基于改进水云模型和Radarsat-2数据的农田土壤含水量估算

为了直接将雷达遥感中"水云模型"进行反演应用,该研究将"水云模型"中植被参数改为雷达植被指数,利用全极化数据直接支持遥感反演土壤含水量,无需遥感反演植被参数输入。改进模型为利用雷达遥感结合"水云模型"进行土壤含水量监测提供了一种高效便捷方法。基于Radarsat-2全极化数据对冬小麦覆盖的农田土壤含水量进行估算,利用2014年在陕西杨凌区获取的4个生育期内Radarsat-2卫星数据及同步田间测量108组冬小麦农田土壤含水量地面测量数据进行模型参数校正和精度验证。验证结果精度为:改进的雷达植被指数模型〉原叶面积指数模型(实测叶面积指数验证)〉原叶面积指数模型(光学遥感反演叶面积指数验证),且改...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 22; pp. 146 - 153
Main Author 杨贵军 岳继博 李长春 冯海宽 杨浩 兰玉彬
Format Journal Article
LanguageChinese
Published 国家农业信息化工程技术研究中心,北京 100097 2016
农业部农业信息技术重点实验室,北京 100097%北京农业信息技术研究中心,北京 100097
北京农业信息技术研究中心,北京 100097
河南理工大学测绘与国土信息工程学院,焦作 454000%河南理工大学测绘与国土信息工程学院,焦作,454000%北京农业信息技术研究中心,北京 100097
国家农业信息化工程技术研究中心,北京 100097%国家农业信息化工程技术研究中心,北京 100097
农业部农业信息技术重点实验室,北京 100097%农业部农业信息技术重点实验室,北京 100097
北京市农业物联网工程技术研究中心,北京 100097
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.22.020

Cover

Loading…
Abstract 为了直接将雷达遥感中"水云模型"进行反演应用,该研究将"水云模型"中植被参数改为雷达植被指数,利用全极化数据直接支持遥感反演土壤含水量,无需遥感反演植被参数输入。改进模型为利用雷达遥感结合"水云模型"进行土壤含水量监测提供了一种高效便捷方法。基于Radarsat-2全极化数据对冬小麦覆盖的农田土壤含水量进行估算,利用2014年在陕西杨凌区获取的4个生育期内Radarsat-2卫星数据及同步田间测量108组冬小麦农田土壤含水量地面测量数据进行模型参数校正和精度验证。验证结果精度为:改进的雷达植被指数模型〉原叶面积指数模型(实测叶面积指数验证)〉原叶面积指数模型(光学遥感反演叶面积指数验证),且改进的雷达植被指数模型可以在多个生育期内对农田土壤含水量进行监测。
AbstractList S25; 为了直接将雷达遥感中“水云模型”进行反演应用,该研究将“水云模型”中植被参数改为雷达植被指数,利用全极化数据直接支持遥感反演土壤含水量,无需遥感反演植被参数输入。改进模型为利用雷达遥感结合“水云模型”进行土壤含水量监测提供了一种高效便捷方法。基于 Radarsat-2全极化数据对冬小麦覆盖的农田土壤含水量进行估算,利用2014年在陕西杨凌区获取的4个生育期内Radarsat-2卫星数据及同步田间测量108组冬小麦农田土壤含水量地面测量数据进行模型参数校正和精度验证。验证结果精度为:改进的雷达植被指数模型>原叶面积指数模型(实测叶面积指数验证)>原叶面积指数模型(光学遥感反演叶面积指数验证),且改进的雷达植被指数模型可以在多个生育期内对农田土壤含水量进行监测。
为了直接将雷达遥感中"水云模型"进行反演应用,该研究将"水云模型"中植被参数改为雷达植被指数,利用全极化数据直接支持遥感反演土壤含水量,无需遥感反演植被参数输入。改进模型为利用雷达遥感结合"水云模型"进行土壤含水量监测提供了一种高效便捷方法。基于Radarsat-2全极化数据对冬小麦覆盖的农田土壤含水量进行估算,利用2014年在陕西杨凌区获取的4个生育期内Radarsat-2卫星数据及同步田间测量108组冬小麦农田土壤含水量地面测量数据进行模型参数校正和精度验证。验证结果精度为:改进的雷达植被指数模型〉原叶面积指数模型(实测叶面积指数验证)〉原叶面积指数模型(光学遥感反演叶面积指数验证),且改进的雷达植被指数模型可以在多个生育期内对农田土壤含水量进行监测。
Abstract_FL Soil moisture is one key factor to restrict the growth of crops in rainless regions, and it is crucial to farmland production and can significantly affect the irrigation decision-making for agricultural management. Polarimetric SAR is very sensitive to soil moisture and can penetrate smoke, fog, rain and snow, etc. Therefore, polarimetric SAR system can operate in all-weather conditions. Moreover, soil moisture of farmland can be detected the by penetrating the vegetation and soil to reach the subsurface. In this study, in-situ measurements were carried out in Yangling district, Shannxi province, an important winter wheat producing area in China. Soil moisture and crop parameters (such as leaf area index (LAI), biomass and vegetation water content) were obtained by different teams at Radarsat-2 satellite transit time. Radar vegetation index (RVI), which was less sensitive to change in environmental conditions, had strong correlations with LAI, biomass and vegetation water content, etc. Aiming at monitoring soil moisture by satellite polarimetric SAR data conveniently and accurately, an improved RVI model for soil moisture estimation was proposed via bare soil model and RVI combined with water cloud model (WCM). 108 soil moisture samples (including jointing, heading and filling stageof winter wheat) were used to estimate and verify the accuracy of the parameters in the WCM, among which 62 samples were used to estimate the empirical parameters of the model, and the remaining 46 samples to verify the accuracy of estimated parameters. Usually, the crop parameters were used to describe the water cloud in the WCM, however, it causes lots of difficulties to apply this model. The crop parameters in improved RVI model were replaced by the RVI to reduce the uncertainty of the WCM. The RVI, instead of the crop parameters, was used to describe the water cloud in WCM, then the soil moisture values estimated by LAI model and improved RVI model were compared with in-situ measured soil moisture values, respectively. The LAI model was verified by LAI obtained in ground measurement and estimated by optical remote sensing data, respectively. To prove the potential applications, the improved RVI model was compared with two LAI models using ground measurement data. Conclusions were drawn based on the comparisons of coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) as follows: 1) The improved RVI model (combined with the WCM, bare soil model and RVI) achieved the best accuracy (R2 was 0.41, RMSE was 5.7%, MAE was4.7%), the second was the original LAI model (using on ground measured LAI for validation,R2 was 0.28, RMSE was 7.1%, MAE was 5.1%), while the original LAI model (using optical remote sensing estimated LAI for validation) was the worst (R2 was 0.14, RMSE was 7.7%, MAE was 6.1%). 2) The improved RVI model, which used polarimetric SAR data and RVI as inputs, provided a convenient and efficient way to estimate the soil moisture. 3) The improved RVI model provided an accurate and rapid method for monitoring soil moisture in various growth stages of winter wheat.
Author 杨贵军 岳继博 李长春 冯海宽 杨浩 兰玉彬
AuthorAffiliation 北京农业信息技术研究中心,北京100097 国家农业信息化工程技术研究中心,北京100097 农业部农业信息技术重点实验室,北京100097 北京市农业物联网工程技术研究中心,北京100097 河南理工大学测绘与国土信息工程学院,焦作454000
AuthorAffiliation_xml – name: 北京农业信息技术研究中心,北京 100097; 国家农业信息化工程技术研究中心,北京 100097; 农业部农业信息技术重点实验室,北京 100097%北京农业信息技术研究中心,北京 100097; 国家农业信息化工程技术研究中心,北京 100097; 河南理工大学测绘与国土信息工程学院,焦作 454000%河南理工大学测绘与国土信息工程学院,焦作,454000%北京农业信息技术研究中心,北京 100097; 国家农业信息化工程技术研究中心,北京 100097%国家农业信息化工程技术研究中心,北京 100097; 农业部农业信息技术重点实验室,北京 100097%农业部农业信息技术重点实验室,北京 100097; 北京市农业物联网工程技术研究中心,北京 100097
Author_FL Yue Jibo
Yang Hao
Feng Haikuan
Lan Yubin
Li Changchun
Yang Guijun
Author_FL_xml – sequence: 1
  fullname: Yang Guijun
– sequence: 2
  fullname: Yue Jibo
– sequence: 3
  fullname: Li Changchun
– sequence: 4
  fullname: Feng Haikuan
– sequence: 5
  fullname: Yang Hao
– sequence: 6
  fullname: Lan Yubin
Author_xml – sequence: 1
  fullname: 杨贵军 岳继博 李长春 冯海宽 杨浩 兰玉彬
BookMark eNo9j8tKw0AYhWdRwVr7EoK4Svz_SWeSWUrxUigI0n2Z3GqKTjVRtHvRhXepCFosogtBKFm4sQi-TJPqW5hScXXg8J1zODMkp1rKI2QeQUcUJlts6kEUKR0BqMYtFDoF5DqlOlDIkfy_P02KURTYwNAwAUqYJ5WkNxgOLtLOx_fXQxq_DwfX6etT8nia3JxtSFeGkdzTaHobp-f90f1RctwddeKk20ueX5Krtyzwc3I5_IxH_btZMuXLrcgr_mmB1FaWa-U1rbq-WikvVTWHCdCo5di-g65ESYXPmMfBQ-HZzOIuF5SCi2gCFzbzPUMIYRqs5JgmUNdC2zU8o0AWJrUHUvlSNerN1n6ossG6ajecQ3v8PKuhkJFzE9LZbKnGbpCxO2GwLcN2nZswHuFo_ALXanRc
ClassificationCodes S25
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.22.020
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data
DocumentTitle_FL Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data
EndPage 153
ExternalDocumentID nygcxb201622020
670706961
GrantInformation_xml – fundername: 国家自然科学基金项目; 北京市自然科学基金项目; 北京市农林科学院科技创新能力建设项目; 河南省基础与前沿研究。
  funderid: (61661136003,41471351,41401477); (4141001); (KJCX20140417); (152300410098)。
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c590-28cbfc1da1a29f55e60e19eb586d69220d117069b5fe39997354c7702d81bd3e3
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:07:36 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 22
Keywords water cloud model
水云模型
vegetation
leaf area index
moisture
winter wheat
土壤
植被
Radarsat-2
叶面积指数
soils
冬小麦
水分
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c590-28cbfc1da1a29f55e60e19eb586d69220d117069b5fe39997354c7702d81bd3e3
Notes 11-2047/S
soils; moisture; vegetation; water cloud model; Radarsat-2; winter wheat; leaf area index
Yang Guijun1,2,3, Yue Jibo1,2,5, Li Changchuns, Feng Haikuan1,2, Yang Hao2,3, Lan Yubin3,4 (1. Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China; 2. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; 3. Key Laboratory of Agri-informaties, Ministry of Agriculture, Beijing 100097, China; 4. Beijing Engineering Research Center of Agricultural Internet of Things, Beijing 100097, China; 5. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)
Soil moisture is one key factor to restrict the growth of crops in rainless regions, and it is crucial to farmland production and can significantly affect the irrigation decision-making for agricultural management. Polarimetric SAR is very sensitive to soil moisture and can penetrate smoke, fog, rain and snow, etc. Therefore, polarimetric
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201622020
chongqing_primary_670706961
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 国家农业信息化工程技术研究中心,北京 100097
农业部农业信息技术重点实验室,北京 100097%北京农业信息技术研究中心,北京 100097
北京农业信息技术研究中心,北京 100097
河南理工大学测绘与国土信息工程学院,焦作 454000%河南理工大学测绘与国土信息工程学院,焦作,454000%北京农业信息技术研究中心,北京 100097
国家农业信息化工程技术研究中心,北京 100097%国家农业信息化工程技术研究中心,北京 100097
农业部农业信息技术重点实验室,北京 100097%农业部农业信息技术重点实验室,北京 100097
北京市农业物联网工程技术研究中心,北京 100097
Publisher_xml – name: 北京农业信息技术研究中心,北京 100097
– name: 国家农业信息化工程技术研究中心,北京 100097%国家农业信息化工程技术研究中心,北京 100097
– name: 农业部农业信息技术重点实验室,北京 100097%农业部农业信息技术重点实验室,北京 100097
– name: 北京市农业物联网工程技术研究中心,北京 100097
– name: 农业部农业信息技术重点实验室,北京 100097%北京农业信息技术研究中心,北京 100097
– name: 国家农业信息化工程技术研究中心,北京 100097
– name: 河南理工大学测绘与国土信息工程学院,焦作 454000%河南理工大学测绘与国土信息工程学院,焦作,454000%北京农业信息技术研究中心,北京 100097
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1105208
Snippet ...
S25; 为了直接将雷达遥感中“水云模型”进行反演应用,该研究将“水云模型”中植被参数改为雷达植被指数,利用全极化数据直接支持遥感反演土壤含水量,无需遥感反演植被参数输入。改进模型为利用雷达遥感结合“水云模型”进行土壤含水量监测提供了一种高效便捷方法。基于...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 146
SubjectTerms Radarsat-2
冬小麦
叶面积指数
土壤
植被
水云模型
水分
Title 基于改进水云模型和Radarsat-2数据的农田土壤含水量估算
URI http://lib.cqvip.com/qk/90712X/201622/670706961.html
https://d.wanfangdata.com.cn/periodical/nygcxb201622020
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_9ANGD-Im1Kj2Yk8w6k5lkkmOyO0sV9CAVelvmcz1ttW5BexY9-C0VQYtF9CAIZQ9eLIJX_5DuVv8L38vOfliLX5chm_zyey_vZeclIckQcjZLcw8PWTu8CGIH5hu-IyHsOn4cF4lMcxjC4jrkpcti_mpwcZEvTkx-Hdu1tNJOKunqnudK_serkAd-xVOy_-DZISlkQBr8C0_wMDz_ysc04lTVqdE0CvApIxoJqiCtaCSpqVNlMMe41AQlRnmYoyXVnq0eUWlsglFZvRJnMNGN2w6zRBxrQkLWqAbqkCqQESBaQmnV5gQWw_EnqAIJ7VNtMcqlely8ojKksm71qNpaIdL2N84OBshj5ACTKBFyDCC5xctSXQ0qCaubhqJBt7Fa1xCFzQcCPuAzIwjQMWp8pDOG6tBCaiBpFwtaU1kj1G2O_EmQpdW2xFgFUamImtr4Okr_gKft89YiBsoHQLFXUwMUpq2LpGfpAQOWFXtZwTZeWg8BCYKhyEWXYEJZEZZZW6HALKHVdbQ-cJbMYdkvdPWcZ8_bjIUpjGNClsGmjGOjdeKVwWHvMioNVnn7Axyvfzvzr7FThdwGTxRRGYrA7Y-iwljFZe5o0DDcytm63UxvJYhhDBCTZJqFoQfxZVqbmqmPhuYerj4MYwfDGxjEaKrLPR8_tDDcnoWbE7jdqVCqsY_QgZLnf6ci3pFybanVvAEjP3sQr1XErebYmHHhEDlYTvbmdP-fe5hMrF47Qg7o5nJ54U1-lFzobmxtbz3qrX369uVVr_Nxe-tp7_2b7uv73WcPRv_G3vNO7-Hmzss73bvrO2ud7vpG9-277pMPUOH7vcfbnzs7my-OkYV6tFCdd8rPmzgpV67DZJoUqZfFXsxUwXku3NxTecKlyIQCY2b4USihEl7kMItQoc-DNAxdlsFMM_Nz_ziZai218hNkLuVMZokURZ6GgZtmMKfI4VVbMMF5wng8Q2aHNmlc799i0xChi_TCmyFzpZUa5bvtZmOXV0_-GTJL9mO6vzp5iky1l1fy0zBebydnyq7wA4KMtRU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E6%B0%B4%E4%BA%91%E6%A8%A1%E5%9E%8B%E5%92%8CRadarsat-2%E6%95%B0%E6%8D%AE%E7%9A%84%E5%86%9C%E7%94%B0%E5%9C%9F%E5%A3%A4%E5%90%AB%E6%B0%B4%E9%87%8F%E4%BC%B0%E7%AE%97&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%A8%E8%B4%B5%E5%86%9B&rft.au=%E5%B2%B3%E7%BB%A7%E5%8D%9A&rft.au=%E6%9D%8E%E9%95%BF%E6%98%A5&rft.au=%E5%86%AF%E6%B5%B7%E5%AE%BD&rft.date=2016&rft.pub=%E5%9B%BD%E5%AE%B6%E5%86%9C%E4%B8%9A%E4%BF%A1%E6%81%AF%E5%8C%96%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%EF%BC%8C%E5%8C%97%E4%BA%AC+100097&rft.issn=1002-6819&rft.volume=32&rft.issue=22&rft.spage=146&rft.epage=153&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.22.020&rft.externalDocID=nygcxb201622020
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg