Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors
This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized se...
Saved in:
Published in | Frontiers in neuroscience Vol. 10; p. 122 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
31.03.2016
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2016.00122 |
Cover
Loading…
Abstract | This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration. |
---|---|
AbstractList | This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 plus or minus 21.4% on day 4 and 67.1 plus or minus 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 plus or minus 37.46% on day 4 and 27.5 plus or minus 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 plus or minus 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration. This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: 1) an adaptive time window was used for extracting features during BMI calibration; 2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and 3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 +/- 21.4 % on day 4 and 67.1 +/- 14.6 % on day 5. The overall false positive rate (FPR) across subjects was 27.74 +/- 37.46 % on day 4 and 27.5 +/- 35.64 % on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10 %). On average, motor intent was detected -367 +/- 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration. This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected −367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration. This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration. This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration. |
Author | Yozbatiran, Nuray French, James O'Malley, Marcia K. Venkatakrishnan, Anusha Contreras-Vidal, Jose L. Francisco, Gerard E. Grossman, Robert G. Bhagat, Nikunj A. Abibullaev, Berdakh Karmonik, Christof Artz, Edward J. Blank, Amy A. |
AuthorAffiliation | 4 Houston Methodist Research Institute Houston, TX, USA 3 NeuroRecovery Research Center at TIRR Memorial Hermann and University of Texas Health Sciences Center Houston, TX, USA 2 Mechatronics and Haptics Interfaces Laboratory, Department of Mechanical Engineering, Rice University Houston, TX, USA 1 Non-Invasive Brain Machine Interface Systems Laboratory, Department of Electrical Engineering, University of Houston Houston, TX, USA |
AuthorAffiliation_xml | – name: 3 NeuroRecovery Research Center at TIRR Memorial Hermann and University of Texas Health Sciences Center Houston, TX, USA – name: 2 Mechatronics and Haptics Interfaces Laboratory, Department of Mechanical Engineering, Rice University Houston, TX, USA – name: 1 Non-Invasive Brain Machine Interface Systems Laboratory, Department of Electrical Engineering, University of Houston Houston, TX, USA – name: 4 Houston Methodist Research Institute Houston, TX, USA |
Author_xml | – sequence: 1 givenname: Nikunj A. surname: Bhagat fullname: Bhagat, Nikunj A. – sequence: 2 givenname: Anusha surname: Venkatakrishnan fullname: Venkatakrishnan, Anusha – sequence: 3 givenname: Berdakh surname: Abibullaev fullname: Abibullaev, Berdakh – sequence: 4 givenname: Edward J. surname: Artz fullname: Artz, Edward J. – sequence: 5 givenname: Nuray surname: Yozbatiran fullname: Yozbatiran, Nuray – sequence: 6 givenname: Amy A. surname: Blank fullname: Blank, Amy A. – sequence: 7 givenname: James surname: French fullname: French, James – sequence: 8 givenname: Christof surname: Karmonik fullname: Karmonik, Christof – sequence: 9 givenname: Robert G. surname: Grossman fullname: Grossman, Robert G. – sequence: 10 givenname: Marcia K. surname: O'Malley fullname: O'Malley, Marcia K. – sequence: 11 givenname: Gerard E. surname: Francisco fullname: Francisco, Gerard E. – sequence: 12 givenname: Jose L. surname: Contreras-Vidal fullname: Contreras-Vidal, Jose L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27065787$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvGyEURkdVqubR7ruqkLpJF-MCMwzMplKduqklR1mkkbpDDNxxcMbgAnYfv77YTqMkUqWuQHDu4QLfcXHgvIOieE3wqKpE-7531sURxaQZYUwofVYckaahZc2qbwcP5ofFcYwLjBsqavqiOKQcN4wLflT8-ATRzh1SzqDLVbJL-1sl6x3yfV5Dk8l5OVYRDBoHZR26UPrGOkBTlyD0SgM6HV9M36Hkt_T1agWhnNllhyY_fbyFAVJW9T6gqxT8LaCrddjYjQ_xZfG8V0OEV3fjSXH9efL17Es5uzyfnn2clZqJNpU9NazqSGeY0R1pBDWmq2kLLeOkppQB7bumBsF4ywmugPeN4R2p2vw6hhFRnRTTvdd4tZCrYJcq_JJeWblb8GEuVUhWDyDr2tAKgFetFjUnXQdUkWyue63zuTi7Puxdq3W3BKPBpaCGR9LHO87eyLnfyFoQRtlWcHonCP77GmKSSxs1DINy4NdRkvwlbSM4F_-DYoFbSmlG3z5BF34dXH5VSSvMGGmZ2FJvHjZ_3_XfKGQA7wEdfIwB-nuEYLlNm9ylTW7TJndpyyXNkxJt0y4--fp2-HfhH5YD2TU |
CitedBy_id | crossref_primary_10_3390_app10155323 crossref_primary_10_1088_1741_2552_ab89fb crossref_primary_10_1016_j_robot_2017_10_003 crossref_primary_10_3389_fnhum_2021_622535 crossref_primary_10_1109_ACCESS_2019_2941491 crossref_primary_10_1109_ACCESS_2020_2991812 crossref_primary_10_1109_TNSRE_2018_2855053 crossref_primary_10_3389_fnbot_2019_00034 crossref_primary_10_3390_s25051322 crossref_primary_10_1088_2057_1976_adabeb crossref_primary_10_1080_17483107_2020_1842919 crossref_primary_10_1109_TBME_2019_2942974 crossref_primary_10_3390_mps4030048 crossref_primary_10_1080_10447318_2022_2111041 crossref_primary_10_1038_s41598_019_43594_9 crossref_primary_10_1109_ACCESS_2019_2933268 crossref_primary_10_1109_ACCESS_2018_2875550 crossref_primary_10_1109_LRA_2020_3043197 crossref_primary_10_3233_JID_220001 crossref_primary_10_3389_fnins_2022_796290 crossref_primary_10_3390_s23135930 crossref_primary_10_1088_1741_2552_aa7df9 crossref_primary_10_1109_ACCESS_2020_3044255 crossref_primary_10_1016_j_ijhcs_2022_102962 crossref_primary_10_1038_s43856_022_00105_8 crossref_primary_10_1152_jn_00885_2017 crossref_primary_10_1088_1741_2552_ac1b6b crossref_primary_10_3389_fnins_2017_00126 crossref_primary_10_3389_fnins_2016_00359 crossref_primary_10_25046_aj040438 crossref_primary_10_12786_bn_2016_9_e5 crossref_primary_10_1088_1741_2552_ac77be crossref_primary_10_1109_ACCESS_2023_3329678 crossref_primary_10_21869_2223_1560_2021_25_3_103_119 crossref_primary_10_1109_TMECH_2020_3015207 crossref_primary_10_1016_j_cmpb_2019_04_023 crossref_primary_10_3390_s21144754 crossref_primary_10_1007_s41133_020_00043_x crossref_primary_10_1088_1741_2552_ac15e3 crossref_primary_10_21164_pomjlifesci_724 crossref_primary_10_3389_fnhum_2021_772837 crossref_primary_10_1111_aor_13998 crossref_primary_10_34133_research_0200 crossref_primary_10_5937_vojtehg71_41366 crossref_primary_10_1177_1073858417737486 crossref_primary_10_3390_s18103342 crossref_primary_10_1109_TCYB_2022_3166604 crossref_primary_10_3390_app15052644 crossref_primary_10_1038_s41587_021_01071_7 crossref_primary_10_3389_fnbot_2020_582728 crossref_primary_10_1152_jn_00730_2017 crossref_primary_10_3389_fnins_2020_00578 crossref_primary_10_1080_00222895_2024_2373241 crossref_primary_10_1016_j_neuroimage_2017_01_030 crossref_primary_10_3389_fnins_2021_739279 crossref_primary_10_3390_bioengineering11070695 crossref_primary_10_3390_bioengineering5020026 crossref_primary_10_3390_brainsci12091233 crossref_primary_10_1177_0954411918755828 crossref_primary_10_3389_fnbot_2022_971547 crossref_primary_10_3390_s21206863 crossref_primary_10_3389_fbioe_2024_1448903 crossref_primary_10_3390_brainsci13020240 crossref_primary_10_1109_TSMC_2021_3051136 crossref_primary_10_3389_fnbot_2019_00094 crossref_primary_10_1016_j_ish_2024_12_002 crossref_primary_10_3389_fnhum_2017_00560 crossref_primary_10_1109_TBME_2018_2817688 crossref_primary_10_3389_fnins_2023_1243151 crossref_primary_10_3390_bioengineering8020021 crossref_primary_10_1016_j_measurement_2016_12_001 crossref_primary_10_1186_s12984_017_0219_0 crossref_primary_10_1016_j_apergo_2023_104028 crossref_primary_10_4103_2773_2398_348253 crossref_primary_10_1088_1741_2552_ab405f crossref_primary_10_1109_JBHI_2018_2883458 crossref_primary_10_1007_s11370_022_00435_5 crossref_primary_10_1016_j_patrec_2021_03_023 crossref_primary_10_3389_fnhum_2025_1532783 crossref_primary_10_1109_TIM_2023_3346505 crossref_primary_10_1016_j_bspc_2020_101990 crossref_primary_10_3389_fnins_2018_00624 crossref_primary_10_1146_annurev_control_012720_093904 crossref_primary_10_1109_ACCESS_2020_2997681 crossref_primary_10_1109_TNSRE_2020_2966826 crossref_primary_10_1016_j_bspc_2024_106081 crossref_primary_10_1109_THMS_2023_3316185 crossref_primary_10_1109_TNSRE_2019_2944655 crossref_primary_10_3389_fnbot_2017_00060 crossref_primary_10_1088_1741_2552_aaa8c0 |
Cites_doi | 10.1016/S1474-4422(13)70285-0 10.1146/annurev.med.60.042707.104248 10.1186/1743-0003-3-12 10.3389/fnins.2014.00376 10.1016/j.nbd.2014.11.025 10.1007/s40141-014-0051-4 10.1682/JRRD.2013.02.0050 10.1002/14651858.cd006876.pub3 10.1093/brain/123.12.2475 10.1186/1743-0003-11-9 10.1177/1550059414522229 10.1177/1545968307305457 10.1016/j.jelekin.2013.07.007 10.1016/j.apmr.2006.08.332 10.1109/NER.2013.6696144 10.1007/s11517-012-1018-1 10.1109/TBME.2012.2198821 10.1016/S1474-4422(13)70305-3 10.1155/2013/610589 10.1088/1741-2560/8/4/046003 10.1007/s40141-014-0056-z 10.1177/0278364907084261 10.1115/DSCC2014-6267 10.1109/TSMCC.2012.2226444 10.1088/1741-2560/8/3/036005 10.1186/1743-0003-10-112 10.1109/TBME.2014.2313867 10.3389/neuro.20.003.2009 10.1109/ICORR.2011.5975340 10.1002/ana.23879 10.1016/S1474-4422(09)70150-4 10.1109/ICORR.2007.4428510 10.1682/JRRD.2005.06.0103 10.1038/nrneurol.2014.217 10.1088/1741-2560/5/1/002 10.3389/fncom.2013.00157 10.1016/j.neuroimage.2010.06.048 10.3389/fnhum.2015.00564 10.1016/S1474-4422(08)70223-0 10.1016/S0013-4694(97)00022-2 10.1023/A:1024494031121 10.1016/j.jneumeth.2003.10.009 10.1109/IEMBS.2010.5627930 10.1145/1961189.1961199 10.1109/TNSRE.2014.2304884 10.1186/1743-0003-11-165 10.1088/1741-2560/10/5/056015 10.1109/EMBC.2012.6346868 10.1155/2007/79642 10.3389/fnins.2014.00222 10.1016/j.jneumeth.2014.08.002 10.1007/978-3-642-34546-3_213 10.1088/1741-2560/10/3/036014 10.1177/155005941104200411 10.1016/j.neuroimage.2009.03.062 10.1088/1741-2560/11/5/056009 10.3389/fnhum.2014.01033 10.1007/s00221-009-1725-5 10.3389/fneng.2012.00013 10.1016/j.clinph.2010.07.010 10.1177/1545968309338191 10.1109/ICDM.2009.108 10.1186/1743-0003-11-111 10.1109/EMBC.2014.6944532 10.3389/fnhum.2015.00391 10.3389/fnins.2011.00039 10.1016/j.patrec.2005.10.010 10.1161/STROKEAHA.107.505313 10.1088/1741-2560/8/2/025004 10.1016/j.clinph.2006.04.025 10.1109/TBME.2013.2294203 10.1056/NEJMoa0911341 |
ContentType | Journal Article |
Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2016 Bhagat, Venkatakrishnan, Abibullaev, Artz, Yozbatiran, Blank, French, Karmonik, Grossman, O'Malley, Francisco and Contreras-Vidal. 2016 Bhagat, Venkatakrishnan, Abibullaev, Artz, Yozbatiran, Blank, French, Karmonik, Grossman, O'Malley, Francisco and Contreras-Vidal |
Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2016 Bhagat, Venkatakrishnan, Abibullaev, Artz, Yozbatiran, Blank, French, Karmonik, Grossman, O'Malley, Francisco and Contreras-Vidal. 2016 Bhagat, Venkatakrishnan, Abibullaev, Artz, Yozbatiran, Blank, French, Karmonik, Grossman, O'Malley, Francisco and Contreras-Vidal |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7TK 5PM DOA |
DOI | 10.3389/fnins.2016.00122 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Engineering |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_44d23ee739c8471bbe2a18574fcc2dd0 PMC4815250 27065787 10_3389_fnins_2016_00122 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS081854 – fundername: NIA NIH HHS grantid: P30 AG028747 – fundername: National Institutes of Health grantid: R01NS081854-02 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A M48 NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 7TK 5PM PUEGO |
ID | FETCH-LOGICAL-c589t-f2d53b1bd5dcb1682ddb429e95714225e2fb64e85797103e7f6d7b139389d5183 |
IEDL.DBID | BENPR |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:20:33 EDT 2025 Thu Aug 21 13:42:44 EDT 2025 Fri Jul 11 00:44:30 EDT 2025 Fri Jul 11 08:47:33 EDT 2025 Fri Jul 25 11:54:25 EDT 2025 Thu Apr 03 07:10:12 EDT 2025 Tue Jul 01 01:01:15 EDT 2025 Thu Apr 24 22:52:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | stroke rehabilitation brain machine interface (BMI) robotic exoskeleton motor intent detection movement related cortical potentials (MRCPs) |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c589t-f2d53b1bd5dcb1682ddb429e95714225e2fb64e85797103e7f6d7b139389d5183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Present Address: Anusha Venkatakrishnan, Palo Alto Research Center Inc. (A Xerox Company), Palo Alto, CA, USA This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience Edited by: Michela Chiappalone, Istituto Italiano di Tecnologia, Italy Reviewed by: Surjo R. Soekadar, Department of Psychiatry and Psychotherapy, Germany; Alireza Gharabaghi, Functional and Restorative Neurosurgery, Germany |
OpenAccessLink | https://www.proquest.com/docview/2305519582?pq-origsite=%requestingapplication% |
PMID | 27065787 |
PQID | 2305519582 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_44d23ee739c8471bbe2a18574fcc2dd0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4815250 proquest_miscellaneous_1787968778 proquest_miscellaneous_1780809222 proquest_journals_2305519582 pubmed_primary_27065787 crossref_primary_10_3389_fnins_2016_00122 crossref_citationtrail_10_3389_fnins_2016_00122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-31 |
PublicationDateYYYYMMDD | 2016-03-31 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2016 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Vaca Benitez (B78) 2013; 2013 Blankertz (B10) 2011; 56 Hu (B37) 2009; 23 Ojala (B67) 2009 Goodman (B30) 2014; 51 Fisher (B24) 2003 Naros (B63) 2015; 9 Kwakkel (B45) 2014; 13 O'Malley (B68) 2006; 87 Duda (B20) 2012 Gomez-Rodriguez (B29) 2011; 8 Mehrholz (B58) 2012; 6 Chang (B14) 2011; 2 Shibasaki (B73) 2006; 117 Bulea (B13) 2014; 8 Yilmaz (B85) 2015; 8 Fawcett (B23) 2006; 27 Farina (B21) 2013 Ibáñez (B38) 2014; 11 Chase (B15) 2014; 10 Fatourechi (B22) 2008; 5 Hogan (B35) 2006; 43 Hu (B36) 2013; 23 Nakagome (B62) 2015 Klamroth-Marganska (B41) 2014; 13 Soekadar (B76) 2015 Lew (B51) 2014; 8 Widmann (B81) 2015; 250 Delorme (B19) 2004; 134 Muralidharan (B60) 2011a; 8 Ramos-murguialday (B72) 2014; 74 McFarland (B57) 1997; 103 Milot (B59) 2013; 10 Platz (B70) 2000; 123 Muralidharan (B61) 2011b; 5 Cui (B16) 2009; 194 Lenzi (B49) 2012; 59 Daly (B17) 2008 Jochumsen (B39) 2013; 10 Tong (B77) 2010 R Core Team (B71) 2014 Krebs (B43) 2003; 15 Basteris (B5) 2014; 11 Blank (B9) 2014; 2 Xu (B84) 2014b; 61 Ang (B1) 2015; 46 Ang (B2) 2011; 42 Brauchle (B11) 2015; 9 Blank (B8) 2013; 2013 Kahn (B40) 2006; 3 Mattia (B56) 2013 Soekadar (B75) 2014; 83 Kwakkel (B44) 2008; 22 Bhagat (B7) 2014 O'Dell (B66) 2009; 60 Daly (B18) 2008; 7 Klem (B42) 1999; 52 MATLAB (B55) 2012 Goldman (B28) 2009; 47 Ho (B34) 2011; 2011 Gu (B32) 2009; 3 Xu (B83) 2014a; 61 Wang (B80) 2009 Orsborn (B69) 2013; 7 Leeb (B48) 2007; 2007 Gupta (B33) 2008; 27 Witkowski (B82) 2014; 11 Loureiro (B53) 2007 Bengtsson (B6) 2014 Lo (B52) 2010; 362 Langhorne (B46) 2009; 8 Buch (B12) 2008; 39 Grosse-Wentrup (B31) 2011; 8 Antelis (B3) 2012 Niazi (B65) 2013; 51 Signal Developers (B74) 2013 Bai (B4) 2011; 122 Ng (B64) 1997 Marathe (B54) 2014; 22 Frisoli (B26) 2012; 42 Garipelli (B27) 2013; 10 Leamy (B47) 2014; 11 Lew (B50) 2012; 5 Venkatakrishnan (B79) 2014; 2 French (B25) 2014 16790067 - J Neuroeng Rehabil. 2006 Jun 21;3:12 25510922 - J Neuroeng Rehabil. 2014 Dec 16;11:165 25505377 - Front Neurosci. 2014 Nov 25;8:376 25642177 - Front Hum Neurosci. 2015 Jan 15;8:1033 23611808 - J Neural Eng. 2013 Jun;10(3):036014 25136290 - Front Neurosci. 2014 Aug 01;8:222 9305287 - Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):386-94 20675187 - Clin Neurophysiol. 2011 Feb;122(2):364-72 21097247 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3406-9 17140881 - Arch Phys Med Rehabil. 2006 Dec;87(12 Suppl 2):S59-66 22696362 - Cochrane Database Syst Rev. 2012 Jun 13;(6):CD006876 26528168 - Front Hum Neurosci. 2015 Oct 16;9:564 23932795 - J Electromyogr Kinesiol. 2013 Oct;23 (5):1065-74 20582286 - Front Neurosci. 2009 Aug 10;3:62 20600976 - Neuroimage. 2011 May 15;56(2):814-25 19608100 - Lancet Neurol. 2009 Aug;8(8):741-54 19221724 - Exp Brain Res. 2009 Apr;194(3):477-88 18368142 - Comput Intell Neurosci. 2007;:79642 23494615 - Ann Neurol. 2013 Jul;74(1):100-8 24608681 - IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):201-11 22208123 - Clin EEG Neurosci. 2011 Oct;42(4):253-8 25012864 - J Neuroeng Rehabil. 2014 Jul 10;11:111 25128257 - J Neurosci Methods. 2015 Jul 30;250:34-46 18928333 - Annu Rev Med. 2009;60:55-68 25570900 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4127-30 23283643 - Med Biol Eng Comput. 2013 May;51(5):507-12 24756025 - Clin EEG Neurosci. 2015 Oct;46(4):310-20 18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43 17123202 - J Rehabil Res Dev. 2006 Aug-Sep;43(5):605-18 19531605 - Neurorehabil Neural Repair. 2009 Oct;23 (8):837-46 26005600 - Curr Phys Med Rehabil Rep. 2014 Sep;2(3):184-195 24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96 26190995 - Front Hum Neurosci. 2015 Jul 03;9:391 25082789 - J Neural Eng. 2014 Oct;11(5):056009 24933720 - J Rehabil Res Dev. 2014;51(2):213-27 18258825 - Stroke. 2008 Mar;39(3):910-7 25385335 - Nat Rev Neurol. 2014 Dec;10(12):674 25984380 - Proc ASME Dyn Syst Control Conf. 2014 Oct;2014:null 21474878 - J Neural Eng. 2011 Jun;8(3):036005 25110624 - Curr Phys Med Rehabil Rep. 2014 Jun 1;2(2):93-105 16876476 - Clin Neurophysiol. 2006 Nov;117(11):2341-56 19345734 - Neuroimage. 2009 Aug 1;47(1):136-47 10590970 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6 24686231 - IEEE Trans Biomed Eng. 2014 Jul;61(7):2092-101 17876068 - Neurorehabil Neural Repair. 2008 Mar-Apr;22(2):111-21 25490027 - Biomed Tech (Berl). 2015 Jun;60(3):199-205 21623009 - J Neural Eng. 2011 Aug;8(4):046003 20400552 - N Engl J Med. 2010 May 13;362(19):1772-83 24382580 - Lancet Neurol. 2014 Feb;13(2):159-66 25489973 - Neurobiol Dis. 2015 Nov;83:172-9 22588573 - IEEE Trans Biomed Eng. 2012 Aug;59(8):2180-90 11099449 - Brain. 2000 Dec;123 Pt 12:2475-90 23986024 - J Neural Eng. 2013 Oct;10(5):056015 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 24204342 - Front Comput Neurosci. 2013 Nov 05;7:157 24887296 - Int IEEE EMBS Conf Neural Eng. 2013;:1159-1162 21436534 - J Neural Eng. 2011 Apr;8(2):025004 21472032 - Front Neurosci. 2011 Mar 25;5:39 24468185 - J Neuroeng Rehabil. 2014 Jan 28;11:9 24382581 - Lancet Neurol. 2014 Feb;13(2):132-3 23366829 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4099-103 23055968 - Front Neuroeng. 2012 Jul 12;5:13 24354476 - J Neuroeng Rehabil. 2013 Dec 19;10 :112 22275545 - IEEE Int Conf Rehabil Robot. 2011;2011:5975340 18310807 - J Neural Eng. 2008 Mar;5(1):9-23 |
References_xml | – volume: 13 start-page: 132 year: 2014 ident: B45 article-title: Effects of robotic therapy of the arm after stroke publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70285-0 – volume: 60 start-page: 55 year: 2009 ident: B66 article-title: Stroke rehabilitation: strategies to enhance motor recovery publication-title: Ann. Rev. Med. doi: 10.1146/annurev.med.60.042707.104248 – volume: 3 start-page: 12 year: 2006 ident: B40 article-title: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-3-12 – volume-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society year: 2015 ident: B62 article-title: Brain - computer interfaces to virtual reality environments for rehabilitation of motor function : a review – volume: 8 issue: 376 year: 2014 ident: B13 article-title: Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00376 – volume: 83 start-page: 172 year: 2014 ident: B75 article-title: Brain-machine interfaces in neurorehabilitation of stroke publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2014.11.025 – volume: 2 start-page: 93 year: 2014 ident: B79 article-title: Applications of brain-machine interface systems in stroke recovery and rehabilitation publication-title: Curr. Phys. Med. Rehabil. Rep. doi: 10.1007/s40141-014-0051-4 – volume: 51 start-page: 213 year: 2014 ident: B30 article-title: Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2013.02.0050 – volume: 6 start-page: CD006876 year: 2012 ident: B58 article-title: Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke publication-title: Cochrane Database Syst. Rev. doi: 10.1002/14651858.cd006876.pub3 – volume-title: R.matlab: Read and write of MAT files together with R-to-MATLAB connectivity year: 2014 ident: B6 – volume: 123 start-page: 2475 year: 2000 ident: B70 article-title: Multimodal EEG analysis in man suggests impairment-specific changes in movement-related electric brain activity after stroke publication-title: Brain doi: 10.1093/brain/123.12.2475 – volume: 11 start-page: 9 year: 2014 ident: B47 article-title: An exploration of EEG features during recovery following stroke implications for BCI-mediated neurorehabilitation therapy publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-9 – volume: 46 start-page: 310 year: 2015 ident: B1 article-title: A randomized controlled trial of eeg-based motor imagery brain-computer interface robotic rehabilitation for stroke publication-title: Clin. EEG Neurosci. doi: 10.1177/1550059414522229 – volume: 22 start-page: 111 year: 2008 ident: B44 article-title: Effects of Robot-assisted therapy on upper limb recovery after stroke: a Systematic Review publication-title: Neurorehabil. Neural Repair doi: 10.1177/1545968307305457 – volume: 23 start-page: 1065 year: 2013 ident: B36 article-title: The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2013.07.007 – volume: 87 start-page: S59 year: 2006 ident: B68 article-title: Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2006.08.332 – volume: 52 start-page: 3 year: 1999 ident: B42 article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology publication-title: Electroencephalogr. Clin. Neurophysiol. Suppl. – volume: 2013 start-page: 1159 year: 2013 ident: B8 article-title: A pre-clinical framework for neural control of a therapeutic upper-limb exoskeleton publication-title: Int. IEEE EMBS Conf. Neural Eng. doi: 10.1109/NER.2013.6696144 – volume: 51 start-page: 507 year: 2013 ident: B65 article-title: Detection of movement-related cortical potentials based on subject-independent training publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-012-1018-1 – volume: 59 start-page: 2180 year: 2012 ident: B49 article-title: Intention-based emg control for powered exoskeletons publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2198821 – volume: 13 start-page: 159 year: 2014 ident: B41 article-title: Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70305-3 – volume: 2013 start-page: 13 year: 2013 ident: B78 article-title: Exoskeleton technology in rehabilitation: towards an EMG-based orthosis system for upper limb neuromotor rehabilitation publication-title: J. Robot. doi: 10.1155/2013/610589 – volume: 8 start-page: 46003 year: 2011a ident: B60 article-title: Early detection of hand movements from EEGs for stroke therapy applications publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/4/046003 – year: 2015 ident: B76 publication-title: An EEG/EOG-Based Hybrid Brain-Neural Computer Interaction (BNCI) System to Control an Exoskeleton for the Paralyzed Hand – volume: 2 start-page: 184 year: 2014 ident: B9 article-title: Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy publication-title: Curr. Phys. Med. Rehabil. Rep. doi: 10.1007/s40141-014-0056-z – volume: 27 start-page: 233 year: 2008 ident: B33 article-title: Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training publication-title: Int. J. Robot. Res. doi: 10.1177/0278364907084261 – volume-title: Introduction to Neural Engineering for Motor Rehabilitation IEEE Press Series on Biomedical Engineering year: 2013 ident: B21 – volume-title: Proceedings of the ASME Dynamic Systems and Controls Conference, October 22–24 year: 2014 ident: B25 article-title: System characterization of MAHI Exo-II: a robotic exoskeleton for upper extremity rehabilitation doi: 10.1115/DSCC2014-6267 – volume: 42 start-page: 1169 year: 2012 ident: B26 article-title: A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks publication-title: IEEE Trans. Syst. Man Cybern. C Appl. Rev. doi: 10.1109/TSMCC.2012.2226444 – volume: 8 start-page: 036005 year: 2011 ident: B29 article-title: Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036005 – volume: 10 start-page: 112 year: 2013 ident: B59 article-title: A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-10-112 – volume-title: Version 7.10.0 (R2012b) year: 2012 ident: B55 – volume: 61 start-page: 2092 year: 2014b ident: B84 article-title: A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2313867 – volume: 3 start-page: 62 year: 2009 ident: B32 article-title: Offline identification of imagined speed of wrist movements in paralyzed ALS patients from single-trial EEG publication-title: Front. Neurosci. doi: 10.3389/neuro.20.003.2009 – start-page: 271 volume-title: NER '09. 4th International IEEE/EMBS Conference on Neural Engineering year: 2009 ident: B80 article-title: A feasibility study of non-invasive motor-imagery bci-based robotic rehabilitation for stroke patients – volume: 2011 start-page: 5975340 year: 2011 ident: B34 article-title: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation publication-title: IEEE Int. Conf. Rehabil. Robot. doi: 10.1109/ICORR.2011.5975340 – volume: 74 start-page: 100 year: 2014 ident: B72 article-title: Brain-machine-interface in chronic stroke rehabilitation: a controlled study publication-title: Ann. Neurol. doi: 10.1002/ana.23879 – volume: 8 start-page: 741 year: 2009 ident: B46 article-title: Motor recovery after stroke: a systematic review publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(09)70150-4 – start-page: 757 volume-title: Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference year: 2007 ident: B53 article-title: Reach and grasp therapy: design and control of a 9-dof robotic neuro-rehabilitation system doi: 10.1109/ICORR.2007.4428510 – volume: 43 start-page: 605 year: 2006 ident: B35 article-title: Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2005.06.0103 – volume: 10 start-page: 674 year: 2014 ident: B15 article-title: Stroke: improved lesion-symptom mapping in poststroke aphasia publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2014.217 – volume: 5 start-page: 9 year: 2008 ident: B22 article-title: A self-paced brain-computer interface system with a low false positive rate publication-title: J. Neural Eng. doi: 10.1088/1741-2560/5/1/002 – volume: 7 issue: 157 year: 2013 ident: B69 article-title: Creating new functional circuits for action via brain-machine interfaces publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2013.00157 – volume: 56 start-page: 814 year: 2011 ident: B10 article-title: Single-trial analysis and classification of ERP components–a tutorial publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.048 – volume-title: Pattern Classification year: 2012 ident: B20 – volume: 9 issue: 564 year: 2015 ident: B11 article-title: Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton : combining brain-machine interfacing and robotic rehabilitation publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00564 – volume: 7 start-page: 1032 year: 2008 ident: B18 article-title: Brain-computer interfaces in neurological rehabilitation publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70223-0 – volume: 103 start-page: 386 year: 1997 ident: B57 article-title: Spatial filter selection for EEG-based communication publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00022-2 – volume: 15 start-page: 7 year: 2003 ident: B43 article-title: Rehabilitation robotics: performance-based progressive robot-assisted therapy publication-title: Auton. Robots doi: 10.1023/A:1024494031121 – volume: 134 start-page: 9 year: 2004 ident: B19 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – start-page: 3406 volume-title: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE year: 2010 ident: B77 article-title: An intention driven hand functions task training robotic system doi: 10.1109/IEMBS.2010.5627930 – volume: 2 start-page: 27:1 year: 2011 ident: B14 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 22 start-page: 201 year: 2014 ident: B54 article-title: Sliding hdca: single-trial eeg classification to overcome and quantify temporal variability publication-title: Neural Syst. Rehabil. Eng. IEEE Trans. doi: 10.1109/TNSRE.2014.2304884 – start-page: 245 volume-title: Proceedings of the Fourteenth International Conference on Machine Learning, ICML '97 year: 1997 ident: B64 article-title: Preventing “overfitting” of cross-validation data – volume: 11 start-page: 1 year: 2014 ident: B82 article-title: Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG) publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-165 – volume: 10 start-page: 056015 year: 2013 ident: B39 article-title: Detection and classification of movement-related cortical potentials associated with task force and speed publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/5/056015 – start-page: 4099 volume-title: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE year: 2012 ident: B3 article-title: Continuous decoding of intention to move from contralesional hemisphere brain oscillations in severely affected chronic stroke patients, doi: 10.1109/EMBC.2012.6346868 – volume: 2007 start-page: 1 year: 2007 ident: B48 article-title: Self-paced (Asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic publication-title: Comput. Intell. Neurosci. doi: 10.1155/2007/79642 – volume: 8 issue: 222 year: 2014 ident: B51 article-title: Single trial prediction of self-paced reaching directions from EEG signals publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00222 – year: 2003 ident: B24 publication-title: Hypermedia Image Processing Reference – volume: 250 start-page: 34 year: 2015 ident: B81 article-title: Digital filter design for electrophysiological data a practical approach publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.08.002 – start-page: 1275 volume-title: Converging Clinical and Engineering Research on Neurorehabilitation SE - 213, volume 1 of Biosystems & Biorobotics year: 2013 ident: B56 article-title: Hybrid brain-computer interaction for functional motor recovery after stroke doi: 10.1007/978-3-642-34546-3_213 – year: 2013 ident: B74 publication-title: Signal: Signal Processing – volume-title: 13th Annual Conference of the International Functional Electrical Stimulation Society year: 2008 ident: B17 article-title: Development and testing of non-invasive BCI + FES/Robot system for use in motor re-learning after stroke – volume: 10 start-page: 036014 year: 2013 ident: B27 article-title: Single trial analysis of slow cortical potentials: a study on anticipation related potentials publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/3/036014 – volume: 42 start-page: 253 year: 2011 ident: B2 article-title: A large clinical study on the ability of stroke patients to use an eeg-based motor imagery brain-computer interface publication-title: Clin. EEG Neurosci. doi: 10.1177/155005941104200411 – volume: 47 start-page: 136 year: 2009 ident: B28 article-title: Single-trial discrimination for integrating simultaneous EEG and fMRI: identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.03.062 – volume: 11 start-page: 056009 year: 2014 ident: B38 article-title: Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/5/056009 – volume: 8 issue: 1033 year: 2015 ident: B85 article-title: Movement related slow cortical potentials in severely paralyzed chronic stroke patients publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.01033 – volume: 194 start-page: 477 year: 2009 ident: B16 article-title: The effect of temporal accuracy constraints on movement-related potentials publication-title: Exp. Brain Res. doi: 10.1007/s00221-009-1725-5 – volume: 5 issue: 13 year: 2012 ident: B50 article-title: Detection of self-paced reaching movement intention from EEG signals publication-title: Front. Neuroeng. doi: 10.3389/fneng.2012.00013 – volume: 122 start-page: 364 year: 2011 ident: B4 article-title: Prediction of human voluntary movement before it occurs publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.07.010 – volume: 23 start-page: 837 year: 2009 ident: B37 article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke publication-title: Neurorehabil. Neural Repair doi: 10.1177/1545968309338191 – start-page: 908 volume-title: ICDM '09. Ninth IEEE International Conference on Data Mining, 2009 year: 2009 ident: B67 article-title: Permutation tests for studying classifier performance doi: 10.1109/ICDM.2009.108 – volume: 11 start-page: 111 year: 2014 ident: B5 article-title: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-111 – start-page: 4127 volume-title: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE year: 2014 ident: B7 article-title: Detecting movement intent from scalp eeg in a novel upper limb robotic rehabilitation system for stroke doi: 10.1109/EMBC.2014.6944532 – volume: 9 issue: 391 year: 2015 ident: B63 article-title: Reinforcement learning of self-regulated β-oscillations for motor restoration in chronic stroke publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00391 – volume: 5 issue: 39 year: 2011b ident: B61 article-title: Extracting attempted hand movements from EEGs in people with complete hand paralysis following stroke publication-title: Front. Neurosci. doi: 10.3389/fnins.2011.00039 – volume: 27 start-page: 861 year: 2006 ident: B23 article-title: An introduction to ROC analysis publication-title: Patt. Recogn. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 39 start-page: 910 year: 2008 ident: B12 article-title: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.107.505313 – volume: 8 start-page: 25004 year: 2011 ident: B31 article-title: Using braincomputer interfaces to induce neural plasticity and restore function publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025004 – volume-title: R: A Language and Environment for Statistical Computing year: 2014 ident: B71 – volume: 117 start-page: 2341 year: 2006 ident: B73 article-title: What is the bereitschaftspotential? publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.04.025 – volume: 61 start-page: 288 year: 2014a ident: B83 article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2294203 – volume: 362 start-page: 1772 year: 2010 ident: B52 article-title: Robot-assisted therapy for long-term upper-limb impairment after stroke publication-title: New. Engl. Med. doi: 10.1056/NEJMoa0911341 – reference: 16790067 - J Neuroeng Rehabil. 2006 Jun 21;3:12 – reference: 18310807 - J Neural Eng. 2008 Mar;5(1):9-23 – reference: 26190995 - Front Hum Neurosci. 2015 Jul 03;9:391 – reference: 23283643 - Med Biol Eng Comput. 2013 May;51(5):507-12 – reference: 9305287 - Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):386-94 – reference: 25136290 - Front Neurosci. 2014 Aug 01;8:222 – reference: 20400552 - N Engl J Med. 2010 May 13;362(19):1772-83 – reference: 18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43 – reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 – reference: 17123202 - J Rehabil Res Dev. 2006 Aug-Sep;43(5):605-18 – reference: 26005600 - Curr Phys Med Rehabil Rep. 2014 Sep;2(3):184-195 – reference: 16876476 - Clin Neurophysiol. 2006 Nov;117(11):2341-56 – reference: 24382580 - Lancet Neurol. 2014 Feb;13(2):159-66 – reference: 21472032 - Front Neurosci. 2011 Mar 25;5:39 – reference: 23366829 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4099-103 – reference: 19608100 - Lancet Neurol. 2009 Aug;8(8):741-54 – reference: 25128257 - J Neurosci Methods. 2015 Jul 30;250:34-46 – reference: 25570900 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4127-30 – reference: 23494615 - Ann Neurol. 2013 Jul;74(1):100-8 – reference: 24686231 - IEEE Trans Biomed Eng. 2014 Jul;61(7):2092-101 – reference: 23611808 - J Neural Eng. 2013 Jun;10(3):036014 – reference: 25489973 - Neurobiol Dis. 2015 Nov;83:172-9 – reference: 21474878 - J Neural Eng. 2011 Jun;8(3):036005 – reference: 18928333 - Annu Rev Med. 2009;60:55-68 – reference: 25505377 - Front Neurosci. 2014 Nov 25;8:376 – reference: 17876068 - Neurorehabil Neural Repair. 2008 Mar-Apr;22(2):111-21 – reference: 21623009 - J Neural Eng. 2011 Aug;8(4):046003 – reference: 25490027 - Biomed Tech (Berl). 2015 Jun;60(3):199-205 – reference: 25642177 - Front Hum Neurosci. 2015 Jan 15;8:1033 – reference: 20675187 - Clin Neurophysiol. 2011 Feb;122(2):364-72 – reference: 25385335 - Nat Rev Neurol. 2014 Dec;10(12):674 – reference: 24756025 - Clin EEG Neurosci. 2015 Oct;46(4):310-20 – reference: 24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96 – reference: 25984380 - Proc ASME Dyn Syst Control Conf. 2014 Oct;2014:null – reference: 24204342 - Front Comput Neurosci. 2013 Nov 05;7:157 – reference: 20582286 - Front Neurosci. 2009 Aug 10;3:62 – reference: 24887296 - Int IEEE EMBS Conf Neural Eng. 2013;:1159-1162 – reference: 24608681 - IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):201-11 – reference: 21436534 - J Neural Eng. 2011 Apr;8(2):025004 – reference: 26528168 - Front Hum Neurosci. 2015 Oct 16;9:564 – reference: 19345734 - Neuroimage. 2009 Aug 1;47(1):136-47 – reference: 23986024 - J Neural Eng. 2013 Oct;10(5):056015 – reference: 20600976 - Neuroimage. 2011 May 15;56(2):814-25 – reference: 25082789 - J Neural Eng. 2014 Oct;11(5):056009 – reference: 23932795 - J Electromyogr Kinesiol. 2013 Oct;23 (5):1065-74 – reference: 22208123 - Clin EEG Neurosci. 2011 Oct;42(4):253-8 – reference: 25510922 - J Neuroeng Rehabil. 2014 Dec 16;11:165 – reference: 22275545 - IEEE Int Conf Rehabil Robot. 2011;2011:5975340 – reference: 19221724 - Exp Brain Res. 2009 Apr;194(3):477-88 – reference: 24354476 - J Neuroeng Rehabil. 2013 Dec 19;10 :112 – reference: 19531605 - Neurorehabil Neural Repair. 2009 Oct;23 (8):837-46 – reference: 24933720 - J Rehabil Res Dev. 2014;51(2):213-27 – reference: 17140881 - Arch Phys Med Rehabil. 2006 Dec;87(12 Suppl 2):S59-66 – reference: 24468185 - J Neuroeng Rehabil. 2014 Jan 28;11:9 – reference: 18368142 - Comput Intell Neurosci. 2007;:79642 – reference: 24382581 - Lancet Neurol. 2014 Feb;13(2):132-3 – reference: 11099449 - Brain. 2000 Dec;123 Pt 12:2475-90 – reference: 25110624 - Curr Phys Med Rehabil Rep. 2014 Jun 1;2(2):93-105 – reference: 22696362 - Cochrane Database Syst Rev. 2012 Jun 13;(6):CD006876 – reference: 10590970 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6 – reference: 18258825 - Stroke. 2008 Mar;39(3):910-7 – reference: 23055968 - Front Neuroeng. 2012 Jul 12;5:13 – reference: 22588573 - IEEE Trans Biomed Eng. 2012 Aug;59(8):2180-90 – reference: 25012864 - J Neuroeng Rehabil. 2014 Jul 10;11:111 – reference: 21097247 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3406-9 |
SSID | ssj0062842 |
Score | 2.4657416 |
Snippet | This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 122 |
SubjectTerms | Brain machine interface (BMI) Brain research Cortex EEG Electroencephalography Electromyography Engineering Exoskeleton Feasibility studies Laboratories motor intent detection Movement Related Cortical Potentials (MRCPs) Neuroscience Patients Rehabilitation robotic exoskeleton Robotics Robots Signal processing Stroke stroke rehabilitation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1yqQikNFGQkhOghWq3j2PGxhS0tEpyo1JsVv9RVu84qyfL498w42VUXofbSa-zIycx45ht7_JmQ95UBmMpgApZ14Lh0w3MzLWxeFdxB9gA5iU1Vvt_F-SX_elVe3bnqC2vCBnrgQXATzh0rvJeFsuhIjfGsRv4iHqxlzqVsHWLeOpkafLAAp8uGTUlIwdQkxHlEbu5p2nlgbCsIJa7-_wHMf-sk7wSesz2yOyJGejJ86TPyxMfnZP8kQra8-EM_0FTDmRbH98mvz6kgg9bR0QacwWI8ZUmbAM_obPYlx7DlqMGbIegiVVJ6ipwRbaitpx9Pv10c077B3qvl0rf57XxhqP_ddDcQoAAoUkC5tOvb5sbTbgWO5mfTdi_I5dnsx6fzfLxaIbdlpfo8MFcWZmpc6ayZigokaSAyeVVKXBQqPQtGcA9yVgBBCi-DcBKUqECargQ3cEB2YhP9IaHKGemEAdzFILXiouLGAWwUVZC8loZnZLKWtbYj7zhef3GrIf9A7eikHY3a0Uk7GTnevLEcODfu6XuK6tv0Q7bs9ABsSI82pB-yoYwcrZWvxykMYyAXGlLxwBjvNs0w-XBHpY6-WXUajBkQt2Ls_j5SiUrKKiMvB3vafC3DTWZoz4jcsrSt39luifPrRAKOJDsAX189xv-_Jk9RosNRyyOy07cr_wawVm_epmn1F7o3KCs priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfQeIEHNDY-MgYyEkLsIYw6_soDQivrGIjCw6i0NyuOHai2JiVNYfvvuXPTbEVVX2Pny3fn-53P_h0hr7QFmMrAAEVWcFy64bHtJXmsE-4geoCYJA-7fL_J0xH_ci7Ob45HtwM4WxvaYT2pUX359ur39Qcw-PcYcYK_PSzKcYnM272QV2AwId8Fv6SwkMOQdzkFCRNxyH1KPCcEQH2RtFz7hBUnFbj81wHQ__dR3nJMJ9vkQYso6dFCBR6SO77cIbtHJUTTk2v6moY9nmHxfIfcv0U_uEv-HoftGzQrHf0OU8ekPZNJqwKu0cHgU9wHJ-doH-tI0GHYd-lpWEQsstzTN_3h5wPaVNh7NJ36Ov46nlg6uKpmF-DOAFZSwMT0rKmrC0_P5jAt_anq2SMyOhn8-Hgat4UY4lzotIkL5kRie9YJl9ue1Mw5C37Mp0LhEpLwrLCSey1UCoAl8aqQToHIUxhbJ2DSeEy2yqr0TwlNnVVOWkBpDAIxLjW3DkCm1IXimbI8IofLkTd5y1KOxTIuDUQrKCsTZGVQVibIKiIH3R3TBUPHhr59FGbXD7m1w4Wq_mlaUzWcO5Z4r5I0R9dtrWcZMmbxIs_hz99FZH-pCmapr4YhcxoS98A7XnbNYKqYf8lKX81nBlQf8HnK2OY-KpVaKR2RJwvt6r6WYUoa2iOiVvRu5XdWW8rxr0AZjpQ8AHb3Nn_6M3KP4emOsMK0T7aaeu6fA-Zq7ItgSv8AStsn9Q priority: 102 providerName: Scholars Portal |
Title | Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27065787 https://www.proquest.com/docview/2305519582 https://www.proquest.com/docview/1780809222 https://www.proquest.com/docview/1787968778 https://pubmed.ncbi.nlm.nih.gov/PMC4815250 https://doaj.org/article/44d23ee739c8471bbe2a18574fcc2dd0 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgu8ABwcZHxpiMhBA7RCWOYzsntEC2gehAjEq9RXHsQLU1KWnKx3_Pe04arQj1kkPiqonf83u_9-GfCXmhNMBUBgswykuOqRvu6yAsfBVyA9EDxCSF6_K9EOcT_mEaTfuE27Jvq1zbRGeoTV1gjnzEkJoKmVHYm8UPH0-Nwupqf4TGbbILJliBhu8m6cXnL2tbLMD4unqnwL1BAM67QiWEZfGorGYV8nUHrhrB2IZjcvz9_wOd__ZO3nBGp_fJvR5F0pNO7A_ILVvtkf2TCiLo-R_6krq-Tpcw3yN3b1AO7pNf71zLBs0rQz-BuZj3-zBpXcI9mqZnfgKOzdAEz46gY9draalLHJZ5YemrZPz-mLY1jp4sFrbxP87mmqa_6-UVuDCAkhRwML1sm_rK0ssVmKKfdbN8SCan6de3535_-IJfRCpu_ZKZKNSBNpEpdCAUM0aD77JxJDFtFFlWasGtimQMICW0shRGgphjmFsTgaF4RHaqurJPCI2NlkZoQGYMgi8uFNcGgKVQpeS51Nwjo_XMZ0XPTI4HZFxnEKGgrDInqwxllTlZeeR4-MWiY-XYMjZBYQ7jkE_b3aibb1m_PDPODQutlWFcoLvW2rIcWbJ4WRTw5a89crhWhaxf5PAfg0p65PnwGJYn1lzyytarZQbqDpg8Zmz7GBkLJaXyyONOu4a3ZViGhucekRt6t_E5m0-q2XdHE440PABwD7a_-lNyB-eq22Z5SHbaZmWfAc5q9VG_mI5cngKuZ9MArmOu_gJl_yiA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gF4QLDBCAwwEiD2EJU6Tpw8ILSyjpW1BbFV2luIYweq0aT0g7F_ir-ROyepVoT6ttfYSZyc7-53H74DeBEqhKkcGdBPMkGuG-Gqlpe6oSc0Wg9ok6Q2y3cQHA3FxzP_bAP-1GdhKK2ylolWUOsiJR95k1NpKqqMwt9NfrrUNYqiq3ULjXJbHJvLCzTZZm-7B0jfl5wfdk7fH7lVVwE39cNo7mZc-55qKe3rVLWCkGutUCibyJfkD_ENz1QgTOjLCLWvZ2QWaInrj1C1ax85AJ97AzaFh1ChAZvtzuDzl1r2ByjsbXw1oLNIaAyUgVE0A6Nmlo9yqg_estEPzlcUoe0X8D-Q-2-u5hXld3gX7lSole2X2-webJh8C7b3c7TYx5fsFbN5pNZBvwW3r5Q43IaLA5siwpJcs08onsbVuU9WZHiNdTof3DYqUs3a1KuC9W1up2HWUZklqWGv2_3uHpsXNHs4mZip2xuNFev8LmbnqDIRujLE3exkPi3ODTtZoOj7VUxn92F4LWR5AI28yM1DYJFWUgcKkSBHY08EoVAagWwQZlIkUgkHmvWfj9OqEjo15PgRo0VEtIotrWKiVWxp5cDe8o5JWQVkzdw2EXM5j-p32wvF9FtciYNYCM09Y6QXpQQPlDI8oapcIktT_PI3DuzWWyGuhAq-Y8kCDjxfDqM4oBhPkptiMYuRvdAGiDhfP0dGQShl6MBOubuWq-UU9sZxB-TKvlv5nNWRfPTdliWnsj8IqB-tX_ozuHl02u_Fve7g-DHcov9WHvHchcZ8ujBPEOPN1dOKsRh8vW5e_gtQymGD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KmkEoIDgpbFUGCQANGDFTIee-wDQg1JaGgbKtpIvRmPZwxRiR2yUPprfB3vje2oQSi3Xj3jZfz2HeBlqFBN5UiAfpIJct0IV7W81A09odF6QJsktVm-g2B_KD6d-Wcb8KeuhaG0yponWkati5R85E1OramoMwpvZlVaxHGn937y06UJUhRprcdplChyYC4v0Hybvet3ENavOO91Tz_su9WEATf1w2juZlz7nmop7etUtYKQa62QQZvIl-Qb8Q3PVCBM6MsIJbFnZBZoiWeJUMxrH6kBn3sDNiWVjzZgs90dHH-p5UCAjN_GWgOqS0LDoAySokkYNbN8lFOv8JaNhHC-IhTt7ID_Kbz_5m1eEYS9u3Cn0mDZXoly92DD5FuwvZej9T6-ZK-ZzSm1zvotuH2l3eE2XHRsughLcs0-I6saVzWgrMjwGut2P7ptFKqatWluBTuyeZ6GWadllqSGvWkf9XfZvKDdw8nETN3D0Vix7u9ido7iE9VYhjo4O5lPi3PDThbIBn8V09l9GF4LWB5AIy9y8whYpJXUgUKtkKPhJ4JQKI1KbRBmUiRSCQea9Z-P06orOg3n-BGjdUSwii2sYoJVbGHlwO7yjknZEWTN3jYBc7mPennbC8X0W1yxhlgIzT1jpBelpCooZXhCHbpElqZ48rcO7NSoEFcMBt-xJAcHXiyXkTVQvCfJTbGYxUhqaA9EnK_fI6MglDJ04GGJXcuv5RQCx3UH5ArerRxndSUffbctyqkFECrXj9d_-nO4iTQcH_YHB0_gFv22stpzBxrz6cI8RXVvrp5VdMXg63WT8l8MTmXB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Optimization+of+an+EEG-Based+Brain+Machine+Interface+%28BMI%29+to+an+Upper-Limb+Exoskeleton+for+Stroke+Survivors&rft.jtitle=Frontiers+in+neuroscience&rft.au=Bhagat%2C+Nikunj+A&rft.au=Venkatakrishnan%2C+Anusha&rft.au=Abibullaev%2C+Berdakh&rft.au=Artz%2C+Edward+J&rft.date=2016-03-31&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2016.00122&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |