Calcium-Activated Chloride Channels (CaCCs) Regulate Action Potential and Synaptic Response in Hippocampal Neurons
Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling open...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 74; no. 1; pp. 179 - 192 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.04.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here, we report a mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory.
► There are calcium-activated chloride channels in hippocampal pyramidal neurons ► CaCCs shorten action potential duration ► CaCCs dampen EPSP, impede summation, and raise threshold for EPSP-spike coupling ► TMEM16B, not TMEM16A, is important for CaCC function in hippocampal pyramidal neurons
Neuronal signaling via action potentials and synaptic potentials may be subject to feedback regulation by ion channels activated by calcium. Huang et al. show that the TMEM16B calcium-activated chloride channels control action potential waveform and synaptic efficacy in hippocampal neurons. |
---|---|
AbstractList | Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here, we report a mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory. Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here, we report a mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory. ► There are calcium-activated chloride channels in hippocampal pyramidal neurons ► CaCCs shorten action potential duration ► CaCCs dampen EPSP, impede summation, and raise threshold for EPSP-spike coupling ► TMEM16B, not TMEM16A, is important for CaCC function in hippocampal pyramidal neurons Neuronal signaling via action potentials and synaptic potentials may be subject to feedback regulation by ion channels activated by calcium. Huang et al. show that the TMEM16B calcium-activated chloride channels control action potential waveform and synaptic efficacy in hippocampal neurons. Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here we report a novel mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present the first evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory. Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here, we report a mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory.Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here, we report a mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory. |
Author | Jan, Yuh Nung Xiao, Shaohua Huang, Fen Harfe, Brian D. Huang, Wendy C. Jan, Lily Yeh |
AuthorAffiliation | 2 Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA 3 Department of Molecular Genetics and Microbiology, The Genetics Institute, University, of Florida, Gainesville, FL 32610, USA 1 Graduate Program in Neuroscience, University of California, San Francisco, San, Francisco, CA 94158, USA |
AuthorAffiliation_xml | – name: 3 Department of Molecular Genetics and Microbiology, The Genetics Institute, University, of Florida, Gainesville, FL 32610, USA – name: 2 Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA – name: 1 Graduate Program in Neuroscience, University of California, San Francisco, San, Francisco, CA 94158, USA |
Author_xml | – sequence: 1 givenname: Wendy C. surname: Huang fullname: Huang, Wendy C. organization: Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 2 givenname: Shaohua surname: Xiao fullname: Xiao, Shaohua organization: Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 3 givenname: Fen surname: Huang fullname: Huang, Fen organization: Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 4 givenname: Brian D. surname: Harfe fullname: Harfe, Brian D. organization: Department of Molecular Genetics and Microbiology, The Genetics Institute, University of Florida, Gainesville, FL 32610, USA – sequence: 5 givenname: Yuh Nung surname: Jan fullname: Jan, Yuh Nung organization: Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 6 givenname: Lily Yeh surname: Jan fullname: Jan, Lily Yeh email: lily.jan@ucsf.edu organization: Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22500639$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URKeFN0AoEpt2keCfxIlZVKoiSpEqQNC95do3rUeOHexkpL49ns4UQRfAwrIlf_f4-N5zhA588IDQa4Irggl_t648LDH4imJCK0wqzNgztCJYtGVNhDhAK9wJXnLaskN0lNIaY1I3grxAh5Q2GHMmVij2ymm7jOW5nu1GzWCK_s6FaA3kg_IeXCpOetX36bT4BreLy0yxhYMvvoYZ_GyVK5Q3xfd7r6bZ6oylKfgEhfXFpZ2moNU4Zejzg9_0Ej0flEvwar8fo-uLD9f9ZXn15eOn_vyq1I3Ac0k0E2IQzKgOblpTdw0X9aC7gTWk1bThhHaUMoMVo8Q0tNWDwVoMXS0E4zU7Rmc72Wm5GcHo7DQqJ6doRxXvZVBW_nnj7Z28DRvJGBXiQeBkLxDDjwXSLEebNDinPIQlyTyFmmDKePcfKCaiwS0WGX37BF2HJfrcCEkazLq8eJupN7-b_-X6cXAZeL8DdAwpRRiktrPaTiX_xbr84tYfl2u5S4ncpkRiInNKcnH9pPhR_x9l-47mTMDGQpRJW_AajI2gZ2mC_bvAT-fO2D8 |
CitedBy_id | crossref_primary_10_1038_s41467_018_07918_z crossref_primary_10_1523_ENEURO_0179_21_2021 crossref_primary_10_1134_S1607672920040146 crossref_primary_10_1038_s42003_023_04806_1 crossref_primary_10_1016_j_neuron_2013_11_004 crossref_primary_10_1371_journal_pone_0116483 crossref_primary_10_1016_j_jmb_2014_09_028 crossref_primary_10_31857_S1026347024030082 crossref_primary_10_1016_j_cell_2012_07_036 crossref_primary_10_1073_pnas_1420984111 crossref_primary_10_1016_j_pneurobio_2022_102369 crossref_primary_10_1016_j_mcn_2016_12_002 crossref_primary_10_1007_s00018_017_2704_9 crossref_primary_10_1134_S1607672918060042 crossref_primary_10_1016_j_celrep_2020_02_001 crossref_primary_10_1085_jgp_201411179 crossref_primary_10_1523_ENEURO_0172_17_2017 crossref_primary_10_3389_fphys_2023_1122444 crossref_primary_10_1016_j_yjmcc_2015_03_013 crossref_primary_10_7554_eLife_02772 crossref_primary_10_1186_s13041_019_0465_0 crossref_primary_10_1016_j_lfs_2018_06_019 crossref_primary_10_1016_j_celrep_2015_03_026 crossref_primary_10_1007_s10753_016_0320_8 crossref_primary_10_1152_jn_00604_2017 crossref_primary_10_1371_journal_pone_0169572 crossref_primary_10_1085_jgp_201411182 crossref_primary_10_3389_fnins_2018_00560 crossref_primary_10_18097_BMCRM00034 crossref_primary_10_3892_ijmm_2024_5405 crossref_primary_10_1111_bph_13913 crossref_primary_10_1007_s00424_020_02375_4 crossref_primary_10_1124_pr_118_015917 crossref_primary_10_1523_JNEUROSCI_0251_23_2023 crossref_primary_10_2139_ssrn_3287790 crossref_primary_10_3389_fnagi_2023_1098510 crossref_primary_10_1016_j_brs_2021_03_008 crossref_primary_10_1113_jphysiol_2012_240838 crossref_primary_10_3390_biomedicines10020449 crossref_primary_10_1093_schbul_sbs197 crossref_primary_10_1177_07487304211059770 crossref_primary_10_1042_BJ20130348 crossref_primary_10_1016_j_yjmcc_2013_11_002 crossref_primary_10_1212_WNL_0000000000004246 crossref_primary_10_1186_s12576_021_00807_z crossref_primary_10_1371_journal_pone_0099376 crossref_primary_10_1371_journal_pone_0247801 crossref_primary_10_1007_s13105_013_0292_1 crossref_primary_10_1016_j_ajhg_2012_10_024 crossref_primary_10_1016_j_cell_2015_03_029 crossref_primary_10_1111_jeu_13030 crossref_primary_10_7554_eLife_12637 crossref_primary_10_3389_fnmol_2024_1468438 crossref_primary_10_1371_journal_pone_0086734 crossref_primary_10_1016_j_yjmcc_2016_05_006 crossref_primary_10_1016_j_jmb_2021_166941 crossref_primary_10_1074_jbc_RA118_003153 crossref_primary_10_3390_ijms22105268 crossref_primary_10_1038_srep38788 crossref_primary_10_5607_en_2017_26_4_179 crossref_primary_10_3389_fphys_2018_00508 crossref_primary_10_1038_srep41791 crossref_primary_10_1073_pnas_1901067116 crossref_primary_10_1007_s00424_015_1767_4 crossref_primary_10_1152_jn_00511_2016 crossref_primary_10_1073_pnas_1502291112 crossref_primary_10_1042_BST20220435 crossref_primary_10_1073_pnas_1303672110 crossref_primary_10_14814_phy2_13373 crossref_primary_10_3389_fncel_2019_00360 crossref_primary_10_1007_s00424_016_1790_0 crossref_primary_10_1134_S1607672915060125 crossref_primary_10_1371_journal_pone_0067989 crossref_primary_10_5607_en22045 crossref_primary_10_1113_JP281152 crossref_primary_10_1085_jgp_201711957 crossref_primary_10_1152_ajpcell_00397_2021 crossref_primary_10_1523_JNEUROSCI_2293_14_2015 crossref_primary_10_1016_j_isci_2023_106363 crossref_primary_10_1074_jbc_RA117_000326 crossref_primary_10_1097_WNR_0000000000000967 crossref_primary_10_1134_S1062359023606249 crossref_primary_10_1007_s12311_017_0867_4 crossref_primary_10_1096_fj_201600797RR crossref_primary_10_1085_jgp_201311015 crossref_primary_10_1080_19336950_2015_1058455 crossref_primary_10_1002_mnfr_201400479 crossref_primary_10_15252_embj_2018101452 crossref_primary_10_1007_s00441_014_1897_6 crossref_primary_10_1016_j_tice_2021_101546 crossref_primary_10_1016_j_neuron_2017_08_010 crossref_primary_10_1152_physrev_00039_2011 crossref_primary_10_1093_brain_awt138 crossref_primary_10_1016_j_apsb_2020_12_003 crossref_primary_10_1038_s41598_018_28855_3 crossref_primary_10_1016_j_apsb_2023_05_012 crossref_primary_10_1016_j_brainresbull_2023_110792 crossref_primary_10_1371_journal_pone_0182778 crossref_primary_10_3390_biom12030352 crossref_primary_10_1113_jphysiol_2014_275107 crossref_primary_10_7554_eLife_00862 crossref_primary_10_1038_nn_3468 crossref_primary_10_3390_ijms22094703 crossref_primary_10_1016_j_pharmthera_2013_01_012 crossref_primary_10_1134_S1607672921050215 crossref_primary_10_1371_journal_pone_0142160 crossref_primary_10_1007_s12035_023_03869_9 crossref_primary_10_1371_journal_pone_0192508 crossref_primary_10_1016_j_ceca_2024_102889 crossref_primary_10_1016_j_neuroscience_2015_09_049 crossref_primary_10_9729_AM_2018_48_4_110 crossref_primary_10_1016_j_ceca_2017_12_003 crossref_primary_10_18097_pbmc20216701017 crossref_primary_10_1016_j_schres_2024_01_024 crossref_primary_10_3390_cells9030543 crossref_primary_10_1007_s00424_014_1603_2 crossref_primary_10_7554_eLife_47106 crossref_primary_10_1113_jphysiol_2013_251660 crossref_primary_10_1016_j_neulet_2024_138032 crossref_primary_10_1113_EP086822 crossref_primary_10_1007_s10517_017_3694_1 crossref_primary_10_4161_chan_29531 crossref_primary_10_1080_19336950_2017_1307489 crossref_primary_10_15252_embr_201948097 crossref_primary_10_1080_01677063_2018_1506781 crossref_primary_10_18632_oncotarget_4979 crossref_primary_10_3390_ijms23031580 crossref_primary_10_1111_nan_12014 crossref_primary_10_1126_scisignal_2004184 crossref_primary_10_1085_jgp_202012704 crossref_primary_10_3389_fncel_2018_00101 |
Cites_doi | 10.1007/978-1-4899-1775-1_7 10.1038/nn.2821 10.1152/jn.1961.24.3.243 10.1523/JNEUROSCI.5265-03.2004 10.1113/jphysiol.2004.062661 10.1016/0006-8993(87)91631-3 10.1016/j.cell.2008.09.003 10.1073/pnas.0911935106 10.1038/nn2041 10.1113/jphysiol.2009.176198 10.1113/jphysiol.1984.sp015378 10.1523/JNEUROSCI.4106-05.2006 10.1523/JNEUROSCI.22-11-04412.2002 10.1016/S0301-0082(99)00027-1 10.1016/0306-4522(93)90460-W 10.1111/j.1469-7793.1999.00135.x 10.1038/nn1811 10.2144/05385MT02 10.1038/nn1449 10.1038/42571 10.1113/jphysiol.1987.sp016653 10.1074/jbc.M109.012120 10.1016/0896-6273(93)90076-4 10.1113/jphysiol.1993.sp019495 10.1038/nmeth1005-779 10.1113/jphysiol.1987.sp016493 10.1038/296746a0 10.1038/307693a0 10.1113/jphysiol.2010.189506 10.1016/j.neuron.2004.09.007 10.1016/S0896-6273(00)00164-1 10.1038/nrn2148 10.1016/0163-7258(95)00018-C 10.1073/pnas.0903304106 10.1038/nrn920 10.1016/S0166-2236(03)00068-7 10.1073/pnas.0602979103 10.1523/JNEUROSCI.22-23-10163.2002 10.1016/S0896-6273(03)00507-5 10.1126/science.1106148 10.1023/A:1008906225285 10.1016/j.neuron.2008.09.001 10.1016/j.neuron.2006.08.035 10.1074/jbc.M109.068544 10.1016/j.neuron.2005.10.025 10.1085/jgp.94.4.719 10.1146/annurev.neuro.31.060407.125639 10.1016/j.coph.2006.11.005 10.1126/science.1163518 10.1038/nature07313 10.1016/j.neuron.2009.03.003 10.1098/rspb.1952.0054 10.1113/jphysiol.1987.sp016517 10.1523/JNEUROSCI.5546-08.2009 10.1074/jbc.C109.000869 10.1016/j.nbd.2006.09.002 10.1146/annurev.physiol.67.032003.154341 10.1523/JNEUROSCI.21-24-09585.2001 10.1007/s00424-009-0684-9 10.1113/jphysiol.1991.sp018674 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Apr 12, 2012 2012 Elsevier Inc. All rights reserved. 2012 |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Apr 12, 2012 – notice: 2012 Elsevier Inc. All rights reserved. 2012 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2012.01.033 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 192 |
ExternalDocumentID | PMC3329964 3235656741 22500639 10_1016_j_neuron_2012_01_033 S0896627312002711 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R37 MH065334 – fundername: NIMH NIH HHS grantid: R01 MH065334 – fundername: NINDS NIH HHS grantid: R01 NS069229 – fundername: NINDS NIH HHS grantid: NS069229 – fundername: NIMH NIH HHS grantid: MH065334 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGHFR AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- AAFWJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 ITC MVM OZT R2- X7M ZGI ZKB CGR CUY CVF ECM EFKBS EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c590t-1c399f93da8eb7d485694fc8f3517c256128223d0a321d527cfd0c9f84993643 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 17:47:19 EDT 2025 Fri Jul 11 02:50:56 EDT 2025 Mon Jul 21 09:19:07 EDT 2025 Fri Jul 25 11:06:51 EDT 2025 Mon Jul 21 05:18:45 EDT 2025 Thu Apr 24 23:00:17 EDT 2025 Tue Jul 01 01:16:04 EDT 2025 Fri Feb 23 02:11:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-1c399f93da8eb7d485694fc8f3517c256128223d0a321d527cfd0c9f84993643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Present address: Brown University, Providence, RI 02906, USA. These authors made equal contribution |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627312002711 |
PMID | 22500639 |
PQID | 1503850367 |
PQPubID | 2031076 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3329964 proquest_miscellaneous_1014102368 proquest_miscellaneous_1001950709 proquest_journals_1503850367 pubmed_primary_22500639 crossref_citationtrail_10_1016_j_neuron_2012_01_033 crossref_primary_10_1016_j_neuron_2012_01_033 elsevier_sciencedirect_doi_10_1016_j_neuron_2012_01_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-12 |
PublicationDateYYYYMMDD | 2012-04-12 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Stackman, Hammond, Linardatos, Gerlach, Maylie, Adelman, Tzounopoulos (bib52) 2002; 22 Ngo-Anh, Bloodgood, Lin, Sabatini, Maylie, Adelman (bib37) 2005; 8 Higashi, Tanaka, Inokuchi, Nishi (bib20) 1993; 55 Lingle, Solaro, Prakriya, Ding (bib32) 1996; 4 Adams, Constanti, Brown, Clark (bib1) 1982; 296 Huang, Rock, Harfe, Cheng, Huang, Jan, Jan (bib24) 2009; 106 Hammond, Bond, Strassmaier, Ngo-Anh, Adelman, Maylie, Stackman (bib18) 2006; 26 Hu, Shao, Chavoshy, Gu, Trieb, Behrens, Laake, Pongs, Knaus, Ottersen, Storm (bib23) 2001; 21 Lancaster, Nicoll (bib30) 1987; 389 Yang, Cho, Koo, Tak, Cho, Shim, Park, Lee, Lee, Kim (bib60) 2008; 455 Palma, Amici, Sobrero, Spinelli, Di Angelantonio, Ragozzino, Mascia, Scoppetta, Esposito, Miledi, Eusebi (bib39) 2006; 103 Shao, Halvorsrud, Borg-Graham, Storm (bib51) 1999; 521 Frings, Reuter, Kleene (bib15) 2000; 60 Scott, Sutton, Griffin, Stapleton, Currie (bib50) 1995; 66 Rivera, Voipio, Thomas-Crusells, Li, Emri, Sipilä, Payne, Minichiello, Saarma, Kaila (bib44) 2004; 24 De Koninck (bib12) 2007; 7 Storm (bib56) 1987; 435 Raffaelli, Saviane, Mohajerani, Pedarzani, Cherubini (bib43) 2004; 557 Dan, Poo (bib11) 2004; 44 Manoury, Tamuleviciute, Tammaro (bib34) 2010; 588 Migliore, Hoffman, Magee, Johnston (bib35) 1999; 7 Hoffman, Magee, Colbert, Johnston (bib22) 1997; 387 Nabekura, Ueno, Okabe, Furuta, Iwaki, Shimizu-Okabe, Fukuda, Akaike (bib36) 2002; 22 Bonislawski, Schwarzbach, Cohen (bib7) 2007; 25 Fiumelli, Cancedda, Poo (bib14) 2005; 48 Ousingsawat, Martins, Schreiber, Rock, Harfe, Kunzelmann (bib38) 2009; 284 Fakler, Adelman (bib13) 2008; 59 Bean (bib3) 2007; 8 Romanenko, Catalán, Brown, Putzier, Hartzell, Marmorstein, Gonzalez-Begne, Rock, Harfe, Melvin (bib47) 2010; 285 Woodin, Ganguly, Poo (bib59) 2003; 39 Fu, Chen, Sahin, Zhao, Shi, Bikoff, Lai, Yung, Fu, Greenberg, Ip (bib16) 2007; 10 Geiger, Jonas (bib17) 2000; 28 Bormann, Hamill, Sakmann (bib8) 1987; 385 Korn, Bolden, Horn (bib29) 1991; 439 Caporale, Dan (bib9) 2008; 31 Hodgkin, Huxley (bib21) 1952; 140 Stöhr, Heisig, Benz, Schöberl, Milenkovic, Strauss, Aartsen, Wijnholds, Weber, Schulz (bib54) 2009; 29 Petersen, Maruyama (bib41) 1984; 307 Ben-Ari (bib4) 2002; 3 Blaesse, Airaksinen, Rivera, Kaila (bib6) 2009; 61 Sarbassov, Guertin, Ali, Sabatini (bib48) 2005; 307 Hartzell, Putzier, Arreola (bib19) 2005; 67 Barnes, Hille (bib2) 1989; 94 Hwang, Blair, Britton, O'Driscoll, Hennig, Bayguinov, Rock, Harfe, Sanders, Ward (bib25) 2009; 587 Lin, Luján, Watanabe, Adelman, Maylie (bib31) 2008; 11 Wang, Deriy, Foss, Huang, Lamb, Kaetzel, Bindokas, Marks, Nelson (bib58) 2006; 52 Kandel, Spencer (bib26) 1961; 24 Madison, Nicoll (bib33) 1984; 354 Kittler, Heninger, Franke, Habermann, Buchholz (bib28) 2005; 2 Schroeder, Cheng, Jan, Jan (bib49) 2008; 134 Billig, Pal, Fidzinski, Jentsch (bib5) 2011; 14 Kimura, Tamura, Murakami (bib27) 2005; 38 Robitaille, Garcia, Kaczorowski, Charlton (bib45) 1993; 11 Rock, O'Neal, Gabriel, Randell, Harfe, Boucher, Grubb (bib46) 2009; 284 Sugita, Tanaka, North (bib57) 1993; 460 Stephan, Shum, Hirsh, Cygnar, Reisert, Zhao (bib53) 2009; 106 Storm (bib55) 1987; 385 Pifferi, Dibattista, Menini (bib42) 2009; 458 Caputo, Caci, Ferrera, Pedemonte, Barsanti, Sondo, Pfeffer, Ravazzolo, Zegarra-Moran, Galietta (bib10) 2008; 322 Payne, Rivera, Voipio, Kaila (bib40) 2003; 26 Fiumelli (10.1016/j.neuron.2012.01.033_bib14) 2005; 48 Sugita (10.1016/j.neuron.2012.01.033_bib57) 1993; 460 Petersen (10.1016/j.neuron.2012.01.033_bib41) 1984; 307 Stöhr (10.1016/j.neuron.2012.01.033_bib54) 2009; 29 Blaesse (10.1016/j.neuron.2012.01.033_bib6) 2009; 61 Hammond (10.1016/j.neuron.2012.01.033_bib18) 2006; 26 Hoffman (10.1016/j.neuron.2012.01.033_bib22) 1997; 387 Shao (10.1016/j.neuron.2012.01.033_bib51) 1999; 521 Frings (10.1016/j.neuron.2012.01.033_bib15) 2000; 60 Wang (10.1016/j.neuron.2012.01.033_bib58) 2006; 52 Nabekura (10.1016/j.neuron.2012.01.033_bib36) 2002; 22 Bonislawski (10.1016/j.neuron.2012.01.033_bib7) 2007; 25 Palma (10.1016/j.neuron.2012.01.033_bib39) 2006; 103 Hartzell (10.1016/j.neuron.2012.01.033_bib19) 2005; 67 Lin (10.1016/j.neuron.2012.01.033_bib31) 2008; 11 Migliore (10.1016/j.neuron.2012.01.033_bib35) 1999; 7 Pifferi (10.1016/j.neuron.2012.01.033_bib42) 2009; 458 Kimura (10.1016/j.neuron.2012.01.033_bib27) 2005; 38 Woodin (10.1016/j.neuron.2012.01.033_bib59) 2003; 39 Payne (10.1016/j.neuron.2012.01.033_bib40) 2003; 26 Hu (10.1016/j.neuron.2012.01.033_bib23) 2001; 21 Storm (10.1016/j.neuron.2012.01.033_bib56) 1987; 435 Ousingsawat (10.1016/j.neuron.2012.01.033_bib38) 2009; 284 Geiger (10.1016/j.neuron.2012.01.033_bib17) 2000; 28 Manoury (10.1016/j.neuron.2012.01.033_bib34) 2010; 588 Lancaster (10.1016/j.neuron.2012.01.033_bib30) 1987; 389 Madison (10.1016/j.neuron.2012.01.033_bib33) 1984; 354 Bormann (10.1016/j.neuron.2012.01.033_bib8) 1987; 385 Higashi (10.1016/j.neuron.2012.01.033_bib20) 1993; 55 Romanenko (10.1016/j.neuron.2012.01.033_bib47) 2010; 285 Barnes (10.1016/j.neuron.2012.01.033_bib2) 1989; 94 Billig (10.1016/j.neuron.2012.01.033_bib5) 2011; 14 Hwang (10.1016/j.neuron.2012.01.033_bib25) 2009; 587 Robitaille (10.1016/j.neuron.2012.01.033_bib45) 1993; 11 Bean (10.1016/j.neuron.2012.01.033_bib3) 2007; 8 Fakler (10.1016/j.neuron.2012.01.033_bib13) 2008; 59 Adams (10.1016/j.neuron.2012.01.033_bib1) 1982; 296 Lingle (10.1016/j.neuron.2012.01.033_bib32) 1996; 4 Stackman (10.1016/j.neuron.2012.01.033_bib52) 2002; 22 Huang (10.1016/j.neuron.2012.01.033_bib24) 2009; 106 Kandel (10.1016/j.neuron.2012.01.033_bib26) 1961; 24 Rock (10.1016/j.neuron.2012.01.033_bib46) 2009; 284 Kittler (10.1016/j.neuron.2012.01.033_bib28) 2005; 2 Raffaelli (10.1016/j.neuron.2012.01.033_bib43) 2004; 557 Hodgkin (10.1016/j.neuron.2012.01.033_bib21) 1952; 140 Caporale (10.1016/j.neuron.2012.01.033_bib9) 2008; 31 De Koninck (10.1016/j.neuron.2012.01.033_bib12) 2007; 7 Caputo (10.1016/j.neuron.2012.01.033_bib10) 2008; 322 Ben-Ari (10.1016/j.neuron.2012.01.033_bib4) 2002; 3 Scott (10.1016/j.neuron.2012.01.033_bib50) 1995; 66 Ngo-Anh (10.1016/j.neuron.2012.01.033_bib37) 2005; 8 Rivera (10.1016/j.neuron.2012.01.033_bib44) 2004; 24 Stephan (10.1016/j.neuron.2012.01.033_bib53) 2009; 106 Fu (10.1016/j.neuron.2012.01.033_bib16) 2007; 10 Sarbassov (10.1016/j.neuron.2012.01.033_bib48) 2005; 307 Yang (10.1016/j.neuron.2012.01.033_bib60) 2008; 455 Korn (10.1016/j.neuron.2012.01.033_bib29) 1991; 439 Schroeder (10.1016/j.neuron.2012.01.033_bib49) 2008; 134 Storm (10.1016/j.neuron.2012.01.033_bib55) 1987; 385 Dan (10.1016/j.neuron.2012.01.033_bib11) 2004; 44 |
References_xml | – volume: 4 start-page: 261 year: 1996 end-page: 301 ident: bib32 article-title: Calcium-activated potassium channels in adrenal chromaffin cells publication-title: Ion Channels – volume: 134 start-page: 1019 year: 2008 end-page: 1029 ident: bib49 article-title: Expression cloning of TMEM16A as a calcium-activated chloride channel subunit publication-title: Cell – volume: 26 start-page: 1844 year: 2006 end-page: 1853 ident: bib18 article-title: Small-conductance Ca publication-title: J. Neurosci. – volume: 25 start-page: 163 year: 2007 end-page: 169 ident: bib7 article-title: Brain injury impairs dentate gyrus inhibitory efficacy publication-title: Neurobiol. Dis. – volume: 24 start-page: 243 year: 1961 end-page: 259 ident: bib26 article-title: Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing publication-title: J. Neurophysiol. – volume: 2 start-page: 779 year: 2005 end-page: 784 ident: bib28 article-title: Production of endoribonuclease-prepared short interfering RNAs for gene silencing in mammalian cells publication-title: Nat. Methods – volume: 31 start-page: 25 year: 2008 end-page: 46 ident: bib9 article-title: Spike timing-dependent plasticity: a Hebbian learning rule publication-title: Annu. Rev. Neurosci. – volume: 385 start-page: 243 year: 1987 end-page: 286 ident: bib8 article-title: Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones publication-title: J. Physiol. – volume: 140 start-page: 177 year: 1952 end-page: 183 ident: bib21 article-title: Propagation of electrical signals along giant nerve fibers publication-title: Proc. R. Soc. Lond. B Biol. Sci. – volume: 24 start-page: 4683 year: 2004 end-page: 4691 ident: bib44 article-title: Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2 publication-title: J. Neurosci. – volume: 307 start-page: 1098 year: 2005 end-page: 1101 ident: bib48 article-title: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex publication-title: Science – volume: 38 start-page: 797 year: 2005 end-page: 806 ident: bib27 article-title: Evaluation of the performance of two carbodiimide-based cyanine dyes for detecting changes in mRNA expression with DNA microarrays publication-title: Biotechniques – volume: 10 start-page: 67 year: 2007 end-page: 76 ident: bib16 article-title: Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism publication-title: Nat. Neurosci. – volume: 284 start-page: 28698 year: 2009 end-page: 28703 ident: bib38 article-title: Loss of TMEM16A causes a defect in epithelial Ca publication-title: J. Biol. Chem. – volume: 521 start-page: 135 year: 1999 end-page: 146 ident: bib51 article-title: The role of BK-type Ca publication-title: J. Physiol. – volume: 14 start-page: 763 year: 2011 end-page: 769 ident: bib5 article-title: Ca publication-title: Nat. Neurosci. – volume: 8 start-page: 451 year: 2007 end-page: 465 ident: bib3 article-title: The action potential in mammalian central neurons publication-title: Nat. Rev. Neurosci. – volume: 67 start-page: 719 year: 2005 end-page: 758 ident: bib19 article-title: Calcium-activated chloride channels publication-title: Annu. Rev. Physiol. – volume: 28 start-page: 927 year: 2000 end-page: 939 ident: bib17 article-title: Dynamic control of presynaptic Ca( publication-title: Neuron – volume: 94 start-page: 719 year: 1989 end-page: 743 ident: bib2 article-title: Ionic channels of the inner segment of tiger salamander cone photoreceptors publication-title: J. Gen. Physiol. – volume: 588 start-page: 2305 year: 2010 end-page: 2314 ident: bib34 article-title: TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells publication-title: J. Physiol. – volume: 285 start-page: 12990 year: 2010 end-page: 13001 ident: bib47 article-title: Tmem16A encodes the Ca publication-title: J. Biol. Chem. – volume: 557 start-page: 147 year: 2004 end-page: 157 ident: bib43 article-title: BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus publication-title: J. Physiol. – volume: 26 start-page: 199 year: 2003 end-page: 206 ident: bib40 article-title: Cation-chloride co-transporters in neuronal communication, development and trauma publication-title: Trends Neurosci. – volume: 11 start-page: 170 year: 2008 end-page: 177 ident: bib31 article-title: SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses publication-title: Nat. Neurosci. – volume: 60 start-page: 247 year: 2000 end-page: 289 ident: bib15 article-title: Neuronal Ca publication-title: Prog. Neurobiol. – volume: 587 start-page: 4887 year: 2009 end-page: 4904 ident: bib25 article-title: Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles publication-title: J. Physiol. – volume: 389 start-page: 187 year: 1987 end-page: 203 ident: bib30 article-title: Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones publication-title: J. Physiol. – volume: 22 start-page: 10163 year: 2002 end-page: 10171 ident: bib52 article-title: Small conductance Ca publication-title: J. Neurosci. – volume: 11 start-page: 645 year: 1993 end-page: 655 ident: bib45 article-title: Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release publication-title: Neuron – volume: 103 start-page: 8465 year: 2006 end-page: 8468 ident: bib39 article-title: Anomalous levels of Cl publication-title: Proc. Natl. Acad. Sci. USA – volume: 106 start-page: 21413 year: 2009 end-page: 21418 ident: bib24 article-title: Studies on expression and function of the TMEM16A calcium-activated chloride channel publication-title: Proc. Natl. Acad. Sci. USA – volume: 322 start-page: 590 year: 2008 end-page: 594 ident: bib10 article-title: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity publication-title: Science – volume: 354 start-page: 319 year: 1984 end-page: 331 ident: bib33 article-title: Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro publication-title: J. Physiol. – volume: 48 start-page: 773 year: 2005 end-page: 786 ident: bib14 article-title: Modulation of GABAergic transmission by activity via postsynaptic Ca publication-title: Neuron – volume: 435 start-page: 387 year: 1987 end-page: 392 ident: bib56 article-title: Intracellular injection of a Ca publication-title: Brain Res. – volume: 59 start-page: 873 year: 2008 end-page: 881 ident: bib13 article-title: Control of K( publication-title: Neuron – volume: 29 start-page: 6809 year: 2009 end-page: 6818 ident: bib54 article-title: TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals publication-title: J. Neurosci. – volume: 458 start-page: 1023 year: 2009 end-page: 1038 ident: bib42 article-title: TMEM16B induces chloride currents activated by calcium in mammalian cells publication-title: Pflugers Arch. – volume: 52 start-page: 321 year: 2006 end-page: 333 ident: bib58 article-title: CLC-3 channels modulate excitatory synaptic transmission in hippocampal neurons publication-title: Neuron – volume: 296 start-page: 746 year: 1982 end-page: 749 ident: bib1 article-title: Intracellular Ca publication-title: Nature – volume: 66 start-page: 535 year: 1995 end-page: 565 ident: bib50 article-title: Aspects of calcium-activated chloride currents: a neuronal perspective publication-title: Pharmacol. Ther. – volume: 55 start-page: 129 year: 1993 end-page: 138 ident: bib20 article-title: Ionic mechanisms underlying the depolarizing and hyperpolarizing afterpotentials of single spike in guinea-pig cingulate cortical neurons publication-title: Neuroscience – volume: 455 start-page: 1210 year: 2008 end-page: 1215 ident: bib60 article-title: TMEM16A confers receptor-activated calcium-dependent chloride conductance publication-title: Nature – volume: 460 start-page: 705 year: 1993 end-page: 718 ident: bib57 article-title: Membrane properties and synaptic potentials of three types of neurone in rat lateral amygdala publication-title: J. Physiol. – volume: 385 start-page: 733 year: 1987 end-page: 759 ident: bib55 article-title: Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells publication-title: J. Physiol. – volume: 3 start-page: 728 year: 2002 end-page: 739 ident: bib4 article-title: Excitatory actions of gaba during development: the nature of the nurture publication-title: Nat. Rev. Neurosci. – volume: 7 start-page: 5 year: 1999 end-page: 15 ident: bib35 article-title: Role of an A-type K publication-title: J. Comput. Neurosci. – volume: 21 start-page: 9585 year: 2001 end-page: 9597 ident: bib23 article-title: Presynaptic Ca publication-title: J. Neurosci. – volume: 44 start-page: 23 year: 2004 end-page: 30 ident: bib11 article-title: Spike timing-dependent plasticity of neural circuits publication-title: Neuron – volume: 61 start-page: 820 year: 2009 end-page: 838 ident: bib6 article-title: Cation-chloride cotransporters and neuronal function publication-title: Neuron – volume: 387 start-page: 869 year: 1997 end-page: 875 ident: bib22 article-title: K publication-title: Nature – volume: 439 start-page: 423 year: 1991 end-page: 437 ident: bib29 article-title: Control of action potentials and Ca publication-title: J. Physiol. – volume: 106 start-page: 11776 year: 2009 end-page: 11781 ident: bib53 article-title: ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification publication-title: Proc. Natl. Acad. Sci. USA – volume: 307 start-page: 693 year: 1984 end-page: 696 ident: bib41 article-title: Calcium-activated potassium channels and their role in secretion publication-title: Nature – volume: 39 start-page: 807 year: 2003 end-page: 820 ident: bib59 article-title: Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl publication-title: Neuron – volume: 8 start-page: 642 year: 2005 end-page: 649 ident: bib37 article-title: SK channels and NMDA receptors form a Ca publication-title: Nat. Neurosci. – volume: 22 start-page: 4412 year: 2002 end-page: 4417 ident: bib36 article-title: Reduction of KCC2 expression and GABA publication-title: J. Neurosci. – volume: 284 start-page: 14875 year: 2009 end-page: 14880 ident: bib46 article-title: Transmembrane protein 16A (TMEM16A) is a Ca publication-title: J. Biol. Chem. – volume: 7 start-page: 93 year: 2007 end-page: 99 ident: bib12 article-title: Altered chloride homeostasis in neurological disorders: a new target publication-title: Curr. Opin. Pharmacol. – volume: 4 start-page: 261 year: 1996 ident: 10.1016/j.neuron.2012.01.033_bib32 article-title: Calcium-activated potassium channels in adrenal chromaffin cells publication-title: Ion Channels doi: 10.1007/978-1-4899-1775-1_7 – volume: 14 start-page: 763 year: 2011 ident: 10.1016/j.neuron.2012.01.033_bib5 article-title: Ca2+-activated Cl− currents are dispensable for olfaction publication-title: Nat. Neurosci. doi: 10.1038/nn.2821 – volume: 24 start-page: 243 year: 1961 ident: 10.1016/j.neuron.2012.01.033_bib26 article-title: Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing publication-title: J. Neurophysiol. doi: 10.1152/jn.1961.24.3.243 – volume: 24 start-page: 4683 year: 2004 ident: 10.1016/j.neuron.2012.01.033_bib44 article-title: Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5265-03.2004 – volume: 557 start-page: 147 year: 2004 ident: 10.1016/j.neuron.2012.01.033_bib43 article-title: BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus publication-title: J. Physiol. doi: 10.1113/jphysiol.2004.062661 – volume: 435 start-page: 387 year: 1987 ident: 10.1016/j.neuron.2012.01.033_bib56 article-title: Intracellular injection of a Ca2+ chelator inhibits spike repolarization in hippocampal neurons publication-title: Brain Res. doi: 10.1016/0006-8993(87)91631-3 – volume: 134 start-page: 1019 year: 2008 ident: 10.1016/j.neuron.2012.01.033_bib49 article-title: Expression cloning of TMEM16A as a calcium-activated chloride channel subunit publication-title: Cell doi: 10.1016/j.cell.2008.09.003 – volume: 106 start-page: 21413 year: 2009 ident: 10.1016/j.neuron.2012.01.033_bib24 article-title: Studies on expression and function of the TMEM16A calcium-activated chloride channel publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0911935106 – volume: 11 start-page: 170 year: 2008 ident: 10.1016/j.neuron.2012.01.033_bib31 article-title: SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses publication-title: Nat. Neurosci. doi: 10.1038/nn2041 – volume: 587 start-page: 4887 year: 2009 ident: 10.1016/j.neuron.2012.01.033_bib25 article-title: Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles publication-title: J. Physiol. doi: 10.1113/jphysiol.2009.176198 – volume: 354 start-page: 319 year: 1984 ident: 10.1016/j.neuron.2012.01.033_bib33 article-title: Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro publication-title: J. Physiol. doi: 10.1113/jphysiol.1984.sp015378 – volume: 26 start-page: 1844 year: 2006 ident: 10.1016/j.neuron.2012.01.033_bib18 article-title: Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4106-05.2006 – volume: 22 start-page: 4412 year: 2002 ident: 10.1016/j.neuron.2012.01.033_bib36 article-title: Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-11-04412.2002 – volume: 60 start-page: 247 year: 2000 ident: 10.1016/j.neuron.2012.01.033_bib15 article-title: Neuronal Ca2+-activated Cl− channels—homing in on an elusive channel species publication-title: Prog. Neurobiol. doi: 10.1016/S0301-0082(99)00027-1 – volume: 55 start-page: 129 year: 1993 ident: 10.1016/j.neuron.2012.01.033_bib20 article-title: Ionic mechanisms underlying the depolarizing and hyperpolarizing afterpotentials of single spike in guinea-pig cingulate cortical neurons publication-title: Neuroscience doi: 10.1016/0306-4522(93)90460-W – volume: 521 start-page: 135 year: 1999 ident: 10.1016/j.neuron.2012.01.033_bib51 article-title: The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells publication-title: J. Physiol. doi: 10.1111/j.1469-7793.1999.00135.x – volume: 10 start-page: 67 year: 2007 ident: 10.1016/j.neuron.2012.01.033_bib16 article-title: Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism publication-title: Nat. Neurosci. doi: 10.1038/nn1811 – volume: 38 start-page: 797 year: 2005 ident: 10.1016/j.neuron.2012.01.033_bib27 article-title: Evaluation of the performance of two carbodiimide-based cyanine dyes for detecting changes in mRNA expression with DNA microarrays publication-title: Biotechniques doi: 10.2144/05385MT02 – volume: 8 start-page: 642 year: 2005 ident: 10.1016/j.neuron.2012.01.033_bib37 article-title: SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines publication-title: Nat. Neurosci. doi: 10.1038/nn1449 – volume: 387 start-page: 869 year: 1997 ident: 10.1016/j.neuron.2012.01.033_bib22 article-title: K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons publication-title: Nature doi: 10.1038/42571 – volume: 389 start-page: 187 year: 1987 ident: 10.1016/j.neuron.2012.01.033_bib30 article-title: Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones publication-title: J. Physiol. doi: 10.1113/jphysiol.1987.sp016653 – volume: 284 start-page: 28698 year: 2009 ident: 10.1016/j.neuron.2012.01.033_bib38 article-title: Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.012120 – volume: 11 start-page: 645 year: 1993 ident: 10.1016/j.neuron.2012.01.033_bib45 article-title: Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release publication-title: Neuron doi: 10.1016/0896-6273(93)90076-4 – volume: 460 start-page: 705 year: 1993 ident: 10.1016/j.neuron.2012.01.033_bib57 article-title: Membrane properties and synaptic potentials of three types of neurone in rat lateral amygdala publication-title: J. Physiol. doi: 10.1113/jphysiol.1993.sp019495 – volume: 2 start-page: 779 year: 2005 ident: 10.1016/j.neuron.2012.01.033_bib28 article-title: Production of endoribonuclease-prepared short interfering RNAs for gene silencing in mammalian cells publication-title: Nat. Methods doi: 10.1038/nmeth1005-779 – volume: 385 start-page: 243 year: 1987 ident: 10.1016/j.neuron.2012.01.033_bib8 article-title: Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones publication-title: J. Physiol. doi: 10.1113/jphysiol.1987.sp016493 – volume: 296 start-page: 746 year: 1982 ident: 10.1016/j.neuron.2012.01.033_bib1 article-title: Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones publication-title: Nature doi: 10.1038/296746a0 – volume: 307 start-page: 693 year: 1984 ident: 10.1016/j.neuron.2012.01.033_bib41 article-title: Calcium-activated potassium channels and their role in secretion publication-title: Nature doi: 10.1038/307693a0 – volume: 588 start-page: 2305 year: 2010 ident: 10.1016/j.neuron.2012.01.033_bib34 article-title: TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.189506 – volume: 44 start-page: 23 year: 2004 ident: 10.1016/j.neuron.2012.01.033_bib11 article-title: Spike timing-dependent plasticity of neural circuits publication-title: Neuron doi: 10.1016/j.neuron.2004.09.007 – volume: 28 start-page: 927 year: 2000 ident: 10.1016/j.neuron.2012.01.033_bib17 article-title: Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons publication-title: Neuron doi: 10.1016/S0896-6273(00)00164-1 – volume: 8 start-page: 451 year: 2007 ident: 10.1016/j.neuron.2012.01.033_bib3 article-title: The action potential in mammalian central neurons publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2148 – volume: 66 start-page: 535 year: 1995 ident: 10.1016/j.neuron.2012.01.033_bib50 article-title: Aspects of calcium-activated chloride currents: a neuronal perspective publication-title: Pharmacol. Ther. doi: 10.1016/0163-7258(95)00018-C – volume: 106 start-page: 11776 year: 2009 ident: 10.1016/j.neuron.2012.01.033_bib53 article-title: ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0903304106 – volume: 3 start-page: 728 year: 2002 ident: 10.1016/j.neuron.2012.01.033_bib4 article-title: Excitatory actions of gaba during development: the nature of the nurture publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn920 – volume: 26 start-page: 199 year: 2003 ident: 10.1016/j.neuron.2012.01.033_bib40 article-title: Cation-chloride co-transporters in neuronal communication, development and trauma publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(03)00068-7 – volume: 103 start-page: 8465 year: 2006 ident: 10.1016/j.neuron.2012.01.033_bib39 article-title: Anomalous levels of Cl− transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0602979103 – volume: 22 start-page: 10163 year: 2002 ident: 10.1016/j.neuron.2012.01.033_bib52 article-title: Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-23-10163.2002 – volume: 39 start-page: 807 year: 2003 ident: 10.1016/j.neuron.2012.01.033_bib59 article-title: Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity publication-title: Neuron doi: 10.1016/S0896-6273(03)00507-5 – volume: 307 start-page: 1098 year: 2005 ident: 10.1016/j.neuron.2012.01.033_bib48 article-title: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex publication-title: Science doi: 10.1126/science.1106148 – volume: 7 start-page: 5 year: 1999 ident: 10.1016/j.neuron.2012.01.033_bib35 article-title: Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons publication-title: J. Comput. Neurosci. doi: 10.1023/A:1008906225285 – volume: 59 start-page: 873 year: 2008 ident: 10.1016/j.neuron.2012.01.033_bib13 article-title: Control of K(Ca) channels by calcium nano/microdomains publication-title: Neuron doi: 10.1016/j.neuron.2008.09.001 – volume: 52 start-page: 321 year: 2006 ident: 10.1016/j.neuron.2012.01.033_bib58 article-title: CLC-3 channels modulate excitatory synaptic transmission in hippocampal neurons publication-title: Neuron doi: 10.1016/j.neuron.2006.08.035 – volume: 285 start-page: 12990 year: 2010 ident: 10.1016/j.neuron.2012.01.033_bib47 article-title: Tmem16A encodes the Ca2+-activated Cl− channel in mouse submandibular salivary gland acinar cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.068544 – volume: 48 start-page: 773 year: 2005 ident: 10.1016/j.neuron.2012.01.033_bib14 article-title: Modulation of GABAergic transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function publication-title: Neuron doi: 10.1016/j.neuron.2005.10.025 – volume: 94 start-page: 719 year: 1989 ident: 10.1016/j.neuron.2012.01.033_bib2 article-title: Ionic channels of the inner segment of tiger salamander cone photoreceptors publication-title: J. Gen. Physiol. doi: 10.1085/jgp.94.4.719 – volume: 31 start-page: 25 year: 2008 ident: 10.1016/j.neuron.2012.01.033_bib9 article-title: Spike timing-dependent plasticity: a Hebbian learning rule publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.31.060407.125639 – volume: 7 start-page: 93 year: 2007 ident: 10.1016/j.neuron.2012.01.033_bib12 article-title: Altered chloride homeostasis in neurological disorders: a new target publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2006.11.005 – volume: 322 start-page: 590 year: 2008 ident: 10.1016/j.neuron.2012.01.033_bib10 article-title: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity publication-title: Science doi: 10.1126/science.1163518 – volume: 455 start-page: 1210 year: 2008 ident: 10.1016/j.neuron.2012.01.033_bib60 article-title: TMEM16A confers receptor-activated calcium-dependent chloride conductance publication-title: Nature doi: 10.1038/nature07313 – volume: 61 start-page: 820 year: 2009 ident: 10.1016/j.neuron.2012.01.033_bib6 article-title: Cation-chloride cotransporters and neuronal function publication-title: Neuron doi: 10.1016/j.neuron.2009.03.003 – volume: 140 start-page: 177 year: 1952 ident: 10.1016/j.neuron.2012.01.033_bib21 article-title: Propagation of electrical signals along giant nerve fibers publication-title: Proc. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rspb.1952.0054 – volume: 385 start-page: 733 year: 1987 ident: 10.1016/j.neuron.2012.01.033_bib55 article-title: Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells publication-title: J. Physiol. doi: 10.1113/jphysiol.1987.sp016517 – volume: 29 start-page: 6809 year: 2009 ident: 10.1016/j.neuron.2012.01.033_bib54 article-title: TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5546-08.2009 – volume: 284 start-page: 14875 year: 2009 ident: 10.1016/j.neuron.2012.01.033_bib46 article-title: Transmembrane protein 16A (TMEM16A) is a Ca2+-regulated Cl− secretory channel in mouse airways publication-title: J. Biol. Chem. doi: 10.1074/jbc.C109.000869 – volume: 25 start-page: 163 year: 2007 ident: 10.1016/j.neuron.2012.01.033_bib7 article-title: Brain injury impairs dentate gyrus inhibitory efficacy publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2006.09.002 – volume: 67 start-page: 719 year: 2005 ident: 10.1016/j.neuron.2012.01.033_bib19 article-title: Calcium-activated chloride channels publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.67.032003.154341 – volume: 21 start-page: 9585 year: 2001 ident: 10.1016/j.neuron.2012.01.033_bib23 article-title: Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-24-09585.2001 – volume: 458 start-page: 1023 year: 2009 ident: 10.1016/j.neuron.2012.01.033_bib42 article-title: TMEM16B induces chloride currents activated by calcium in mammalian cells publication-title: Pflugers Arch. doi: 10.1007/s00424-009-0684-9 – volume: 439 start-page: 423 year: 1991 ident: 10.1016/j.neuron.2012.01.033_bib29 article-title: Control of action potentials and Ca2+ influx by the Ca(2+)-dependent chloride current in mouse pituitary cells publication-title: J. Physiol. doi: 10.1113/jphysiol.1991.sp018674 |
SSID | ssj0014591 |
Score | 2.4403176 |
Snippet | Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 179 |
SubjectTerms | Action potential Action Potentials - physiology Animals Anoctamin-1 Anoctamins Calcium Calcium - metabolism Calcium channels Calcium Channels - metabolism Calcium influx chloride channels (calcium-gated) Chloride Channels - physiology Experiments Feedback Glutamic acid receptors (ionotropic) Hippocampus Hippocampus - cytology Hippocampus - metabolism Ion channels Learning Memory Mice N-Methyl-D-aspartic acid receptors Neurogenesis Neuromodulation Neurons Neurotransmitter release Pyramidal Cells - metabolism Receptors, N-Methyl-D-Aspartate - metabolism Synapses Synaptic Potentials - physiology Transmitters |
Title | Calcium-Activated Chloride Channels (CaCCs) Regulate Action Potential and Synaptic Response in Hippocampal Neurons |
URI | https://dx.doi.org/10.1016/j.neuron.2012.01.033 https://www.ncbi.nlm.nih.gov/pubmed/22500639 https://www.proquest.com/docview/1503850367 https://www.proquest.com/docview/1001950709 https://www.proquest.com/docview/1014102368 https://pubmed.ncbi.nlm.nih.gov/PMC3329964 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTUi8ILbxURiTkRCCB9MkthPnMURMFRMIbUP0zfJXtEydW63tQ_97zk5SURBM4iEPiS-Jk7PvLs7vfofQG2G0Ab_ZkMwwTpjinOhUOKKFVs7C5FIuLA18-ZpPvrPPUz7dQ_WQCxNglb3t72x6tNb9kXH_NseLth1fJqIM7OU0DTiDIub3UiZiEt_04_ZPAuNd1TwQJkF6SJ-LGK_IGRlYUMOKYPohofRv7unP8PN3FOUvbunsMXrUx5O46rp8iPacP0LHlYdv6dsNfosjwjMunR-hB13hyc0xuqvVzLTrW1KZWN7MWVxfByyedTjkG3joEn5Xq7pevscXXbl6h6uYA4G_zVcBYgR3Vd7iy41XYHYMiEW0rcOtx5N2sQAnCaZmhiP9h18-QVdnn67qCemrLxDDy2RFUgOxS1NSq4TThWWC5yVrjGgoTwuThaqaEFxQmyiapZZnhWlsYspGwDcUhTjnKdr3c--eI2xTVSRa65I6zbgzulQ6d6xMcpfA5fMRosM7l6ZnJg8FMmZygKDdyE5TMmhKJqkETY0Q2Z616Jg57pEvBnXKnREmwXncc-bJoH3Zz_ClTAOPDmx5MUKvt80wN8MPF-XdfL0MfNChym6RlP-SCUjbjOZihJ51A2r7OGBrYwgJXd8ZaluBwA2-2-Lb68gRTinEGTl78d8P_RI9DHsk0lqeoP3V3dq9gvhrpU_RQXV-8eP8NE60n8XiMdY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQQvCDZghQFGQggeTJ04n48lYupgmxArUt8sf0UL6txqbR_633PnJBUFwSQe8hJfEidn352d3_2OkDeF0Qb8Zs1ik6QsUWnKdFQ4pgutnIXJpRxuDZxfZOPvyedpOt0jVZ8Lg7DKzva3Nj1Y6-7MsPuaw0XTDC95USJ7uYgQZ5Bjfu8diAZyrN9wOv24_ZWQpG3ZPJBmKN7nzwWQVyCNRBpU3BKMPnAh_uaf_ow_f4dR_uKXTh6SB11ASUdtnx-RPecPyOHIw2L6ekPf0gDxDHvnB-RuW3lyc0huKjUzzfqajUyob-Ysra4QjGcdxYQDD12i7ypVVcv39Ftbr97RUUiCoF_nK8QYwVOVt_Ry4xXYHQNiAW7raOPpuFkswEuCrZnRwP_hl4_J5OTTpBqzrvwCM2nJVywyELzUpbCqcDq3SZFmZVKbohZplJsYy2pCdCEsVyKObBrnprbclHUBiygBgc4Tsu_n3h0RaiOVc611KZxOUmd0qXTmkpJnjsPtswER_TeXpqMmxwoZM9lj0H7IVlMSNSV5JEFTA8K2Vy1aao5b5PNenXJniEnwHrdcedxrX3ZTfCkjJNKBI8sH5PW2GSYn_nFR3s3XSySExjK7OS__JYNQ21hkxYA8bQfU9nXA2IYYErq-M9S2AkgOvtvim6tAEi4EBBpZ8uy_X_oVuTeenJ_Js9OLL8_JfWxhgePymOyvbtbuBQRjK_0yTLafe-AzUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium-Activated+Chloride+Channels+%28CaCCs%29+Regulate+Action+Potential+and+Synaptic+Response+in+Hippocampal+Neurons&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Huang%2C+Wendy+C&rft.au=Xiao%2C+Shaohua&rft.au=Huang%2C+Fen&rft.au=Harfe%2C+Brian+D&rft.date=2012-04-12&rft.issn=0896-6273&rft.volume=74&rft.issue=1&rft.spage=179&rft.epage=192&rft_id=info:doi/10.1016%2Fj.neuron.2012.01.033&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |