1607672920040146
crossref_primary_10_1038_s42003_023_04806_1
crossref_primary_10_1016_j_neuron_2013_11_004
crossref_primary_10_1371_journal_pone_0116483
crossref_primary_10_1016_j_jmb_2014_09_028
crossref_primary_10_31857_S1026347024030082
crossref_primary_10_1016_j_cell_2012_07_036
crossref_primary_10_1073_pnas_1420984111
crossref_primary_10_1016_j_pneurobio_2022_102369
crossref_primary_10_1016_j_mcn_2016_12_002
crossref_primary_10_1007_s00018_017_2704_9
crossref_primary_10_1134_S1607672918060042
crossref_primary_10_1016_j_celrep_2020_02_001
crossref_primary_10_1085_jgp_201411179
crossref_primary_10_1523_ENEURO_0172_17_2017
crossref_primary_10_3389_fphys_2023_1122444
crossref_primary_10_1016_j_yjmcc_2015_03_013
crossref_primary_10_7554_eLife_02772
crossref_primary_10_1186_s13041_019_0465_0
crossref_primary_10_1016_j_lfs_2018_06_019
crossref_primary_10_1016_j_celrep_2015_03_026
crossref_primary_10_1007_s10753_016_0320_8
crossref_primary_10_1152_jn_00604_2017
crossref_primary_10_1371_journal_pone_0169572
crossref_primary_10_1085_jgp_201411182
crossref_primary_10_3389_fnins_2018_00560
crossref_primary_10_18097_BMCRM00034
crossref_primary_10_3892_ijmm_2024_5405
crossref_primary_10_1111_bph_13913
crossref_primary_10_1007_s00424_020_02375_4
crossref_primary_10_1124_pr_118_015917
crossref_primary_10_1523_JNEUROSCI_0251_23_2023
crossref_primary_10_2139_ssrn_3287790
crossref_primary_10_3389_fnagi_2023_1098510
crossref_primary_10_1016_j_brs_2021_03_008
crossref_primary_10_1113_jphysiol_2012_240838
crossref_primary_10_3390_biomedicines10020449
crossref_primary_10_1093_schbul_sbs197
crossref_primary_10_1177_07487304211059770
crossref_primary_10_1042_BJ20130348
crossref_primary_10_1016_j_yjmcc_2013_11_002
crossref_primary_10_1212_WNL_0000000000004246
crossref_primary_10_1186_s12576_021_00807_z
crossref_primary_10_1371_journal_pone_0099376
crossref_primary_10_1371_journal_pone_0247801
crossref_primary_10_1007_s13105_013_0292_1
crossref_primary_10_1016_j_ajhg_2012_10_024
crossref_primary_10_1016_j_cell_2015_03_029
crossref_primary_10_1111_jeu_13030
crossref_primary_10_7554_eLife_12637
crossref_primary_10_3389_fnmol_2024_1468438
crossref_primary_10_1371_journal_pone_0086734
crossref_primary_10_1016_j_yjmcc_2016_05_006
crossref_primary_10_1016_j_jmb_2021_166941
crossref_primary_10_1074_jbc_RA118_003153
crossref_primary_10_3390_ijms22105268
crossref_primary_10_1038_srep38788
crossref_primary_10_5607_en_2017_26_4_179
crossref_primary_10_3389_fphys_2018_00508
crossref_primary_10_1038_srep41791
crossref_primary_10_1073_pnas_1901067116
crossref_primary_10_1007_s00424_015_1767_4
crossref_primary_10_1152_jn_00511_2016
crossref_primary_10_1073_pnas_1502291112
crossref_primary_10_1042_BST20220435
crossref_primary_10_1073_pnas_1303672110
crossref_primary_10_14814_phy2_13373
crossref_primary_10_3389_fncel_2019_00360
crossref_primary_10_1007_s00424_016_1790_0
crossref_primary_10_1134_S1607672915060125
crossref_primary_10_1371_journal_pone_0067989
crossref_primary_10_5607_en22045
crossref_primary_10_1113_JP281152
crossref_primary_10_1085_jgp_201711957
crossref_primary_10_1152_ajpcell_00397_2021
crossref_primary_10_1523_JNEUROSCI_2293_14_2015
crossref_primary_10_1016_j_isci_2023_106363
crossref_primary_10_1074_jbc_RA117_000326
crossref_primary_10_1097_WNR_0000000000000967
crossref_primary_10_1134_S1062359023606249
crossref_primary_10_1007_s12311_017_0867_4
crossref_primary_10_1096_fj_201600797RR
crossref_primary_10_1085_jgp_201311015
crossref_primary_10_1080_19336950_2015_1058455
crossref_primary_10_1002_mnfr_201400479
crossref_primary_10_15252_embj_2018101452
crossref_primary_10_1007_s00441_014_1897_6
crossref_primary_10_1016_j_tice_2021_101546
crossref_primary_10_1016_j_neuron_2017_08_010
crossref_primary_10_1152_physrev_00039_2011
crossref_primary_10_1093_brain_awt138
crossref_primary_10_1016_j_apsb_2020_12_003
crossref_primary_10_1038_s41598_018_28855_3
crossref_primary_10_1016_j_apsb_2023_05_012
crossref_primary_10_1016_j_brainresbull_2023_110792
crossref_primary_10_1371_journal_pone_0182778
crossref_primary_10_3390_biom12030352
crossref_primary_10_1113_jphysiol_2014_275107
crossref_primary_10_7554_eLife_00862
crossref_primary_10_1038_nn_3468
crossref_primary_10_3390_ijms22094703
crossref_primary_10_1016_j_pharmthera_2013_01_012
crossref_primary_10_1134_S1607672921050215
crossref_primary_10_1371_journal_pone_0142160
crossref_primary_10_1007_s12035_023_03869_9
crossref_primary_10_1371_journal_pone_0192508
crossref_primary_10_1016_j_ceca_2024_102889
crossref_primary_10_1016_j_neuroscience_2015_09_049
crossref_primary_10_9729_AM_2018_48_4_110
crossref_primary_10_1016_j_ceca_2017_12_003
crossref_primary_10_18097_pbmc20216701017
crossref_primary_10_1016_j_schres_2024_01_024
crossref_primary_10_3390_cells9030543
crossref_primary_10_1007_s00424_014_1603_2
crossref_primary_10_7554_eLife_47106
crossref_primary_10_1113_jphysiol_2013_251660
crossref_primary_10_1016_j_neulet_2024_138032
crossref_primary_10_1113_EP086822
crossref_primary_10_1007_s10517_017_3694_1
crossref_primary_10_4161_chan_29531
crossref_primary_10_1080_19336950_2017_1307489
crossref_primary_10_15252_embr_201948097
crossref_primary_10_1080_01677063_2018_1506781
crossref_primary_10_18632_oncotarget_4979
crossref_primary_10_3390_ijms23031580
crossref_primary_10_1111_nan_12014
crossref_primary_10_1126_scisignal_2004184
crossref_primary_10_1085_jgp_202012704
crossref_primary_10_3389_fncel_2018_00101
Cites_doi 10.1007/978-1-4899-1775-1_7
10.1038/nn.2821
10.1152/jn.1961.24.3.243
10.1523/JNEUROSCI.5265-03.2004
10.1113/jphysiol.2004.062661
10.1016/0006-8993(87)91631-3
10.1016/j.cell.2008.09.003
10.1073/pnas.0911935106
10.1038/nn2041
10.1113/jphysiol.2009.176198
10.1113/jphysiol.1984.sp015378
10.1523/JNEUROSCI.4106-05.2006
10.1523/JNEUROSCI.22-11-04412.2002
10.1016/S0301-0082(99)00027-1
10.1016/0306-4522(93)90460-W
10.1111/j.1469-7793.1999.00135.x
10.1038/nn1811
10.2144/05385MT02
10.1038/nn1449
10.1038/42571
10.1113/jphysiol.1987.sp016653
10.1074/jbc.M109.012120
10.1016/0896-6273(93)90076-4
10.1113/jphysiol.1993.sp019495
10.1038/nmeth1005-779
10.1113/jphysiol.1987.sp016493
10.1038/296746a0
10.1038/307693a0
10.1113/jphysiol.2010.189506
10.1016/j.neuron.2004.09.007
10.1016/S0896-6273(00)00164-1
10.1038/nrn2148
10.1016/0163-7258(95)00018-C
10.1073/pnas.0903304106
10.1038/nrn920
10.1016/S0166-2236(03)00068-7
10.1073/pnas.0602979103
10.1523/JNEUROSCI.22-23-10163.2002
10.1016/S0896-6273(03)00507-5
10.1126/science.1106148
10.1023/A:1008906225285
10.1016/j.neuron.2008.09.001
10.1016/j.neuron.2006.08.035
10.1074/jbc.M109.068544
10.1016/j.neuron.2005.10.025
10.1085/jgp.94.4.719
10.1146/annurev.neuro.31.060407.125639
10.1016/j.coph.2006.11.005
10.1126/science.1163518
10.1038/nature07313
10.1016/j.neuron.2009.03.003
10.1098/rspb.1952.0054
10.1113/jphysiol.1987.sp016517
10.1523/JNEUROSCI.5546-08.2009
10.1074/jbc.C109.000869
10.1016/j.nbd.2006.09.002
10.1146/annurev.physiol.67.032003.154341
10.1523/JNEUROSCI.21-24-09585.2001
10.1007/s00424-009-0684-9
10.1113/jphysiol.1991.sp018674
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Apr 12, 2012
2012 Elsevier Inc. All rights reserved. 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Apr 12, 2012
– notice: 2012 Elsevier Inc. All rights reserved. 2012
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2012.01.033
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 192
ExternalDocumentID PMC3329964
3235656741
22500639
10_1016_j_neuron_2012_01_033
S0896627312002711
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R37 MH065334
– fundername: NIMH NIH HHS
  grantid: R01 MH065334
– fundername: NINDS NIH HHS
  grantid: R01 NS069229
– fundername: NINDS NIH HHS
  grantid: NS069229
– fundername: NIMH NIH HHS
  grantid: MH065334
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
AAFWJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c590t-1c399f93da8eb7d485694fc8f3517c256128223d0a321d527cfd0c9f84993643
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 17:47:19 EDT 2025
Fri Jul 11 02:50:56 EDT 2025
Mon Jul 21 09:19:07 EDT 2025
Fri Jul 25 11:06:51 EDT 2025
Mon Jul 21 05:18:45 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Tue Jul 01 01:16:04 EDT 2025
Fri Feb 23 02:11:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-1c399f93da8eb7d485694fc8f3517c256128223d0a321d527cfd0c9f84993643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Present address: Brown University, Providence, RI 02906, USA.
These authors made equal contribution
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627312002711
PMID 22500639
PQID 1503850367
PQPubID 2031076
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3329964
proquest_miscellaneous_1014102368
proquest_miscellaneous_1001950709
proquest_journals_1503850367
pubmed_primary_22500639
crossref_citationtrail_10_1016_j_neuron_2012_01_033
crossref_primary_10_1016_j_neuron_2012_01_033
elsevier_sciencedirect_doi_10_1016_j_neuron_2012_01_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-12
PublicationDateYYYYMMDD 2012-04-12
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Stackman, Hammond, Linardatos, Gerlach, Maylie, Adelman, Tzounopoulos (bib52) 2002; 22
Ngo-Anh, Bloodgood, Lin, Sabatini, Maylie, Adelman (bib37) 2005; 8
Higashi, Tanaka, Inokuchi, Nishi (bib20) 1993; 55
Lingle, Solaro, Prakriya, Ding (bib32) 1996; 4
Adams, Constanti, Brown, Clark (bib1) 1982; 296
Huang, Rock, Harfe, Cheng, Huang, Jan, Jan (bib24) 2009; 106
Hammond, Bond, Strassmaier, Ngo-Anh, Adelman, Maylie, Stackman (bib18) 2006; 26
Hu, Shao, Chavoshy, Gu, Trieb, Behrens, Laake, Pongs, Knaus, Ottersen, Storm (bib23) 2001; 21
Lancaster, Nicoll (bib30) 1987; 389
Yang, Cho, Koo, Tak, Cho, Shim, Park, Lee, Lee, Kim (bib60) 2008; 455
Palma, Amici, Sobrero, Spinelli, Di Angelantonio, Ragozzino, Mascia, Scoppetta, Esposito, Miledi, Eusebi (bib39) 2006; 103
Shao, Halvorsrud, Borg-Graham, Storm (bib51) 1999; 521
Frings, Reuter, Kleene (bib15) 2000; 60
Scott, Sutton, Griffin, Stapleton, Currie (bib50) 1995; 66
Rivera, Voipio, Thomas-Crusells, Li, Emri, Sipilä, Payne, Minichiello, Saarma, Kaila (bib44) 2004; 24
De Koninck (bib12) 2007; 7
Storm (bib56) 1987; 435
Raffaelli, Saviane, Mohajerani, Pedarzani, Cherubini (bib43) 2004; 557
Dan, Poo (bib11) 2004; 44
Manoury, Tamuleviciute, Tammaro (bib34) 2010; 588
Migliore, Hoffman, Magee, Johnston (bib35) 1999; 7
Hoffman, Magee, Colbert, Johnston (bib22) 1997; 387
Nabekura, Ueno, Okabe, Furuta, Iwaki, Shimizu-Okabe, Fukuda, Akaike (bib36) 2002; 22
Bonislawski, Schwarzbach, Cohen (bib7) 2007; 25
Fiumelli, Cancedda, Poo (bib14) 2005; 48
Ousingsawat, Martins, Schreiber, Rock, Harfe, Kunzelmann (bib38) 2009; 284
Fakler, Adelman (bib13) 2008; 59
Bean (bib3) 2007; 8
Romanenko, Catalán, Brown, Putzier, Hartzell, Marmorstein, Gonzalez-Begne, Rock, Harfe, Melvin (bib47) 2010; 285
Woodin, Ganguly, Poo (bib59) 2003; 39
Fu, Chen, Sahin, Zhao, Shi, Bikoff, Lai, Yung, Fu, Greenberg, Ip (bib16) 2007; 10
Geiger, Jonas (bib17) 2000; 28
Bormann, Hamill, Sakmann (bib8) 1987; 385
Korn, Bolden, Horn (bib29) 1991; 439
Caporale, Dan (bib9) 2008; 31
Hodgkin, Huxley (bib21) 1952; 140
Stöhr, Heisig, Benz, Schöberl, Milenkovic, Strauss, Aartsen, Wijnholds, Weber, Schulz (bib54) 2009; 29
Petersen, Maruyama (bib41) 1984; 307
Ben-Ari (bib4) 2002; 3
Blaesse, Airaksinen, Rivera, Kaila (bib6) 2009; 61
Sarbassov, Guertin, Ali, Sabatini (bib48) 2005; 307
Hartzell, Putzier, Arreola (bib19) 2005; 67
Barnes, Hille (bib2) 1989; 94
Hwang, Blair, Britton, O'Driscoll, Hennig, Bayguinov, Rock, Harfe, Sanders, Ward (bib25) 2009; 587
Lin, Luján, Watanabe, Adelman, Maylie (bib31) 2008; 11
Wang, Deriy, Foss, Huang, Lamb, Kaetzel, Bindokas, Marks, Nelson (bib58) 2006; 52
Kandel, Spencer (bib26) 1961; 24
Madison, Nicoll (bib33) 1984; 354
Kittler, Heninger, Franke, Habermann, Buchholz (bib28) 2005; 2
Schroeder, Cheng, Jan, Jan (bib49) 2008; 134
Billig, Pal, Fidzinski, Jentsch (bib5) 2011; 14
Kimura, Tamura, Murakami (bib27) 2005; 38
Robitaille, Garcia, Kaczorowski, Charlton (bib45) 1993; 11
Rock, O'Neal, Gabriel, Randell, Harfe, Boucher, Grubb (bib46) 2009; 284
Sugita, Tanaka, North (bib57) 1993; 460
Stephan, Shum, Hirsh, Cygnar, Reisert, Zhao (bib53) 2009; 106
Storm (bib55) 1987; 385
Pifferi, Dibattista, Menini (bib42) 2009; 458
Caputo, Caci, Ferrera, Pedemonte, Barsanti, Sondo, Pfeffer, Ravazzolo, Zegarra-Moran, Galietta (bib10) 2008; 322
Payne, Rivera, Voipio, Kaila (bib40) 2003; 26
Fiumelli (10.1016/j.neuron.2012.01.033_bib14) 2005; 48
Sugita (10.1016/j.neuron.2012.01.033_bib57) 1993; 460
Petersen (10.1016/j.neuron.2012.01.033_bib41) 1984; 307
Stöhr (10.1016/j.neuron.2012.01.033_bib54) 2009; 29
Blaesse (10.1016/j.neuron.2012.01.033_bib6) 2009; 61
Hammond (10.1016/j.neuron.2012.01.033_bib18) 2006; 26
Hoffman (10.1016/j.neuron.2012.01.033_bib22) 1997; 387
Shao (10.1016/j.neuron.2012.01.033_bib51) 1999; 521
Frings (10.1016/j.neuron.2012.01.033_bib15) 2000; 60
Wang (10.1016/j.neuron.2012.01.033_bib58) 2006; 52
Nabekura (10.1016/j.neuron.2012.01.033_bib36) 2002; 22
Bonislawski (10.1016/j.neuron.2012.01.033_bib7) 2007; 25
Palma (10.1016/j.neuron.2012.01.033_bib39) 2006; 103
Hartzell (10.1016/j.neuron.2012.01.033_bib19) 2005; 67
Lin (10.1016/j.neuron.2012.01.033_bib31) 2008; 11
Migliore (10.1016/j.neuron.2012.01.033_bib35) 1999; 7
Pifferi (10.1016/j.neuron.2012.01.033_bib42) 2009; 458
Kimura (10.1016/j.neuron.2012.01.033_bib27) 2005; 38
Woodin (10.1016/j.neuron.2012.01.033_bib59) 2003; 39
Payne (10.1016/j.neuron.2012.01.033_bib40) 2003; 26
Hu (10.1016/j.neuron.2012.01.033_bib23) 2001; 21
Storm (10.1016/j.neuron.2012.01.033_bib56) 1987; 435
Ousingsawat (10.1016/j.neuron.2012.01.033_bib38) 2009; 284
Geiger (10.1016/j.neuron.2012.01.033_bib17) 2000; 28
Manoury (10.1016/j.neuron.2012.01.033_bib34) 2010; 588
Lancaster (10.1016/j.neuron.2012.01.033_bib30) 1987; 389
Madison (10.1016/j.neuron.2012.01.033_bib33) 1984; 354
Bormann (10.1016/j.neuron.2012.01.033_bib8) 1987; 385
Higashi (10.1016/j.neuron.2012.01.033_bib20) 1993; 55
Romanenko (10.1016/j.neuron.2012.01.033_bib47) 2010; 285
Barnes (10.1016/j.neuron.2012.01.033_bib2) 1989; 94
Billig (10.1016/j.neuron.2012.01.033_bib5) 2011; 14
Hwang (10.1016/j.neuron.2012.01.033_bib25) 2009; 587
Robitaille (10.1016/j.neuron.2012.01.033_bib45) 1993; 11
Bean (10.1016/j.neuron.2012.01.033_bib3) 2007; 8
Fakler (10.1016/j.neuron.2012.01.033_bib13) 2008; 59
Adams (10.1016/j.neuron.2012.01.033_bib1) 1982; 296
Lingle (10.1016/j.neuron.2012.01.033_bib32) 1996; 4
Stackman (10.1016/j.neuron.2012.01.033_bib52) 2002; 22
Huang (10.1016/j.neuron.2012.01.033_bib24) 2009; 106
Kandel (10.1016/j.neuron.2012.01.033_bib26) 1961; 24
Rock (10.1016/j.neuron.2012.01.033_bib46) 2009; 284
Kittler (10.1016/j.neuron.2012.01.033_bib28) 2005; 2
Raffaelli (10.1016/j.neuron.2012.01.033_bib43) 2004; 557
Hodgkin (10.1016/j.neuron.2012.01.033_bib21) 1952; 140
Caporale (10.1016/j.neuron.2012.01.033_bib9) 2008; 31
De Koninck (10.1016/j.neuron.2012.01.033_bib12) 2007; 7
Caputo (10.1016/j.neuron.2012.01.033_bib10) 2008; 322
Ben-Ari (10.1016/j.neuron.2012.01.033_bib4) 2002; 3
Scott (10.1016/j.neuron.2012.01.033_bib50) 1995; 66
Ngo-Anh (10.1016/j.neuron.2012.01.033_bib37) 2005; 8
Rivera (10.1016/j.neuron.2012.01.033_bib44) 2004; 24
Stephan (10.1016/j.neuron.2012.01.033_bib53) 2009; 106
Fu (10.1016/j.neuron.2012.01.033_bib16) 2007; 10
Sarbassov (10.1016/j.neuron.2012.01.033_bib48) 2005; 307
Yang (10.1016/j.neuron.2012.01.033_bib60) 2008; 455
Korn (10.1016/j.neuron.2012.01.033_bib29) 1991; 439
Schroeder (10.1016/j.neuron.2012.01.033_bib49) 2008; 134
Storm (10.1016/j.neuron.2012.01.033_bib55) 1987; 385
Dan (10.1016/j.neuron.2012.01.033_bib11) 2004; 44
References_xml – volume: 4
  start-page: 261
  year: 1996
  end-page: 301
  ident: bib32
  article-title: Calcium-activated potassium channels in adrenal chromaffin cells
  publication-title: Ion Channels
– volume: 134
  start-page: 1019
  year: 2008
  end-page: 1029
  ident: bib49
  article-title: Expression cloning of TMEM16A as a calcium-activated chloride channel subunit
  publication-title: Cell
– volume: 26
  start-page: 1844
  year: 2006
  end-page: 1853
  ident: bib18
  article-title: Small-conductance Ca
  publication-title: J. Neurosci.
– volume: 25
  start-page: 163
  year: 2007
  end-page: 169
  ident: bib7
  article-title: Brain injury impairs dentate gyrus inhibitory efficacy
  publication-title: Neurobiol. Dis.
– volume: 24
  start-page: 243
  year: 1961
  end-page: 259
  ident: bib26
  article-title: Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing
  publication-title: J. Neurophysiol.
– volume: 2
  start-page: 779
  year: 2005
  end-page: 784
  ident: bib28
  article-title: Production of endoribonuclease-prepared short interfering RNAs for gene silencing in mammalian cells
  publication-title: Nat. Methods
– volume: 31
  start-page: 25
  year: 2008
  end-page: 46
  ident: bib9
  article-title: Spike timing-dependent plasticity: a Hebbian learning rule
  publication-title: Annu. Rev. Neurosci.
– volume: 385
  start-page: 243
  year: 1987
  end-page: 286
  ident: bib8
  article-title: Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones
  publication-title: J. Physiol.
– volume: 140
  start-page: 177
  year: 1952
  end-page: 183
  ident: bib21
  article-title: Propagation of electrical signals along giant nerve fibers
  publication-title: Proc. R. Soc. Lond. B Biol. Sci.
– volume: 24
  start-page: 4683
  year: 2004
  end-page: 4691
  ident: bib44
  article-title: Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2
  publication-title: J. Neurosci.
– volume: 307
  start-page: 1098
  year: 2005
  end-page: 1101
  ident: bib48
  article-title: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
  publication-title: Science
– volume: 38
  start-page: 797
  year: 2005
  end-page: 806
  ident: bib27
  article-title: Evaluation of the performance of two carbodiimide-based cyanine dyes for detecting changes in mRNA expression with DNA microarrays
  publication-title: Biotechniques
– volume: 10
  start-page: 67
  year: 2007
  end-page: 76
  ident: bib16
  article-title: Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism
  publication-title: Nat. Neurosci.
– volume: 284
  start-page: 28698
  year: 2009
  end-page: 28703
  ident: bib38
  article-title: Loss of TMEM16A causes a defect in epithelial Ca
  publication-title: J. Biol. Chem.
– volume: 521
  start-page: 135
  year: 1999
  end-page: 146
  ident: bib51
  article-title: The role of BK-type Ca
  publication-title: J. Physiol.
– volume: 14
  start-page: 763
  year: 2011
  end-page: 769
  ident: bib5
  article-title: Ca
  publication-title: Nat. Neurosci.
– volume: 8
  start-page: 451
  year: 2007
  end-page: 465
  ident: bib3
  article-title: The action potential in mammalian central neurons
  publication-title: Nat. Rev. Neurosci.
– volume: 67
  start-page: 719
  year: 2005
  end-page: 758
  ident: bib19
  article-title: Calcium-activated chloride channels
  publication-title: Annu. Rev. Physiol.
– volume: 28
  start-page: 927
  year: 2000
  end-page: 939
  ident: bib17
  article-title: Dynamic control of presynaptic Ca(
  publication-title: Neuron
– volume: 94
  start-page: 719
  year: 1989
  end-page: 743
  ident: bib2
  article-title: Ionic channels of the inner segment of tiger salamander cone photoreceptors
  publication-title: J. Gen. Physiol.
– volume: 588
  start-page: 2305
  year: 2010
  end-page: 2314
  ident: bib34
  article-title: TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells
  publication-title: J. Physiol.
– volume: 285
  start-page: 12990
  year: 2010
  end-page: 13001
  ident: bib47
  article-title: Tmem16A encodes the Ca
  publication-title: J. Biol. Chem.
– volume: 557
  start-page: 147
  year: 2004
  end-page: 157
  ident: bib43
  article-title: BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus
  publication-title: J. Physiol.
– volume: 26
  start-page: 199
  year: 2003
  end-page: 206
  ident: bib40
  article-title: Cation-chloride co-transporters in neuronal communication, development and trauma
  publication-title: Trends Neurosci.
– volume: 11
  start-page: 170
  year: 2008
  end-page: 177
  ident: bib31
  article-title: SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses
  publication-title: Nat. Neurosci.
– volume: 60
  start-page: 247
  year: 2000
  end-page: 289
  ident: bib15
  article-title: Neuronal Ca
  publication-title: Prog. Neurobiol.
– volume: 587
  start-page: 4887
  year: 2009
  end-page: 4904
  ident: bib25
  article-title: Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles
  publication-title: J. Physiol.
– volume: 389
  start-page: 187
  year: 1987
  end-page: 203
  ident: bib30
  article-title: Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones
  publication-title: J. Physiol.
– volume: 22
  start-page: 10163
  year: 2002
  end-page: 10171
  ident: bib52
  article-title: Small conductance Ca
  publication-title: J. Neurosci.
– volume: 11
  start-page: 645
  year: 1993
  end-page: 655
  ident: bib45
  article-title: Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release
  publication-title: Neuron
– volume: 103
  start-page: 8465
  year: 2006
  end-page: 8468
  ident: bib39
  article-title: Anomalous levels of Cl
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 106
  start-page: 21413
  year: 2009
  end-page: 21418
  ident: bib24
  article-title: Studies on expression and function of the TMEM16A calcium-activated chloride channel
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 322
  start-page: 590
  year: 2008
  end-page: 594
  ident: bib10
  article-title: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity
  publication-title: Science
– volume: 354
  start-page: 319
  year: 1984
  end-page: 331
  ident: bib33
  article-title: Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro
  publication-title: J. Physiol.
– volume: 48
  start-page: 773
  year: 2005
  end-page: 786
  ident: bib14
  article-title: Modulation of GABAergic transmission by activity via postsynaptic Ca
  publication-title: Neuron
– volume: 435
  start-page: 387
  year: 1987
  end-page: 392
  ident: bib56
  article-title: Intracellular injection of a Ca
  publication-title: Brain Res.
– volume: 59
  start-page: 873
  year: 2008
  end-page: 881
  ident: bib13
  article-title: Control of K(
  publication-title: Neuron
– volume: 29
  start-page: 6809
  year: 2009
  end-page: 6818
  ident: bib54
  article-title: TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals
  publication-title: J. Neurosci.
– volume: 458
  start-page: 1023
  year: 2009
  end-page: 1038
  ident: bib42
  article-title: TMEM16B induces chloride currents activated by calcium in mammalian cells
  publication-title: Pflugers Arch.
– volume: 52
  start-page: 321
  year: 2006
  end-page: 333
  ident: bib58
  article-title: CLC-3 channels modulate excitatory synaptic transmission in hippocampal neurons
  publication-title: Neuron
– volume: 296
  start-page: 746
  year: 1982
  end-page: 749
  ident: bib1
  article-title: Intracellular Ca
  publication-title: Nature
– volume: 66
  start-page: 535
  year: 1995
  end-page: 565
  ident: bib50
  article-title: Aspects of calcium-activated chloride currents: a neuronal perspective
  publication-title: Pharmacol. Ther.
– volume: 55
  start-page: 129
  year: 1993
  end-page: 138
  ident: bib20
  article-title: Ionic mechanisms underlying the depolarizing and hyperpolarizing afterpotentials of single spike in guinea-pig cingulate cortical neurons
  publication-title: Neuroscience
– volume: 455
  start-page: 1210
  year: 2008
  end-page: 1215
  ident: bib60
  article-title: TMEM16A confers receptor-activated calcium-dependent chloride conductance
  publication-title: Nature
– volume: 460
  start-page: 705
  year: 1993
  end-page: 718
  ident: bib57
  article-title: Membrane properties and synaptic potentials of three types of neurone in rat lateral amygdala
  publication-title: J. Physiol.
– volume: 385
  start-page: 733
  year: 1987
  end-page: 759
  ident: bib55
  article-title: Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells
  publication-title: J. Physiol.
– volume: 3
  start-page: 728
  year: 2002
  end-page: 739
  ident: bib4
  article-title: Excitatory actions of gaba during development: the nature of the nurture
  publication-title: Nat. Rev. Neurosci.
– volume: 7
  start-page: 5
  year: 1999
  end-page: 15
  ident: bib35
  article-title: Role of an A-type K
  publication-title: J. Comput. Neurosci.
– volume: 21
  start-page: 9585
  year: 2001
  end-page: 9597
  ident: bib23
  article-title: Presynaptic Ca
  publication-title: J. Neurosci.
– volume: 44
  start-page: 23
  year: 2004
  end-page: 30
  ident: bib11
  article-title: Spike timing-dependent plasticity of neural circuits
  publication-title: Neuron
– volume: 61
  start-page: 820
  year: 2009
  end-page: 838
  ident: bib6
  article-title: Cation-chloride cotransporters and neuronal function
  publication-title: Neuron
– volume: 387
  start-page: 869
  year: 1997
  end-page: 875
  ident: bib22
  article-title: K
  publication-title: Nature
– volume: 439
  start-page: 423
  year: 1991
  end-page: 437
  ident: bib29
  article-title: Control of action potentials and Ca
  publication-title: J. Physiol.
– volume: 106
  start-page: 11776
  year: 2009
  end-page: 11781
  ident: bib53
  article-title: ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 307
  start-page: 693
  year: 1984
  end-page: 696
  ident: bib41
  article-title: Calcium-activated potassium channels and their role in secretion
  publication-title: Nature
– volume: 39
  start-page: 807
  year: 2003
  end-page: 820
  ident: bib59
  article-title: Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl
  publication-title: Neuron
– volume: 8
  start-page: 642
  year: 2005
  end-page: 649
  ident: bib37
  article-title: SK channels and NMDA receptors form a Ca
  publication-title: Nat. Neurosci.
– volume: 22
  start-page: 4412
  year: 2002
  end-page: 4417
  ident: bib36
  article-title: Reduction of KCC2 expression and GABA
  publication-title: J. Neurosci.
– volume: 284
  start-page: 14875
  year: 2009
  end-page: 14880
  ident: bib46
  article-title: Transmembrane protein 16A (TMEM16A) is a Ca
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 93
  year: 2007
  end-page: 99
  ident: bib12
  article-title: Altered chloride homeostasis in neurological disorders: a new target
  publication-title: Curr. Opin. Pharmacol.
– volume: 4
  start-page: 261
  year: 1996
  ident: 10.1016/j.neuron.2012.01.033_bib32
  article-title: Calcium-activated potassium channels in adrenal chromaffin cells
  publication-title: Ion Channels
  doi: 10.1007/978-1-4899-1775-1_7
– volume: 14
  start-page: 763
  year: 2011
  ident: 10.1016/j.neuron.2012.01.033_bib5
  article-title: Ca2+-activated Cl− currents are dispensable for olfaction
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2821
– volume: 24
  start-page: 243
  year: 1961
  ident: 10.1016/j.neuron.2012.01.033_bib26
  article-title: Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1961.24.3.243
– volume: 24
  start-page: 4683
  year: 2004
  ident: 10.1016/j.neuron.2012.01.033_bib44
  article-title: Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5265-03.2004
– volume: 557
  start-page: 147
  year: 2004
  ident: 10.1016/j.neuron.2012.01.033_bib43
  article-title: BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2004.062661
– volume: 435
  start-page: 387
  year: 1987
  ident: 10.1016/j.neuron.2012.01.033_bib56
  article-title: Intracellular injection of a Ca2+ chelator inhibits spike repolarization in hippocampal neurons
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(87)91631-3
– volume: 134
  start-page: 1019
  year: 2008
  ident: 10.1016/j.neuron.2012.01.033_bib49
  article-title: Expression cloning of TMEM16A as a calcium-activated chloride channel subunit
  publication-title: Cell
  doi: 10.1016/j.cell.2008.09.003
– volume: 106
  start-page: 21413
  year: 2009
  ident: 10.1016/j.neuron.2012.01.033_bib24
  article-title: Studies on expression and function of the TMEM16A calcium-activated chloride channel
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911935106
– volume: 11
  start-page: 170
  year: 2008
  ident: 10.1016/j.neuron.2012.01.033_bib31
  article-title: SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2041
– volume: 587
  start-page: 4887
  year: 2009
  ident: 10.1016/j.neuron.2012.01.033_bib25
  article-title: Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2009.176198
– volume: 354
  start-page: 319
  year: 1984
  ident: 10.1016/j.neuron.2012.01.033_bib33
  article-title: Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1984.sp015378
– volume: 26
  start-page: 1844
  year: 2006
  ident: 10.1016/j.neuron.2012.01.033_bib18
  article-title: Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4106-05.2006
– volume: 22
  start-page: 4412
  year: 2002
  ident: 10.1016/j.neuron.2012.01.033_bib36
  article-title: Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-11-04412.2002
– volume: 60
  start-page: 247
  year: 2000
  ident: 10.1016/j.neuron.2012.01.033_bib15
  article-title: Neuronal Ca2+-activated Cl− channels—homing in on an elusive channel species
  publication-title: Prog. Neurobiol.
  doi: 10.1016/S0301-0082(99)00027-1
– volume: 55
  start-page: 129
  year: 1993
  ident: 10.1016/j.neuron.2012.01.033_bib20
  article-title: Ionic mechanisms underlying the depolarizing and hyperpolarizing afterpotentials of single spike in guinea-pig cingulate cortical neurons
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(93)90460-W
– volume: 521
  start-page: 135
  year: 1999
  ident: 10.1016/j.neuron.2012.01.033_bib51
  article-title: The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.1999.00135.x
– volume: 10
  start-page: 67
  year: 2007
  ident: 10.1016/j.neuron.2012.01.033_bib16
  article-title: Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1811
– volume: 38
  start-page: 797
  year: 2005
  ident: 10.1016/j.neuron.2012.01.033_bib27
  article-title: Evaluation of the performance of two carbodiimide-based cyanine dyes for detecting changes in mRNA expression with DNA microarrays
  publication-title: Biotechniques
  doi: 10.2144/05385MT02
– volume: 8
  start-page: 642
  year: 2005
  ident: 10.1016/j.neuron.2012.01.033_bib37
  article-title: SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1449
– volume: 387
  start-page: 869
  year: 1997
  ident: 10.1016/j.neuron.2012.01.033_bib22
  article-title: K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons
  publication-title: Nature
  doi: 10.1038/42571
– volume: 389
  start-page: 187
  year: 1987
  ident: 10.1016/j.neuron.2012.01.033_bib30
  article-title: Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1987.sp016653
– volume: 284
  start-page: 28698
  year: 2009
  ident: 10.1016/j.neuron.2012.01.033_bib38
  article-title: Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.012120
– volume: 11
  start-page: 645
  year: 1993
  ident: 10.1016/j.neuron.2012.01.033_bib45
  article-title: Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release
  publication-title: Neuron
  doi: 10.1016/0896-6273(93)90076-4
– volume: 460
  start-page: 705
  year: 1993
  ident: 10.1016/j.neuron.2012.01.033_bib57
  article-title: Membrane properties and synaptic potentials of three types of neurone in rat lateral amygdala
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1993.sp019495
– volume: 2
  start-page: 779
  year: 2005
  ident: 10.1016/j.neuron.2012.01.033_bib28
  article-title: Production of endoribonuclease-prepared short interfering RNAs for gene silencing in mammalian cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1005-779
– volume: 385
  start-page: 243
  year: 1987
  ident: 10.1016/j.neuron.2012.01.033_bib8
  article-title: Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1987.sp016493
– volume: 296
  start-page: 746
  year: 1982
  ident: 10.1016/j.neuron.2012.01.033_bib1
  article-title: Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones
  publication-title: Nature
  doi: 10.1038/296746a0
– volume: 307
  start-page: 693
  year: 1984
  ident: 10.1016/j.neuron.2012.01.033_bib41
  article-title: Calcium-activated potassium channels and their role in secretion
  publication-title: Nature
  doi: 10.1038/307693a0
– volume: 588
  start-page: 2305
  year: 2010
  ident: 10.1016/j.neuron.2012.01.033_bib34
  article-title: TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2010.189506
– volume: 44
  start-page: 23
  year: 2004
  ident: 10.1016/j.neuron.2012.01.033_bib11
  article-title: Spike timing-dependent plasticity of neural circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.09.007
– volume: 28
  start-page: 927
  year: 2000
  ident: 10.1016/j.neuron.2012.01.033_bib17
  article-title: Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00164-1
– volume: 8
  start-page: 451
  year: 2007
  ident: 10.1016/j.neuron.2012.01.033_bib3
  article-title: The action potential in mammalian central neurons
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2148
– volume: 66
  start-page: 535
  year: 1995
  ident: 10.1016/j.neuron.2012.01.033_bib50
  article-title: Aspects of calcium-activated chloride currents: a neuronal perspective
  publication-title: Pharmacol. Ther.
  doi: 10.1016/0163-7258(95)00018-C
– volume: 106
  start-page: 11776
  year: 2009
  ident: 10.1016/j.neuron.2012.01.033_bib53
  article-title: ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0903304106
– volume: 3
  start-page: 728
  year: 2002
  ident: 10.1016/j.neuron.2012.01.033_bib4
  article-title: Excitatory actions of gaba during development: the nature of the nurture
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn920
– volume: 26
  start-page: 199
  year: 2003
  ident: 10.1016/j.neuron.2012.01.033_bib40
  article-title: Cation-chloride co-transporters in neuronal communication, development and trauma
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(03)00068-7
– volume: 103
  start-page: 8465
  year: 2006
  ident: 10.1016/j.neuron.2012.01.033_bib39
  article-title: Anomalous levels of Cl− transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602979103
– volume: 22
  start-page: 10163
  year: 2002
  ident: 10.1016/j.neuron.2012.01.033_bib52
  article-title: Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-23-10163.2002
– volume: 39
  start-page: 807
  year: 2003
  ident: 10.1016/j.neuron.2012.01.033_bib59
  article-title: Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00507-5
– volume: 307
  start-page: 1098
  year: 2005
  ident: 10.1016/j.neuron.2012.01.033_bib48
  article-title: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
  publication-title: Science
  doi: 10.1126/science.1106148
– volume: 7
  start-page: 5
  year: 1999
  ident: 10.1016/j.neuron.2012.01.033_bib35
  article-title: Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons
  publication-title: J. Comput. Neurosci.
  doi: 10.1023/A:1008906225285
– volume: 59
  start-page: 873
  year: 2008
  ident: 10.1016/j.neuron.2012.01.033_bib13
  article-title: Control of K(Ca) channels by calcium nano/microdomains
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.09.001
– volume: 52
  start-page: 321
  year: 2006
  ident: 10.1016/j.neuron.2012.01.033_bib58
  article-title: CLC-3 channels modulate excitatory synaptic transmission in hippocampal neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.08.035
– volume: 285
  start-page: 12990
  year: 2010
  ident: 10.1016/j.neuron.2012.01.033_bib47
  article-title: Tmem16A encodes the Ca2+-activated Cl− channel in mouse submandibular salivary gland acinar cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.068544
– volume: 48
  start-page: 773
  year: 2005
  ident: 10.1016/j.neuron.2012.01.033_bib14
  article-title: Modulation of GABAergic transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.10.025
– volume: 94
  start-page: 719
  year: 1989
  ident: 10.1016/j.neuron.2012.01.033_bib2
  article-title: Ionic channels of the inner segment of tiger salamander cone photoreceptors
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.94.4.719
– volume: 31
  start-page: 25
  year: 2008
  ident: 10.1016/j.neuron.2012.01.033_bib9
  article-title: Spike timing-dependent plasticity: a Hebbian learning rule
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.31.060407.125639
– volume: 7
  start-page: 93
  year: 2007
  ident: 10.1016/j.neuron.2012.01.033_bib12
  article-title: Altered chloride homeostasis in neurological disorders: a new target
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2006.11.005
– volume: 322
  start-page: 590
  year: 2008
  ident: 10.1016/j.neuron.2012.01.033_bib10
  article-title: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity
  publication-title: Science
  doi: 10.1126/science.1163518
– volume: 455
  start-page: 1210
  year: 2008
  ident: 10.1016/j.neuron.2012.01.033_bib60
  article-title: TMEM16A confers receptor-activated calcium-dependent chloride conductance
  publication-title: Nature
  doi: 10.1038/nature07313
– volume: 61
  start-page: 820
  year: 2009
  ident: 10.1016/j.neuron.2012.01.033_bib6
  article-title: Cation-chloride cotransporters and neuronal function
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.003
– volume: 140
  start-page: 177
  year: 1952
  ident: 10.1016/j.neuron.2012.01.033_bib21
  article-title: Propagation of electrical signals along giant nerve fibers
  publication-title: Proc. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rspb.1952.0054
– volume: 385
  start-page: 733
  year: 1987
  ident: 10.1016/j.neuron.2012.01.033_bib55
  article-title: Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1987.sp016517
– volume: 29
  start-page: 6809
  year: 2009
  ident: 10.1016/j.neuron.2012.01.033_bib54
  article-title: TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5546-08.2009
– volume: 284
  start-page: 14875
  year: 2009
  ident: 10.1016/j.neuron.2012.01.033_bib46
  article-title: Transmembrane protein 16A (TMEM16A) is a Ca2+-regulated Cl− secretory channel in mouse airways
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C109.000869
– volume: 25
  start-page: 163
  year: 2007
  ident: 10.1016/j.neuron.2012.01.033_bib7
  article-title: Brain injury impairs dentate gyrus inhibitory efficacy
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2006.09.002
– volume: 67
  start-page: 719
  year: 2005
  ident: 10.1016/j.neuron.2012.01.033_bib19
  article-title: Calcium-activated chloride channels
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.67.032003.154341
– volume: 21
  start-page: 9585
  year: 2001
  ident: 10.1016/j.neuron.2012.01.033_bib23
  article-title: Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-24-09585.2001
– volume: 458
  start-page: 1023
  year: 2009
  ident: 10.1016/j.neuron.2012.01.033_bib42
  article-title: TMEM16B induces chloride currents activated by calcium in mammalian cells
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-009-0684-9
– volume: 439
  start-page: 423
  year: 1991
  ident: 10.1016/j.neuron.2012.01.033_bib29
  article-title: Control of action potentials and Ca2+ influx by the Ca(2+)-dependent chloride current in mouse pituitary cells
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1991.sp018674
SSID ssj0014591
Score 2.4403176
Snippet Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 179
SubjectTerms Action potential
Action Potentials - physiology
Animals
Anoctamin-1
Anoctamins
Calcium
Calcium - metabolism
Calcium channels
Calcium Channels - metabolism
Calcium influx
chloride channels (calcium-gated)
Chloride Channels - physiology
Experiments
Feedback
Glutamic acid receptors (ionotropic)
Hippocampus
Hippocampus - cytology
Hippocampus - metabolism
Ion channels
Learning
Memory
Mice
N-Methyl-D-aspartic acid receptors
Neurogenesis
Neuromodulation
Neurons
Neurotransmitter release
Pyramidal Cells - metabolism
Receptors, N-Methyl-D-Aspartate - metabolism
Synapses
Synaptic Potentials - physiology
Transmitters
Title Calcium-Activated Chloride Channels (CaCCs) Regulate Action Potential and Synaptic Response in Hippocampal Neurons
URI https://dx.doi.org/10.1016/j.neuron.2012.01.033
https://www.ncbi.nlm.nih.gov/pubmed/22500639
https://www.proquest.com/docview/1503850367
https://www.proquest.com/docview/1001950709
https://www.proquest.com/docview/1014102368
https://pubmed.ncbi.nlm.nih.gov/PMC3329964
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTUi8ILbxURiTkRCCB9MkthPnMURMFRMIbUP0zfJXtEydW63tQ_97zk5SURBM4iEPiS-Jk7PvLs7vfofQG2G0Ab_ZkMwwTpjinOhUOKKFVs7C5FIuLA18-ZpPvrPPUz7dQ_WQCxNglb3t72x6tNb9kXH_NseLth1fJqIM7OU0DTiDIub3UiZiEt_04_ZPAuNd1TwQJkF6SJ-LGK_IGRlYUMOKYPohofRv7unP8PN3FOUvbunsMXrUx5O46rp8iPacP0LHlYdv6dsNfosjwjMunR-hB13hyc0xuqvVzLTrW1KZWN7MWVxfByyedTjkG3joEn5Xq7pevscXXbl6h6uYA4G_zVcBYgR3Vd7iy41XYHYMiEW0rcOtx5N2sQAnCaZmhiP9h18-QVdnn67qCemrLxDDy2RFUgOxS1NSq4TThWWC5yVrjGgoTwuThaqaEFxQmyiapZZnhWlsYspGwDcUhTjnKdr3c--eI2xTVSRa65I6zbgzulQ6d6xMcpfA5fMRosM7l6ZnJg8FMmZygKDdyE5TMmhKJqkETY0Q2Z616Jg57pEvBnXKnREmwXncc-bJoH3Zz_ClTAOPDmx5MUKvt80wN8MPF-XdfL0MfNChym6RlP-SCUjbjOZihJ51A2r7OGBrYwgJXd8ZaluBwA2-2-Lb68gRTinEGTl78d8P_RI9DHsk0lqeoP3V3dq9gvhrpU_RQXV-8eP8NE60n8XiMdY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQQvCDZghQFGQggeTJ04n48lYupgmxArUt8sf0UL6txqbR_633PnJBUFwSQe8hJfEidn352d3_2OkDeF0Qb8Zs1ik6QsUWnKdFQ4pgutnIXJpRxuDZxfZOPvyedpOt0jVZ8Lg7DKzva3Nj1Y6-7MsPuaw0XTDC95USJ7uYgQZ5Bjfu8diAZyrN9wOv24_ZWQpG3ZPJBmKN7nzwWQVyCNRBpU3BKMPnAh_uaf_ow_f4dR_uKXTh6SB11ASUdtnx-RPecPyOHIw2L6ekPf0gDxDHvnB-RuW3lyc0huKjUzzfqajUyob-Ysra4QjGcdxYQDD12i7ypVVcv39Ftbr97RUUiCoF_nK8QYwVOVt_Ry4xXYHQNiAW7raOPpuFkswEuCrZnRwP_hl4_J5OTTpBqzrvwCM2nJVywyELzUpbCqcDq3SZFmZVKbohZplJsYy2pCdCEsVyKObBrnprbclHUBiygBgc4Tsu_n3h0RaiOVc611KZxOUmd0qXTmkpJnjsPtswER_TeXpqMmxwoZM9lj0H7IVlMSNSV5JEFTA8K2Vy1aao5b5PNenXJniEnwHrdcedxrX3ZTfCkjJNKBI8sH5PW2GSYn_nFR3s3XSySExjK7OS__JYNQ21hkxYA8bQfU9nXA2IYYErq-M9S2AkgOvtvim6tAEi4EBBpZ8uy_X_oVuTeenJ_Js9OLL8_JfWxhgePymOyvbtbuBQRjK_0yTLafe-AzUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium-Activated+Chloride+Channels+%28CaCCs%29+Regulate+Action+Potential+and+Synaptic+Response+in+Hippocampal+Neurons&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Huang%2C+Wendy+C&rft.au=Xiao%2C+Shaohua&rft.au=Huang%2C+Fen&rft.au=Harfe%2C+Brian+D&rft.date=2012-04-12&rft.issn=0896-6273&rft.volume=74&rft.issue=1&rft.spage=179&rft.epage=192&rft_id=info:doi/10.1016%2Fj.neuron.2012.01.033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon