Cellular Automata Can Reduce Memory Requirements of Collective-State Computing
Various nonclassical approaches of distributed information processing, such as neural networks, reservoir computing (RC), vector symbolic architectures (VSAs), and others, employ the principle of collective-state computing. In this type of computing, the variables relevant in computation are superim...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 33; no. 6; pp. 2701 - 2713 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various nonclassical approaches of distributed information processing, such as neural networks, reservoir computing (RC), vector symbolic architectures (VSAs), and others, employ the principle of collective-state computing. In this type of computing, the variables relevant in computation are superimposed into a single high-dimensional state vector, the collective state. The variable encoding uses a fixed set of random patterns, which has to be stored and kept available during the computation. In this article, we show that an elementary cellular automaton with rule 90 (CA90) enables the space-time tradeoff for collective-state computing models that use random dense binary representations, i.e., memory requirements can be traded off with computation running CA90. We investigate the randomization behavior of CA90, in particular, the relation between the length of the randomization period and the size of the grid, and how CA90 preserves similarity in the presence of the initialization noise. Based on these analyses, we discuss how to optimize a collective-state computing model, in which CA90 expands representations on the fly from short seed patterns-rather than storing the full set of random patterns. The CA90 expansion is applied and tested in concrete scenarios using RC and VSAs. Our experimental results show that collective-state computing with CA90 expansion performs similarly compared to traditional collective-state models, in which random patterns are generated initially by a pseudorandom number generator and then stored in a large memory. |
---|---|
AbstractList | Various nonclassical approaches of distributed information processing, such as neural networks, reservoir computing (RC), vector symbolic architectures (VSAs), and others, employ the principle of collective-state computing. In this type of computing, the variables relevant in computation are superimposed into a single high-dimensional state vector, the collective state. The variable encoding uses a fixed set of random patterns, which has to be stored and kept available during the computation. In this article, we show that an elementary cellular automaton with rule 90 (CA90) enables the space–time tradeoff for collective-state computing models that use random dense binary representations, i.e., memory requirements can be traded off with computation running CA90. We investigate the randomization behavior of CA90, in particular, the relation between the length of the randomization period and the size of the grid, and how CA90 preserves similarity in the presence of the initialization noise. Based on these analyses, we discuss how to optimize a collective-state computing model, in which CA90 expands representations on the fly from short seed patterns—rather than storing the full set of random patterns. The CA90 expansion is applied and tested in concrete scenarios using RC and VSAs. Our experimental results show that collective-state computing with CA90 expansion performs similarly compared to traditional collective-state models, in which random patterns are generated initially by a pseudorandom number generator and then stored in a large memory. Various nonclassical approaches of distributed information processing, such as neural networks, reservoir computing (RC), vector symbolic architectures (VSAs), and others, employ the principle of collective-state computing. In this type of computing, the variables relevant in computation are superimposed into a single high-dimensional state vector, the collective state. The variable encoding uses a fixed set of random patterns, which has to be stored and kept available during the computation. In this article, we show that an elementary cellular automaton with rule 90 (CA90) enables the space-time tradeoff for collective-state computing models that use random dense binary representations, i.e., memory requirements can be traded off with computation running CA90. We investigate the randomization behavior of CA90, in particular, the relation between the length of the randomization period and the size of the grid, and how CA90 preserves similarity in the presence of the initialization noise. Based on these analyses, we discuss how to optimize a collective-state computing model, in which CA90 expands representations on the fly from short seed patterns--rather than storing the full set of random patterns. The CA90 expansion is applied and tested in concrete scenarios using RC and VSAs. Our experimental results show that collective-state computing with CA90 expansion performs similarly compared to traditional collective-state models, in which random patterns are generated initially by a pseudorandom number generator and then stored in a large memory. Various non-classical approaches of distributed information processing, such as neural networks, reservoir computing, vector symbolic architectures, and others, employ the principle of collective-state computing. In this type of computing, the variables relevant in a computation are superimposed into a single high-dimensional state vector, the collective-state. The variable encoding uses a fixed set of random patterns, which has to be stored and kept available during the computation. Here we show that an elementary cellular automaton with rule 90 (CA90) enables space-time tradeoff for collective-state computing models that use random dense binary representations, i.e., memory requirements can be traded off with computation running CA90. We investigate the randomization behavior of CA90, in particular, the relation between the length of the randomization period and the size of the grid, and how CA90 preserves similarity in the presence of the initialization noise. Based on these analyses we discuss how to optimize a collective-state computing model, in which CA90 expands representations on the fly from short seed patterns – rather than storing the full set of random patterns. The CA90 expansion is applied and tested in concrete scenarios using reservoir computing and vector symbolic architectures. Our experimental results show that collective-state computing with CA90 expansion performs similarly compared to traditional collective-state models, in which random patterns are generated initially by a pseudo-random number generator and then stored in a large memory. Various nonclassical approaches of distributed information processing, such as neural networks, reservoir computing (RC), vector symbolic architectures (VSAs), and others, employ the principle of collective-state computing. In this type of computing, the variables relevant in computation are superimposed into a single high-dimensional state vector, the collective state. The variable encoding uses a fixed set of random patterns, which has to be stored and kept available during the computation. In this article, we show that an elementary cellular automaton with rule 90 (CA90) enables the space-time tradeoff for collective-state computing models that use random dense binary representations, i.e., memory requirements can be traded off with computation running CA90. We investigate the randomization behavior of CA90, in particular, the relation between the length of the randomization period and the size of the grid, and how CA90 preserves similarity in the presence of the initialization noise. Based on these analyses, we discuss how to optimize a collective-state computing model, in which CA90 expands representations on the fly from short seed patterns-rather than storing the full set of random patterns. The CA90 expansion is applied and tested in concrete scenarios using RC and VSAs. Our experimental results show that collective-state computing with CA90 expansion performs similarly compared to traditional collective-state models, in which random patterns are generated initially by a pseudorandom number generator and then stored in a large memory.Various nonclassical approaches of distributed information processing, such as neural networks, reservoir computing (RC), vector symbolic architectures (VSAs), and others, employ the principle of collective-state computing. In this type of computing, the variables relevant in computation are superimposed into a single high-dimensional state vector, the collective state. The variable encoding uses a fixed set of random patterns, which has to be stored and kept available during the computation. In this article, we show that an elementary cellular automaton with rule 90 (CA90) enables the space-time tradeoff for collective-state computing models that use random dense binary representations, i.e., memory requirements can be traded off with computation running CA90. We investigate the randomization behavior of CA90, in particular, the relation between the length of the randomization period and the size of the grid, and how CA90 preserves similarity in the presence of the initialization noise. Based on these analyses, we discuss how to optimize a collective-state computing model, in which CA90 expands representations on the fly from short seed patterns-rather than storing the full set of random patterns. The CA90 expansion is applied and tested in concrete scenarios using RC and VSAs. Our experimental results show that collective-state computing with CA90 expansion performs similarly compared to traditional collective-state models, in which random patterns are generated initially by a pseudorandom number generator and then stored in a large memory. |
Author | Kleyko, Denis Frady, Edward Paxon Sommer, Friedrich T. |
Author_xml | – sequence: 1 givenname: Denis orcidid: 0000-0002-6032-6155 surname: Kleyko fullname: Kleyko, Denis email: denkle@berkeley.edu organization: Redwood Center for Theoretical Neuroscience, University of California at Berkeley, Berkeley, CA, USA – sequence: 2 givenname: Edward Paxon surname: Frady fullname: Frady, Edward Paxon email: epaxon@berkeley.edu organization: Redwood Center for Theoretical Neuroscience, University of California at Berkeley, Berkeley, CA, USA – sequence: 3 givenname: Friedrich T. orcidid: 0000-0002-6738-9263 surname: Sommer fullname: Sommer, Friedrich T. email: fsommer@berkeley.edu organization: Redwood Center for Theoretical Neuroscience, University of California at Berkeley, Berkeley, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34699370$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-116044$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-57075$$DView record from Swedish Publication Index |
BookMark | eNqFkl1v0zAUhiM0xMbYHwAJReIGCaUc27Fj3yBV4VMqRWIDcWc57knxlMSdnQzt3-PSrmK7AN_463lfna_H2dHgB8yypwRmhIB6fbFcLs5nFCiZMUIUL9mD7IQSQQvKpDw6nKsfx9lZjJeQlgAuSvUoO2alUIpVcJIta-y6qTMhn0-j781o8toM-VdcTRbzz9j7cJNuV5ML2OMwxty3ee27Du3orrE4H82I6aHfTKMb1k-yh63pIp7t99Ps2_t3F_XHYvHlw6d6vigsVzAWpOGNUACWl8pAU1pE2lCmKmlkQ6FlhhOoSGOpAtk0iLLFcmVaZQQ0jCI7zV7tfOMv3EyN3gTXm3CjvXH6rfs-1z6sdXCaV1DxRBf_p32YNCECyjLxb3Z8gntc2ZR3MN0d2d2fwf3Ua3-tFSWclSoZvNwbBH81YRx176JNlTYD-ilqymUFwEGQhL64h176KQypeJqKioJSErYZPP87okMot41MgNwBNvgYA7bautQa57cBuk4T0Nux0X_GRm_HRu_HJknpPemt-z9Fz3Yih4gHgeJSQKXYb16GzqI |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3237381 crossref_primary_10_1109_TNNLS_2020_3043309 crossref_primary_10_1109_TBCAS_2022_3187944 crossref_primary_10_1038_s41467_023_38299_7 crossref_primary_10_1109_TCASAI_2024_3462692 crossref_primary_10_1109_ACCESS_2023_3299296 crossref_primary_10_1145_3538531 crossref_primary_10_3389_fnins_2022_867568 crossref_primary_10_3390_rs17020329 |
Cites_doi | 10.1109/72.377968 10.1016/0167-2789(90)90064-V 10.1109/TNNLS.2020.3043309 10.25088/ComplexSystems.28.4.433 10.1109/IJCNN52387.2021.9533805 10.1038/nrn2558 10.1109/ICMLA.2019.00069 10.1109/MM.2018.112130359 10.1109/IJCNN.2010.5596589 10.1162/089976602760407955 10.1109/69.917565 10.1073/pnas.79.8.2554 10.5772/intechopen.79812 10.1109/IECON.2017.8216554 10.1162/NECO_a_00787 10.1016/0196-8858(86)90028-X 10.1109/TIT.2006.871582 10.1007/978-3-319-52289-0_21 10.1016/j.procs.2016.07.421 10.1109/TIT.2011.2111670 10.1109/ISBI.2017.7950697 10.1109/BioCAS49922.2021.9645008 10.1162/NECO_a_00467 10.1007/s12559-009-9009-8 10.1109/72.471375 10.1109/IJCNN52387.2021.9533316 10.1145/3314326 10.1007/BF00339943 10.1109/TNNLS.2015.2462721 10.1109/TNNLS.2020.3015971 10.1109/TCSI.2017.2705051 10.1109/TNNLS.2016.2535338 10.1109/TNN.2010.2089641 10.1109/TNNLS.2021.3105949 10.1007/978-3-319-63940-6_13 10.1016/S0022-0000(03)00025-4 10.25088/ComplexSystems.26.4.319 10.1016/j.neucom.2005.12.126 10.1162/neco_a_01331 10.1007/BF01223745 10.1063/1.5120412 10.25088/ComplexSystems.26.3.225 10.11591/eei.v9i3.1720 10.1016/S0031-3203(02)00030-4 10.1016/j.neuron.2016.09.038 10.1613/jair.1.12664 10.1109/IJCNN.2017.7966151 10.1109/ISSSE.2007.4294483 10.1162/neco_a_01084 10.1162/neco_a_01329 10.1007/978-3-642-35289-8_36 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM AABEP ADTPV AOWAS D8T D91 ZZAVC |
DOI | 10.1109/TNNLS.2021.3119543 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Örebro universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Örebro universitet SwePub Articles full text |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 2713 |
ExternalDocumentID | oai_DiVA_org_ri_57075 oai_DiVA_org_oru_116044 PMC9215349 34699370 10_1109_TNNLS_2021_3119543 9586079 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Individual Fellowship grantid: 839179 funderid: 10.13039/100010665 – fundername: NIH grantid: R01-EB026955 funderid: 10.13039/100000002 – fundername: Defense Advanced Research Projects Agency’s (DARPA’s) Virtual Intelligence Processing (VIP, Super-HD Project) and Artificial Intelligence Exploration (AIE, HyDDENN Project) Programs. funderid: 10.13039/100000185 – fundername: NIBIB NIH HHS grantid: R01 EB026955 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM AABEP ADTPV AOWAS D8T D91 ZZAVC |
ID | FETCH-LOGICAL-c590t-1b5b6900c549a0b4cee2b23978a8b20f3a51071bc2908bbee8fe4daf9a60b32e3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Aug 21 06:54:42 EDT 2025 Thu Aug 21 07:17:12 EDT 2025 Thu Aug 21 18:37:00 EDT 2025 Fri Jul 11 16:48:37 EDT 2025 Mon Jun 30 04:53:35 EDT 2025 Mon Jul 21 05:58:15 EDT 2025 Tue Jul 01 00:27:42 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Wed Aug 27 02:24:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-1b5b6900c549a0b4cee2b23978a8b20f3a51071bc2908bbee8fe4daf9a60b32e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6738-9263 0000-0002-6032-6155 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-116044 |
PMID | 34699370 |
PQID | 2672099805 |
PQPubID | 85436 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_34699370 proquest_miscellaneous_2587005061 proquest_journals_2672099805 crossref_citationtrail_10_1109_TNNLS_2021_3119543 crossref_primary_10_1109_TNNLS_2021_3119543 swepub_primary_oai_DiVA_org_oru_116044 swepub_primary_oai_DiVA_org_ri_57075 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9215349 ieee_primary_9586079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 MacKay (ref62) 2003 ref15 ref59 ref14 ref58 ref53 Gayler (ref46) ref52 ref11 ref55 ref10 ref54 Kleyko (ref36) 2020 ref16 ref19 ref18 ref51 ref50 Gritsenko (ref65) 2017; 2 McDonald (ref60) ref48 Cook (ref45) 2004; 15 ref42 ref41 Wolfram (ref17) 2002 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 Kleyko (ref29) 2021 ref35 ref34 Jaeger (ref3) 2002 ref31 Gayler (ref24) ref30 ref33 ref2 ref1 ref39 Yerxa (ref32) Kanerva (ref23) Yilmaz (ref47) 2015; 10 ref26 ref25 ref20 ref64 ref63 ref22 Plate (ref38) 2003 ref66 ref21 Plate (ref37) ref28 ref27 ref61 |
References_xml | – volume: 10 start-page: 435 issue: 5 year: 2015 ident: ref47 article-title: Machine learning using cellular automata based feature expansion and reservoir computing publication-title: J. Cellular Automata – ident: ref13 doi: 10.1109/72.377968 – ident: ref44 doi: 10.1016/0167-2789(90)90064-V – ident: ref40 doi: 10.1109/TNNLS.2020.3043309 – volume-title: A New Kind of Science year: 2002 ident: ref17 – start-page: 358 volume-title: Proc. Real World Computing Symp. (RWC) ident: ref23 article-title: Fully distributed representation – volume: 15 start-page: 1 issue: 1 year: 2004 ident: ref45 article-title: Universality in elementary cellular automata publication-title: Complex Syst. – volume-title: Information Theory, Inference and Learning Algorithms year: 2003 ident: ref62 – ident: ref52 doi: 10.25088/ComplexSystems.28.4.433 – ident: ref27 doi: 10.1109/IJCNN52387.2021.9533805 – ident: ref35 doi: 10.1038/nrn2558 – ident: ref58 doi: 10.1109/ICMLA.2019.00069 – ident: ref64 doi: 10.1109/MM.2018.112130359 – year: 2020 ident: ref36 article-title: Perceptron theory for predicting the accuracy of neural networks publication-title: arXiv:2012.07881 – ident: ref66 doi: 10.1109/IJCNN.2010.5596589 – ident: ref2 doi: 10.1162/089976602760407955 – ident: ref14 doi: 10.1109/69.917565 – ident: ref6 doi: 10.1073/pnas.79.8.2554 – ident: ref57 doi: 10.5772/intechopen.79812 – start-page: 1 volume-title: Advances in Analogy Research: Integration of Theory and Data From the Cognitive, Computational, and Neural Sciences ident: ref24 article-title: Multiplicative binding, representation operators & analogy – ident: ref31 doi: 10.1109/IECON.2017.8216554 – ident: ref18 doi: 10.1162/NECO_a_00787 – ident: ref55 doi: 10.1016/0196-8858(86)90028-X – ident: ref9 doi: 10.1109/TIT.2006.871582 – ident: ref30 doi: 10.1007/978-3-319-52289-0_21 – ident: ref34 doi: 10.1016/j.procs.2016.07.421 – ident: ref10 doi: 10.1109/TIT.2011.2111670 – year: 2002 ident: ref3 article-title: Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the echo state network approach – ident: ref59 doi: 10.1109/ISBI.2017.7950697 – ident: ref63 doi: 10.1109/BioCAS49922.2021.9645008 – ident: ref19 doi: 10.1162/NECO_a_00467 – start-page: 1 volume-title: Proc. Cogn. Comput., Merging Concepts Hardw. ident: ref32 article-title: The hyperdimensional stack machine – ident: ref15 doi: 10.1007/s12559-009-9009-8 – ident: ref11 doi: 10.1109/72.471375 – ident: ref28 doi: 10.1109/IJCNN52387.2021.9533316 – ident: ref16 doi: 10.1145/3314326 – ident: ref7 doi: 10.1007/BF00339943 – ident: ref26 doi: 10.1109/TNNLS.2015.2462721 – ident: ref12 doi: 10.1109/TNNLS.2020.3015971 – ident: ref20 doi: 10.1109/TCSI.2017.2705051 – start-page: 34 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref37 article-title: Holographic recurrent networks – ident: ref25 doi: 10.1109/TNNLS.2016.2535338 – ident: ref4 doi: 10.1109/TNN.2010.2089641 – ident: ref21 doi: 10.1109/TNNLS.2021.3105949 – volume: 2 start-page: 5 issue: 188 year: 2017 ident: ref65 article-title: Neural distributed autoassociative memories: A survey publication-title: Cybern. Comput. Eng. – start-page: 1 volume-title: Proc. Unconventional Comput. Natural Comput. (UCNC) ident: ref60 article-title: Complete & orthogonal replication of hyperdimensional memory via elementary cellular automata – ident: ref50 doi: 10.1007/978-3-319-63940-6_13 – ident: ref8 doi: 10.1016/S0022-0000(03)00025-4 – ident: ref48 doi: 10.25088/ComplexSystems.26.4.319 – ident: ref22 doi: 10.1016/j.neucom.2005.12.126 – ident: ref42 doi: 10.1162/neco_a_01331 – ident: ref54 doi: 10.1007/BF01223745 – ident: ref1 doi: 10.1063/1.5120412 – ident: ref51 doi: 10.25088/ComplexSystems.26.3.225 – ident: ref33 doi: 10.11591/eei.v9i3.1720 – ident: ref53 doi: 10.1016/S0031-3203(02)00030-4 – start-page: 133 volume-title: Proc. Joint Int. Conf. Cognit. Sci. (ICCS/ASCS) ident: ref46 article-title: Vector symbolic architectures answer Jackendoff’s challenges for cognitive neuroscience – ident: ref61 doi: 10.1016/j.neuron.2016.09.038 – ident: ref41 doi: 10.1613/jair.1.12664 – ident: ref49 doi: 10.1109/IJCNN.2017.7966151 – ident: ref56 doi: 10.1109/ISSSE.2007.4294483 – year: 2021 ident: ref29 article-title: Vector symbolic architectures as a computing framework for nanoscale hardware publication-title: arXiv:2106.05268 – ident: ref5 doi: 10.1162/neco_a_01084 – ident: ref43 doi: 10.1162/neco_a_01329 – volume-title: Holographic Reduced Representation: Distributed Representation for Cognitive Structures year: 2003 ident: ref38 – ident: ref39 doi: 10.1007/978-3-642-35289-8_36 |
SSID | ssj0000605649 |
Score | 2.459642 |
Snippet | Various nonclassical approaches of distributed information processing, such as neural networks, reservoir computing (RC), vector symbolic architectures (VSAs),... Various non-classical approaches of distributed information processing, such as neural networks, reservoir computing, vector symbolic architectures, and... |
SourceID | swepub pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2701 |
SubjectTerms | Automata Automaton Cellular automata Cellular automata (CA) Cellular automaton Cellular automatons collective-state computing Computational modeling Computational modelling Computer memory Data processing Decoding Distributed representation distributed representations hyperdimensional computing Information processing Job analysis Memory architecture Memory management Network architecture Neural networks Neurons Pseudorandom Random processes Random-number generation Randomization Representations Reservoir Computing reservoir computing (RC) Reservoir management Reservoirs rule 90 State vectors Task analysis Vector symbolic architecture vector symbolic architectures (VSAs) |
Title | Cellular Automata Can Reduce Memory Requirements of Collective-State Computing |
URI | https://ieeexplore.ieee.org/document/9586079 https://www.ncbi.nlm.nih.gov/pubmed/34699370 https://www.proquest.com/docview/2672099805 https://www.proquest.com/docview/2587005061 https://pubmed.ncbi.nlm.nih.gov/PMC9215349 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-116044 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-57075 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhQHkECjJSxQWydey8fFwtVBWie4AW7S2yHUddsUpQmxzg1zPjPKRAVXGIlCiTKPaMPd9M5gFwkhtqM2XQLJEyCeOYugFK5cLKorKtXE5uN4q2WKfnV_HnTbLZgw9TLoxzzgefuQWd-n_5ZWM7cpWdqiRPeab2YR8Ntz5Xa_KncMTlqUe7IkpFKGS2GXNkuDq9XK-_fENrUERopFKRM-qfI9E0RO3MZyrJ91i5C27-GzU5qy3q9dHZIVyMI-nDUH4sutYs7O-_ijz-71AfwcMBmLJlL0mPYc_VT-BwbPrAhj3gCNYrt9tR7Cpbdm2DeFezla7ZVyoB69gFBe7-wisKMPaex1vWVMy7J_zOGnp0y_r3otp8Cldnny5X5-HQlCG0ieJtGJnEoEXNLRqWmpsYlawwAlFNrnMjeCU1rvIsMlYonhvjXF65uNSV0ik3Ujj5DA7qpnYvgBmjdBRrKt9jY2tSXUlhlZEulWVaRmUA0ciXwg4Vy6lxxq7wlgtXhWdrQWwtBrYG8H565mdfr-Ne6iOa-olymPUAjkf2F8OSvi1EmlGacc6TAN5Ot3Ex0h8WXbumQ5oEtz-eIEYK4HkvLdO7R2kLIJvJ0URAhb7nd-rttS_4rRCXyRg_610vcbNHPm6_LwuUHTw6HCdOZhzAyX2EN9siyRAqvrx79K_ggaAcD-9qOoaD9qZzrxF5teaNX3J_AJ2LKoA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoALBcojUMBIhQvK1rHz8oHDaku1pds9wBbtLbUTR6xYJaibCJXfwl_hvzF2HlKg6q0Sh0gbZWKt7c-ebybjGYD9WJkyUwrNEs4D1_dNNUAutJunqGxzHRu3m4m2mIfTM__jMlhuwa_-LIzW2gaf6ZH5ab_lZ2VaG1fZgQjikEaiDaE80Zc_0EDbvD8-xNl8w9jRh8Vk6rY1BNw0ELRyPRUoNABpinaQpMpHncAUQyUcy1gxmnOJoIw8lTJBY6W0jnPtZzIXMqSKM82x3VtwG3lGwJrTYb0Hh6IlEFp-zbyQuYxHy-5UDhUHi_l89hntT-ahWWzSqpmKPRyNUeQDdKAEbVWXqwjuv3Gag2ymVgMe7cDvbuyawJdvo7pSo_TnX2kl_9fBvQ_3WupNxs1aeQBbungIO11ZC9Lucrswn-j12kTnknFdlcjoJZnIgnwySW41OTWhyZd4Z0KorW91Q8qcWAeM1R2u5e-kaReJwSM4u5FePYbtoiz0UyBKCen50iQoSv1UhTLnLBWK65BnYeZlDngdDpK0zcluSoOsE2ubUZFYGCUGRkkLIwfe9e98bzKSXCu9a6a6l2xn2YG9Dm5Ju2ltEhZG5iB1TAMHXvePcbsx35BkocsaZQLc4GmALNCBJw06-7Y7dDsQDXDbC5hU5sMnxeqrTWkukHlyH__W2wbhg1cOV1_GCWIVrxr7iYPpO7B_neDFKgkiJMPPru79K7gzXZzOktnx_OQ53GXmRIt1rO3BdnVR6xfIMyv10i53Auc3vQT-AFeJiRY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellular+Automata+Can+Reduce+Memory+Requirements+of+Collective-State+Computing&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Kleyko%2C+Denis&rft.au=Frady%2C+Edward+Paxon&rft.au=Sommer%2C+Friedrich+T&rft.date=2022-06-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=33&rft.issue=6&rft.spage=2701&rft_id=info:doi/10.1109%2FTNNLS.2021.3119543&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |