Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma

Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 6; pp. 2306 - 2311
Main Authors Rosewick, Nicolas, Momont, Mélanie, Durkin, Keith, Takeda, Haruko, Caiment, Florian, Cleuter, Yvette, Vernin, Céline, Mortreux, Franck, Wattel, Eric, Burny, Arsène, Georges, Michel, Van den Broeke, Anne
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.02.2013
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of small RNA sizes in the bovine leukemia virus ovine model of leukemia/lymphoma, we provide in vivo evidence of the production of noncanonical RNA polymerase III (Pol III)-transcribed viral microRNAs in leukemic B cells in the complete absence of Pol II 5′-LTR–driven transcriptional activity. Processed from a cluster of five independent self-sufficient transcriptional units located in a proviral region dispensable for in vivo infectivity, bovine leukemia virus microRNAs represent ∼40% of all microRNAs in both experimental and natural malignancy. They are subject to strong purifying selection and associate with Argonautes, consistent with a critical function in silencing of important cellular and/or viral targets. Bovine leukemia virus microRNAs are strongly expressed in preleukemic and malignant cells in which structural and regulatory gene expression is repressed, suggesting a key role in tumor onset and progression. Understanding how Pol III-dependent microRNAs subvert cellular and viral pathways will contribute to deciphering the intricate perturbations that underlie malignant transformation.
AbstractList Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of small RNA sizes in the bovine leukemia virus ovine model of leukemia/lymphoma, we provide in vivo evidence of the production of noncanonical RNA polymerase III (Pol III)-transcribed viral microRNAs in leukemic B cells in the complete absence of Pol II 5'-LTR-driven transcriptional activity. Processed from a cluster of five independent self-sufficient transcriptional units located in a proviral region dispensable for in vivo infectivity, bovine leukemia virus microRNAs represent ∼40% of all microRNAs in both experimental and natural malignancy. They are subject to strong purifying selection and associate with Argonautes, consistent with a critical function in silencing of important cellular and/or viral targets. Bovine leukemia virus microRNAs are strongly expressed in preleukemic and malignant cells in which structural and regulatory gene expression is repressed, suggesting a key role in tumor onset and progression. Understanding how Pol III-dependent microRNAs subvert cellular and viral pathways will contribute to deciphering the intricate perturbations that underlie malignant transformation.Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of small RNA sizes in the bovine leukemia virus ovine model of leukemia/lymphoma, we provide in vivo evidence of the production of noncanonical RNA polymerase III (Pol III)-transcribed viral microRNAs in leukemic B cells in the complete absence of Pol II 5'-LTR-driven transcriptional activity. Processed from a cluster of five independent self-sufficient transcriptional units located in a proviral region dispensable for in vivo infectivity, bovine leukemia virus microRNAs represent ∼40% of all microRNAs in both experimental and natural malignancy. They are subject to strong purifying selection and associate with Argonautes, consistent with a critical function in silencing of important cellular and/or viral targets. Bovine leukemia virus microRNAs are strongly expressed in preleukemic and malignant cells in which structural and regulatory gene expression is repressed, suggesting a key role in tumor onset and progression. Understanding how Pol III-dependent microRNAs subvert cellular and viral pathways will contribute to deciphering the intricate perturbations that underlie malignant transformation.
Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of small RNA sizes in the bovine leukemia virus ovine model of leukemia/lymphoma, we provide in vivo evidence of the production of noncanonical RNA polymerase III (Pol III)-transcribed viral microRNAs in leukemic B cells in the complete absence of Pol II 5'-LTR-driven transcriptional activity. Processed from a cluster of five independent self-sufficient transcriptional units located in a proviral region dispensable for in vivo infectivity, bovine leukemia virus microRNAs represent ~40% of all microRNAs in both experimental and natural malignancy. They are subject to strong purifying selection and associate with Argonautes, consistent with a critical function in silencing of important cellular and/or viral targets. Bovine leukemia virus microRNAs are strongly expressed in preleukemic and malignant cells in which structural and regulatory gene expression is repressed, suggesting a key role in tumor onset and progression. Understanding how Pol III-dependent microRNAs subvert cellular and viral pathways will contribute to deciphering the intricate perturbations that underlie malignant transformation. [PUBLICATION ABSTRACT]
Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of small RNA sizes in the bovine leukemia virus ovine model of leukemia/lymphoma, we provide in vivo evidence of the production of noncanonical RNA polymerase III (Pol III)-transcribed viral microRNAs in leukemic B cells in the complete absence of Pol II 5′-LTR–driven transcriptional activity. Processed from a cluster of five independent self-sufficient transcriptional units located in a proviral region dispensable for in vivo infectivity, bovine leukemia virus microRNAs represent ∼40% of all microRNAs in both experimental and natural malignancy. They are subject to strong purifying selection and associate with Argonautes, consistent with a critical function in silencing of important cellular and/or viral targets. Bovine leukemia virus microRNAs are strongly expressed in preleukemic and malignant cells in which structural and regulatory gene expression is repressed, suggesting a key role in tumor onset and progression. Understanding how Pol III-dependent microRNAs subvert cellular and viral pathways will contribute to deciphering the intricate perturbations that underlie malignant transformation.
Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of small RNA sizes in the bovine leukemia virus ovine model of leukemia/lymphoma, we provide in vivo evidence of the production of noncanonical RNA polymerase III (Pol lll)-transcribed viral microRNAs in leukemic B cells in the complete absence of Pol II 5'-LTR-driven transcriptional activity. Processed from a cluster of five independent self-sufficient transcriptional units located in a proviral region dispensable for in vivo infectivity, bovine leukemia virus microRNAs represent ~40% of all microRNAs in both experimental and natural malignancy. They are subject to strong purifying selection and associate with Argonautes, consistent with a critical function in silencing of important cellular and/or viral targets. Bovine leukemia virus microRNAs are strongly expressed in preleukemic and malignant cells in which structural and regulatory gene expression is repressed, suggesting a key role in tumor onset and progression. Understanding how Pol III-dependent microRNAs subvert cellular and viral pathways will contribute to deciphering the intricate perturbations that underlie malignant transformation.
Author Burny, Arsène
Takeda, Haruko
Cleuter, Yvette
Durkin, Keith
Georges, Michel
Momont, Mélanie
Mortreux, Franck
Caiment, Florian
Wattel, Eric
Rosewick, Nicolas
Vernin, Céline
Van den Broeke, Anne
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Rosewick
  fullname: Rosewick, Nicolas
– sequence: 2
  givenname: Mélanie
  surname: Momont
  fullname: Momont, Mélanie
– sequence: 3
  givenname: Keith
  surname: Durkin
  fullname: Durkin, Keith
– sequence: 4
  givenname: Haruko
  surname: Takeda
  fullname: Takeda, Haruko
– sequence: 5
  givenname: Florian
  surname: Caiment
  fullname: Caiment, Florian
– sequence: 6
  givenname: Yvette
  surname: Cleuter
  fullname: Cleuter, Yvette
– sequence: 7
  givenname: Céline
  surname: Vernin
  fullname: Vernin, Céline
– sequence: 8
  givenname: Franck
  surname: Mortreux
  fullname: Mortreux, Franck
– sequence: 9
  givenname: Eric
  surname: Wattel
  fullname: Wattel, Eric
– sequence: 10
  givenname: Arsène
  surname: Burny
  fullname: Burny, Arsène
– sequence: 11
  givenname: Michel
  surname: Georges
  fullname: Georges, Michel
– sequence: 12
  givenname: Anne
  surname: Van den Broeke
  fullname: Van den Broeke, Anne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23345446$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLcLZ05AJC5c0h1_JHEulUopH1IFEtAr1sTrbL0k9mInK_W_r6PtLlAJcXEivd88vxnPCTly3hlCnlM4pVDxxcZhPKWMcikYpfCIzCjUNC9FDUdkBsCqPCnimJzEuAaAupDwhBwzzkUhRDkjP94Zs8mi-TUap61bZcFsDXYxw2Z0S3RDlm7UmA6rsUvqEPzWhvTbWx3818_nMbMue5tr03VZZ8afpre46G77zY3v8Sl53CY38-z-OyfX7y-_X3zMr758-HRxfpXrQtZD3lYcKSJt-NI0osK6MKyBViAuDeNAS5E6xKblAmRdVrQpl7rVWuqmlroSms_J2c53Mza9WWrjhpRRbYLtMdwqj1b9rTh7o1Z-q3hRSl5UyeDNvUHwaRZxUL2NU0_ojB-johI4ZSUU8v8okwXIdLKEvn6Arv0YXJrERAlZ1pWYDF_-Gf6Qev9KCSh2QJp4jMG0StsBB-unXmynKKhpG9S0Der3NqS6xYO6vfW_K_ZRJuFAJ7xMcWCK8mIHrOPgw4EQtK4ZSz5z8mqnt-gVroKN6vobSy8IQAVjouJ3xhfVIA
CitedBy_id crossref_primary_10_3389_fmicb_2017_02684
crossref_primary_10_1038_srep09912
crossref_primary_10_3390_v13112167
crossref_primary_10_1007_s11262_018_1574_z
crossref_primary_10_1093_nar_gkac107
crossref_primary_10_1186_s41544_020_00056_z
crossref_primary_10_1371_journal_ppat_1008502
crossref_primary_10_3390_v6062416
crossref_primary_10_1038_s41598_017_16861_w
crossref_primary_10_3390_v7112929
crossref_primary_10_1073_pnas_1320123111
crossref_primary_10_3389_fvets_2020_00272
crossref_primary_10_2174_2211536611666220816124650
crossref_primary_10_1016_j_virol_2020_07_011
crossref_primary_10_1111_1744_7917_12671
crossref_primary_10_1088_1755_1315_403_1_012029
crossref_primary_10_1038_cr_2016_21
crossref_primary_10_1128_JVI_02921_13
crossref_primary_10_1016_j_vetmic_2024_110153
crossref_primary_10_1186_s12985_017_0876_4
crossref_primary_10_1038_ncomms15264
crossref_primary_10_1016_j_tvjl_2020_105449
crossref_primary_10_1016_j_semcdb_2022_11_007
crossref_primary_10_1016_j_coviro_2014_03_013
crossref_primary_10_1128_JVI_03587_13
crossref_primary_10_3390_ani13243811
crossref_primary_10_1128_JVI_02823_13
crossref_primary_10_3390_v10030110
crossref_primary_10_1186_s12977_016_0267_8
crossref_primary_10_1371_journal_ppat_1003687
crossref_primary_10_3389_fimmu_2022_875211
crossref_primary_10_1371_journal_ppat_1005588
crossref_primary_10_1111_imb_12725
crossref_primary_10_1128_spectrum_00855_23
crossref_primary_10_3389_fphys_2021_663482
crossref_primary_10_1128_mBio_00074_14
crossref_primary_10_1186_s41544_019_0037_6
crossref_primary_10_1016_j_virusres_2018_06_005
crossref_primary_10_1007_s11262_024_02058_7
crossref_primary_10_1515_bmc_2016_0017
crossref_primary_10_3390_pathogens9100836
crossref_primary_10_1016_j_virol_2019_08_015
crossref_primary_10_21303_2504_5695_2017_00385
crossref_primary_10_1186_1743_422X_11_121
crossref_primary_10_1093_nar_gku1247
crossref_primary_10_3390_v7072805
crossref_primary_10_1007_s00018_016_2215_0
crossref_primary_10_1093_nar_gkw167
crossref_primary_10_1099_jgv_0_000272
crossref_primary_10_3390_v6031379
crossref_primary_10_3389_fvets_2017_00245
crossref_primary_10_3389_fvets_2020_536390
crossref_primary_10_1016_j_virusres_2018_08_018
crossref_primary_10_4236_ns_2016_84021
crossref_primary_10_3389_fmicb_2020_625941
crossref_primary_10_3390_amh69040027
crossref_primary_10_1016_j_coviro_2017_06_012
crossref_primary_10_1080_15476286_2018_1555406
crossref_primary_10_1097_COH_0000000000000135
crossref_primary_10_1186_s12977_016_0239_z
crossref_primary_10_1002_1873_3468_13700
crossref_primary_10_1007_s11427_014_4759_2
crossref_primary_10_1186_s13059_021_02307_0
crossref_primary_10_3390_v14040805
crossref_primary_10_1186_s12977_018_0403_8
crossref_primary_10_3390_ani14020297
crossref_primary_10_1152_physiolgenomics_00112_2013
crossref_primary_10_1371_journal_pone_0256588
crossref_primary_10_1016_j_meegid_2020_104171
crossref_primary_10_1016_j_virusres_2017_03_009
crossref_primary_10_3390_v17030324
crossref_primary_10_1186_s12917_019_1863_3
crossref_primary_10_1038_s41598_022_08181_5
crossref_primary_10_1186_s12977_023_00623_w
crossref_primary_10_1016_j_vetmic_2021_109200
crossref_primary_10_1007_s11259_015_9629_2
crossref_primary_10_1016_j_virol_2014_11_021
crossref_primary_10_1016_j_virol_2025_110461
crossref_primary_10_1371_journal_pone_0281317
crossref_primary_10_1111_aab_12241
crossref_primary_10_1292_jvms_21_0607
crossref_primary_10_2460_javma_244_8_914
crossref_primary_10_3390_pathogens10020246
crossref_primary_10_3390_v6093514
Cites_doi 10.1073/pnas.85.23.9263
10.1128/JVI.73.2.1054-1065.1999
10.1016/j.biocel.2010.03.004
10.1073/pnas.1007186107
10.1371/journal.pcbi.1001090
10.1016/j.gene.2011.06.015
10.1002/j.1460-2075.1990.tb08277.x
10.1016/j.virol.2011.01.002
10.1084/jem.20090831
10.1371/journal.ppat.1000787
10.1128/JVI.02606-06
10.1158/0008-5472.CAN-04-1834
10.1093/nar/gkr671
10.1186/1471-2199-8-63
10.1073/pnas.1116107109
10.1016/j.leukres.2010.06.003
10.1016/j.cell.2009.02.005
10.1128/JVI.01058-07
10.1186/1742-4690-4-18
10.1016/j.molcel.2009.12.016
10.1016/S0092-8674(04)00045-5
10.1038/nrm2321
10.1186/1742-4690-4-51
10.1038/nrc2111
10.1038/sj.onc.1206546
10.1038/nsmb.1806
10.1128/JVI.80.4.1922-1938.2006
10.1038/nrg3001
10.1158/0008-5472.CAN-06-3613
10.1016/j.cell.2006.03.043
10.1074/jbc.M109.062976
10.1073/pnas.79.8.2465
10.1038/nrg3079
10.1038/nature07103
10.1128/jvi.67.7.4078-4085.1993
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Feb 5, 2013
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Feb 5, 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1213842110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef


AGRICOLA


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Retroviral miRNAs in B-cell leukemia
EISSN 1091-6490
EndPage 2311
ExternalDocumentID PMC3568357
2885949311
23345446
10_1073_pnas_1213842110
110_6_2306
41992221
US201600142247
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c589t-f73a1aa1b3deb47a95e2b0f4aade230164138abf34089671b6dcfcc8cb98c74c3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:38:16 EDT 2025
Fri Jul 11 16:06:31 EDT 2025
Fri Jul 11 07:29:00 EDT 2025
Mon Jun 30 07:51:51 EDT 2025
Wed Feb 19 01:50:31 EST 2025
Thu Apr 24 23:01:11 EDT 2025
Tue Jul 01 03:39:36 EDT 2025
Wed Nov 11 00:30:13 EST 2020
Thu May 29 08:40:43 EDT 2025
Thu Apr 03 09:46:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c589t-f73a1aa1b3deb47a95e2b0f4aade230164138abf34089671b6dcfcc8cb98c74c3
Notes http://dx.doi.org/10.1073/pnas.1213842110
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
1Present address: Department of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands.
Author contributions: M.G. and A.V.d.B. designed research; N.R., M.M., K.D., H.T., F.C., Y.C., and C.V. performed research; N.R., F.M., E.W., M.G., and A.V.d.B. analyzed data; and N.R., F.M., A.B., M.G., and A.V.d.B. wrote the paper.
Edited* by Robert C. Gallo, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, and approved December 14, 2012 (received for review August 21, 2012)
OpenAccessLink https://www.pnas.org/content/pnas/110/6/2306.full.pdf
PMID 23345446
PQID 1284869748
PQPubID 42026
PageCount 6
ParticipantIDs pubmed_primary_23345446
crossref_citationtrail_10_1073_pnas_1213842110
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3568357
pnas_primary_110_6_2306
proquest_miscellaneous_1803126058
proquest_journals_1284869748
jstor_primary_41992221
crossref_primary_10_1073_pnas_1213842110
proquest_miscellaneous_1285081282
fao_agris_US201600142247
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-05
PublicationDateYYYYMMDD 2013-02-05
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Barski A (e_1_3_4_30_2) 2010; 17
Van den Broeke A (e_1_3_4_31_2) 2010; 34
Watashi K (e_1_3_4_24_2) 2010; 285
Santanam U (e_1_3_4_27_2) 2010; 107
Merimi M (e_1_3_4_12_2) 2007; 4
Willems L (e_1_3_4_15_2) 1993; 67
Bogerd HP (e_1_3_4_36_2) 2010; 37
Bartel DP (e_1_3_4_21_2) 2004; 116
Pekarsky Y (e_1_3_4_32_2) 2006; 66
Han J (e_1_3_4_22_2) 2006; 125
Hutvagner G (e_1_3_4_25_2) 2008; 9
White RJ (e_1_3_4_29_2) 2011; 12
Berezikov E (e_1_3_4_23_2) 2011; 12
Orioli A (e_1_3_4_28_2) 2012; 493
Gillet N (e_1_3_4_2_2) 2007; 4
Kincaid RP (e_1_3_4_17_2) 2012; 109
Ventura A (e_1_3_4_18_2) 2009; 136
Han YC (e_1_3_4_26_2) 2010; 207
Merimi M (e_1_3_4_13_2) 2007; 81
Colin L (e_1_3_4_14_2) 2011; 39
Olive V (e_1_3_4_19_2) 2010; 42
Grundhoff A (e_1_3_4_35_2) 2011; 411
Cullen BR (e_1_3_4_33_2) 2010; 6
Florins A (e_1_3_4_16_2) 2007; 81
Moulés V (e_1_3_4_5_2) 2005; 65
Klase Z (e_1_3_4_37_2) 2007; 8
Klener P (e_1_3_4_7_2) 2006; 80
Kettmann R (e_1_3_4_9_2) 1982; 79
Szynal M (e_1_3_4_8_2) 2003; 22
Ragan C (e_1_3_4_20_2) 2011; 7
Van den Broeke A (e_1_3_4_10_2) 1988; 85
Van Den Broeke A (e_1_3_4_11_2) 1999; 73
Burny A (e_1_3_4_1_2) 1994
Mammerickx M (e_1_3_4_3_2) 1988; 2
Matsuoka M (e_1_3_4_4_2) 2007; 7
Willems L (e_1_3_4_6_2) 1990; 9
Umbach JL (e_1_3_4_34_2) 2008; 454
21390282 - PLoS Comput Biol. 2011 Feb;7(2):e1001090
2830439 - Leukemia. 1988 Feb;2(2):103-7
20418881 - Nat Struct Mol Biol. 2010 May;17(5):629-34
12881710 - Oncogene. 2003 Jul 17;22(29):4531-42
17362524 - Retrovirology. 2007;4:18
17663774 - BMC Mol Biol. 2007;8:63
2158445 - EMBO J. 1990 May;9(5):1577-81
17645797 - Retrovirology. 2007;4:51
8389918 - J Virol. 1993 Jul;67(7):4078-85
18073770 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):22-32
21277611 - Virology. 2011 Mar 15;411(2):325-43
16751099 - Cell. 2006 Jun 2;125(5):887-901
2848258 - Proc Natl Acad Sci U S A. 1988 Dec;85(23):9263-7
17178851 - Cancer Res. 2006 Dec 15;66(24):11590-3
19239879 - Cell. 2009 Feb 20;136(4):586-91
22308400 - Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3077-82
20529860 - J Biol Chem. 2010 Aug 6;285(32):24707-16
17626096 - J Virol. 2007 Sep;81(18):10195-200
9882306 - J Virol. 1999 Feb;73(2):1054-65
20566844 - Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12210-5
22094948 - Nat Rev Genet. 2011 Dec;12(12):846-60
21712079 - Gene. 2012 Feb 10;493(2):185-94
17392371 - J Virol. 2007 Jun;81(11):5929-39
18596690 - Nature. 2008 Aug 7;454(7205):780-3
15735007 - Cancer Res. 2005 Feb 15;65(4):1234-43
17384582 - Nat Rev Cancer. 2007 Apr;7(4):270-80
21540878 - Nat Rev Genet. 2011 Jul;12(7):459-63
20129062 - Mol Cell. 2010 Jan 15;37(1):135-42
20195463 - PLoS Pathog. 2010 Feb;6(2):e1000787
20227518 - Int J Biochem Cell Biol. 2010 Aug;42(8):1348-54
14744438 - Cell. 2004 Jan 23;116(2):281-97
20591480 - Leuk Res. 2010 Dec;34(12):1663-9
20212066 - J Exp Med. 2010 Mar 15;207(3):475-89
21890901 - Nucleic Acids Res. 2011 Dec;39(22):9559-73
6283527 - Proc Natl Acad Sci U S A. 1982 Apr;79(8):2465-9
16439548 - J Virol. 2006 Feb;80(4):1922-38
References_xml – volume: 85
  start-page: 9263
  year: 1988
  ident: e_1_3_4_10_2
  article-title: Even transcriptionally competent proviruses are silent in bovine leukemia virus-induced sheep tumor cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.85.23.9263
– volume: 73
  start-page: 1054
  year: 1999
  ident: e_1_3_4_11_2
  article-title: In vivo rescue of a silent tax-deficient bovine leukemia virus from a tumor-derived ovine B-cell line by recombination with a retrovirally transduced wild-type tax gene
  publication-title: J Virol
  doi: 10.1128/JVI.73.2.1054-1065.1999
– volume: 42
  start-page: 1348
  year: 2010
  ident: e_1_3_4_19_2
  article-title: mir-17-92, a cluster of miRNAs in the midst of the cancer network
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2010.03.004
– volume: 107
  start-page: 12210
  year: 2010
  ident: e_1_3_4_27_2
  article-title: Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1007186107
– volume: 7
  start-page: e1001090
  year: 2011
  ident: e_1_3_4_20_2
  article-title: Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001090
– volume: 493
  start-page: 185
  year: 2012
  ident: e_1_3_4_28_2
  article-title: RNA polymerase III transcription control elements: Themes and variations
  publication-title: Gene
  doi: 10.1016/j.gene.2011.06.015
– volume: 9
  start-page: 1577
  year: 1990
  ident: e_1_3_4_6_2
  article-title: Cooperation between bovine leukaemia virus transactivator protein and Ha-ras oncogene product in cellular transformation
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1990.tb08277.x
– volume: 411
  start-page: 325
  year: 2011
  ident: e_1_3_4_35_2
  article-title: Virus-encoded microRNAs
  publication-title: Virology
  doi: 10.1016/j.virol.2011.01.002
– volume: 207
  start-page: 475
  year: 2010
  ident: e_1_3_4_26_2
  article-title: microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia
  publication-title: J Exp Med
  doi: 10.1084/jem.20090831
– volume: 6
  start-page: e1000787
  year: 2010
  ident: e_1_3_4_33_2
  article-title: Five questions about viruses and microRNAs
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000787
– volume: 81
  start-page: 5929
  year: 2007
  ident: e_1_3_4_13_2
  article-title: Suppression of viral gene expression in bovine leukemia virus-associated B-cell malignancy: Interplay of epigenetic modifications leading to chromatin with a repressive histone code
  publication-title: J Virol
  doi: 10.1128/JVI.02606-06
– volume: 65
  start-page: 1234
  year: 2005
  ident: e_1_3_4_5_2
  article-title: Fate of premalignant clones during the asymptomatic phase preceding lymphoid malignancy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-1834
– volume: 39
  start-page: 9559
  year: 2011
  ident: e_1_3_4_14_2
  article-title: Chromatin disruption in the promoter of bovine leukemia virus during transcriptional activation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr671
– volume: 8
  start-page: 63
  year: 2007
  ident: e_1_3_4_37_2
  article-title: HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR
  publication-title: BMC Mol Biol
  doi: 10.1186/1471-2199-8-63
– volume: 109
  start-page: 3077
  year: 2012
  ident: e_1_3_4_17_2
  article-title: RNA virus microRNA that mimics a B-cell oncomiR
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1116107109
– volume: 34
  start-page: 1663
  year: 2010
  ident: e_1_3_4_31_2
  article-title: Cytotoxic responses to BLV tax oncoprotein do not prevent leukemogenesis in sheep
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2010.06.003
– volume: 136
  start-page: 586
  year: 2009
  ident: e_1_3_4_18_2
  article-title: MicroRNAs and cancer: Short RNAs go a long way
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.005
– volume: 81
  start-page: 10195
  year: 2007
  ident: e_1_3_4_16_2
  article-title: Even attenuated bovine leukemia virus proviruses can be pathogenic in sheep
  publication-title: J Virol
  doi: 10.1128/JVI.01058-07
– volume: 4
  start-page: 18
  year: 2007
  ident: e_1_3_4_2_2
  article-title: Mechanisms of leukemogenesis induced by bovine leukemia virus: Prospects for novel anti-retroviral therapies in human
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-4-18
– volume: 37
  start-page: 135
  year: 2010
  ident: e_1_3_4_36_2
  article-title: A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral microRNAs
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.12.016
– volume: 116
  start-page: 281
  year: 2004
  ident: e_1_3_4_21_2
  article-title: MicroRNAs: Genomics, biogenesis, mechanism, and function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 9
  start-page: 22
  year: 2008
  ident: e_1_3_4_25_2
  article-title: Argonaute proteins: Key players in RNA silencing
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2321
– volume: 4
  start-page: 51
  year: 2007
  ident: e_1_3_4_12_2
  article-title: Complete suppression of viral gene expression is associated with the onset and progression of lymphoid malignancy: Observations in bovine leukemia virus-infected sheep
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-4-51
– volume: 7
  start-page: 270
  year: 2007
  ident: e_1_3_4_4_2
  article-title: Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2111
– volume: 22
  start-page: 4531
  year: 2003
  ident: e_1_3_4_8_2
  article-title: Disruption of B-cell homeostatic control mediated by the BLV-Tax oncoprotein: Association with the upregulation of Bcl-2 and signaling through NF-kappaB
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206546
– volume: 17
  start-page: 629
  year: 2010
  ident: e_1_3_4_30_2
  article-title: Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1806
– volume: 80
  start-page: 1922
  year: 2006
  ident: e_1_3_4_7_2
  article-title: Insights into gene expression changes impacting B-cell transformation: Cross-species microarray analysis of bovine leukemia virus tax-responsive genes in ovine B cells
  publication-title: J Virol
  doi: 10.1128/JVI.80.4.1922-1938.2006
– volume: 12
  start-page: 459
  year: 2011
  ident: e_1_3_4_29_2
  article-title: Transcription by RNA polymerase III: More complex than we thought
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3001
– volume: 66
  start-page: 11590
  year: 2006
  ident: e_1_3_4_32_2
  article-title: Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-3613
– start-page: 313
  volume-title: Viruses and Cancer
  year: 1994
  ident: e_1_3_4_1_2
– volume: 2
  start-page: 103
  year: 1988
  ident: e_1_3_4_3_2
  article-title: Experimental transmission of enzootic bovine leukosis to sheep: Latency period of the tumoral disease
  publication-title: Leukemia
– volume: 125
  start-page: 887
  year: 2006
  ident: e_1_3_4_22_2
  article-title: Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.043
– volume: 285
  start-page: 24707
  year: 2010
  ident: e_1_3_4_24_2
  article-title: Identification of small molecules that suppress microRNA function and reverse tumorigenesis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.062976
– volume: 79
  start-page: 2465
  year: 1982
  ident: e_1_3_4_9_2
  article-title: Leukemogenesis by bovine leukemia virus: Proviral DNA integration and lack of RNA expression of viral long terminal repeat and 3′ proximate cellular sequences
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.79.8.2465
– volume: 12
  start-page: 846
  year: 2011
  ident: e_1_3_4_23_2
  article-title: Evolution of microRNA diversity and regulation in animals
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3079
– volume: 454
  start-page: 780
  year: 2008
  ident: e_1_3_4_34_2
  article-title: MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs
  publication-title: Nature
  doi: 10.1038/nature07103
– volume: 67
  start-page: 4078
  year: 1993
  ident: e_1_3_4_15_2
  article-title: In vivo infection of sheep by bovine leukemia virus mutants
  publication-title: J Virol
  doi: 10.1128/jvi.67.7.4078-4085.1993
– reference: 18073770 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):22-32
– reference: 20529860 - J Biol Chem. 2010 Aug 6;285(32):24707-16
– reference: 17384582 - Nat Rev Cancer. 2007 Apr;7(4):270-80
– reference: 21277611 - Virology. 2011 Mar 15;411(2):325-43
– reference: 21712079 - Gene. 2012 Feb 10;493(2):185-94
– reference: 12881710 - Oncogene. 2003 Jul 17;22(29):4531-42
– reference: 2830439 - Leukemia. 1988 Feb;2(2):103-7
– reference: 17178851 - Cancer Res. 2006 Dec 15;66(24):11590-3
– reference: 20227518 - Int J Biochem Cell Biol. 2010 Aug;42(8):1348-54
– reference: 8389918 - J Virol. 1993 Jul;67(7):4078-85
– reference: 17362524 - Retrovirology. 2007;4:18
– reference: 20195463 - PLoS Pathog. 2010 Feb;6(2):e1000787
– reference: 17392371 - J Virol. 2007 Jun;81(11):5929-39
– reference: 20591480 - Leuk Res. 2010 Dec;34(12):1663-9
– reference: 14744438 - Cell. 2004 Jan 23;116(2):281-97
– reference: 6283527 - Proc Natl Acad Sci U S A. 1982 Apr;79(8):2465-9
– reference: 9882306 - J Virol. 1999 Feb;73(2):1054-65
– reference: 22094948 - Nat Rev Genet. 2011 Dec;12(12):846-60
– reference: 21390282 - PLoS Comput Biol. 2011 Feb;7(2):e1001090
– reference: 22308400 - Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3077-82
– reference: 17626096 - J Virol. 2007 Sep;81(18):10195-200
– reference: 20129062 - Mol Cell. 2010 Jan 15;37(1):135-42
– reference: 19239879 - Cell. 2009 Feb 20;136(4):586-91
– reference: 18596690 - Nature. 2008 Aug 7;454(7205):780-3
– reference: 15735007 - Cancer Res. 2005 Feb 15;65(4):1234-43
– reference: 16751099 - Cell. 2006 Jun 2;125(5):887-901
– reference: 21540878 - Nat Rev Genet. 2011 Jul;12(7):459-63
– reference: 21890901 - Nucleic Acids Res. 2011 Dec;39(22):9559-73
– reference: 2848258 - Proc Natl Acad Sci U S A. 1988 Dec;85(23):9263-7
– reference: 17645797 - Retrovirology. 2007;4:51
– reference: 2158445 - EMBO J. 1990 May;9(5):1577-81
– reference: 20418881 - Nat Struct Mol Biol. 2010 May;17(5):629-34
– reference: 20212066 - J Exp Med. 2010 Mar 15;207(3):475-89
– reference: 17663774 - BMC Mol Biol. 2007;8:63
– reference: 20566844 - Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12210-5
– reference: 16439548 - J Virol. 2006 Feb;80(4):1922-38
SSID ssj0009580
Score 2.421914
Snippet Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however,...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2306
SubjectTerms animal models
Animals
Argonaute Proteins - metabolism
B lymphocytes
Base Sequence
Biological Sciences
Bovine leukemia virus
Cattle
Cell Line, Tumor
Cells
Disease Models, Animal
DNA-directed RNA polymerase
Enzootic Bovine Leukosis - genetics
Enzootic Bovine Leukosis - virology
Gene Expression
High Mobility Group Proteins - genetics
High throughput nucleotide sequencing
Human T-lymphotropic virus 1 - genetics
Humans
Leukemia
Leukemia Virus, Bovine - genetics
Leukemia, B-Cell - genetics
Leukemia, B-Cell - veterinary
Leukemia, B-Cell - virology
Leukemia-Lymphoma, Adult T-Cell - genetics
Leukemia-Lymphoma, Adult T-Cell - virology
Lymphoma
Lymphoma, B-Cell - genetics
Lymphoma, B-Cell - veterinary
Lymphoma, B-Cell - virology
Messenger RNA
MicroRNA
MicroRNAs - chemistry
MicroRNAs - genetics
MicroRNAs - metabolism
Molecular Sequence Data
Nucleic Acid Conformation
pathogenicity
Proviruses
regulator genes
Ribonucleic acid
RNA
RNA polymerase
RNA Polymerase III - metabolism
RNA, Neoplasm - genetics
RNA, Neoplasm - metabolism
RNA, Viral - chemistry
RNA, Viral - genetics
RNA, Viral - metabolism
Sequence Analysis, RNA
Sequence Homology, Nucleic Acid
Sheep
Sheep Diseases - genetics
Sheep Diseases - virology
Terminal Repeat Sequences
transcription (genetics)
Tumors
Viruses
Title Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma
URI https://www.jstor.org/stable/41992221
http://www.pnas.org/content/110/6/2306.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23345446
https://www.proquest.com/docview/1284869748
https://www.proquest.com/docview/1285081282
https://www.proquest.com/docview/1803126058
https://pubmed.ncbi.nlm.nih.gov/PMC3568357
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUaA0UJCROBRFTuPd9esYHlUFalRBIvWEtWuvIUrqVIlzgF_Gz2PG3l07IUWFixUlm_Fm58u8PA9CXoMGojzMqCujOMem2syVAT5lz_OUyVx6WdVK6WIUnE_4xyv_qtP51cpaWpeyn_7cWVfyP1yF94CvWCX7D5y1ROENeA38hStwGK534vF7pW56OhkaXX5sx4TtkIXE-o6i7IFvD0e3qGsfl6rE-AFW5F9jGt7n0bBKhn3rYvS-N1frmbrG3Nmz-Q_g8UJLbG25XlpNtzJ5BSMTSBw2ZSlaVqx6bu9y1Aw5xgGOZmh7BT5hbfmLBZxXnTRSP7WfY9V7Y2Av9cCwT2pa2tj1WMxUVtm952K5ni3awQscJEHdgd8WyBSUJK_LqPuqlsFgwrgBr6eIWiGtk1-nf4pcNgha6hvsVW-nagBZhvOMC7HCjhoMbmpobjTh3lKONmWxelgfsgQJJA2BPXKPgoNCTZzItnuO6uIn_fNMU6mQnW7tYMMe2svFwiTGYrddWLrL89lO4G1ZROOH5IF2ZZxhjcsD0lHFI3JgAOCc6I7mbx6TrwhUpwGqo4HqGKA6baA6DVAdC1RnWjg1UB0D1FMD0ydkcvZh_O7c1YM93NSP4tLNQyY8ITzJMiV5KGJfUTnIuQCwAjvBg4fTETJnfBDFQejJIEvzNI1SGUdpyFN2SPZhS-qIOHGGzUczEQqf8zzmUmZUqDwFxyUPgUqX9M3xJqnueo_DV-bJLQztkhP7hZu64cvtS4-AX4n4Buo4mXyh2KxxgDFVHnbJYcVES4JjmjelXpc8rahY0kA7SBDDXXJsGJ1oGYM3i3gUgM8PP-SV_Rg0AJ63KNRiXa0BLwuu9C9rIjgmDF1EuIEKO3YLlDGQ0Rw2EG6gyi7ADvSbnxTT71UneuYH4MGFz-5-Zs_J_UYOHJP9crlWL8CsL-XL6h_0GxlN9ag
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+sequencing+reveals+abundant+noncanonical+retroviral+microRNAs+in+B-cell+leukemia%2Flymphoma&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rosewick%2C+Nicolas&rft.au=Momont%2C+M%C3%A9lanie&rft.au=Durkin%2C+Keith&rft.au=Takeda%2C+Haruko&rft.date=2013-02-05&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=6&rft.spage=2306&rft.epage=2311&rft_id=info:doi/10.1073%2Fpnas.1213842110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1213842110
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F6.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F6.cover.gif