离心泵作液力透平叶轮出口滑移系数的解析计算方法及验证
为了通过理论的方法准确预测液力透平的性能,该文分析了叶轮内部相对环流流动的特征,提出了3种计算离心泵反转作液力透平叶轮出口滑移系数的方法,得到了相应的叶轮出口滑移系数解析计算公式,然后采用10组离心泵反转作液力透平的试验数据对所提出的滑移系数计算公式进行验证,最后得出与试验结果较为吻合的解析公式。结果表明:当假设叶片工作面上的相对涡诱导速度与叶轮出口边上的相对涡诱导速度的比值等于叶片和涡心所张曲边三角形的面积与叶轮出口边和涡心所张曲边三角形的面积之比时,得到的液力透平叶轮出口滑移系数的计算公式最准确,可用于较准确地预测液力透平的性能。在计算液力透平叶轮内的滑移时只需计算叶轮出口的滑移。该研究结...
Saved in:
Published in | 农业工程学报 Vol. 31; no. 11; pp. 66 - 73 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
西华大学能源与动力工程学院,成都,610039%兰州理工大学能源与动力工程学院,兰州,730050
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2015.11.010 |
Cover
Abstract | 为了通过理论的方法准确预测液力透平的性能,该文分析了叶轮内部相对环流流动的特征,提出了3种计算离心泵反转作液力透平叶轮出口滑移系数的方法,得到了相应的叶轮出口滑移系数解析计算公式,然后采用10组离心泵反转作液力透平的试验数据对所提出的滑移系数计算公式进行验证,最后得出与试验结果较为吻合的解析公式。结果表明:当假设叶片工作面上的相对涡诱导速度与叶轮出口边上的相对涡诱导速度的比值等于叶片和涡心所张曲边三角形的面积与叶轮出口边和涡心所张曲边三角形的面积之比时,得到的液力透平叶轮出口滑移系数的计算公式最准确,可用于较准确地预测液力透平的性能。在计算液力透平叶轮内的滑移时只需计算叶轮出口的滑移。该研究结果为更加精确地通过理论方法预测液力透平的性能提供了参考。 |
---|---|
AbstractList | TH311; 为了通过理论的方法准确预测液力透平的性能,该文分析了叶轮内部相对环流流动的特征,提出了3种计算离心泵反转作液力透平叶轮出口滑移系数的方法,得到了相应的叶轮出口滑移系数解析计算公式,然后采用10组离心泵反转作液力透平的试验数据对所提出的滑移系数计算公式进行验证,最后得出与试验结果较为吻合的解析公式。结果表明:当假设叶片工作面上的相对涡诱导速度与叶轮出口边上的相对涡诱导速度的比值等于叶片和涡心所张曲边三角形的面积与叶轮出口边和涡心所张曲边三角形的面积之比时,得到的液力透平叶轮出口滑移系数的计算公式最准确,可用于较准确地预测液力透平的性能。在计算液力透平叶轮内的滑移时只需计算叶轮出口的滑移。该研究结果为更加精确地通过理论方法预测液力透平的性能提供了参考。 为了通过理论的方法准确预测液力透平的性能,该文分析了叶轮内部相对环流流动的特征,提出了3种计算离心泵反转作液力透平叶轮出口滑移系数的方法,得到了相应的叶轮出口滑移系数解析计算公式,然后采用10组离心泵反转作液力透平的试验数据对所提出的滑移系数计算公式进行验证,最后得出与试验结果较为吻合的解析公式。结果表明:当假设叶片工作面上的相对涡诱导速度与叶轮出口边上的相对涡诱导速度的比值等于叶片和涡心所张曲边三角形的面积与叶轮出口边和涡心所张曲边三角形的面积之比时,得到的液力透平叶轮出口滑移系数的计算公式最准确,可用于较准确地预测液力透平的性能。在计算液力透平叶轮内的滑移时只需计算叶轮出口的滑移。该研究结果为更加精确地通过理论方法预测液力透平的性能提供了参考。 |
Abstract_FL | A centrifugal pump can be operated in its reverse rotational direction as a turbine-a prime motor, and its impeller is a kind of centripetal impeller. It can convert the high pressure energy of a fluid into the rotational mechanical energy of the rotor to drive a generator to generate electricity or drive a working machine, realizing an energy recycling of the high pressure fluid. It is well-known that the slip phenomenon exists in turbomachinery, such as hydraulic turbine, steam turbine, roto-dynamic pumps and compressors. This is also true for a centrifugal pump as turbine. The slip velocity may be smaller in a hydraulic turbine than a centrifugal pump. However, this is not the case for a centrifugal pump as turbine because its number of blades is much less compared with the hydraulic turbine. The constraint ability of blade is less for fluid giving rise a smaller slip factor. In addition, a slip factor is the key parameter to estimate the turbine output power based on its existing geometry and designed flow condition to check if its output power has met the requirement by end-users. Unfortunately, this topic is not well documented currently. In this paper, we put forward an analytical method to accurately determine the slip factor at the impeller outlet in a centrifugal pump as turbine in order to predict the turbine performance correctly. Firstly, the relative eddy flow in an impeller passage with closed inlet and outlet was analyzed for a centrifugal pump in its turbine mode. Secondly, three assumptions were made for the induced velocity by the eddy on the blade pressure side, then the slip velocities and the corresponding slip factors at the impeller outlet under these assumptions were derived analytically. Finally, the slip factor formulas were validated by means of the theoretical heads of ten centrifugal pumps as turbines based on their experimental data. Two cases, namely, the slip factors at both impeller inlet and outlet, and the slip factor at the impeller outlet alone, were studied, respectively. It was identified that the slip factor formula based on the second assumption, in which the ratio of the induced velocity on the blade pressure side over the slip velocity on the impeller outlet was equal to the ratio of the areas of two triangles with the pressure side and impeller outlet as one curved edge respectively, was subject to a very good accuracy. Moreover, it was unnecessary to include the slip factor at the impeller inlet when predicting the theoretical head of a pump as turbine. The influence factors of the slip on the centripetal impeller outlet of hydraulic turbine have the entrance and outlet diameter of impeller, entrance and outlet blade angle of blade and the number of blades. The research results improved the accuracy for predicting the performance of hydraulic turbine by the theoretical method, and this kind of method will be convenient and efficient when scholars predict the performance of hydraulic turbine, and may save the cost of research. The results provide a base for more accurately predicting the performance of a pump as turbine by making use of analytical methods. |
Author | 史广泰 杨军虎 苗森春 |
AuthorAffiliation | 西华大学能源与动力工程学院,成都610039 兰州理工大学能源与动力工程学院,兰州730050 |
AuthorAffiliation_xml | – name: 西华大学能源与动力工程学院,成都,610039%兰州理工大学能源与动力工程学院,兰州,730050 |
Author_FL | Miao Senchun Shi Guangtai Yang Junhu |
Author_FL_xml | – sequence: 1 fullname: Shi Guangtai – sequence: 2 fullname: Yang Junhu – sequence: 3 fullname: Miao Senchun |
Author_xml | – sequence: 1 fullname: 史广泰 杨军虎 苗森春 |
BookMark | eNo9j81Kw0AAhPdQwVr7EoJ4StxNspvsUYp_UPTSe0m2m5qiW20Q7U1REIoQPVRBRZCCBQ9VDBZqKL6M2aRvYaTiaWDmY4aZAznRFByARQRVhKiJlxuq5_tCRRBqCrEQVTWIcJapEMEcyP_7s6Do-54DMdJNCA2UB1vJcxR_ncnw43v8IIfvced-chLEozAOhul4EF98xkFPRtdJP0rCSHbfkrvztN-Tj1fp4CkZ3MqbkQy7cdCZvFymr6fzYMa1d31e_NMCqKytVkobSnl7fbO0UlYYplBhDmZIw6ZDmQuZxmuabVDiWtSydMPlDncQq1mmwYhVY5zoiFIDOphwC1LKXaIXwNK09sgWri3q1UbzsCWywapo19mx83sfoex8Ri5MSbbTFPUDL2P3W96e3WpXCcEI68TU9B_IbXzp |
ClassificationCodes | TH311 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11975/j.issn.1002-6819.2015.11.010 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Analytical methods and verification for determining slip factor at impeller outlet of centrifugal pumps as turbines |
DocumentTitle_FL | Analytical methods and verification for determining slip factor at impeller outlet of centrifugal pumps as turbines |
EndPage | 73 |
ExternalDocumentID | nygcxb201511010 665153672 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目; “十二五”国家科技支撑计划资助项目 funderid: (51169010); (2012BAA08B05) |
GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
ID | FETCH-LOGICAL-c590-cb5c1257b9cf0c2ed2a496f898834febeb1cd874c68dce6319940b56e8099ef63 |
ISSN | 1002-6819 |
IngestDate | Thu May 29 04:04:19 EDT 2025 Wed Feb 14 10:29:46 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | pump as turbine 理论水头 impellers 滑移系数 slip factor 泵作透平 相对涡 pumps velocity relative eddy 叶轮 theoretical head 泵 速度 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c590-cb5c1257b9cf0c2ed2a496f898834febeb1cd874c68dce6319940b56e8099ef63 |
Notes | pumps;impellers;velocity;slip factor;pump as turbine;theoretical head;relative eddy 11-2047/S A centrifugal pump can be operated in its reverse rotational direction as a turbine-a prime motor, and its impeller is a kind of centripetal impeller. It can convert the high pressure energy of a fluid into the rotational mechanical energy of the rotor to drive a generator to generate electricity or drive a working machine, realizing an energy recycling of the high pressure fluid. It is well-known that the slip phenomenon exists in turbomachinery, such as hydraulic turbine, steam turbine, roto-dynamic pumps and compressors. This is also true for a centrifugal pump as turbine. The slip velocity may be smaller in a hydraulic turbine than a centrifugal pump. However, this is not the case for a centrifugal pump as turbine because its number of blades is much less compared with the hydraulic turbine. The constraint ability of blade is less for fluid giving rise a smaller slip factor. In addition, a slip factor is the key pa |
PageCount | 8 |
ParticipantIDs | wanfang_journals_nygcxb201511010 chongqing_primary_665153672 |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | 农业工程学报 |
PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
PublicationYear | 2015 |
Publisher | 西华大学能源与动力工程学院,成都,610039%兰州理工大学能源与动力工程学院,兰州,730050 |
Publisher_xml | – name: 西华大学能源与动力工程学院,成都,610039%兰州理工大学能源与动力工程学院,兰州,730050 |
SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
Score | 2.0693579 |
Snippet | ... TH311;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 66 |
SubjectTerms | 叶轮 泵 泵作透平 滑移系数 理论水头 相对涡 速度 |
Title | 离心泵作液力透平叶轮出口滑移系数的解析计算方法及验证 |
URI | http://lib.cqvip.com/qk/90712X/201511/665153672.html https://d.wanfangdata.com.cn/periodical/nygcxb201511010 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxNBcKktiD6In1ir0gf3qaTe13493jUXimCfKvQt5C536VNaawraJ0VBKEL0oQoqghQs-FDFYKGG4p_xLum_cGZvk0aUokI4ktnZmdmZy-zs3c4sITdil7kec9OSHVsCU3JUKWJerWQ5Nbde9yLwmpiNfHuBz9_xbi2xpbETZGTX0normo03_phX8j9WBRjYFbNk_8GyQ6IAgO9gX7iCheH6VzamoaA-p0FAQ0aDCpUuDeGnSwNGQ48GZarmNAQ-DuJInypAVri_QVZ0L4X42FRBtFBiLz_UEEED3zT5BeWAKlszFZqp0LwCbFJAykKI8qn0kA7gFL1USJWlISH1i-4AEbqJowCFzECh4AVCgoQ-0JnTvQBij8bQGo3rocEYJXLEgQBZpolLKrVC_DIqB4gDQZ8N7qzBWJ3B6CsDnVkzWqQyUjAsAhRAgbrCGfwGdAu5YWCoI8CQA9LmyUmRNWrcPM4DXBpnbeYBMxuZ-90e8eqcj8QHxckrv888SjA99SCD2SED3DzIZrFOrNm9-2txb44n0btcQBAx4Qhhs3Ey4QfloHIU0tq4ah_6XBvPO7CPcp0drGTAj5aMzHbxwILhNid8yc_0G38j0ElCB-LePE5YrDWyvNJs3IUISie0NdNaszESey2eJWfMomnaL_4B58jYxvJ5ctpvrJnCMckFstD70M2-P847X38cvM33vmSbbw4ftrP9Ttbe6x_sZk-_Ze3tvPuit9Ptdbr51ufe6yf9ne383fP-7vve7qv85X7e2cram4cfn_U_PbpIFivh4tx8yZwVUoqZskpxxGII1UWk4tSKnaTu1DzFU6mkdL0UHFVkx3UpvJjLepxwFytiWxHjiYQVUpJy9xIZb640k8tkWiQqjrzUTlK75tWg3cESXYo5nnITYYtJMjVUTHW1KAlTHdpxkkwbVVWNo7hXbT5oxPcj1K025pVjCUyRU4hZPOW7SsZba-vJNYh7W9F1c2v8BLKyjH4 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%A6%BB%E5%BF%83%E6%B3%B5%E4%BD%9C%E6%B6%B2%E5%8A%9B%E9%80%8F%E5%B9%B3%E5%8F%B6%E8%BD%AE%E5%87%BA%E5%8F%A3%E6%BB%91%E7%A7%BB%E7%B3%BB%E6%95%B0%E7%9A%84%E8%A7%A3%E6%9E%90%E8%AE%A1%E7%AE%97%E6%96%B9%E6%B3%95%E5%8F%8A%E9%AA%8C%E8%AF%81&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%8F%B2%E5%B9%BF%E6%B3%B0+%E6%9D%A8%E5%86%9B%E8%99%8E+%E8%8B%97%E6%A3%AE%E6%98%A5&rft.date=2015&rft.issn=1002-6819&rft.volume=31&rft.issue=11&rft.spage=66&rft.epage=73&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2015.11.010&rft.externalDocID=665153672 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |