Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors

This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized se...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 10; p. 122
Main Authors Bhagat, Nikunj A., Venkatakrishnan, Anusha, Abibullaev, Berdakh, Artz, Edward J., Yozbatiran, Nuray, Blank, Amy A., French, James, Karmonik, Christof, Grossman, Robert G., O'Malley, Marcia K., Francisco, Gerard E., Contreras-Vidal, Jose L.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 31.03.2016
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2016.00122

Cover

Loading…
Abstract This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.
AbstractList This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 plus or minus 21.4% on day 4 and 67.1 plus or minus 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 plus or minus 37.46% on day 4 and 27.5 plus or minus 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 plus or minus 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.
This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: 1) an adaptive time window was used for extracting features during BMI calibration; 2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and 3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 +/- 21.4 % on day 4 and 67.1 +/- 14.6 % on day 5. The overall false positive rate (FPR) across subjects was 27.74 +/- 37.46 % on day 4 and 27.5 +/- 35.64 % on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10 %). On average, motor intent was detected -367 +/- 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.
This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected −367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.
This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.
This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.
Author Yozbatiran, Nuray
French, James
O'Malley, Marcia K.
Venkatakrishnan, Anusha
Contreras-Vidal, Jose L.
Francisco, Gerard E.
Grossman, Robert G.
Bhagat, Nikunj A.
Abibullaev, Berdakh
Karmonik, Christof
Artz, Edward J.
Blank, Amy A.
AuthorAffiliation 4 Houston Methodist Research Institute Houston, TX, USA
3 NeuroRecovery Research Center at TIRR Memorial Hermann and University of Texas Health Sciences Center Houston, TX, USA
2 Mechatronics and Haptics Interfaces Laboratory, Department of Mechanical Engineering, Rice University Houston, TX, USA
1 Non-Invasive Brain Machine Interface Systems Laboratory, Department of Electrical Engineering, University of Houston Houston, TX, USA
AuthorAffiliation_xml – name: 3 NeuroRecovery Research Center at TIRR Memorial Hermann and University of Texas Health Sciences Center Houston, TX, USA
– name: 2 Mechatronics and Haptics Interfaces Laboratory, Department of Mechanical Engineering, Rice University Houston, TX, USA
– name: 1 Non-Invasive Brain Machine Interface Systems Laboratory, Department of Electrical Engineering, University of Houston Houston, TX, USA
– name: 4 Houston Methodist Research Institute Houston, TX, USA
Author_xml – sequence: 1
  givenname: Nikunj A.
  surname: Bhagat
  fullname: Bhagat, Nikunj A.
– sequence: 2
  givenname: Anusha
  surname: Venkatakrishnan
  fullname: Venkatakrishnan, Anusha
– sequence: 3
  givenname: Berdakh
  surname: Abibullaev
  fullname: Abibullaev, Berdakh
– sequence: 4
  givenname: Edward J.
  surname: Artz
  fullname: Artz, Edward J.
– sequence: 5
  givenname: Nuray
  surname: Yozbatiran
  fullname: Yozbatiran, Nuray
– sequence: 6
  givenname: Amy A.
  surname: Blank
  fullname: Blank, Amy A.
– sequence: 7
  givenname: James
  surname: French
  fullname: French, James
– sequence: 8
  givenname: Christof
  surname: Karmonik
  fullname: Karmonik, Christof
– sequence: 9
  givenname: Robert G.
  surname: Grossman
  fullname: Grossman, Robert G.
– sequence: 10
  givenname: Marcia K.
  surname: O'Malley
  fullname: O'Malley, Marcia K.
– sequence: 11
  givenname: Gerard E.
  surname: Francisco
  fullname: Francisco, Gerard E.
– sequence: 12
  givenname: Jose L.
  surname: Contreras-Vidal
  fullname: Contreras-Vidal, Jose L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27065787$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvGyEURkdVqubR7ruqkLpJF-MCMwzMplKduqklR1mkkbpDDNxxcMbgAnYfv77YTqMkUqWuQHDu4QLfcXHgvIOieE3wqKpE-7531sURxaQZYUwofVYckaahZc2qbwcP5ofFcYwLjBsqavqiOKQcN4wLflT8-ATRzh1SzqDLVbJL-1sl6x3yfV5Dk8l5OVYRDBoHZR26UPrGOkBTlyD0SgM6HV9M36Hkt_T1agWhnNllhyY_fbyFAVJW9T6gqxT8LaCrddjYjQ_xZfG8V0OEV3fjSXH9efL17Es5uzyfnn2clZqJNpU9NazqSGeY0R1pBDWmq2kLLeOkppQB7bumBsF4ywmugPeN4R2p2vw6hhFRnRTTvdd4tZCrYJcq_JJeWblb8GEuVUhWDyDr2tAKgFetFjUnXQdUkWyue63zuTi7Puxdq3W3BKPBpaCGR9LHO87eyLnfyFoQRtlWcHonCP77GmKSSxs1DINy4NdRkvwlbSM4F_-DYoFbSmlG3z5BF34dXH5VSSvMGGmZ2FJvHjZ_3_XfKGQA7wEdfIwB-nuEYLlNm9ylTW7TJndpyyXNkxJt0y4--fp2-HfhH5YD2TU
CitedBy_id crossref_primary_10_3390_app10155323
crossref_primary_10_1088_1741_2552_ab89fb
crossref_primary_10_1016_j_robot_2017_10_003
crossref_primary_10_3389_fnhum_2021_622535
crossref_primary_10_1109_ACCESS_2019_2941491
crossref_primary_10_1109_ACCESS_2020_2991812
crossref_primary_10_1109_TNSRE_2018_2855053
crossref_primary_10_3389_fnbot_2019_00034
crossref_primary_10_3390_s25051322
crossref_primary_10_1088_2057_1976_adabeb
crossref_primary_10_1080_17483107_2020_1842919
crossref_primary_10_1109_TBME_2019_2942974
crossref_primary_10_3390_mps4030048
crossref_primary_10_1080_10447318_2022_2111041
crossref_primary_10_1038_s41598_019_43594_9
crossref_primary_10_1109_ACCESS_2019_2933268
crossref_primary_10_1109_ACCESS_2018_2875550
crossref_primary_10_1109_LRA_2020_3043197
crossref_primary_10_3233_JID_220001
crossref_primary_10_3389_fnins_2022_796290
crossref_primary_10_3390_s23135930
crossref_primary_10_1088_1741_2552_aa7df9
crossref_primary_10_1109_ACCESS_2020_3044255
crossref_primary_10_1016_j_ijhcs_2022_102962
crossref_primary_10_1038_s43856_022_00105_8
crossref_primary_10_1152_jn_00885_2017
crossref_primary_10_1088_1741_2552_ac1b6b
crossref_primary_10_3389_fnins_2017_00126
crossref_primary_10_3389_fnins_2016_00359
crossref_primary_10_25046_aj040438
crossref_primary_10_12786_bn_2016_9_e5
crossref_primary_10_1088_1741_2552_ac77be
crossref_primary_10_1109_ACCESS_2023_3329678
crossref_primary_10_21869_2223_1560_2021_25_3_103_119
crossref_primary_10_1109_TMECH_2020_3015207
crossref_primary_10_1016_j_cmpb_2019_04_023
crossref_primary_10_3390_s21144754
crossref_primary_10_1007_s41133_020_00043_x
crossref_primary_10_1088_1741_2552_ac15e3
crossref_primary_10_21164_pomjlifesci_724
crossref_primary_10_3389_fnhum_2021_772837
crossref_primary_10_1111_aor_13998
crossref_primary_10_34133_research_0200
crossref_primary_10_5937_vojtehg71_41366
crossref_primary_10_1177_1073858417737486
crossref_primary_10_3390_s18103342
crossref_primary_10_1109_TCYB_2022_3166604
crossref_primary_10_3390_app15052644
crossref_primary_10_1038_s41587_021_01071_7
crossref_primary_10_3389_fnbot_2020_582728
crossref_primary_10_1152_jn_00730_2017
crossref_primary_10_3389_fnins_2020_00578
crossref_primary_10_1080_00222895_2024_2373241
crossref_primary_10_1016_j_neuroimage_2017_01_030
crossref_primary_10_3389_fnins_2021_739279
crossref_primary_10_3390_bioengineering11070695
crossref_primary_10_3390_bioengineering5020026
crossref_primary_10_3390_brainsci12091233
crossref_primary_10_1177_0954411918755828
crossref_primary_10_3389_fnbot_2022_971547
crossref_primary_10_3390_s21206863
crossref_primary_10_3389_fbioe_2024_1448903
crossref_primary_10_3390_brainsci13020240
crossref_primary_10_1109_TSMC_2021_3051136
crossref_primary_10_3389_fnbot_2019_00094
crossref_primary_10_1016_j_ish_2024_12_002
crossref_primary_10_3389_fnhum_2017_00560
crossref_primary_10_1109_TBME_2018_2817688
crossref_primary_10_3389_fnins_2023_1243151
crossref_primary_10_3390_bioengineering8020021
crossref_primary_10_1016_j_measurement_2016_12_001
crossref_primary_10_1186_s12984_017_0219_0
crossref_primary_10_1016_j_apergo_2023_104028
crossref_primary_10_4103_2773_2398_348253
crossref_primary_10_1088_1741_2552_ab405f
crossref_primary_10_1109_JBHI_2018_2883458
crossref_primary_10_1007_s11370_022_00435_5
crossref_primary_10_1016_j_patrec_2021_03_023
crossref_primary_10_3389_fnhum_2025_1532783
crossref_primary_10_1109_TIM_2023_3346505
crossref_primary_10_1016_j_bspc_2020_101990
crossref_primary_10_3389_fnins_2018_00624
crossref_primary_10_1146_annurev_control_012720_093904
crossref_primary_10_1109_ACCESS_2020_2997681
crossref_primary_10_1109_TNSRE_2020_2966826
crossref_primary_10_1016_j_bspc_2024_106081
crossref_primary_10_1109_THMS_2023_3316185
crossref_primary_10_1109_TNSRE_2019_2944655
crossref_primary_10_3389_fnbot_2017_00060
crossref_primary_10_1088_1741_2552_aaa8c0
Cites_doi 10.1016/S1474-4422(13)70285-0
10.1146/annurev.med.60.042707.104248
10.1186/1743-0003-3-12
10.3389/fnins.2014.00376
10.1016/j.nbd.2014.11.025
10.1007/s40141-014-0051-4
10.1682/JRRD.2013.02.0050
10.1002/14651858.cd006876.pub3
10.1093/brain/123.12.2475
10.1186/1743-0003-11-9
10.1177/1550059414522229
10.1177/1545968307305457
10.1016/j.jelekin.2013.07.007
10.1016/j.apmr.2006.08.332
10.1109/NER.2013.6696144
10.1007/s11517-012-1018-1
10.1109/TBME.2012.2198821
10.1016/S1474-4422(13)70305-3
10.1155/2013/610589
10.1088/1741-2560/8/4/046003
10.1007/s40141-014-0056-z
10.1177/0278364907084261
10.1115/DSCC2014-6267
10.1109/TSMCC.2012.2226444
10.1088/1741-2560/8/3/036005
10.1186/1743-0003-10-112
10.1109/TBME.2014.2313867
10.3389/neuro.20.003.2009
10.1109/ICORR.2011.5975340
10.1002/ana.23879
10.1016/S1474-4422(09)70150-4
10.1109/ICORR.2007.4428510
10.1682/JRRD.2005.06.0103
10.1038/nrneurol.2014.217
10.1088/1741-2560/5/1/002
10.3389/fncom.2013.00157
10.1016/j.neuroimage.2010.06.048
10.3389/fnhum.2015.00564
10.1016/S1474-4422(08)70223-0
10.1016/S0013-4694(97)00022-2
10.1023/A:1024494031121
10.1016/j.jneumeth.2003.10.009
10.1109/IEMBS.2010.5627930
10.1145/1961189.1961199
10.1109/TNSRE.2014.2304884
10.1186/1743-0003-11-165
10.1088/1741-2560/10/5/056015
10.1109/EMBC.2012.6346868
10.1155/2007/79642
10.3389/fnins.2014.00222
10.1016/j.jneumeth.2014.08.002
10.1007/978-3-642-34546-3_213
10.1088/1741-2560/10/3/036014
10.1177/155005941104200411
10.1016/j.neuroimage.2009.03.062
10.1088/1741-2560/11/5/056009
10.3389/fnhum.2014.01033
10.1007/s00221-009-1725-5
10.3389/fneng.2012.00013
10.1016/j.clinph.2010.07.010
10.1177/1545968309338191
10.1109/ICDM.2009.108
10.1186/1743-0003-11-111
10.1109/EMBC.2014.6944532
10.3389/fnhum.2015.00391
10.3389/fnins.2011.00039
10.1016/j.patrec.2005.10.010
10.1161/STROKEAHA.107.505313
10.1088/1741-2560/8/2/025004
10.1016/j.clinph.2006.04.025
10.1109/TBME.2013.2294203
10.1056/NEJMoa0911341
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 Bhagat, Venkatakrishnan, Abibullaev, Artz, Yozbatiran, Blank, French, Karmonik, Grossman, O'Malley, Francisco and Contreras-Vidal. 2016 Bhagat, Venkatakrishnan, Abibullaev, Artz, Yozbatiran, Blank, French, Karmonik, Grossman, O'Malley, Francisco and Contreras-Vidal
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 Bhagat, Venkatakrishnan, Abibullaev, Artz, Yozbatiran, Blank, French, Karmonik, Grossman, O'Malley, Francisco and Contreras-Vidal. 2016 Bhagat, Venkatakrishnan, Abibullaev, Artz, Yozbatiran, Blank, French, Karmonik, Grossman, O'Malley, Francisco and Contreras-Vidal
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7TK
5PM
DOA
DOI 10.3389/fnins.2016.00122
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts


PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Engineering
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_44d23ee739c8471bbe2a18574fcc2dd0
PMC4815250
27065787
10_3389_fnins_2016_00122
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS081854
– fundername: NIA NIH HHS
  grantid: P30 AG028747
– fundername: National Institutes of Health
  grantid: R01NS081854-02
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
M48
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
7TK
5PM
PUEGO
ID FETCH-LOGICAL-c589t-f2d53b1bd5dcb1682ddb429e95714225e2fb64e85797103e7f6d7b139389d5183
IEDL.DBID BENPR
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:20:33 EDT 2025
Thu Aug 21 13:42:44 EDT 2025
Fri Jul 11 00:44:30 EDT 2025
Fri Jul 11 08:47:33 EDT 2025
Fri Jul 25 11:54:25 EDT 2025
Thu Apr 03 07:10:12 EDT 2025
Tue Jul 01 01:01:15 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords stroke rehabilitation
brain machine interface (BMI)
robotic exoskeleton
motor intent detection
movement related cortical potentials (MRCPs)
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c589t-f2d53b1bd5dcb1682ddb429e95714225e2fb64e85797103e7f6d7b139389d5183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present Address: Anusha Venkatakrishnan, Palo Alto Research Center Inc. (A Xerox Company), Palo Alto, CA, USA
This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience
Edited by: Michela Chiappalone, Istituto Italiano di Tecnologia, Italy
Reviewed by: Surjo R. Soekadar, Department of Psychiatry and Psychotherapy, Germany; Alireza Gharabaghi, Functional and Restorative Neurosurgery, Germany
OpenAccessLink https://www.proquest.com/docview/2305519582?pq-origsite=%requestingapplication%
PMID 27065787
PQID 2305519582
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_44d23ee739c8471bbe2a18574fcc2dd0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4815250
proquest_miscellaneous_1787968778
proquest_miscellaneous_1780809222
proquest_journals_2305519582
pubmed_primary_27065787
crossref_primary_10_3389_fnins_2016_00122
crossref_citationtrail_10_3389_fnins_2016_00122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-31
PublicationDateYYYYMMDD 2016-03-31
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-31
  day: 31
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2016
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Vaca Benitez (B78) 2013; 2013
Blankertz (B10) 2011; 56
Hu (B37) 2009; 23
Ojala (B67) 2009
Goodman (B30) 2014; 51
Fisher (B24) 2003
Naros (B63) 2015; 9
Kwakkel (B45) 2014; 13
O'Malley (B68) 2006; 87
Duda (B20) 2012
Gomez-Rodriguez (B29) 2011; 8
Mehrholz (B58) 2012; 6
Chang (B14) 2011; 2
Shibasaki (B73) 2006; 117
Bulea (B13) 2014; 8
Yilmaz (B85) 2015; 8
Fawcett (B23) 2006; 27
Farina (B21) 2013
Ibáñez (B38) 2014; 11
Chase (B15) 2014; 10
Fatourechi (B22) 2008; 5
Hogan (B35) 2006; 43
Hu (B36) 2013; 23
Nakagome (B62) 2015
Klamroth-Marganska (B41) 2014; 13
Soekadar (B76) 2015
Lew (B51) 2014; 8
Widmann (B81) 2015; 250
Delorme (B19) 2004; 134
Muralidharan (B60) 2011a; 8
Ramos-murguialday (B72) 2014; 74
McFarland (B57) 1997; 103
Milot (B59) 2013; 10
Platz (B70) 2000; 123
Muralidharan (B61) 2011b; 5
Cui (B16) 2009; 194
Lenzi (B49) 2012; 59
Daly (B17) 2008
Jochumsen (B39) 2013; 10
Tong (B77) 2010
R Core Team (B71) 2014
Krebs (B43) 2003; 15
Basteris (B5) 2014; 11
Blank (B9) 2014; 2
Xu (B84) 2014b; 61
Ang (B1) 2015; 46
Ang (B2) 2011; 42
Brauchle (B11) 2015; 9
Blank (B8) 2013; 2013
Kahn (B40) 2006; 3
Mattia (B56) 2013
Soekadar (B75) 2014; 83
Kwakkel (B44) 2008; 22
Bhagat (B7) 2014
O'Dell (B66) 2009; 60
Daly (B18) 2008; 7
Klem (B42) 1999; 52
MATLAB (B55) 2012
Goldman (B28) 2009; 47
Ho (B34) 2011; 2011
Gu (B32) 2009; 3
Xu (B83) 2014a; 61
Wang (B80) 2009
Orsborn (B69) 2013; 7
Leeb (B48) 2007; 2007
Gupta (B33) 2008; 27
Witkowski (B82) 2014; 11
Loureiro (B53) 2007
Bengtsson (B6) 2014
Lo (B52) 2010; 362
Langhorne (B46) 2009; 8
Buch (B12) 2008; 39
Grosse-Wentrup (B31) 2011; 8
Antelis (B3) 2012
Niazi (B65) 2013; 51
Signal Developers (B74) 2013
Bai (B4) 2011; 122
Ng (B64) 1997
Marathe (B54) 2014; 22
Frisoli (B26) 2012; 42
Garipelli (B27) 2013; 10
Leamy (B47) 2014; 11
Lew (B50) 2012; 5
Venkatakrishnan (B79) 2014; 2
French (B25) 2014
16790067 - J Neuroeng Rehabil. 2006 Jun 21;3:12
25510922 - J Neuroeng Rehabil. 2014 Dec 16;11:165
25505377 - Front Neurosci. 2014 Nov 25;8:376
25642177 - Front Hum Neurosci. 2015 Jan 15;8:1033
23611808 - J Neural Eng. 2013 Jun;10(3):036014
25136290 - Front Neurosci. 2014 Aug 01;8:222
9305287 - Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):386-94
20675187 - Clin Neurophysiol. 2011 Feb;122(2):364-72
21097247 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3406-9
17140881 - Arch Phys Med Rehabil. 2006 Dec;87(12 Suppl 2):S59-66
22696362 - Cochrane Database Syst Rev. 2012 Jun 13;(6):CD006876
26528168 - Front Hum Neurosci. 2015 Oct 16;9:564
23932795 - J Electromyogr Kinesiol. 2013 Oct;23 (5):1065-74
20582286 - Front Neurosci. 2009 Aug 10;3:62
20600976 - Neuroimage. 2011 May 15;56(2):814-25
19608100 - Lancet Neurol. 2009 Aug;8(8):741-54
19221724 - Exp Brain Res. 2009 Apr;194(3):477-88
18368142 - Comput Intell Neurosci. 2007;:79642
23494615 - Ann Neurol. 2013 Jul;74(1):100-8
24608681 - IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):201-11
22208123 - Clin EEG Neurosci. 2011 Oct;42(4):253-8
25012864 - J Neuroeng Rehabil. 2014 Jul 10;11:111
25128257 - J Neurosci Methods. 2015 Jul 30;250:34-46
18928333 - Annu Rev Med. 2009;60:55-68
25570900 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4127-30
23283643 - Med Biol Eng Comput. 2013 May;51(5):507-12
24756025 - Clin EEG Neurosci. 2015 Oct;46(4):310-20
18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43
17123202 - J Rehabil Res Dev. 2006 Aug-Sep;43(5):605-18
19531605 - Neurorehabil Neural Repair. 2009 Oct;23 (8):837-46
26005600 - Curr Phys Med Rehabil Rep. 2014 Sep;2(3):184-195
24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96
26190995 - Front Hum Neurosci. 2015 Jul 03;9:391
25082789 - J Neural Eng. 2014 Oct;11(5):056009
24933720 - J Rehabil Res Dev. 2014;51(2):213-27
18258825 - Stroke. 2008 Mar;39(3):910-7
25385335 - Nat Rev Neurol. 2014 Dec;10(12):674
25984380 - Proc ASME Dyn Syst Control Conf. 2014 Oct;2014:null
21474878 - J Neural Eng. 2011 Jun;8(3):036005
25110624 - Curr Phys Med Rehabil Rep. 2014 Jun 1;2(2):93-105
16876476 - Clin Neurophysiol. 2006 Nov;117(11):2341-56
19345734 - Neuroimage. 2009 Aug 1;47(1):136-47
10590970 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6
24686231 - IEEE Trans Biomed Eng. 2014 Jul;61(7):2092-101
17876068 - Neurorehabil Neural Repair. 2008 Mar-Apr;22(2):111-21
25490027 - Biomed Tech (Berl). 2015 Jun;60(3):199-205
21623009 - J Neural Eng. 2011 Aug;8(4):046003
20400552 - N Engl J Med. 2010 May 13;362(19):1772-83
24382580 - Lancet Neurol. 2014 Feb;13(2):159-66
25489973 - Neurobiol Dis. 2015 Nov;83:172-9
22588573 - IEEE Trans Biomed Eng. 2012 Aug;59(8):2180-90
11099449 - Brain. 2000 Dec;123 Pt 12:2475-90
23986024 - J Neural Eng. 2013 Oct;10(5):056015
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
24204342 - Front Comput Neurosci. 2013 Nov 05;7:157
24887296 - Int IEEE EMBS Conf Neural Eng. 2013;:1159-1162
21436534 - J Neural Eng. 2011 Apr;8(2):025004
21472032 - Front Neurosci. 2011 Mar 25;5:39
24468185 - J Neuroeng Rehabil. 2014 Jan 28;11:9
24382581 - Lancet Neurol. 2014 Feb;13(2):132-3
23366829 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4099-103
23055968 - Front Neuroeng. 2012 Jul 12;5:13
24354476 - J Neuroeng Rehabil. 2013 Dec 19;10 :112
22275545 - IEEE Int Conf Rehabil Robot. 2011;2011:5975340
18310807 - J Neural Eng. 2008 Mar;5(1):9-23
References_xml – volume: 13
  start-page: 132
  year: 2014
  ident: B45
  article-title: Effects of robotic therapy of the arm after stroke
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70285-0
– volume: 60
  start-page: 55
  year: 2009
  ident: B66
  article-title: Stroke rehabilitation: strategies to enhance motor recovery
  publication-title: Ann. Rev. Med.
  doi: 10.1146/annurev.med.60.042707.104248
– volume: 3
  start-page: 12
  year: 2006
  ident: B40
  article-title: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-3-12
– volume-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2015
  ident: B62
  article-title: Brain - computer interfaces to virtual reality environments for rehabilitation of motor function : a review
– volume: 8
  issue: 376
  year: 2014
  ident: B13
  article-title: Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00376
– volume: 83
  start-page: 172
  year: 2014
  ident: B75
  article-title: Brain-machine interfaces in neurorehabilitation of stroke
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2014.11.025
– volume: 2
  start-page: 93
  year: 2014
  ident: B79
  article-title: Applications of brain-machine interface systems in stroke recovery and rehabilitation
  publication-title: Curr. Phys. Med. Rehabil. Rep.
  doi: 10.1007/s40141-014-0051-4
– volume: 51
  start-page: 213
  year: 2014
  ident: B30
  article-title: Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2013.02.0050
– volume: 6
  start-page: CD006876
  year: 2012
  ident: B58
  article-title: Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.cd006876.pub3
– volume-title: R.matlab: Read and write of MAT files together with R-to-MATLAB connectivity
  year: 2014
  ident: B6
– volume: 123
  start-page: 2475
  year: 2000
  ident: B70
  article-title: Multimodal EEG analysis in man suggests impairment-specific changes in movement-related electric brain activity after stroke
  publication-title: Brain
  doi: 10.1093/brain/123.12.2475
– volume: 11
  start-page: 9
  year: 2014
  ident: B47
  article-title: An exploration of EEG features during recovery following stroke implications for BCI-mediated neurorehabilitation therapy
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-9
– volume: 46
  start-page: 310
  year: 2015
  ident: B1
  article-title: A randomized controlled trial of eeg-based motor imagery brain-computer interface robotic rehabilitation for stroke
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/1550059414522229
– volume: 22
  start-page: 111
  year: 2008
  ident: B44
  article-title: Effects of Robot-assisted therapy on upper limb recovery after stroke: a Systematic Review
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968307305457
– volume: 23
  start-page: 1065
  year: 2013
  ident: B36
  article-title: The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2013.07.007
– volume: 87
  start-page: S59
  year: 2006
  ident: B68
  article-title: Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2006.08.332
– volume: 52
  start-page: 3
  year: 1999
  ident: B42
  article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology
  publication-title: Electroencephalogr. Clin. Neurophysiol. Suppl.
– volume: 2013
  start-page: 1159
  year: 2013
  ident: B8
  article-title: A pre-clinical framework for neural control of a therapeutic upper-limb exoskeleton
  publication-title: Int. IEEE EMBS Conf. Neural Eng.
  doi: 10.1109/NER.2013.6696144
– volume: 51
  start-page: 507
  year: 2013
  ident: B65
  article-title: Detection of movement-related cortical potentials based on subject-independent training
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-1018-1
– volume: 59
  start-page: 2180
  year: 2012
  ident: B49
  article-title: Intention-based emg control for powered exoskeletons
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2198821
– volume: 13
  start-page: 159
  year: 2014
  ident: B41
  article-title: Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70305-3
– volume: 2013
  start-page: 13
  year: 2013
  ident: B78
  article-title: Exoskeleton technology in rehabilitation: towards an EMG-based orthosis system for upper limb neuromotor rehabilitation
  publication-title: J. Robot.
  doi: 10.1155/2013/610589
– volume: 8
  start-page: 46003
  year: 2011a
  ident: B60
  article-title: Early detection of hand movements from EEGs for stroke therapy applications
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/4/046003
– year: 2015
  ident: B76
  publication-title: An EEG/EOG-Based Hybrid Brain-Neural Computer Interaction (BNCI) System to Control an Exoskeleton for the Paralyzed Hand
– volume: 2
  start-page: 184
  year: 2014
  ident: B9
  article-title: Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy
  publication-title: Curr. Phys. Med. Rehabil. Rep.
  doi: 10.1007/s40141-014-0056-z
– volume: 27
  start-page: 233
  year: 2008
  ident: B33
  article-title: Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364907084261
– volume-title: Introduction to Neural Engineering for Motor Rehabilitation IEEE Press Series on Biomedical Engineering
  year: 2013
  ident: B21
– volume-title: Proceedings of the ASME Dynamic Systems and Controls Conference, October 22–24
  year: 2014
  ident: B25
  article-title: System characterization of MAHI Exo-II: a robotic exoskeleton for upper extremity rehabilitation
  doi: 10.1115/DSCC2014-6267
– volume: 42
  start-page: 1169
  year: 2012
  ident: B26
  article-title: A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks
  publication-title: IEEE Trans. Syst. Man Cybern. C Appl. Rev.
  doi: 10.1109/TSMCC.2012.2226444
– volume: 8
  start-page: 036005
  year: 2011
  ident: B29
  article-title: Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036005
– volume: 10
  start-page: 112
  year: 2013
  ident: B59
  article-title: A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-112
– volume-title: Version 7.10.0 (R2012b)
  year: 2012
  ident: B55
– volume: 61
  start-page: 2092
  year: 2014b
  ident: B84
  article-title: A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2313867
– volume: 3
  start-page: 62
  year: 2009
  ident: B32
  article-title: Offline identification of imagined speed of wrist movements in paralyzed ALS patients from single-trial EEG
  publication-title: Front. Neurosci.
  doi: 10.3389/neuro.20.003.2009
– start-page: 271
  volume-title: NER '09. 4th International IEEE/EMBS Conference on Neural Engineering
  year: 2009
  ident: B80
  article-title: A feasibility study of non-invasive motor-imagery bci-based robotic rehabilitation for stroke patients
– volume: 2011
  start-page: 5975340
  year: 2011
  ident: B34
  article-title: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation
  publication-title: IEEE Int. Conf. Rehabil. Robot.
  doi: 10.1109/ICORR.2011.5975340
– volume: 74
  start-page: 100
  year: 2014
  ident: B72
  article-title: Brain-machine-interface in chronic stroke rehabilitation: a controlled study
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23879
– volume: 8
  start-page: 741
  year: 2009
  ident: B46
  article-title: Motor recovery after stroke: a systematic review
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(09)70150-4
– start-page: 757
  volume-title: Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference
  year: 2007
  ident: B53
  article-title: Reach and grasp therapy: design and control of a 9-dof robotic neuro-rehabilitation system
  doi: 10.1109/ICORR.2007.4428510
– volume: 43
  start-page: 605
  year: 2006
  ident: B35
  article-title: Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2005.06.0103
– volume: 10
  start-page: 674
  year: 2014
  ident: B15
  article-title: Stroke: improved lesion-symptom mapping in poststroke aphasia
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2014.217
– volume: 5
  start-page: 9
  year: 2008
  ident: B22
  article-title: A self-paced brain-computer interface system with a low false positive rate
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/5/1/002
– volume: 7
  issue: 157
  year: 2013
  ident: B69
  article-title: Creating new functional circuits for action via brain-machine interfaces
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2013.00157
– volume: 56
  start-page: 814
  year: 2011
  ident: B10
  article-title: Single-trial analysis and classification of ERP components–a tutorial
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.048
– volume-title: Pattern Classification
  year: 2012
  ident: B20
– volume: 9
  issue: 564
  year: 2015
  ident: B11
  article-title: Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton : combining brain-machine interfacing and robotic rehabilitation
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00564
– volume: 7
  start-page: 1032
  year: 2008
  ident: B18
  article-title: Brain-computer interfaces in neurological rehabilitation
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70223-0
– volume: 103
  start-page: 386
  year: 1997
  ident: B57
  article-title: Spatial filter selection for EEG-based communication
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00022-2
– volume: 15
  start-page: 7
  year: 2003
  ident: B43
  article-title: Rehabilitation robotics: performance-based progressive robot-assisted therapy
  publication-title: Auton. Robots
  doi: 10.1023/A:1024494031121
– volume: 134
  start-page: 9
  year: 2004
  ident: B19
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– start-page: 3406
  volume-title: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE
  year: 2010
  ident: B77
  article-title: An intention driven hand functions task training robotic system
  doi: 10.1109/IEMBS.2010.5627930
– volume: 2
  start-page: 27:1
  year: 2011
  ident: B14
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 22
  start-page: 201
  year: 2014
  ident: B54
  article-title: Sliding hdca: single-trial eeg classification to overcome and quantify temporal variability
  publication-title: Neural Syst. Rehabil. Eng. IEEE Trans.
  doi: 10.1109/TNSRE.2014.2304884
– start-page: 245
  volume-title: Proceedings of the Fourteenth International Conference on Machine Learning, ICML '97
  year: 1997
  ident: B64
  article-title: Preventing “overfitting” of cross-validation data
– volume: 11
  start-page: 1
  year: 2014
  ident: B82
  article-title: Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG)
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-165
– volume: 10
  start-page: 056015
  year: 2013
  ident: B39
  article-title: Detection and classification of movement-related cortical potentials associated with task force and speed
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/5/056015
– start-page: 4099
  volume-title: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE
  year: 2012
  ident: B3
  article-title: Continuous decoding of intention to move from contralesional hemisphere brain oscillations in severely affected chronic stroke patients,
  doi: 10.1109/EMBC.2012.6346868
– volume: 2007
  start-page: 1
  year: 2007
  ident: B48
  article-title: Self-paced (Asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2007/79642
– volume: 8
  issue: 222
  year: 2014
  ident: B51
  article-title: Single trial prediction of self-paced reaching directions from EEG signals
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00222
– year: 2003
  ident: B24
  publication-title: Hypermedia Image Processing Reference
– volume: 250
  start-page: 34
  year: 2015
  ident: B81
  article-title: Digital filter design for electrophysiological data a practical approach
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.08.002
– start-page: 1275
  volume-title: Converging Clinical and Engineering Research on Neurorehabilitation SE - 213, volume 1 of Biosystems & Biorobotics
  year: 2013
  ident: B56
  article-title: Hybrid brain-computer interaction for functional motor recovery after stroke
  doi: 10.1007/978-3-642-34546-3_213
– year: 2013
  ident: B74
  publication-title: Signal: Signal Processing
– volume-title: 13th Annual Conference of the International Functional Electrical Stimulation Society
  year: 2008
  ident: B17
  article-title: Development and testing of non-invasive BCI + FES/Robot system for use in motor re-learning after stroke
– volume: 10
  start-page: 036014
  year: 2013
  ident: B27
  article-title: Single trial analysis of slow cortical potentials: a study on anticipation related potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/3/036014
– volume: 42
  start-page: 253
  year: 2011
  ident: B2
  article-title: A large clinical study on the ability of stroke patients to use an eeg-based motor imagery brain-computer interface
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/155005941104200411
– volume: 47
  start-page: 136
  year: 2009
  ident: B28
  article-title: Single-trial discrimination for integrating simultaneous EEG and fMRI: identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.03.062
– volume: 11
  start-page: 056009
  year: 2014
  ident: B38
  article-title: Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056009
– volume: 8
  issue: 1033
  year: 2015
  ident: B85
  article-title: Movement related slow cortical potentials in severely paralyzed chronic stroke patients
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.01033
– volume: 194
  start-page: 477
  year: 2009
  ident: B16
  article-title: The effect of temporal accuracy constraints on movement-related potentials
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-009-1725-5
– volume: 5
  issue: 13
  year: 2012
  ident: B50
  article-title: Detection of self-paced reaching movement intention from EEG signals
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2012.00013
– volume: 122
  start-page: 364
  year: 2011
  ident: B4
  article-title: Prediction of human voluntary movement before it occurs
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.07.010
– volume: 23
  start-page: 837
  year: 2009
  ident: B37
  article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968309338191
– start-page: 908
  volume-title: ICDM '09. Ninth IEEE International Conference on Data Mining, 2009
  year: 2009
  ident: B67
  article-title: Permutation tests for studying classifier performance
  doi: 10.1109/ICDM.2009.108
– volume: 11
  start-page: 111
  year: 2014
  ident: B5
  article-title: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-111
– start-page: 4127
  volume-title: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE
  year: 2014
  ident: B7
  article-title: Detecting movement intent from scalp eeg in a novel upper limb robotic rehabilitation system for stroke
  doi: 10.1109/EMBC.2014.6944532
– volume: 9
  issue: 391
  year: 2015
  ident: B63
  article-title: Reinforcement learning of self-regulated β-oscillations for motor restoration in chronic stroke
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00391
– volume: 5
  issue: 39
  year: 2011b
  ident: B61
  article-title: Extracting attempted hand movements from EEGs in people with complete hand paralysis following stroke
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2011.00039
– volume: 27
  start-page: 861
  year: 2006
  ident: B23
  article-title: An introduction to ROC analysis
  publication-title: Patt. Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 39
  start-page: 910
  year: 2008
  ident: B12
  article-title: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.505313
– volume: 8
  start-page: 25004
  year: 2011
  ident: B31
  article-title: Using braincomputer interfaces to induce neural plasticity and restore function
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025004
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2014
  ident: B71
– volume: 117
  start-page: 2341
  year: 2006
  ident: B73
  article-title: What is the bereitschaftspotential?
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.04.025
– volume: 61
  start-page: 288
  year: 2014a
  ident: B83
  article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2294203
– volume: 362
  start-page: 1772
  year: 2010
  ident: B52
  article-title: Robot-assisted therapy for long-term upper-limb impairment after stroke
  publication-title: New. Engl. Med.
  doi: 10.1056/NEJMoa0911341
– reference: 16790067 - J Neuroeng Rehabil. 2006 Jun 21;3:12
– reference: 18310807 - J Neural Eng. 2008 Mar;5(1):9-23
– reference: 26190995 - Front Hum Neurosci. 2015 Jul 03;9:391
– reference: 23283643 - Med Biol Eng Comput. 2013 May;51(5):507-12
– reference: 9305287 - Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):386-94
– reference: 25136290 - Front Neurosci. 2014 Aug 01;8:222
– reference: 20400552 - N Engl J Med. 2010 May 13;362(19):1772-83
– reference: 18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43
– reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
– reference: 17123202 - J Rehabil Res Dev. 2006 Aug-Sep;43(5):605-18
– reference: 26005600 - Curr Phys Med Rehabil Rep. 2014 Sep;2(3):184-195
– reference: 16876476 - Clin Neurophysiol. 2006 Nov;117(11):2341-56
– reference: 24382580 - Lancet Neurol. 2014 Feb;13(2):159-66
– reference: 21472032 - Front Neurosci. 2011 Mar 25;5:39
– reference: 23366829 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4099-103
– reference: 19608100 - Lancet Neurol. 2009 Aug;8(8):741-54
– reference: 25128257 - J Neurosci Methods. 2015 Jul 30;250:34-46
– reference: 25570900 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4127-30
– reference: 23494615 - Ann Neurol. 2013 Jul;74(1):100-8
– reference: 24686231 - IEEE Trans Biomed Eng. 2014 Jul;61(7):2092-101
– reference: 23611808 - J Neural Eng. 2013 Jun;10(3):036014
– reference: 25489973 - Neurobiol Dis. 2015 Nov;83:172-9
– reference: 21474878 - J Neural Eng. 2011 Jun;8(3):036005
– reference: 18928333 - Annu Rev Med. 2009;60:55-68
– reference: 25505377 - Front Neurosci. 2014 Nov 25;8:376
– reference: 17876068 - Neurorehabil Neural Repair. 2008 Mar-Apr;22(2):111-21
– reference: 21623009 - J Neural Eng. 2011 Aug;8(4):046003
– reference: 25490027 - Biomed Tech (Berl). 2015 Jun;60(3):199-205
– reference: 25642177 - Front Hum Neurosci. 2015 Jan 15;8:1033
– reference: 20675187 - Clin Neurophysiol. 2011 Feb;122(2):364-72
– reference: 25385335 - Nat Rev Neurol. 2014 Dec;10(12):674
– reference: 24756025 - Clin EEG Neurosci. 2015 Oct;46(4):310-20
– reference: 24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96
– reference: 25984380 - Proc ASME Dyn Syst Control Conf. 2014 Oct;2014:null
– reference: 24204342 - Front Comput Neurosci. 2013 Nov 05;7:157
– reference: 20582286 - Front Neurosci. 2009 Aug 10;3:62
– reference: 24887296 - Int IEEE EMBS Conf Neural Eng. 2013;:1159-1162
– reference: 24608681 - IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):201-11
– reference: 21436534 - J Neural Eng. 2011 Apr;8(2):025004
– reference: 26528168 - Front Hum Neurosci. 2015 Oct 16;9:564
– reference: 19345734 - Neuroimage. 2009 Aug 1;47(1):136-47
– reference: 23986024 - J Neural Eng. 2013 Oct;10(5):056015
– reference: 20600976 - Neuroimage. 2011 May 15;56(2):814-25
– reference: 25082789 - J Neural Eng. 2014 Oct;11(5):056009
– reference: 23932795 - J Electromyogr Kinesiol. 2013 Oct;23 (5):1065-74
– reference: 22208123 - Clin EEG Neurosci. 2011 Oct;42(4):253-8
– reference: 25510922 - J Neuroeng Rehabil. 2014 Dec 16;11:165
– reference: 22275545 - IEEE Int Conf Rehabil Robot. 2011;2011:5975340
– reference: 19221724 - Exp Brain Res. 2009 Apr;194(3):477-88
– reference: 24354476 - J Neuroeng Rehabil. 2013 Dec 19;10 :112
– reference: 19531605 - Neurorehabil Neural Repair. 2009 Oct;23 (8):837-46
– reference: 24933720 - J Rehabil Res Dev. 2014;51(2):213-27
– reference: 17140881 - Arch Phys Med Rehabil. 2006 Dec;87(12 Suppl 2):S59-66
– reference: 24468185 - J Neuroeng Rehabil. 2014 Jan 28;11:9
– reference: 18368142 - Comput Intell Neurosci. 2007;:79642
– reference: 24382581 - Lancet Neurol. 2014 Feb;13(2):132-3
– reference: 11099449 - Brain. 2000 Dec;123 Pt 12:2475-90
– reference: 25110624 - Curr Phys Med Rehabil Rep. 2014 Jun 1;2(2):93-105
– reference: 22696362 - Cochrane Database Syst Rev. 2012 Jun 13;(6):CD006876
– reference: 10590970 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6
– reference: 18258825 - Stroke. 2008 Mar;39(3):910-7
– reference: 23055968 - Front Neuroeng. 2012 Jul 12;5:13
– reference: 22588573 - IEEE Trans Biomed Eng. 2012 Aug;59(8):2180-90
– reference: 25012864 - J Neuroeng Rehabil. 2014 Jul 10;11:111
– reference: 21097247 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3406-9
SSID ssj0062842
Score 2.4657416
Snippet This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 122
SubjectTerms Brain machine interface (BMI)
Brain research
Cortex
EEG
Electroencephalography
Electromyography
Engineering
Exoskeleton
Feasibility studies
Laboratories
motor intent detection
Movement Related Cortical Potentials (MRCPs)
Neuroscience
Patients
Rehabilitation
robotic exoskeleton
Robotics
Robots
Signal processing
Stroke
stroke rehabilitation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1yqQikNFGQkhOghWq3j2PGxhS0tEpyo1JsVv9RVu84qyfL498w42VUXofbSa-zIycx45ht7_JmQ95UBmMpgApZ14Lh0w3MzLWxeFdxB9gA5iU1Vvt_F-SX_elVe3bnqC2vCBnrgQXATzh0rvJeFsuhIjfGsRv4iHqxlzqVsHWLeOpkafLAAp8uGTUlIwdQkxHlEbu5p2nlgbCsIJa7-_wHMf-sk7wSesz2yOyJGejJ86TPyxMfnZP8kQra8-EM_0FTDmRbH98mvz6kgg9bR0QacwWI8ZUmbAM_obPYlx7DlqMGbIegiVVJ6ipwRbaitpx9Pv10c077B3qvl0rf57XxhqP_ddDcQoAAoUkC5tOvb5sbTbgWO5mfTdi_I5dnsx6fzfLxaIbdlpfo8MFcWZmpc6ayZigokaSAyeVVKXBQqPQtGcA9yVgBBCi-DcBKUqECargQ3cEB2YhP9IaHKGemEAdzFILXiouLGAWwUVZC8loZnZLKWtbYj7zhef3GrIf9A7eikHY3a0Uk7GTnevLEcODfu6XuK6tv0Q7bs9ABsSI82pB-yoYwcrZWvxykMYyAXGlLxwBjvNs0w-XBHpY6-WXUajBkQt2Ls_j5SiUrKKiMvB3vafC3DTWZoz4jcsrSt39luifPrRAKOJDsAX189xv-_Jk9RosNRyyOy07cr_wawVm_epmn1F7o3KCs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfQeIEHNDY-MgYyEkLsIYw6_soDQivrGIjCw6i0NyuOHai2JiVNYfvvuXPTbEVVX2Pny3fn-53P_h0hr7QFmMrAAEVWcFy64bHtJXmsE-4geoCYJA-7fL_J0xH_ci7Ob45HtwM4WxvaYT2pUX359ur39Qcw-PcYcYK_PSzKcYnM272QV2AwId8Fv6SwkMOQdzkFCRNxyH1KPCcEQH2RtFz7hBUnFbj81wHQ__dR3nJMJ9vkQYso6dFCBR6SO77cIbtHJUTTk2v6moY9nmHxfIfcv0U_uEv-HoftGzQrHf0OU8ekPZNJqwKu0cHgU9wHJ-doH-tI0GHYd-lpWEQsstzTN_3h5wPaVNh7NJ36Ov46nlg6uKpmF-DOAFZSwMT0rKmrC0_P5jAt_anq2SMyOhn8-Hgat4UY4lzotIkL5kRie9YJl9ue1Mw5C37Mp0LhEpLwrLCSey1UCoAl8aqQToHIUxhbJ2DSeEy2yqr0TwlNnVVOWkBpDAIxLjW3DkCm1IXimbI8IofLkTd5y1KOxTIuDUQrKCsTZGVQVibIKiIH3R3TBUPHhr59FGbXD7m1w4Wq_mlaUzWcO5Z4r5I0R9dtrWcZMmbxIs_hz99FZH-pCmapr4YhcxoS98A7XnbNYKqYf8lKX81nBlQf8HnK2OY-KpVaKR2RJwvt6r6WYUoa2iOiVvRu5XdWW8rxr0AZjpQ8AHb3Nn_6M3KP4emOsMK0T7aaeu6fA-Zq7ItgSv8AStsn9Q
  priority: 102
  providerName: Scholars Portal
Title Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors
URI https://www.ncbi.nlm.nih.gov/pubmed/27065787
https://www.proquest.com/docview/2305519582
https://www.proquest.com/docview/1780809222
https://www.proquest.com/docview/1787968778
https://pubmed.ncbi.nlm.nih.gov/PMC4815250
https://doaj.org/article/44d23ee739c8471bbe2a18574fcc2dd0
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgu8ABwcZHxpiMhBA7RCWOYzsntEC2gehAjEq9RXHsQLU1KWnKx3_Pe04arQj1kkPiqonf83u_9-GfCXmhNMBUBgswykuOqRvu6yAsfBVyA9EDxCSF6_K9EOcT_mEaTfuE27Jvq1zbRGeoTV1gjnzEkJoKmVHYm8UPH0-Nwupqf4TGbbILJliBhu8m6cXnL2tbLMD4unqnwL1BAM67QiWEZfGorGYV8nUHrhrB2IZjcvz9_wOd__ZO3nBGp_fJvR5F0pNO7A_ILVvtkf2TCiLo-R_6krq-Tpcw3yN3b1AO7pNf71zLBs0rQz-BuZj3-zBpXcI9mqZnfgKOzdAEz46gY9draalLHJZ5YemrZPz-mLY1jp4sFrbxP87mmqa_6-UVuDCAkhRwML1sm_rK0ssVmKKfdbN8SCan6de3535_-IJfRCpu_ZKZKNSBNpEpdCAUM0aD77JxJDFtFFlWasGtimQMICW0shRGgphjmFsTgaF4RHaqurJPCI2NlkZoQGYMgi8uFNcGgKVQpeS51Nwjo_XMZ0XPTI4HZFxnEKGgrDInqwxllTlZeeR4-MWiY-XYMjZBYQ7jkE_b3aibb1m_PDPODQutlWFcoLvW2rIcWbJ4WRTw5a89crhWhaxf5PAfg0p65PnwGJYn1lzyytarZQbqDpg8Zmz7GBkLJaXyyONOu4a3ZViGhucekRt6t_E5m0-q2XdHE440PABwD7a_-lNyB-eq22Z5SHbaZmWfAc5q9VG_mI5cngKuZ9MArmOu_gJl_yiA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gF4QLDBCAwwEiD2EJU6Tpw8ILSyjpW1BbFV2luIYweq0aT0g7F_ir-ROyepVoT6ttfYSZyc7-53H74DeBEqhKkcGdBPMkGuG-Gqlpe6oSc0Wg9ok6Q2y3cQHA3FxzP_bAP-1GdhKK2ylolWUOsiJR95k1NpKqqMwt9NfrrUNYqiq3ULjXJbHJvLCzTZZm-7B0jfl5wfdk7fH7lVVwE39cNo7mZc-55qKe3rVLWCkGutUCibyJfkD_ENz1QgTOjLCLWvZ2QWaInrj1C1ax85AJ97AzaFh1ChAZvtzuDzl1r2ByjsbXw1oLNIaAyUgVE0A6Nmlo9yqg_estEPzlcUoe0X8D-Q-2-u5hXld3gX7lSole2X2-webJh8C7b3c7TYx5fsFbN5pNZBvwW3r5Q43IaLA5siwpJcs08onsbVuU9WZHiNdTof3DYqUs3a1KuC9W1up2HWUZklqWGv2_3uHpsXNHs4mZip2xuNFev8LmbnqDIRujLE3exkPi3ODTtZoOj7VUxn92F4LWR5AI28yM1DYJFWUgcKkSBHY08EoVAagWwQZlIkUgkHmvWfj9OqEjo15PgRo0VEtIotrWKiVWxp5cDe8o5JWQVkzdw2EXM5j-p32wvF9FtciYNYCM09Y6QXpQQPlDI8oapcIktT_PI3DuzWWyGuhAq-Y8kCDjxfDqM4oBhPkptiMYuRvdAGiDhfP0dGQShl6MBOubuWq-UU9sZxB-TKvlv5nNWRfPTdliWnsj8IqB-tX_ozuHl02u_Fve7g-DHcov9WHvHchcZ8ujBPEOPN1dOKsRh8vW5e_gtQymGD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KmkEoIDgpbFUGCQANGDFTIee-wDQg1JaGgbKtpIvRmPZwxRiR2yUPprfB3vje2oQSi3Xj3jZfz2HeBlqFBN5UiAfpIJct0IV7W81A09odF6QJsktVm-g2B_KD6d-Wcb8KeuhaG0yponWkati5R85E1OramoMwpvZlVaxHGn937y06UJUhRprcdplChyYC4v0Hybvet3ENavOO91Tz_su9WEATf1w2juZlz7nmop7etUtYKQa62QQZvIl-Qb8Q3PVCBM6MsIJbFnZBZoiWeJUMxrH6kBn3sDNiWVjzZgs90dHH-p5UCAjN_GWgOqS0LDoAySokkYNbN8lFOv8JaNhHC-IhTt7ID_Kbz_5m1eEYS9u3Cn0mDZXoly92DD5FuwvZej9T6-ZK-ZzSm1zvotuH2l3eE2XHRsughLcs0-I6saVzWgrMjwGut2P7ptFKqatWluBTuyeZ6GWadllqSGvWkf9XfZvKDdw8nETN3D0Vix7u9ido7iE9VYhjo4O5lPi3PDThbIBn8V09l9GF4LWB5AIy9y8whYpJXUgUKtkKPhJ4JQKI1KbRBmUiRSCQea9Z-P06orOg3n-BGjdUSwii2sYoJVbGHlwO7yjknZEWTN3jYBc7mPennbC8X0W1yxhlgIzT1jpBelpCooZXhCHbpElqZ48rcO7NSoEFcMBt-xJAcHXiyXkTVQvCfJTbGYxUhqaA9EnK_fI6MglDJ04GGJXcuv5RQCx3UH5ArerRxndSUffbctyqkFECrXj9d_-nO4iTQcH_YHB0_gFv22stpzBxrz6cI8RXVvrp5VdMXg63WT8l8MTmXB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Optimization+of+an+EEG-Based+Brain+Machine+Interface+%28BMI%29+to+an+Upper-Limb+Exoskeleton+for+Stroke+Survivors&rft.jtitle=Frontiers+in+neuroscience&rft.au=Bhagat%2C+Nikunj+A&rft.au=Venkatakrishnan%2C+Anusha&rft.au=Abibullaev%2C+Berdakh&rft.au=Artz%2C+Edward+J&rft.date=2016-03-31&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2016.00122&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon