Multiplex CRISPR/Cas9-mediated genome editing of the FAD2 gene in rice: a model genome editing system for oil palm
Background Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement. However, most of the applied CRISPR/Cas9 systems targeting one locus using a sgRNA resulted in low genome editing efficiency. Result...
Saved in:
Published in | Journal of Genetic Engineering and Biotechnology Vol. 19; no. 1; pp. 86 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
11.06.2021
Springer Springer Nature B.V Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1687-157X 2090-5920 |
DOI | 10.1186/s43141-021-00185-4 |
Cover
Abstract | Background
Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement. However, most of the applied CRISPR/Cas9 systems targeting one locus using a sgRNA resulted in low genome editing efficiency.
Results
Here, we demonstrate the modification of the
FAD2
gene in rice using a multiplex sgRNA-CRISPR/Cas9 genome editing system. To test the system’s efficiency for targeting multiple loci in rice, we designed two sgRNAs based on
FAD2
gene sequence of the
Oryza sativa Japonica
rice. We then inserted the validated sgRNAs into a CRISPR/Cas9 basic vector to construct pYLCRISPRCas9PUbi-H:OsFAD2. The vector was then transformed into protoplast cells isolated from rice leaf tissue via PEG-mediated transfection, and rice calli using biolistic transformation. Direct DNA sequencing of PCR products revealed mutations consisting of deletions of the DNA region between the two target sgRNAs.
Conclusion
The results suggested that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing system may be useful for crop improvement in monocot species that are recalcitrant to genetic modification, such as oil palm. |
---|---|
AbstractList | Background Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement. However, most of the applied CRISPR/Cas9 systems targeting one locus using a sgRNA resulted in low genome editing efficiency. Results Here, we demonstrate the modification of the FAD2 gene in rice using a multiplex sgRNA-CRISPR/Cas9 genome editing system. To test the system's efficiency for targeting multiple loci in rice, we designed two sgRNAs based on FAD2 gene sequence of the Oryza sativa Japonica rice. We then inserted the validated sgRNAs into a CRISPR/Cas9 basic vector to construct pYLCRISPRCas9PUbi-H:OsFAD2. The vector was then transformed into protoplast cells isolated from rice leaf tissue via PEG-mediated transfection, and rice calli using biolistic transformation. Direct DNA sequencing of PCR products revealed mutations consisting of deletions of the DNA region between the two target sgRNAs. Conclusion The results suggested that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing system may be useful for crop improvement in monocot species that are recalcitrant to genetic modification, such as oil palm. Abstract Background Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement. However, most of the applied CRISPR/Cas9 systems targeting one locus using a sgRNA resulted in low genome editing efficiency. Results Here, we demonstrate the modification of the FAD2 gene in rice using a multiplex sgRNA-CRISPR/Cas9 genome editing system. To test the system’s efficiency for targeting multiple loci in rice, we designed two sgRNAs based on FAD2 gene sequence of the Oryza sativa Japonica rice. We then inserted the validated sgRNAs into a CRISPR/Cas9 basic vector to construct pYLCRISPRCas9PUbi-H:OsFAD2. The vector was then transformed into protoplast cells isolated from rice leaf tissue via PEG-mediated transfection, and rice calli using biolistic transformation. Direct DNA sequencing of PCR products revealed mutations consisting of deletions of the DNA region between the two target sgRNAs. Conclusion The results suggested that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing system may be useful for crop improvement in monocot species that are recalcitrant to genetic modification, such as oil palm. Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement. However, most of the applied CRISPR/Cas9 systems targeting one locus using a sgRNA resulted in low genome editing efficiency. Here, we demonstrate the modification of the FAD2 gene in rice using a multiplex sgRNA-CRISPR/Cas9 genome editing system. To test the system’s efficiency for targeting multiple loci in rice, we designed two sgRNAs based on FAD2 gene sequence of the Oryza sativa Japonica rice. We then inserted the validated sgRNAs into a CRISPR/Cas9 basic vector to construct pYLCRISPRCas9PUbi-H:OsFAD2. The vector was then transformed into protoplast cells isolated from rice leaf tissue via PEG-mediated transfection, and rice calli using biolistic transformation. Direct DNA sequencing of PCR products revealed mutations consisting of deletions of the DNA region between the two target sgRNAs. The results suggested that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing system may be useful for crop improvement in monocot species that are recalcitrant to genetic modification, such as oil palm. Background Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement. However, most of the applied CRISPR/Cas9 systems targeting one locus using a sgRNA resulted in low genome editing efficiency. Results Here, we demonstrate the modification of the FAD2 gene in rice using a multiplex sgRNA-CRISPR/Cas9 genome editing system. To test the system’s efficiency for targeting multiple loci in rice, we designed two sgRNAs based on FAD2 gene sequence of the Oryza sativa Japonica rice. We then inserted the validated sgRNAs into a CRISPR/Cas9 basic vector to construct pYLCRISPRCas9PUbi-H:OsFAD2. The vector was then transformed into protoplast cells isolated from rice leaf tissue via PEG-mediated transfection, and rice calli using biolistic transformation. Direct DNA sequencing of PCR products revealed mutations consisting of deletions of the DNA region between the two target sgRNAs. Conclusion The results suggested that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing system may be useful for crop improvement in monocot species that are recalcitrant to genetic modification, such as oil palm. BackgroundGenome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement. However, most of the applied CRISPR/Cas9 systems targeting one locus using a sgRNA resulted in low genome editing efficiency.ResultsHere, we demonstrate the modification of the FAD2 gene in rice using a multiplex sgRNA-CRISPR/Cas9 genome editing system. To test the system’s efficiency for targeting multiple loci in rice, we designed two sgRNAs based on FAD2 gene sequence of the Oryza sativa Japonica rice. We then inserted the validated sgRNAs into a CRISPR/Cas9 basic vector to construct pYLCRISPRCas9PUbi-H:OsFAD2. The vector was then transformed into protoplast cells isolated from rice leaf tissue via PEG-mediated transfection, and rice calli using biolistic transformation. Direct DNA sequencing of PCR products revealed mutations consisting of deletions of the DNA region between the two target sgRNAs.ConclusionThe results suggested that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing system may be useful for crop improvement in monocot species that are recalcitrant to genetic modification, such as oil palm. |
ArticleNumber | 86 |
Audience | Academic |
Author | Bahariah, Bohari Rasid, Omar Abd Masani, Mat Yunus Abdul Parveez, Ghulam Kadir Ahmad |
Author_xml | – sequence: 1 givenname: Bohari surname: Bahariah fullname: Bahariah, Bohari organization: Advanced Biotechnology and Breeding Centre (ABBC) Division, Malaysian Palm Oil Board (MPOB) – sequence: 2 givenname: Mat Yunus Abdul surname: Masani fullname: Masani, Mat Yunus Abdul email: masani@mpob.gov.my organization: Advanced Biotechnology and Breeding Centre (ABBC) Division, Malaysian Palm Oil Board (MPOB) – sequence: 3 givenname: Omar Abd surname: Rasid fullname: Rasid, Omar Abd organization: Advanced Biotechnology and Breeding Centre (ABBC) Division, Malaysian Palm Oil Board (MPOB) – sequence: 4 givenname: Ghulam Kadir Ahmad surname: Parveez fullname: Parveez, Ghulam Kadir Ahmad organization: Advanced Biotechnology and Breeding Centre (ABBC) Division, Malaysian Palm Oil Board (MPOB) |
BookMark | eNp9ksFu1DAURS1URKelP8DKEhs2aW3Hjm0WSKOBwkhFoAISO8txXlKPknhqZxD9-3qaItRZ1JFlxb7nOu_lnqCjMYyA0BtKzilV1UXiJeW0ICxPQpUo-Au0YESTQmhGjtCCVkoWVMjfx-gspQ3JQ3BFBX2FjktOqWCVXKD4dddPftvDX7y6Xv_4fn2xskkXAzTeTtDgDsYwAM6vkx87HFo83QC-XH5k-yPAfsTRO3iPLR5CA_0hkO7SBANuQ8TB93hr--E1etnaPsHZ43qKfl1--rn6Ulx9-7xeLa8KJ5SeCpANt7lUR7SohOacSsk4oWUlnCM1bbiqiLbSQakktFwqx12jSa1JW7O6LE_RevZtgt2YbfSDjXcmWG8eNkLsjI2Tdz0YLUjLgVHiRG6qdYoLLuraNkTphlGZvT7MXttdnXvjYJyi7Z-YPj0Z_Y3pwh-jqK4oJdng3aNBDLc7SJMZfHLQ93aEsEumpCL_T61KkaVvD6SbsItjbpVhkmlRCsVZVp3Pqs7mAvzYhnyvy08Dg3c5K63P-8tKZkARtQfUDLgYUorQGucnO_mw_2DfG0rMPlhmDpbJwTIPwTI8o-wA_Vf4s1A5QymLxw7i_zKeoe4BLALdrw |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1122940 crossref_primary_10_3389_fpls_2021_748529 crossref_primary_10_3389_fpls_2022_1042828 crossref_primary_10_3389_fpls_2022_848723 crossref_primary_10_3390_agronomy12010164 crossref_primary_10_3389_fpls_2022_1034215 crossref_primary_10_1016_j_sajb_2023_02_025 crossref_primary_10_1093_jaoacint_qsad022 crossref_primary_10_3390_plants11111395 crossref_primary_10_1016_j_cj_2023_12_009 crossref_primary_10_1016_j_biotechadv_2023_108248 crossref_primary_10_3390_f14061168 crossref_primary_10_3389_fgeed_2024_1488024 crossref_primary_10_1016_j_plantsci_2022_111247 crossref_primary_10_1186_s43141_022_00459_5 crossref_primary_10_3389_fpls_2022_969844 crossref_primary_10_3390_plants11050685 crossref_primary_10_1093_plphys_kiac017 crossref_primary_10_1016_j_plipres_2021_101138 crossref_primary_10_3389_fpls_2025_1557544 |
Cites_doi | 10.1016/j.plaphy.2018.04.033 10.1371/journal.pone.0154027 10.1111/pbi.12200 10.1111/pbi.12920 10.1186/s12870-020-02441-0 10.1038/srep19675 10.1038/srep21451 10.1016/j.plaphy.2018.04.025 10.1038/nprot.2014.157 10.1042/bst0280969 10.1038/nbt.2650 10.1111/pbi.12671 10.1111/tpj.12554 10.1038/cr.2013.114 10.1146/annurev-genet-110410-132435 10.1126/science.1225829 10.1038/nbt.2969 10.1186/1746-4811-9-39 10.1186/s12870-014-0327-y 10.1111/pbi.13077 10.1111/pbi.12663 10.1186/s12896-019-0516-8 10.1038/nmeth.1318 10.1093/nar/gkg595 10.1093/nar/gkt780 10.1038/nbt.3389 10.1111/pbi.12982 10.3390/agronomy9110728 10.1071/FP12301 10.1016/j.molp.2015.05.009 10.3390/ijms21031104 10.1126/science.1258096 10.1186/1746-4811-7-30 10.1093/mp/sst119 10.1104/pp.15.00636 10.1371/journal.pone.0096831 10.1073/pnas.1420294112 10.1016/j.cell.2016.10.044 10.1038/ncomms12617 10.1016/j.jgg.2016.04.011 10.1016/j.molp.2017.03.001 10.1038/nprot.2007.199 10.1186/s13007-018-0382-8 10.1038/s41598-018-37737-7 10.1186/s13578-017-0148-4 10.1111/pbi.12771 10.1007/s00299-014-1722-4 10.1016/j.bcab.2018.07.008 10.1186/s12896-019-0501-2 10.21894/jopr.2017.00013 10.1007/s11103-015-0342-x 10.1016/j.molp.2015.04.007 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 COPYRIGHT 2021 Springer The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 5PM DOA |
DOI | 10.1186/s43141-021-00185-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (selected full-text) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 2090-5920 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_950f4e210c5141ac84545bbad089d217 PMC8196110 A679538082 10_1186_s43141_021_00185_4 |
GeographicLocations | China United States--US |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | C6C --K 0R~ 4.4 457 5VS AAEDT AAEDW AAFWJ AAHBH AAIKJ AAKKN AALRI AAXUO AAYWO AAYXX ABEEZ ABJCF ABMAC ACACY ACGFS ACULB ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFGXO AFKRA AFPKN AFPUW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BBNVY BENPR BGLVJ BHPHI C24 CCPQU CITATION DIK EBS EJD FDB GROUPED_DOAJ H13 HCIFZ HYE HZ~ IAO IGS IHR IPNFZ ITC IXB KQ8 M41 M7P M7S O-L O9- OK1 PHGZM PHGZT PIMPY PTHSS RIG ROL RPM SOJ SSZ XH2 PMFND 8FE 8FG 8FH ABUWG AZQEC DWQXO GNUQQ L6V LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO 5PM |
ID | FETCH-LOGICAL-c589t-e7d4a118c095659441772401365cc0b1d48609a7ce387ef478c4cd90b90fb2b33 |
IEDL.DBID | DOA |
ISSN | 1687-157X |
IngestDate | Wed Aug 27 01:28:13 EDT 2025 Thu Aug 21 18:30:27 EDT 2025 Fri Sep 05 10:30:22 EDT 2025 Fri Jul 25 11:53:22 EDT 2025 Tue Jun 10 20:34:18 EDT 2025 Tue Jul 01 04:06:13 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 Fri Feb 21 02:48:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Model monocot FAD2 Genome editing High oleic acid Multiplex CRISPR/Cas9 Rice |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c589t-e7d4a118c095659441772401365cc0b1d48609a7ce387ef478c4cd90b90fb2b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/950f4e210c5141ac84545bbad089d217 |
PMID | 34115267 |
PQID | 2729535842 |
PQPubID | 5642926 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_950f4e210c5141ac84545bbad089d217 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8196110 proquest_miscellaneous_3153149835 proquest_journals_2729535842 gale_infotracacademiconefile_A679538082 crossref_citationtrail_10_1186_s43141_021_00185_4 crossref_primary_10_1186_s43141_021_00185_4 springer_journals_10_1186_s43141_021_00185_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-11 |
PublicationDateYYYYMMDD | 2021-06-11 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Cairo |
PublicationTitle | Journal of Genetic Engineering and Biotechnology |
PublicationTitleAbbrev | J Genet Eng Biotechnol |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V Elsevier |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: Elsevier |
References | Jiang, Henry, Lynagh, Comai, Cahoon, Weeks (CR48) 2017; 15 Mikami, Toki, Endo (CR24) 2015; 88 Fauser, Schiml, Puchta (CR36) 2014; 79 Wang, Mao, Lu, Tao, Zhu (CR5) 2017; 10 Hu, Meng, Liu, Li, Wang (CR6) 2018; 16 Zhang, Zhang, Wei, Zhang, Gou, Feng, Mao, Yang, Zhang, Xu, Zhu (CR14) 2014; 12 Jiang, Zhou, Bi, Fromm, Yang, Weeks (CR25) 2013; 41 Zhang, Su, Duan, Ao, Dai, Liu, Wang, Li, Liu, Feng, Wang, Wang (CR20) 2011; 7 Yuan, Zhu, Gong, He, Lee, Han, Chen, He (CR53) 2019; 19 Xie, Minkenberg, Yang (CR15) 2015; 112 Morineau, Bellec, Tellier, Gissot, Kelemen, Nogue, Faure (CR49) 2017; 15 Liang, Zhang, Lou, Yu (CR16) 2016; 6 Gibson, Young, Chuang, Venter, Hutchison, Smith (CR19) 2009; 6 Tian, Chen, Li, Zheng, Chen (CR54) 2020; 20 Malzahn, Lowder, Qi (CR2) 2017; 7 Abe, Araki, Suzuki, Toki, Saika (CR12) 2018; 131 Wang, Cheng, Shan, Zhang, Liu, Gao (CR46) 2014; 32 Masani, Noll, Parveez, Sambanthamurthi, Prüfer (CR45) 2014; 9 Lee, Zhang, Kleinstiver, Guo, Aryee, Miller, Wang (CR47) 2018; 17 Wang, Wang, Liu, Lei, Hao, Gao, Liu (CR31) 2016; 11 Zuker (CR18) 2003; 31 Liu, Homma, Sayadi, Yang, Ohashi, Takumi (CR23) 2016; 6 Belhaj, Chaparro-Garcia, Kamoun, Nekrasov (CR35) 2013; 9 Xie, Yang (CR26) 2013; 6 Amin, Ahmad, Nan, Xiumin, Tong, Yeyao, Xiaoxue, Nan, Sharif, Piwu (CR50) 2019; 19 Doudna, Charpentier (CR55) 2014; 346 Zhang, Liang, Zong, Wang, Liu, Chen, Qiu, Gao (CR7) 2016; 7 Shan, Wang, Li, Zhang, Chen, Liang (CR11) 2013; 31 Lowder, Zhang, Baltes, Paul, Tang, Zheng (CR28) 2015; 169 Kalyana Babu, Mary Rani, Sarika Sahu, Mathur Naveen Kumar, Ravichandran, Anitha, Bhagya (CR39) 2019; 9 Feng, Zhang, Ding, Liu, Yang, Wei (CR37) 2013; 23 Doyle, Doyle (CR22) 1990; 12 Ayako, Takumi, Chie, Kanako, Mizue, Jun, Nobuya (CR52) 2018; 131 Nagappan, Rozana, Ting, Ooi, Low, Singh (CR38) 2013; 25 Zaplin, Liu, Li, Butardo, Blanchard, Rahman (CR13) 2013; 40 Masura, Tahir, Rasid, Ramli, Othman, Masani, Parveez, Kushairi (CR41) 2017; 29 Gasparis, Kala, Przyborowski, Lyznik, Orczyk, Nadolska-Orczyk (CR8) 2018; 14 Parveez, Rasid, Masani, Sambanthamurthi (CR40) 2015; 34 Parveez, Masri, Zainal, Majid, Yunus, Fadilah, Rasid, Cheah (CR44) 2000; 28 Komor, Badran, Liu (CR4) 2017; 168 Liu, Xie, Ma, Li, Chen, Liu (CR32) 2015; 8 Masani, Izawati, Rasid, Parveez (CR42) 2018; 15 Shan, Wang, Li, Gao (CR27) 2014; 9 Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (CR1) 2012; 337 Yoo, Cho, Sheen (CR21) 2007; 2 Feng, Su, Bai, Wang, Liu, Guo, Liu, Zhang, Yuan, Birchler, Han (CR10) 2018; 16 Wu, Lu, Wang, Zhang, Zhang, Qu, Wang (CR51) 2020; 21 Xing, Dong, Wang, Zhang, Han, Liu (CR33) 2014; 14 Symington, Gautier (CR3) 2011; 45 Woo, Kim, Kwon, Corvalan, Cho, Kim, Kim (CR29) 2015; 33 Kis, Hamar, Tholt, Ban, Havelda (CR9) 2019; 17 Masli, Parveez, Yunus (CR43) 2009; 21 Liao, Qin, Luo, Han, Wang, Usman, Nawaz, Zhao, Liu, Li (CR34) 2019; 9 Ma, Zhang, Zhu, Liu, Chen, Qiu, Wang (CR17) 2015; 8 Li, Zhang, Chen, Liang, Wei, Qi, Yuan (CR30) 2016; 43 Xing (10.1186/s43141-021-00185-4_bib33) 2014; 14 Xie (10.1186/s43141-021-00185-4_bib26) 2013; 6 Xie (10.1186/s43141-021-00185-4_bib15) 2015; 112 Wu (10.1186/s43141-021-00185-4_bib51) 2020; 21 Zhang (10.1186/s43141-021-00185-4_bib14) 2014; 12 Parveez (10.1186/s43141-021-00185-4_bib44) 2000; 28 Liang (10.1186/s43141-021-00185-4_bib16) 2016; 6 Liao (10.1186/s43141-021-00185-4_bib34) 2019; 9 Fauser (10.1186/s43141-021-00185-4_bib36) 2014; 79 Komor (10.1186/s43141-021-00185-4_bib4) 2017; 168 Belhaj (10.1186/s43141-021-00185-4_bib35) 2013; 9 Gibson (10.1186/s43141-021-00185-4_bib19) 2009; 6 Liu (10.1186/s43141-021-00185-4_bib32) 2015; 8 Jiang (10.1186/s43141-021-00185-4_bib48) 2017; 15 Masli (10.1186/s43141-021-00185-4_bib43) 2009; 21 Gasparis (10.1186/s43141-021-00185-4_bib8) 2018; 14 Kis (10.1186/s43141-021-00185-4_bib9) 2019; 17 Wang (10.1186/s43141-021-00185-4_bib31) 2016; 11 Morineau (10.1186/s43141-021-00185-4_bib49) 2017; 15 Woo (10.1186/s43141-021-00185-4_bib29) 2015; 33 Zaplin (10.1186/s43141-021-00185-4_bib13) 2013; 40 Li (10.1186/s43141-021-00185-4_bib30) 2016; 43 Malzahn (10.1186/s43141-021-00185-4_bib2) 2017; 7 Abe (10.1186/s43141-021-00185-4_bib12) 2018; 131 Lowder (10.1186/s43141-021-00185-4_bib28) 2015; 169 Zhang (10.1186/s43141-021-00185-4_bib20) 2011; 7 Feng (10.1186/s43141-021-00185-4_bib37) 2013; 23 Liu (10.1186/s43141-021-00185-4_bib23) 2016; 6 Masani (10.1186/s43141-021-00185-4_bib42) 2018; 15 Feng (10.1186/s43141-021-00185-4_bib10) 2018; 16 Lee (10.1186/s43141-021-00185-4_bib47) 2018; 17 Hu (10.1186/s43141-021-00185-4_bib6) 2018; 16 Tian (10.1186/s43141-021-00185-4_bib54) 2020; 20 Kalyana Babu (10.1186/s43141-021-00185-4_bib39) 2019; 9 Nagappan (10.1186/s43141-021-00185-4_bib38) 2013; 25 Wang (10.1186/s43141-021-00185-4_bib5) 2017; 10 Parveez (10.1186/s43141-021-00185-4_bib40) 2015; 34 Masura (10.1186/s43141-021-00185-4_bib41) 2017; 29 Shan (10.1186/s43141-021-00185-4_bib27) 2014; 9 Jinek (10.1186/s43141-021-00185-4_bib1) 2012; 337 Shan (10.1186/s43141-021-00185-4_bib11) 2013; 31 Wang (10.1186/s43141-021-00185-4_bib46) 2014; 32 Amin (10.1186/s43141-021-00185-4_bib50) 2019; 19 Masani (10.1186/s43141-021-00185-4_bib45) 2014; 9 Yoo (10.1186/s43141-021-00185-4_bib21) 2007; 2 Doudna (10.1186/s43141-021-00185-4_bib55) 2014; 346 Jiang (10.1186/s43141-021-00185-4_bib25) 2013; 41 Yuan (10.1186/s43141-021-00185-4_bib53) 2019; 19 Mikami (10.1186/s43141-021-00185-4_bib24) 2015; 88 Ma (10.1186/s43141-021-00185-4_bib17) 2015; 8 Zuker (10.1186/s43141-021-00185-4_bib18) 2003; 31 Symington (10.1186/s43141-021-00185-4_bib3) 2011; 45 Doyle (10.1186/s43141-021-00185-4_bib22) 1990; 12 Zhang (10.1186/s43141-021-00185-4_bib7) 2016; 7 Ayako (10.1186/s43141-021-00185-4_bib52) 2018; 131 |
References_xml | – volume: 131 start-page: 58 year: 2018 end-page: 62 ident: CR12 article-title: Production of high oleic/low linoleic rice by genome editing publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2018.04.033 – volume: 11 issue: 4 year: 2016 ident: CR31 article-title: Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922 publication-title: PLoS One doi: 10.1371/journal.pone.0154027 – volume: 12 start-page: 797 issue: 6 year: 2014 end-page: 807 ident: CR14 article-title: The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation publication-title: Plant Biotechnol J doi: 10.1111/pbi.12200 – volume: 16 start-page: 1848 issue: 11 year: 2018 end-page: 1857 ident: CR10 article-title: High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize publication-title: Plant Biotechnol J doi: 10.1111/pbi.12920 – volume: 20 start-page: 233 year: 2020 ident: CR54 article-title: Design of high-oleic tobacco L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2-2 publication-title: BMC Plant Biol doi: 10.1186/s12870-020-02441-0 – volume: 6 start-page: 19675 issue: 1 year: 2016 ident: CR23 article-title: Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system publication-title: Sci Rep doi: 10.1038/srep19675 – volume: 6 start-page: 21451 issue: 1 year: 2016 ident: CR16 article-title: Selection of highly efficient sgRNAs for CRISPR/Cas9 based plant genome editing publication-title: Sci Rep doi: 10.1038/srep21451 – volume: 25 start-page: 180 year: 2013 end-page: 187 ident: CR38 article-title: Exploiting synteny between oil palm and rice to find markers more closely linked to selected trait publication-title: J Oil Palm Res – volume: 131 start-page: 63 year: 2018 end-page: 69 ident: CR52 article-title: CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2018.04.025 – volume: 9 start-page: 2395 issue: 10 year: 2014 end-page: 2410 ident: CR27 article-title: Genome editing in rice and wheat using the CRISPR/Cas system publication-title: Nat Protoc doi: 10.1038/nprot.2014.157 – volume: 28 start-page: 969 issue: 6 year: 2000 end-page: 972 ident: CR44 article-title: Transgenic oil palm: production and projection publication-title: Biochem Soc T doi: 10.1042/bst0280969 – volume: 31 start-page: 686 issue: 8 year: 2013 end-page: 688 ident: CR11 article-title: Targeted genome modification of crop plants using a CRISPR-Cas system publication-title: Nat Biotechnol doi: 10.1038/nbt.2650 – volume: 15 start-page: 729 issue: 6 year: 2017 end-page: 739 ident: CR49 article-title: Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid publication-title: Plant Biotechnol J doi: 10.1111/pbi.12671 – volume: 79 start-page: 348 issue: 2 year: 2014 end-page: 359 ident: CR36 article-title: Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in publication-title: Plant J doi: 10.1111/tpj.12554 – volume: 23 start-page: 1229 issue: 10 year: 2013 end-page: 1232 ident: CR37 article-title: Efficient genome editing in plants using a CRISPR/Cas system publication-title: Cell Res doi: 10.1038/cr.2013.114 – volume: 45 start-page: 247 year: 2011 end-page: 271 ident: CR3 article-title: Double-strand break end resection and repair pathway choice publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-110410-132435 – volume: 337 start-page: 816 issue: 6096 year: 2012 end-page: 821 ident: CR1 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 32 start-page: 947 issue: 9 year: 2014 end-page: 951 ident: CR46 article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew publication-title: Nat Biotechnol doi: 10.1038/nbt.2969 – volume: 21 start-page: 643 year: 2009 end-page: 652 ident: CR43 article-title: Transformation of oil palm using publication-title: J Oil Palm Res – volume: 9 start-page: 39 issue: 1 year: 2013 ident: CR35 article-title: Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system publication-title: Plant Methods doi: 10.1186/1746-4811-9-39 – volume: 14 start-page: 327 issue: 1 year: 2014 ident: CR33 article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0327-y – volume: 17 start-page: 1004 issue: 6 year: 2019 end-page: 1006 ident: CR9 article-title: Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system publication-title: Plant Biotechnol J doi: 10.1111/pbi.13077 – volume: 15 start-page: 648 issue: 5 year: 2017 end-page: 657 ident: CR48 article-title: Significant enhancement of fatty acid composition in seeds of the allohexaploid, , using CRISPR/Cas9 gene editing publication-title: Plant Biotechnol J doi: 10.1111/pbi.12663 – volume: 19 start-page: 24 issue: 1 year: 2019 ident: CR53 article-title: Mutagenesis of genes in peanut with CRISPR/Cas9 based gene editing publication-title: BMC Biotechnol doi: 10.1186/s12896-019-0516-8 – volume: 6 start-page: 343 issue: 5 year: 2009 end-page: 345 ident: CR19 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat Methods doi: 10.1038/nmeth.1318 – volume: 31 start-page: 3406 issue: 13 year: 2003 end-page: 3434 ident: CR18 article-title: Mfold web server for nucleic acid folding and hybridization prediction publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg595 – volume: 41 start-page: e188 issue: 20 year: 2013 ident: CR25 article-title: Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in , tobacco, sorghum and rice publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt780 – volume: 33 start-page: 1162 issue: 11 year: 2015 end-page: 1164 ident: CR29 article-title: DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins publication-title: Nat Biotechnol doi: 10.1038/nbt.3389 – volume: 17 start-page: 362 year: 2018 end-page: 372 ident: CR47 article-title: Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize publication-title: Plant Biotechnol J doi: 10.1111/pbi.12982 – volume: 9 start-page: 728 issue: 11 year: 2019 ident: CR34 article-title: CRISPR/Cas9-induced mutagenesis of semi-rolled Leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in Rice ( L.) publication-title: Agronomy doi: 10.3390/agronomy9110728 – volume: 40 start-page: 996 issue: 10 year: 2013 end-page: 1004 ident: CR13 article-title: Production of high oleic rice grains by suppressing the expression of the gene publication-title: Funct Plant Biol doi: 10.1071/FP12301 – volume: 12 start-page: 13 year: 1990 ident: CR22 article-title: Isolation of plant DNA from fresh tissue publication-title: Focus. – volume: 8 start-page: 1431 issue: 9 year: 2015 end-page: 1433 ident: CR32 article-title: DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations publication-title: Mol Plant doi: 10.1016/j.molp.2015.05.009 – volume: 21 start-page: 1104 issue: 3 year: 2020 ident: CR51 article-title: Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid Desaturase mutants based on CRISPR/Cas9 technology publication-title: Int J Mol Sci doi: 10.3390/ijms21031104 – volume: 346 start-page: 1258096 issue: 6213 year: 2014 ident: CR55 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science doi: 10.1126/science.1258096 – volume: 7 start-page: 30 issue: 1 year: 2011 ident: CR20 article-title: A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes publication-title: Plant Methods doi: 10.1186/1746-4811-7-30 – volume: 6 start-page: 1975 issue: 6 year: 2013 end-page: 1983 ident: CR26 article-title: RNA-guided genome editing in plants using a CRISPR-Cas system publication-title: Mol Plant doi: 10.1093/mp/sst119 – volume: 169 start-page: 971 issue: 2 year: 2015 end-page: 985 ident: CR28 article-title: A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation publication-title: Plant Physiol doi: 10.1104/pp.15.00636 – volume: 9 issue: 5 year: 2014 ident: CR45 article-title: Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection publication-title: PLoS One doi: 10.1371/journal.pone.0096831 – volume: 112 start-page: 3570 issue: 11 year: 2015 end-page: 3575 ident: CR15 article-title: Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1420294112 – volume: 168 start-page: 20 issue: 1-2 year: 2017 end-page: 36 ident: CR4 article-title: CRISPR-based technologies for the manipulation of eukaryotic genomes publication-title: Cell. doi: 10.1016/j.cell.2016.10.044 – volume: 7 start-page: 12617 issue: 1 year: 2016 ident: CR7 article-title: Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA publication-title: Nat Commun doi: 10.1038/ncomms12617 – volume: 43 start-page: 415 issue: 6 year: 2016 end-page: 419 ident: CR30 article-title: Development of photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9 publication-title: J Genet Genomics doi: 10.1016/j.jgg.2016.04.011 – volume: 10 start-page: 1011 issue: 7 year: 2017 end-page: 1013 ident: CR5 article-title: Multiplex gene editing in rice using the CRISPR-Cpf1 system publication-title: Mol Plant doi: 10.1016/j.molp.2017.03.001 – volume: 2 start-page: 1565 issue: 7 year: 2007 end-page: 1572 ident: CR21 article-title: mesophyll protoplasts: a versatile cell system for transient gene expression analysis publication-title: Nat Protoc doi: 10.1038/nprot.2007.199 – volume: 14 start-page: 111 issue: 1 year: 2018 ident: CR8 article-title: A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley ( L.) publication-title: Plant Methods doi: 10.1186/s13007-018-0382-8 – volume: 9 start-page: 1899 year: 2019 ident: CR39 article-title: Development and validation of whole genome-wide and genic microsatellite markers in oil palm ( Jacq.): first microsatellite database (OpSatdb) publication-title: Sci Rep doi: 10.1038/s41598-018-37737-7 – volume: 7 start-page: 21 issue: 1 year: 2017 ident: CR2 article-title: Plant genome editing with TALEN and CRISPR publication-title: Cell Biosci doi: 10.1186/s13578-017-0148-4 – volume: 16 start-page: 292 issue: 1 year: 2018 end-page: 297 ident: CR6 article-title: Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice publication-title: Plant Biotechnol J doi: 10.1111/pbi.12771 – volume: 34 start-page: 533 issue: 4 year: 2015 end-page: 543 ident: CR40 article-title: Biotechnology of oil palm: strategies towards manipulation of lipid content and composition publication-title: Plant Cell Rep doi: 10.1007/s00299-014-1722-4 – volume: 15 start-page: 335 year: 2018 end-page: 347 ident: CR42 article-title: Biotechnology of oil palm: current status of oil palm genetic transformation publication-title: Biocatal Agric Biotechnol doi: 10.1016/j.bcab.2018.07.008 – volume: 19 start-page: 9 issue: 1 year: 2019 ident: CR50 article-title: CRISPR-Cas9 mediated targeted disruption of FAD2–2 microsomal omega-6 desaturase in soybean ( .L) publication-title: BMC Biotechnol doi: 10.1186/s12896-019-0501-2 – volume: 29 start-page: 469 issue: 4 year: 2017 end-page: 486 ident: CR41 article-title: Post-genomic technologies for the advancement of oil palm research publication-title: J Oil Palm Res doi: 10.21894/jopr.2017.00013 – volume: 88 start-page: 561 issue: 6 year: 2015 end-page: 572 ident: CR24 article-title: Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice publication-title: Plant Mol Biol doi: 10.1007/s11103-015-0342-x – volume: 8 start-page: 1274 issue: 8 year: 2015 end-page: 1284 ident: CR17 article-title: A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants publication-title: Mol Plant doi: 10.1016/j.molp.2015.04.007 – volume: 21 start-page: 643 year: 2009 ident: 10.1186/s43141-021-00185-4_bib43 article-title: Transformation of oil palm using Agrobacterium tumefaciens publication-title: J Oil Palm Res – volume: 34 start-page: 533 issue: 4 year: 2015 ident: 10.1186/s43141-021-00185-4_bib40 article-title: Biotechnology of oil palm: strategies towards manipulation of lipid content and composition publication-title: Plant Cell Rep doi: 10.1007/s00299-014-1722-4 – volume: 41 start-page: e188 issue: 20 year: 2013 ident: 10.1186/s43141-021-00185-4_bib25 article-title: Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt780 – volume: 337 start-page: 816 issue: 6096 year: 2012 ident: 10.1186/s43141-021-00185-4_bib1 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 12 start-page: 13 year: 1990 ident: 10.1186/s43141-021-00185-4_bib22 article-title: Isolation of plant DNA from fresh tissue publication-title: Focus. – volume: 9 issue: 5 year: 2014 ident: 10.1186/s43141-021-00185-4_bib45 article-title: Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection publication-title: PLoS One doi: 10.1371/journal.pone.0096831 – volume: 7 start-page: 21 issue: 1 year: 2017 ident: 10.1186/s43141-021-00185-4_bib2 article-title: Plant genome editing with TALEN and CRISPR publication-title: Cell Biosci doi: 10.1186/s13578-017-0148-4 – volume: 15 start-page: 648 issue: 5 year: 2017 ident: 10.1186/s43141-021-00185-4_bib48 article-title: Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing publication-title: Plant Biotechnol J doi: 10.1111/pbi.12663 – volume: 45 start-page: 247 year: 2011 ident: 10.1186/s43141-021-00185-4_bib3 article-title: Double-strand break end resection and repair pathway choice publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-110410-132435 – volume: 6 start-page: 21451 issue: 1 year: 2016 ident: 10.1186/s43141-021-00185-4_bib16 article-title: Selection of highly efficient sgRNAs for CRISPR/Cas9 based plant genome editing publication-title: Sci Rep doi: 10.1038/srep21451 – volume: 17 start-page: 1004 issue: 6 year: 2019 ident: 10.1186/s43141-021-00185-4_bib9 article-title: Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system publication-title: Plant Biotechnol J doi: 10.1111/pbi.13077 – volume: 9 start-page: 1899 year: 2019 ident: 10.1186/s43141-021-00185-4_bib39 article-title: Development and validation of whole genome-wide and genic microsatellite markers in oil palm (Elaeis guineensis Jacq.): first microsatellite database (OpSatdb) publication-title: Sci Rep doi: 10.1038/s41598-018-37737-7 – volume: 20 start-page: 233 year: 2020 ident: 10.1186/s43141-021-00185-4_bib54 article-title: Design of high-oleic tobacco (Nicotiana tabacum L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2-2 publication-title: BMC Plant Biol doi: 10.1186/s12870-020-02441-0 – volume: 25 start-page: 180 year: 2013 ident: 10.1186/s43141-021-00185-4_bib38 article-title: Exploiting synteny between oil palm and rice to find markers more closely linked to selected trait publication-title: J Oil Palm Res – volume: 6 start-page: 1975 issue: 6 year: 2013 ident: 10.1186/s43141-021-00185-4_bib26 article-title: RNA-guided genome editing in plants using a CRISPR-Cas system publication-title: Mol Plant doi: 10.1093/mp/sst119 – volume: 14 start-page: 111 issue: 1 year: 2018 ident: 10.1186/s43141-021-00185-4_bib8 article-title: A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.) publication-title: Plant Methods doi: 10.1186/s13007-018-0382-8 – volume: 12 start-page: 797 issue: 6 year: 2014 ident: 10.1186/s43141-021-00185-4_bib14 article-title: The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation publication-title: Plant Biotechnol J doi: 10.1111/pbi.12200 – volume: 168 start-page: 20 issue: 1-2 year: 2017 ident: 10.1186/s43141-021-00185-4_bib4 article-title: CRISPR-based technologies for the manipulation of eukaryotic genomes publication-title: Cell. doi: 10.1016/j.cell.2016.10.044 – volume: 88 start-page: 561 issue: 6 year: 2015 ident: 10.1186/s43141-021-00185-4_bib24 article-title: Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice publication-title: Plant Mol Biol doi: 10.1007/s11103-015-0342-x – volume: 19 start-page: 9 issue: 1 year: 2019 ident: 10.1186/s43141-021-00185-4_bib50 article-title: CRISPR-Cas9 mediated targeted disruption of FAD2–2 microsomal omega-6 desaturase in soybean (Glycine max.L) publication-title: BMC Biotechnol doi: 10.1186/s12896-019-0501-2 – volume: 21 start-page: 1104 issue: 3 year: 2020 ident: 10.1186/s43141-021-00185-4_bib51 article-title: Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid Desaturase mutants based on CRISPR/Cas9 technology publication-title: Int J Mol Sci doi: 10.3390/ijms21031104 – volume: 15 start-page: 335 year: 2018 ident: 10.1186/s43141-021-00185-4_bib42 article-title: Biotechnology of oil palm: current status of oil palm genetic transformation publication-title: Biocatal Agric Biotechnol doi: 10.1016/j.bcab.2018.07.008 – volume: 9 start-page: 2395 issue: 10 year: 2014 ident: 10.1186/s43141-021-00185-4_bib27 article-title: Genome editing in rice and wheat using the CRISPR/Cas system publication-title: Nat Protoc doi: 10.1038/nprot.2014.157 – volume: 33 start-page: 1162 issue: 11 year: 2015 ident: 10.1186/s43141-021-00185-4_bib29 article-title: DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins publication-title: Nat Biotechnol doi: 10.1038/nbt.3389 – volume: 10 start-page: 1011 issue: 7 year: 2017 ident: 10.1186/s43141-021-00185-4_bib5 article-title: Multiplex gene editing in rice using the CRISPR-Cpf1 system publication-title: Mol Plant doi: 10.1016/j.molp.2017.03.001 – volume: 16 start-page: 1848 issue: 11 year: 2018 ident: 10.1186/s43141-021-00185-4_bib10 article-title: High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize publication-title: Plant Biotechnol J doi: 10.1111/pbi.12920 – volume: 43 start-page: 415 issue: 6 year: 2016 ident: 10.1186/s43141-021-00185-4_bib30 article-title: Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9 publication-title: J Genet Genomics doi: 10.1016/j.jgg.2016.04.011 – volume: 6 start-page: 19675 issue: 1 year: 2016 ident: 10.1186/s43141-021-00185-4_bib23 article-title: Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system publication-title: Sci Rep doi: 10.1038/srep19675 – volume: 23 start-page: 1229 issue: 10 year: 2013 ident: 10.1186/s43141-021-00185-4_bib37 article-title: Efficient genome editing in plants using a CRISPR/Cas system publication-title: Cell Res doi: 10.1038/cr.2013.114 – volume: 31 start-page: 686 issue: 8 year: 2013 ident: 10.1186/s43141-021-00185-4_bib11 article-title: Targeted genome modification of crop plants using a CRISPR-Cas system publication-title: Nat Biotechnol doi: 10.1038/nbt.2650 – volume: 17 start-page: 362 year: 2018 ident: 10.1186/s43141-021-00185-4_bib47 article-title: Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize publication-title: Plant Biotechnol J doi: 10.1111/pbi.12982 – volume: 9 start-page: 39 issue: 1 year: 2013 ident: 10.1186/s43141-021-00185-4_bib35 article-title: Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system publication-title: Plant Methods doi: 10.1186/1746-4811-9-39 – volume: 28 start-page: 969 issue: 6 year: 2000 ident: 10.1186/s43141-021-00185-4_bib44 article-title: Transgenic oil palm: production and projection publication-title: Biochem Soc T doi: 10.1042/bst0280969 – volume: 131 start-page: 63 year: 2018 ident: 10.1186/s43141-021-00185-4_bib52 article-title: CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2018.04.025 – volume: 14 start-page: 327 issue: 1 year: 2014 ident: 10.1186/s43141-021-00185-4_bib33 article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0327-y – volume: 79 start-page: 348 issue: 2 year: 2014 ident: 10.1186/s43141-021-00185-4_bib36 article-title: Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/tpj.12554 – volume: 7 start-page: 30 issue: 1 year: 2011 ident: 10.1186/s43141-021-00185-4_bib20 article-title: A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes publication-title: Plant Methods doi: 10.1186/1746-4811-7-30 – volume: 112 start-page: 3570 issue: 11 year: 2015 ident: 10.1186/s43141-021-00185-4_bib15 article-title: Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1420294112 – volume: 9 start-page: 728 issue: 11 year: 2019 ident: 10.1186/s43141-021-00185-4_bib34 article-title: CRISPR/Cas9-induced mutagenesis of semi-rolled Leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in Rice (Oryza sativa L.) publication-title: Agronomy doi: 10.3390/agronomy9110728 – volume: 29 start-page: 469 issue: 4 year: 2017 ident: 10.1186/s43141-021-00185-4_bib41 article-title: Post-genomic technologies for the advancement of oil palm research publication-title: J Oil Palm Res doi: 10.21894/jopr.2017.00013 – volume: 131 start-page: 58 year: 2018 ident: 10.1186/s43141-021-00185-4_bib12 article-title: Production of high oleic/low linoleic rice by genome editing publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2018.04.033 – volume: 11 issue: 4 year: 2016 ident: 10.1186/s43141-021-00185-4_bib31 article-title: Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922 publication-title: PLoS One doi: 10.1371/journal.pone.0154027 – volume: 40 start-page: 996 issue: 10 year: 2013 ident: 10.1186/s43141-021-00185-4_bib13 article-title: Production of high oleic rice grains by suppressing the expression of the OsFAD2-1 gene publication-title: Funct Plant Biol doi: 10.1071/FP12301 – volume: 7 start-page: 12617 issue: 1 year: 2016 ident: 10.1186/s43141-021-00185-4_bib7 article-title: Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA publication-title: Nat Commun doi: 10.1038/ncomms12617 – volume: 15 start-page: 729 issue: 6 year: 2017 ident: 10.1186/s43141-021-00185-4_bib49 article-title: Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa publication-title: Plant Biotechnol J doi: 10.1111/pbi.12671 – volume: 346 issue: 6213 year: 2014 ident: 10.1186/s43141-021-00185-4_bib55 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science doi: 10.1126/science.1258096 – volume: 32 start-page: 947 issue: 9 year: 2014 ident: 10.1186/s43141-021-00185-4_bib46 article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew publication-title: Nat Biotechnol doi: 10.1038/nbt.2969 – volume: 6 start-page: 343 issue: 5 year: 2009 ident: 10.1186/s43141-021-00185-4_bib19 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat Methods doi: 10.1038/nmeth.1318 – volume: 169 start-page: 971 issue: 2 year: 2015 ident: 10.1186/s43141-021-00185-4_bib28 article-title: A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation publication-title: Plant Physiol doi: 10.1104/pp.15.00636 – volume: 8 start-page: 1274 issue: 8 year: 2015 ident: 10.1186/s43141-021-00185-4_bib17 article-title: A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants publication-title: Mol Plant doi: 10.1016/j.molp.2015.04.007 – volume: 31 start-page: 3406 issue: 13 year: 2003 ident: 10.1186/s43141-021-00185-4_bib18 article-title: Mfold web server for nucleic acid folding and hybridization prediction publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg595 – volume: 16 start-page: 292 issue: 1 year: 2018 ident: 10.1186/s43141-021-00185-4_bib6 article-title: Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice publication-title: Plant Biotechnol J doi: 10.1111/pbi.12771 – volume: 2 start-page: 1565 issue: 7 year: 2007 ident: 10.1186/s43141-021-00185-4_bib21 article-title: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis publication-title: Nat Protoc doi: 10.1038/nprot.2007.199 – volume: 19 start-page: 24 issue: 1 year: 2019 ident: 10.1186/s43141-021-00185-4_bib53 article-title: Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing publication-title: BMC Biotechnol doi: 10.1186/s12896-019-0516-8 – volume: 8 start-page: 1431 issue: 9 year: 2015 ident: 10.1186/s43141-021-00185-4_bib32 article-title: DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations publication-title: Mol Plant doi: 10.1016/j.molp.2015.05.009 |
SSID | ssj0000548151 |
Score | 2.3341515 |
Snippet | Background
Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop... Background Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop... BackgroundGenome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop... Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement.... Abstract Background Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and... |
SourceID | doaj pubmedcentral proquest gale crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 86 |
SubjectTerms | biolistics Biomedical Engineering and Bioengineering biotechnology callus CRISPR CRISPR-Cas systems Crop improvement Deoxyribonucleic acid DNA DNA sequencing Editing Efficiency Elaeis guineensis Engineering FAD2 FAD2 gene Fatty acids Gene sequencing Genes genetic engineering Genetic modification Genetic transformation Genetically altered foods Genetically modified organisms Genome editing Genomes Genomics High oleic acid Laboratories leaves loci Model monocot Multiplex CRISPR/Cas9 Multiplexing Mutagenesis Mutation nucleotide sequences Nucleotide sequencing Oryza sativa Plant genetics protoplasts Rice RNA polymerase Seeds Transfection |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCIkXNL5E2EBGQuIBrMaJE9u8oFIoA2kIDSb1zbIde1TqktJ0Evz3nB23Uzexhzwkzofju_P9zh-_Q-iV9EWlfQ6GVFtNWCMdMYJporm0RueG28jTffytPjplX2fVLA249WlZ5aZPjB1109kwRj4qAAVWJbjL4v3yNwlZo8LsakqhcRvdoeBpgp6L6eftGAvAEUFjBkZagy3Ris82-2ZEPerBdzKIpQs4cnBbhO34pkjhf72jvr548soManRM0310PyFKPB5U4AG65dqH6O6QY_LvI7Q6TksG_-DJyZcf309GE91LEneMANrEgaT13GE4DQugcecxQEI8HX8sQpHD8xYH3qF3WOOYNefqAwMVNAbsi7v5Ai_14vwxOp1--jk5IinRArGVkGvieMM0tIkNrISVDFnJeBECr7qyNje0CZmqpObWlYI7z7iwzDYyNzL3pjBl-QTttV3rniJstWg48yW82DAjteaaem5E6akHpRUZopsmVjaxkIdkGAsVoxFRq0EsCsSiolgUy9Cb7TPLgYPjxrs_BMlt7wz82fFCtzpTyRyVrHLPHIS7FgAj1VYwQJLG6CYXsoEoLUOvg9xVsHKontVpswL8ZODLUuOagzYKwE8ZOtyohkrm36tLZc3Qy20xGG6YjdGt6y56VYKvgfAUEHCG-I5K7VR9t6Sd_4oU4IDjagBuGXq7Ub7Lj_-_aZ7dXNcDdK-I1lATSg_R3np14Z4D5FqbF9Gu_gG2GiV- priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-0vuiD-ImrVSIIPmjofmTz4dt5elShItVC38Ikm-DBda_0rtA_v5Pc3tlrVfBhH3aT7GYzM5nfkOQ3AG9MrFuMJRmS9MhFZwJ3WiBHZbzD0imfeboPvsn9I_H1uD0eaHLSWZir6_eVlnsLcnCCAt6arpJ8Cxe34U5bNTIvzMrx-hzMH6tu-ZpMyX9z4r25GfLaimh2NJMHcH9AiGy0EulDuBX6R3DvCm_gYzg7GLYBXrDx4Zcf3w_3xrgwPJ8CIQTJEvHqSWB0mzY1s3lkBPPYZPSpTkWBTXuWuIQ-MGQ5E871Bit6Z0Z4ls2nM3aKs5MncDT5_HO8z4fkCdy32ix5UJ1AGhefmAZbkzKNqToFU7L1vnRVl7JPGVQ-NFqFKJT2wnemdKaMrnZN8xR2-nkfngHzqDslYkMvdsIZRIVVVE43sYqkiLqAaj3M1g_M4inBxczmCENLuxKNJdHYLBorCni3aXO64tX4Z-2PSXqbmokTOz8gVbGDiVnTllEECmE9gcAKvRaEDp3DrtSmo8irgLdJ9jZZLnXP43AAgX4ycWDZkVSGpn_CRAXsrtXDDia9sDWFIW1DeI2KX2-KyRjTCgv2YX6-sA35Dwo5CdUWoLbUaqvr2yX99Fem9SZsJgmMFfB-rYC_P_73oXn-f9VfwN06W4jkVbULO8uz8_CSYNXSvcr2dAmzwxp1 priority: 102 providerName: Springer Nature |
Title | Multiplex CRISPR/Cas9-mediated genome editing of the FAD2 gene in rice: a model genome editing system for oil palm |
URI | https://link.springer.com/article/10.1186/s43141-021-00185-4 https://www.proquest.com/docview/2729535842 https://www.proquest.com/docview/3153149835 https://pubmed.ncbi.nlm.nih.gov/PMC8196110 https://doaj.org/article/950f4e210c5141ac84545bbad089d217 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CceGCQIAIjMpISBwgqpM4_uDWhZWBtGkqTNrNsh1bq9Sl09pJ_Pk8O2mhm4ALhxwS58N5H36_J9u_B_BWhbI2gaIjcWdy1iqfW8lMboRy1lArXOLpPj7hR2fs63l9_lupr7gmrKcH7gU3VjUNzGNi4jC0F8ZJhjHfWtNSqVrE03H0pYr2ydRmV4zk4xVGRoaZcokHxaCUs53Ikwj67w7Dd5dG3pofTWFn-hgeDXiRTPp-PoF7vnsK18fDMsAfpJl9-XY6GzdmpfK0CwQRJInEq5ee4Glc1EyWgSDMI9PJpzI2eTLvSOQS-kgMSZVwbj_Q0zsTxLNkOV-QK7O4fAZn08PvzVE-FE_IXS3VOveiZQYl4SLTYK1ipTFRxmSK185RW7Sx-pQywvlKCh-YkI65VlGraLClrarnsNctO_8CiDOyFSxU-GLLrDJGmCIIK6tQBDREmUGxEax2A7N4LHCx0CnDkFz3ytCoDJ2UoVkG77fPXPW8Gn-9-yDqa3tn5MROF9BS9GAp-l-WksG7qG0dPRe758ywAQF_MnJg6QkXCod_xEQZ7G8MQg8uvdIlpiF1hXgNm99sm9EZ4wyL6fzyZqUrjB-YciKqzUDsGNJO13dbuvlFovVGbMYRjGXwYWNyvz7-Z9G8_B-ieQUPy-QpPC-KfdhbX9_41wi21nYE9-X08wgeHByenM7wrOHNKPnaT4-oKEE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgheEFcRNsBIIB4gai5ObCMh1HWrWrZWU9mkvhnbcVilLiltJ9if4jdy7CSduom97aEPrZPWzbl9x_b5DkLveB4lMg_AkFItfZJx4ytGpC8p10oGimrH0z0cpf1T8m2STLbQ36YWxh6rbHyic9RZqe0aeTsCFJjEEC6jr_Nfvu0aZXdXmxYalVocmsvfkLItvwz2Qb7vo6h3cNLt-3VXAV8njK98QzMiAVZrS8GXcNuCi0Y2y0gTrQMVZrYtE5dUm5hRkxPKNNEZDxQPchUpuwAKLn-b2IrWFtreOxgdj9erOgCAWOh6PoYpWG-Y0ElTqcPS9hKiNYHsPYJXAIHSJxvR0DUNuBkabh7XvLZn60Jh7xF6WGNY3KmU7jHaMsUTdK_qann5FC2G9SHFP7g7Hnw_Hre7csl9V6MC-BZbWthzg-GtPXKNyxwDCMW9zn5khwyeFtgyHX3GErs-PddvqMinMaBtXE5neC5n58_Q6Z0I4TlqFWVhXiCsJcsoyWP4YkUUl5LKMKeKxXmYg5kwD4XNIxa65j237TdmwuU_LBWVWASIRTixCOKhj-t75hXrx61X71nJra-0jN3ug3LxU9QOQPAkyImBBFsDRA2lZgSwq1IyCxjPIC_00Acrd2H9CkxPy7o8Av6kZegSnZSC_jNAbB7abVRD1A5nKa7Mw0Nv18PgKuz-jyxMebEUMUQ3SIgBc3uIbqjUxtQ3R4rpmSMdB-SYAlT00KdG-a5-_P-P5uXtc32D7vdPhkfiaDA63EEPImcZqR-Gu6i1WlyYVwD4Vup1bWUY_bhrw_4H5VxiMw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIRAviKsIG2AkEA8QNRcntpEQKi1lZWyaBpP6ZmzHZpW6pDSdYH-NX8exk3TqJva2hz60Tlo35_Yd-_g7CL3kNsmkjcCQci1DUnATKkZkKCnXSkaKas_Tvbef7xyRL5NssoH-dmdhXFll5xO9oy4q7dbIewmgwCyFcJn0bFsWcTAcfZj_Cl0HKbfT2rXTaFRk15z9hvStfj8egqxfJcno0_fBTth2GAh1xvgyNLQgEiC2dnR8GXftuGjiMo480zpSceFaNHFJtUkZNZZQpokueKR4ZFWi3GIouP8bNKXcJX5s9Hm1vgNQiMW--2Ocgx3HGZ10Z3ZY3qshbhPI4xN4RRAyQ7IWF337gMtB4nLh5oXdWx8UR3fRnRbN4n6jfvfQhinvo5tNf8uzB2ix15Yr_sGDw_G3g8PeQNY89KdVAOliRxB7YjC8dcXXuLIY4Cge9YeJGzJ4WmLHefQOS-w79ly8oaGhxoC7cTWd4bmcnTxER9cigkdos6xK8xhhLVlBiU3hixVRXEoqY0sVS21swWBYgOLuEQvdMqC7Rhwz4TMhlotGLALEIrxYBAnQm9U984b_48qrPzrJra503N3-g2rxU7SuQPAsssRAqq0BrMZSMwIoVilZRIwXkCEG6LWTu3AeBqanZXtQAv6k4-oS_ZyCJTDAbgHa7lRDtK6nFueGEqAXq2FwGm4nSJamOq1FCnEOUmNA3wGiayq1NvX1kXJ67OnHAUPmABoD9LZTvvMf__-jeXL1XJ-jW2DO4ut4f3cL3U68YeRhHG-jzeXi1DwF5LdUz7yJYfTjum36H7teZQM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplex+CRISPR%2FCas9-mediated+genome+editing+of+the+FAD2+gene+in+rice%3A+a+model+genome+editing+system+for+oil+palm&rft.jtitle=Journal+of+Genetic+Engineering+and+Biotechnology&rft.au=Bohari+Bahariah&rft.au=Mat+Yunus+Abdul+Masani&rft.au=Omar+Abd+Rasid&rft.au=Ghulam+Kadir+Ahmad+Parveez&rft.date=2021-06-11&rft.pub=Elsevier&rft.eissn=2090-5920&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs43141-021-00185-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_950f4e210c5141ac84545bbad089d217 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-157X&client=summon |