Using a GLM to Decompose the Symmetry Model in Square Contingency Tables with Ordered Categories

In this paper, we are employing the generalized linear model (GLM) in the form ij =Xλ to decompose the symmetry model into the class of models discussed in Tomizawa ( 1992 ). In this formulation, the random component would be the observed counts f ij with an underlying Poisson distribution. This app...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 31; no. 3; pp. 279 - 303
Main Author Lawal, H. Bayo
Format Journal Article
LanguageEnglish
Published England Taylor & Francis Ltd 01.04.2004
Taylor and Francis Journals
SeriesJournal of Applied Statistics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we are employing the generalized linear model (GLM) in the form ij =Xλ to decompose the symmetry model into the class of models discussed in Tomizawa ( 1992 ). In this formulation, the random component would be the observed counts f ij with an underlying Poisson distribution. This approach utilizes the non-standard log-linear model and our focus in this paper therefore relates to models that are decompositions of the complete symmetry model. That is, models that are implied by the symmetry models. We develop factor and regression variables required for the implementation of these models in SAS PROC GENMOD and SPSS PROC GENLOG. We apply this methodology to analyse the three 4×4 contingency table, one of which is the Japanese Unaided distance vision data. Results obtained in this study are consistent with those from the numerous literature on the subject. We further extend our applications to the 6×6 Brazilian social mobility data. We found that both the quasi linear diagonal-parameters symmetry (QLDPS) and the quasi 2-ratios parameter symmetry (Q2RPS) models fit the Brazilian data very well. Parsimonious models being the QLDPS and the quasi-conditional symmetry (QCS) models. The SAS and SPSS programs for implementing the models discussed in this paper are presented in Appendices A, B and C.
AbstractList In this paper, we are employing the generalized linear model (GLM) in the form ij =Xλ to decompose the symmetry model into the class of models discussed in Tomizawa ( 1992 ). In this formulation, the random component would be the observed counts f ij with an underlying Poisson distribution. This approach utilizes the non-standard log-linear model and our focus in this paper therefore relates to models that are decompositions of the complete symmetry model. That is, models that are implied by the symmetry models. We develop factor and regression variables required for the implementation of these models in SAS PROC GENMOD and SPSS PROC GENLOG. We apply this methodology to analyse the three 4×4 contingency table, one of which is the Japanese Unaided distance vision data. Results obtained in this study are consistent with those from the numerous literature on the subject. We further extend our applications to the 6×6 Brazilian social mobility data. We found that both the quasi linear diagonal-parameters symmetry (QLDPS) and the quasi 2-ratios parameter symmetry (Q2RPS) models fit the Brazilian data very well. Parsimonious models being the QLDPS and the quasi-conditional symmetry (QCS) models. The SAS and SPSS programs for implementing the models discussed in this paper are presented in Appendices A, B and C.
In this paper, we are employing the generalized linear model (GLM) in the form 𝓁 ij = Xλ to decompose the symmetry model into the class of models discussed in Tomizawa ( 1992 ). In this formulation, the random component would be the observed counts f ij with an underlying Poisson distribution. This approach utilizes the non-standard log-linear model and our focus in this paper therefore relates to models that are decompositions of the complete symmetry model. That is, models that are implied by the symmetry models. We develop factor and regression variables required for the implementation of these models in SAS PROC GENMOD and SPSS PROC GENLOG. We apply this methodology to analyse the three 4×4 contingency table, one of which is the Japanese Unaided distance vision data. Results obtained in this study are consistent with those from the numerous literature on the subject. We further extend our applications to the 6×6 Brazilian social mobility data. We found that both the quasi linear diagonal-parameters symmetry (QLDPS) and the quasi 2-ratios parameter symmetry (Q2RPS) models fit the Brazilian data very well. Parsimonious models being the QLDPS and the quasi-conditional symmetry (QCS) models. The SAS and SPSS programs for implementing the models discussed in this paper are presented in Appendices A, B and C.
In this paper, we are employing the generalized linear model (GLM) in the form lij=Xλ to decompose the symmetry model into the class of models discussed in Tomizawa (1992). In this formulation, the random component would be the observed counts fij with an underlying Poisson distribution. This approach utilizes the non-standard log-linear model and our focus in this paper therefore relates to models that are decompositions of the complete symmetry model. That is, models that are implied by the symmetry models. We develop factor and regression variables required for the implementation of these models in SAS PROC GENMOD and SPSS PROC GENLOG. We apply this methodology to analyse the three 4×4 contingency table, one of which is the Japanese Unaided distance vision data. Results obtained in this study are consistent with those from the numerous literature on the subject. We further extend our applications to the 6×6 Brazilian social mobility data. We found that both the quasi linear diagonal-parameters symmetry (QLDPS) and the quasi 2-ratios parameter symmetry (Q2RPS) models fit the Brazilian data very well. Parsimonious models being the QLDPS and the quasi-conditional symmetry (QCS) models. The SAS and SPSS programs for implementing the models discussed in this paper are presented in Appendices A, B and C.
In this paper, we are employing the generalized linear model (GLM) in the form 𝓁 = to decompose the symmetry model into the class of models discussed in Tomizawa (1992). In this formulation, the random component would be the observed counts with an underlying Poisson distribution. This approach utilizes the non-standard log-linear model and our focus in this paper therefore relates to models that are decompositions of the complete symmetry model. That is, models that are implied by the symmetry models. We develop factor and regression variables required for the implementation of these models in SAS PROC GENMOD and SPSS PROC GENLOG. We apply this methodology to analyse the three 4×4 contingency table, one of which is the Japanese Unaided distance vision data. Results obtained in this study are consistent with those from the numerous literature on the subject. We further extend our applications to the 6×6 Brazilian social mobility data. We found that both the quasi linear diagonal-parameters symmetry (QLDPS) and the quasi 2-ratios parameter symmetry (Q2RPS) models fit the Brazilian data very well. Parsimonious models being the QLDPS and the quasi-conditional symmetry (QCS) models. The SAS and SPSS programs for implementing the models discussed in this paper are presented in Appendices A, B and C.
In this paper, we are employing the generalized linear model (GLM) in the form ij=Xλ to decompose the symmetry model into the class of models discussed in Tomizawa (1992). In this formulation, the random component would be the observed counts f ij with an underlying Poisson distribution. This approach utilizes the non-standard log-linear model and our focus in this paper therefore relates to models that are decompositions of the complete symmetry model. That is, models that are implied by the symmetry models. We develop factor and regression variables required for the implementation of these models in SAS PROC GENMOD and SPSS PROC GENLOG. We apply this methodology to analyse the three 4×4 contingency table, one of which is the Japanese Unaided distance vision data. Results obtained in this study are consistent with those from the numerous literature on the subject. We further extend our applications to the 6×6 Brazilian social mobility data. We found that both the quasi linear diagonal-parameters symmetry (QLDPS) and the quasi 2-ratios parameter symmetry (Q2RPS) models fit the Brazilian data very well. Parsimonious models being the QLDPS and the quasi-conditional symmetry (QCS) models. The SAS and SPSS programs for implementing the models discussed in this paper are presented in Appendices A, B and C.In this paper, we are employing the generalized linear model (GLM) in the form ij=Xλ to decompose the symmetry model into the class of models discussed in Tomizawa (1992). In this formulation, the random component would be the observed counts f ij with an underlying Poisson distribution. This approach utilizes the non-standard log-linear model and our focus in this paper therefore relates to models that are decompositions of the complete symmetry model. That is, models that are implied by the symmetry models. We develop factor and regression variables required for the implementation of these models in SAS PROC GENMOD and SPSS PROC GENLOG. We apply this methodology to analyse the three 4×4 contingency table, one of which is the Japanese Unaided distance vision data. Results obtained in this study are consistent with those from the numerous literature on the subject. We further extend our applications to the 6×6 Brazilian social mobility data. We found that both the quasi linear diagonal-parameters symmetry (QLDPS) and the quasi 2-ratios parameter symmetry (Q2RPS) models fit the Brazilian data very well. Parsimonious models being the QLDPS and the quasi-conditional symmetry (QCS) models. The SAS and SPSS programs for implementing the models discussed in this paper are presented in Appendices A, B and C.
In this paper, we are employing the generalized linear model (GLM) in the form lij=Xlambda to decompose the symmetry model into the class of models discussed in Tomizawa (1992). In this formulation, the random component would be the observed counts fij with an underlying Poisson distribution. This approach utilizes the non-standard log-linear model and our focus in this paper therefore relates to models that are decompositions of the complete symmetry model. That is, models that are implied by the symmetry models. We develop factor and regression variables required for the implementation of these models in SAS PROC GENMOD and SPSS PROC GENLOG. We apply this methodology to analyse the three 4 x 4 contingency table, one of which is the Japanese Unaided distance vision data. Results obtained in this study are consistent with those from the numerous literature on the subject. We further extend our applications to the 6 x 6 Brazilian social mobility data. We found that both the quasi linear diagonal-parameters symmetry (QLDPS) and the quasi 2-ratios parameter symmetry (Q2RPS) models fit the Brazilian data very well. Parsimonious models being the QLDPS and the quasi-conditional symmetry (QCS) models. The SAS and SPSS programs for implementing the models discussed in this paper are presented in Appendices A, B and C. [PUBLICATION ABSTRACT]
Author Lawal, H. Bayo
Author_xml – sequence: 1
  givenname: H. Bayo
  surname: Lawal
  fullname: Lawal, H. Bayo
  email: lawal@stcloudstate.edu
  organization: Department of Statistics , St Cloud State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39372316$$D View this record in MEDLINE/PubMed
http://econpapers.repec.org/article/tafjapsta/v_3a31_3ay_3a2004_3ai_3a3_3ap_3a279-303.htm$$DView record in RePEc
BookMark eNqNkl1vFCEUhiemxn7oLzAxxCtvVoEznzeaZtWq2aYXba-RHQ67bGZgCmzr_HuZbN1o06gXQALP-8LLOcfZgXUWs-wlo28Zrek7yssyr0qac0opq3MK1ZPsiEFJZ7QAfpAdTcQsIXCYHYewSVjNCniWHUIDFQdWHmXfr4OxKyLJ2eKcREc-Yuv6wQUkcY3kcux7jH4k505hR4wllzdb6ZHMnY1Jh7YdyZVcdhjInYlrcuEVelRkLiOunDcYnmdPtewCvrhfT7Lrz5-u5l9mi4uzr_PTxawt6ibOdIlcAy0l0gY1yPQ4yHWtuIIGZVFxvVRSlUsqm7pguuWtAq5kpTmoXC81nGQfdr7DdtmjatFGLzsxeNNLPwonjfjzxJq1WLlbwVheMACeHN7cO3h3s8UQRW9Ci10nLbptEMAYVHlFyyahrx-gG7f1NuUTPEENresJ-raDPA7Y7l8Spd7IIUQpbsWUM01jGqmIeVrMtJfGMG1VjQAKYh37ZPbq93h7t1-VTADsgNa7EDzqPcKomPpFPNIvSdU8ULUmymjc9Eem-4f2_U5rrHa-l3fOdyrFGzvntZe2NdOf_c_lfzF4RCfijwg_AS5I6aE
CitedBy_id crossref_primary_10_1080_02664760903030221
crossref_primary_10_1007_s11135_013_9876_7
crossref_primary_10_3390_sym14051031
crossref_primary_10_1007_s11135_006_9062_2
crossref_primary_10_3390_sym14051051
crossref_primary_10_1080_00949655_2019_1643347
crossref_primary_10_1111_anzs_12346
Cites_doi 10.1080/00949650108812134
10.1177/0008068319900106
10.1093/biomet/66.3.413
10.18637/jss.v007.i08
10.1289/ehp.8563235
10.1086/228281
10.1080/00031305.1996.10473556
10.1093/biomet/65.2.413
10.1002/bimj.4710350211
10.1002/bimj.4710290109
10.1080/00324728.1958.10405012
10.1007/BF00209547
10.1086/226862
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2004
Copyright Taylor & Francis.
Copyright Carfax Publishing Company Apr 2004
Copyright Taylor & Francis 2004 Taylor & Francis
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2004
– notice: Copyright Taylor & Francis.
– notice: Copyright Carfax Publishing Company Apr 2004
– notice: Copyright Taylor & Francis 2004 Taylor & Francis
DBID AAYXX
CITATION
NPM
DKI
X2L
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1080/0266476042000184037
DatabaseName CrossRef
PubMed
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
DocumentTitleAlternate Original Article
EISSN 1360-0532
EndPage 303
ExternalDocumentID PMC11451332
816833881
tafjapsta_v_3a31_3ay_3a2004_3ai_3a3_3ap_3a279_303_htm
39372316
10_1080_0266476042000184037
10042380
Genre Journal Article
Feature
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EBE
EBO
EBR
EBS
EBU
ECR
EJD
EMK
EPL
E~A
E~B
F5P
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
K1G
K60
K6~
KYCEM
M4Z
NA5
NY~
O9-
P2P
QCRFL
QWB
RIG
RNANH
ROSJB
RPM
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TN5
TOXWX
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
07G
1TA
8C1
8FE
8FG
8G5
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ABJCF
ABUWG
ACGEE
ADBBV
ADYSH
AEUMN
AFKRA
AFRVT
AGCQS
AGLEN
AI.
AIYEW
AMPGV
AMVHM
AMXXU
ARAPS
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BPHCQ
BPLKW
C06
CCPQU
CITATION
DWIFK
DWQXO
FRNLG
FYUFA
GNUQQ
GUQSH
HCIFZ
HF~
IVXBP
K6V
K7-
L6V
LJTGL
M0C
M2O
M7S
NHB
NUSFT
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PTHSS
TAQ
TFMCV
UB9
UKHRP
UU8
V3K
V4Q
VH1
NPM
0R
3V.
3YN
7F
AAAVI
ABJVF
ABQHQ
ADIYS
AEGYZ
AFOLD
AHDLD
AIRXU
BBAFP
COQAR
DKI
FUNRP
FVPDL
HZ
K6
M0N
NY
PADUT
PQEST
PQUKI
PRINS
QJ
S
V1K
X2L
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
TASJS
7X8
5PM
ACTCW
ID FETCH-LOGICAL-c589t-f6e2f306ae09ef3a31634f8d2d39ea572fbdad6b0a9851fc2cd32da7f23d4fbf3
ISSN 0266-4763
IngestDate Thu Aug 21 18:36:07 EDT 2025
Fri Jul 11 03:10:17 EDT 2025
Wed Aug 13 11:16:19 EDT 2025
Wed Aug 18 03:07:36 EDT 2021
Thu Apr 03 07:07:50 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Tue Jul 01 02:24:59 EDT 2025
Wed Dec 25 08:59:55 EST 2024
Mon May 13 12:09:23 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords quasi-diagonal symmetry model
Poisson
factor
regression
Language English
License Copyright Taylor & Francis.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c589t-f6e2f306ae09ef3a31634f8d2d39ea572fbdad6b0a9851fc2cd32da7f23d4fbf3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 39372316
PQID 213790889
PQPubID 32901
PageCount 25
ParticipantIDs crossref_primary_10_1080_0266476042000184037
crossref_citationtrail_10_1080_0266476042000184037
repec_primary_tafjapsta_v_3a31_3ay_3a2004_3ai_3a3_3ap_3a279_303_htm
informaworld_taylorfrancis_310_1080_0266476042000184037
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11451332
pubmed_primary_39372316
proquest_journals_213790889
proquest_miscellaneous_3113747069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-04-01
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: 2004-04-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationSeriesTitle Journal of Applied Statistics
PublicationTitle Journal of applied statistics
PublicationTitleAlternate J Appl Stat
PublicationYear 2004
Publisher Taylor & Francis Ltd
Taylor and Francis Journals
Publisher_xml – name: Taylor & Francis Ltd
– name: Taylor and Francis Journals
References e_1_3_2_27_1
e_1_3_2_28_1
Stuart A (e_1_3_2_20_1) 1955
Yamagushi K (e_1_3_2_29_1) 1990
Tomizawa S (e_1_3_2_23_1) 1985; 15
e_1_3_2_24_1
e_1_3_2_26_1
Tomizawa S (e_1_3_2_25_1) 1986; 4
Bishop YM (e_1_3_2_6_1) 1975
Tomizawa S (e_1_3_2_22_1) 1984; 14
Agresti A (e_1_3_2_4_1) 1996
Arminger G (e_1_3_2_5_1) 1995
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_19_1
Clogg CC (e_1_3_2_7_1) 1990; 2
Agresti A (e_1_3_2_2_1) 1983
e_1_3_2_11_1
e_1_3_2_12_1
e_1_3_2_13_1
e_1_3_2_14_1
e_1_3_2_15_1
Goodman LA (e_1_3_2_10_1) 1983; 13
Tomizawa S (e_1_3_2_21_1) 1983; 13
McCullagh P (e_1_3_2_18_1) 1989
Agresti A (e_1_3_2_3_1) 1989
References_xml – volume: 4
  start-page: 487
  year: 1986
  ident: e_1_3_2_25_1
  article-title: Four kinds of symmetry models and their decompositions in a square contingency table with ordered categories
  publication-title: Biom. J.
– ident: e_1_3_2_14_1
  doi: 10.1080/00949650108812134
– volume: 2
  start-page: 409
  year: 1990
  ident: e_1_3_2_7_1
  article-title: Models for the analysis of change in discrete variables, in: A. Von Eye (Ed.) Statistical Methods in Longitudinal Research
  publication-title: San Diego, CA: Academic Press
– ident: e_1_3_2_27_1
  doi: 10.1177/0008068319900106
– volume: 13
  start-page: 127
  year: 1983
  ident: e_1_3_2_21_1
  article-title: The models for symmetric cells in a 2 and a 3 contingency tables with ordered categories
  publication-title: J. Japan Statist. Soc.
– start-page: 181
  volume-title: Oxford: Basil Blackwell
  year: 1990
  ident: e_1_3_2_29_1
– ident: e_1_3_2_9_1
  doi: 10.1093/biomet/66.3.413
– ident: e_1_3_2_15_1
  doi: 10.18637/jss.v007.i08
– ident: e_1_3_2_24_1
  doi: 10.1289/ehp.8563235
– ident: e_1_3_2_19_1
  doi: 10.1086/228281
– ident: e_1_3_2_28_1
  doi: 10.1080/00031305.1996.10473556
– start-page: 313
  volume-title: Statist. Prob. Letters
  year: 1983
  ident: e_1_3_2_2_1
– volume: 15
  start-page: 151
  year: 1985
  ident: e_1_3_2_23_1
  article-title: Decompositions for odds-symmetry models in a square contingency table with ordered categories
  publication-title: J. Japan Statist. Soc.
– volume-title: New York: Plenum
  year: 1995
  ident: e_1_3_2_5_1
– ident: e_1_3_2_17_1
  doi: 10.1093/biomet/65.2.413
– ident: e_1_3_2_13_1
  doi: 10.1002/bimj.4710350211
– volume-title: New York: Wiley
  year: 1996
  ident: e_1_3_2_4_1
– start-page: 412
  volume-title: Biometrika
  year: 1955
  ident: e_1_3_2_20_1
– ident: e_1_3_2_26_1
  doi: 10.1002/bimj.4710290109
– year: 1989
  ident: e_1_3_2_18_1
  article-title: Generalized Linear Models
  publication-title: London: Chapman & Hall
– volume-title: Cambridge, MA: MIT Press
  year: 1975
  ident: e_1_3_2_6_1
– ident: e_1_3_2_12_1
  doi: 10.1080/00324728.1958.10405012
– ident: e_1_3_2_16_1
  doi: 10.1007/BF00209547
– volume: 14
  start-page: 413
  year: 1984
  ident: e_1_3_2_22_1
  article-title: Three kinds of decomposition for the conditional symmetry model in a square contingency table
  publication-title: J. Japan Statist. Soc.
– ident: e_1_3_2_8_1
  doi: 10.1086/226862
– ident: e_1_3_2_11_1
– volume-title: New York: Wiley
  year: 1989
  ident: e_1_3_2_3_1
– volume: 13
  start-page: 10
  year: 1983
  ident: e_1_3_2_10_1
  article-title: The analysis of cross-classified data having ordered and/or unordered categories: association models, correlation models and asymmetry models for contingency tables with or without missing entries
  publication-title: The Annals of Statist.
SSID ssj0008153
Score 1.6727372
Snippet In this paper, we are employing the generalized linear model (GLM) in the form ij =Xλ to decompose the symmetry model into the class of models discussed in...
In this paper, we are employing the generalized linear model (GLM) in the form 𝓁 = to decompose the symmetry model into the class of models discussed in...
In this paper, we are employing the generalized linear model (GLM) in the form lij=Xλ to decompose the symmetry model into the class of models discussed in...
In this paper, we are employing the generalized linear model (GLM) in the form lij=Xlambda to decompose the symmetry model into the class of models discussed...
In this paper, we are employing the generalized linear model (GLM) in the form ij=Xλ to decompose the symmetry model into the class of models discussed in...
In this paper, we are employing the generalized linear model (GLM) in the form 𝓁 ij = Xλ to decompose the symmetry model into the class of models discussed in...
SourceID pubmedcentral
proquest
repec
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 279
SubjectTerms Data analysis
factor
Generalized linear models
Original
Poisson
Poisson distribution
quasi-diagonal symmetry model
regression
Symmetry
Variables
Title Using a GLM to Decompose the Symmetry Model in Square Contingency Tables with Ordered Categories
URI https://www.tandfonline.com/doi/abs/10.1080/0266476042000184037
https://www.ncbi.nlm.nih.gov/pubmed/39372316
http://econpapers.repec.org/article/tafjapsta/v_3a31_3ay_3a2004_3ai_3a3_3ap_3a279-303.htm
https://www.proquest.com/docview/213790889
https://www.proquest.com/docview/3113747069
https://pubmed.ncbi.nlm.nih.gov/PMC11451332
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagvSwHBMsrLKyMxK0ENXaex2UfFOjuHtqKiktwYltbRB90U6D8embiJJuoVbVwqFs5fqSZz5NxMvMNIa-jQPqCq64tWNK1XVyKoR9K21HcSyMvdLTOHWQv_N7I_Tj2xjepIPPokix5m_7ZGlfyP1KFOpArRsn-g2SrQaECfoN8oQQJQ3krGZv3_aLzvn-ONuSJQgdxdEBHa3Kwnk5Vtlzn6c6QWaMz-LFCPy8kpMpDqtJ1Z4iRU0WE2-UyT9yJQYEYt1J6F25arqKwXDEYyfA8V2494pcw7Nidd2I9bzxSqHuiGM0Dd23bLTVPoSa5U4MDr-s8kw1mQxcXzoswFgwFugHNSdhOGo6XJvP1xWV8Nur34-HpeHiXtBmY_KxF2ke9ky-fq_tq6BhO0fLkSg4pZErfnKRhZzRYaLftJTZdYttLtVBpzdYYPiD3i0tNj4zEH5I7arZP7p1XDLvX-2RvUF38R-RrDgQqKACBZnNaAYFCD1oCgeZAoJMZNUCgNSBQAwSKQKAFEOgNEB6T0dnp8LhnF6kz7NQLo8zWvmIadoNCdSOlueBgdrs6lEzySAkvYDqRQvpJV0RgcuuUpZIzKQLNuHR1ovkT0prNZ-oZodBfCpUEUgjlwhiR9nzB0kh6YNnCgBZh5YWO04JXHtObfI-dkn52UzoWeVN1Whhald3NWV2CcZY_zdIm9cy2DnH2O7NIsKMT3zndQYmQuFju1zFzeJA7BVrkVXUUdDG-YBMzNV_hmNDGDbo-tHlq8FT9OySehL2Ub5GwgbSqAfK8N4_MJlc537uD2bQ5ZxY5zkFZdcmE_iYWsNjjnzHKGAqYSOCShq8J1sFngVVBFIOxGl9l0-e3OP0DsnejF16QVrZcqZdgfGfJYbEqD2H7-enDXw4K12w
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwENZAe6AceJSXKQ8xwxEXW7Jl-8gESoAkHJrO9CZkS5oGGickCkP49ezasUloJgc4OJ6xtfLIXq-_VT59S8jLLNFCcRP4iuWBH-GrmIpU-6HhcZHFaWhtRZAdiO5Z9PE8Pl9bxY-0SsyhbS0UUcVqfLlxMrqhxL2GvEFEiQB_Q4gCKQpPrpP9OBMJ1jDgwaCNxWlY61CCgQ8WvNEd2t7JxrdpQ7l0G_68SqPcn5mpKda-Tye3iWpGVtNSvh0vXH5c_PpL9PF_hn6H3FqBV_qm9ra75JopD8nNfqv8Oj8kB4hea_Hne-RLRUigir7v9amb0LcGGeyTuaFgQU-X47FxsyXFemyXdFTS0-_gsIaiYla15qtY0iEu7ZpTnC6mn2dVZVHaQXWLCeb498nZybthp-uvSjr4RZxmzrfCMAtZijJBZixXHOBgZFPNNM-MihNmc620yAOVARS0BSs0Z1ollnEd2dzyB2SvnJTmEaFgr5XJE62UiaCPzMZCsSLTMSAu6NAjrHmYsljpnWPZjUsZNrKoV--lR161RtNa7mN3c7buJdJVsyy2LomyzUC6n84jyQ4jvvNyR40XylWomUsW8qQiq3nkRXsWYgT-8aNKM1lgn9AmSgIBbR7WPtuODgURAeMLj6Qb3tw2QP3xzTPl6KLSIQ-xyjPnzCOdyvFbE6fsVzWF7Eb-kPiM4QcupDAgw26Ex2Cb4qEkkwCi5IUbP_7n2_Kc3OgO-z3Z-zD4dEQO_nCrnpA9N1uYpwAbXf6sigy_AQq_Xvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgk9B44DJuYVyMxCPZEjtxkkfUUQZsBWmbtDfPiW2tsKaldRHl13NObqys6gM8JJESH0dOTk6-k3z-DiGvs0QLxU3gK5YHfoSPYipS7YeGx0UWp6G1FUF2IA5Oo49n8VlT53TW0Coxh7a1UEQVq_HhnmjbMuL2IG0QUSLA3RChQIbCk5tkU6B0OM7hCAZdKE7DWoYSDHyw4K3s0OpOll5NS8Klq-DndRbl5tRMTHHl9dS_S87bgdWslG-7c5fvFr_-0nz8j5HfI3ca6Erf1r52n9ww5Ta5fdTpvs62yRZi11r6-QE5r-gIVNH3h0fUjem-Qf76eGYoWNDjxWhk3HRBsRrbJR2W9Pg7uKuhqJdVzfgqFvQEJ3bNKH4spp-nVV1R2kNtizFm-A_Jaf_dSe_Abwo6-EWcZs63wjALOYoyQWYsVxzAYGRTzTTPjIoTZnOttMgDlQEQtAUrNGdaJZZxHdnc8kdkoxyX5gmhYK-VyROtlImgj8zGQrEi0zHgLejQI6y9l7Jo1M6x6MalDFtR1OvX0iNvOqNJLfaxvjm76iTSVd9YbF0QZZWBdD-dR5I1Rnzt6XZaJ5RNoJlJFvKkoqp55FV3FCIE_vZRpRnPsU9oEyWBgDaPa5ftRodyiIDwhUfSJWfuGqD6-PKRcnhRqZCHWOOZc-aRXuX3nYlT9quaQG4jf0i8x7CCEykMx7AZ4j5YJrgrySRAKHnhRk__-bK8JLe-7Pfl4YfBpx2y9YdY9YxsuOncPAfM6PIXVVz4DWTeXZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+GLM+to+Decompose+the+Symmetry+Model+in+Square+Contingency+Tables+with+Ordered+Categories&rft.jtitle=Journal+of+applied+statistics&rft.au=Lawal%2C+H+Bayo&rft.date=2004-04-01&rft.issn=0266-4763&rft.volume=31&rft.issue=3&rft.spage=279&rft_id=info:doi/10.1080%2F0266476042000184037&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon