Stability-activity tradeoffs constrain the adaptive evolution of RubisCO

A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO ₂ during photosynthesis. Although the majority of plants use the ancestral C ₃ photosynthetic pathway, many flowering plants have evolved a derived pathw...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 6; pp. 2223 - 2228
Main Authors Studer, Romain A., Christin, Pascal-Antoine, Williams, Mark A., Orengo, Christine A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 11.02.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO ₂ during photosynthesis. Although the majority of plants use the ancestral C ₃ photosynthetic pathway, many flowering plants have evolved a derived pathway named C ₄ photosynthesis. The latter concentrates CO ₂, and C ₄ RubisCOs consequently have lower specificity for, and faster turnover of, CO ₂. The C ₄ forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C ₃ and C ₄ species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C ₄ properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C ₃ to C ₄ transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.
AbstractList A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.
A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO ₂ during photosynthesis. Although the majority of plants use the ancestral C ₃ photosynthetic pathway, many flowering plants have evolved a derived pathway named C ₄ photosynthesis. The latter concentrates CO ₂, and C ₄ RubisCOs consequently have lower specificity for, and faster turnover of, CO ₂. The C ₄ forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C ₃ and C ₄ species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C ₄ properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C ₃ to C ₄ transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.
A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.
A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of ... during photosynthesis. Although the majority of plants use the ancestral ... photosynthetic pathway, many flowering plants have evolved a derived pathway named ... photosynthesis. The latter concentrates ..., and ... RubisCOs consequently have lower specificity for, and faster turnover of, ... The ... forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related ... and ... species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The ... properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The ... to ... transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability. (ProQuest: ... denotes formulae/symbols omitted.)
How enzymes acquire new functions is a key question in evolutionary biology. Here, we studied the evolution of some forms of ribulose-1,5-bisphosphate carboxylase, the enzyme responsible for CO 2 fixation in photosynthesis, which has evolved enhanced activity in multiple groups of plants. We showed that the evolution of this enzyme was constrained by tradeoffs between activity and stability, two key properties of enzymes. The acquisition of enhanced activity was mediated by mutations destabilizing the structure. However, these were preceded and followed by periods in which stabilizing mutations were predominant, so that global stability was always maintained. This work shows that the natural evolution of enzymes is subject to strong biophysical constraints, and evolution follows perilous paths toward adaptation. A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO 2 during photosynthesis. Although the majority of plants use the ancestral C 3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C 4 photosynthesis. The latter concentrates CO 2 , and C 4 RubisCOs consequently have lower specificity for, and faster turnover of, CO 2 . The C 4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C 3 and C 4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C 4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C 3 to C 4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.
Author Christin, Pascal-Antoine
Studer, Romain A.
Williams, Mark A.
Orengo, Christine A.
Author_xml – sequence: 1
  givenname: Romain A.
  surname: Studer
  fullname: Studer, Romain A.
– sequence: 2
  givenname: Pascal-Antoine
  surname: Christin
  fullname: Christin, Pascal-Antoine
– sequence: 3
  givenname: Mark A.
  surname: Williams
  fullname: Williams, Mark A.
– sequence: 4
  givenname: Christine A.
  surname: Orengo
  fullname: Orengo, Christine A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24469821$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS3Uim4LZ05AJC5c0s7YjmNfkNAKKFKlSpSeLSdxWq-y9hI7K_Xf47DtFnoovtjW-2bm2e-YHPjgLSFvEE4Rana28SaeIkOQOK8XZIGgsBRcwQFZANC6lJzyI3Ic4woAVCXhJTminAslKS7I-VUyjRtcuitNm9w2H4o0ms6Gvo9FG3zMN-eLdGsL05lNRmxht2GYkgu-CH3xY2pcXF6-Ioe9GaJ9fb-fkOuvX34uz8uLy2_fl58vyraSKpVdx1vTNbWlWAGv66bDBjvW8LbqZdUbRm0ruTUcFRMcKKuVZFYo2ishpajYCfm067uZmrXtWuuzwUFvRrc2450Oxul_Fe9u9U3YaqaoACFyg4_3Dcbwa7Ix6bWLrR0G422YokYJDBTnCv-PcqWQU1mrjH54gq7CNPr8E38oqER-babe_W1-7_ohjwyc7YB2DDGOtt8jCHpOXM-J68fEc0X1pKJ1yczhzMENz9Q9WJmF_RRELTSllGXg7Q5YxRTGR6uszkFwnvX3O703QZub0UV9fUUBBQBywIqy3yGgy_w
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_156606
crossref_primary_10_1093_molbev_msaa143
crossref_primary_10_1016_j_pecs_2024_101184
crossref_primary_10_1093_molbev_msab079
crossref_primary_10_1093_molbev_msac047
crossref_primary_10_1021_acs_biochem_8b00132
crossref_primary_10_1080_07391102_2023_2293258
crossref_primary_10_1098_rsob_140121
crossref_primary_10_3390_ijms25105143
crossref_primary_10_1093_molbev_msy114
crossref_primary_10_1371_journal_pcbi_1008742
crossref_primary_10_1002_aic_16814
crossref_primary_10_3389_fpls_2018_00448
crossref_primary_10_3390_ijpb15030055
crossref_primary_10_15252_embj_2019104081
crossref_primary_10_3762_bjoc_11_259
crossref_primary_10_1073_pnas_1816707116
crossref_primary_10_1093_molbev_msae056
crossref_primary_10_1158_0008_5472_CAN_14_3812
crossref_primary_10_1111_jse_13039
crossref_primary_10_1021_acs_chemrev_8b00290
crossref_primary_10_1111_febs_13774
crossref_primary_10_3389_fendo_2021_698511
crossref_primary_10_1111_cge_14002
crossref_primary_10_1016_j_biochi_2015_08_004
crossref_primary_10_1080_14789450_2021_1992277
crossref_primary_10_1146_annurev_biophys_030722_125440
crossref_primary_10_1371_journal_pone_0241679
crossref_primary_10_1007_s11120_019_00619_8
crossref_primary_10_1371_journal_pone_0263887
crossref_primary_10_1080_07391102_2022_2076154
crossref_primary_10_3389_fpls_2021_662425
crossref_primary_10_1016_j_micpath_2023_106460
crossref_primary_10_1371_journal_pgen_1010030
crossref_primary_10_1007_s11011_017_0058_5
crossref_primary_10_1186_s43170_022_00117_3
crossref_primary_10_1093_ve_vex019
crossref_primary_10_1111_pce_12629
crossref_primary_10_1016_j_bpj_2015_04_020
crossref_primary_10_1016_j_ymgme_2018_05_006
crossref_primary_10_1038_s41396_021_00971_5
crossref_primary_10_1002_bies_201700174
crossref_primary_10_1002_jcc_25343
crossref_primary_10_1093_genetics_iyac154
crossref_primary_10_1186_s12862_019_1521_1
crossref_primary_10_1016_j_bbamcr_2021_118949
crossref_primary_10_1039_D1GC00763G
crossref_primary_10_1111_pbi_12246
crossref_primary_10_1016_j_foodcont_2022_109236
crossref_primary_10_1002_jmv_26626
crossref_primary_10_3389_fpls_2018_00183
crossref_primary_10_1074_jbc_RA118_003792
crossref_primary_10_1186_s13068_017_0861_6
crossref_primary_10_1016_j_ijbiomac_2020_08_163
crossref_primary_10_1016_j_biotechadv_2021_107885
crossref_primary_10_1080_0047231X_2019_12290477
crossref_primary_10_3390_agriculture5041116
crossref_primary_10_1016_j_sbi_2016_10_013
crossref_primary_10_1021_acscatal_4c07922
crossref_primary_10_1021_acscentsci_7b00269
crossref_primary_10_1007_s11120_014_0056_y
crossref_primary_10_1039_D0GC01796E
crossref_primary_10_1111_tpj_15196
crossref_primary_10_1111_ele_14523
crossref_primary_10_1038_s41477_020_00762_4
crossref_primary_10_1111_pce_13149
crossref_primary_10_1016_j_jmb_2018_10_005
crossref_primary_10_1021_jacsau_3c00696
crossref_primary_10_4014_jmb_2209_09018
crossref_primary_10_1016_j_celrep_2022_110726
crossref_primary_10_1016_j_isci_2022_105774
crossref_primary_10_1016_j_bcp_2023_115932
crossref_primary_10_3389_fpls_2019_01426
crossref_primary_10_1093_jxb_erac368
crossref_primary_10_1093_molbev_msab146
crossref_primary_10_1038_s41467_024_48513_9
crossref_primary_10_1073_pnas_2321050121
crossref_primary_10_3389_fgene_2022_962449
crossref_primary_10_7717_peerj_12791
crossref_primary_10_1007_s11120_015_0085_1
crossref_primary_10_1371_journal_pcbi_1004207
crossref_primary_10_3389_fmolb_2018_00024
crossref_primary_10_29244_jpsl_12_1_112_122
crossref_primary_10_1021_acs_biochem_6b00678
crossref_primary_10_1371_journal_pone_0256640
crossref_primary_10_1016_j_sbi_2017_08_003
crossref_primary_10_1002_chem_201903994
crossref_primary_10_1098_rsta_2016_0352
crossref_primary_10_1146_annurev_virology_091919_092003
crossref_primary_10_1016_j_jplph_2023_154021
crossref_primary_10_1007_s00239_021_09998_w
crossref_primary_10_1007_s11105_025_01547_9
crossref_primary_10_1111_ppl_70085
crossref_primary_10_3390_ijms25179231
crossref_primary_10_1111_gbi_12243
crossref_primary_10_1039_C8SE00281A
crossref_primary_10_1371_journal_pone_0192697
crossref_primary_10_1016_j_sbi_2016_05_016
crossref_primary_10_3389_fgene_2022_954015
crossref_primary_10_1016_j_jmb_2016_07_003
crossref_primary_10_1093_ve_veae049
crossref_primary_10_1111_tpj_14643
crossref_primary_10_1080_07391102_2020_1784792
crossref_primary_10_1093_jxb_erz363
crossref_primary_10_1016_j_gde_2015_09_005
crossref_primary_10_1016_j_copbio_2017_07_017
crossref_primary_10_1021_acs_jpcb_8b05926
crossref_primary_10_1007_s00425_017_2781_x
crossref_primary_10_1016_j_molp_2024_10_013
crossref_primary_10_1016_j_procbio_2022_07_013
crossref_primary_10_1042_BCJ20180249
crossref_primary_10_1007_s00239_015_9697_5
crossref_primary_10_1021_acs_biochem_9b00731
crossref_primary_10_1021_acs_jcim_2c01083
crossref_primary_10_1093_protein_gzu054
crossref_primary_10_1016_j_enzmictec_2020_109549
crossref_primary_10_7554_eLife_61803
crossref_primary_10_1186_s12864_015_1498_0
crossref_primary_10_1111_ppl_12616
crossref_primary_10_1038_s41598_018_28752_9
crossref_primary_10_1126_sciadv_abm6871
crossref_primary_10_1016_j_bidere_2025_100005
Cites_doi 10.1016/j.tree.2010.04.007
10.1016/S0022-2836(02)00599-5
10.1038/243359a0
10.1146/annurev-arplant-042811-105511
10.1093/molbev/msn178
10.1371/journal.pcbi.1000002
10.1073/pnas.0510098103
10.1016/S0021-9258(17)39320-1
10.1371/journal.pcbi.1000564
10.1111/j.1469-8137.2011.03972.x
10.1093/molbev/msm088
10.1073/pnas.0901522106
10.1186/1471-2105-8-141
10.1038/nrg2808
10.1073/pnas.1109503108
10.1006/jmbi.1993.1626
10.1104/pp.93.1.244
10.1016/j.jmb.2007.05.022
10.1186/1471-2148-7-73
10.1016/S0022-2836(02)00400-X
10.1073/pnas.0600605103
10.1186/1471-2148-11-266
10.1038/nrm2805
10.1093/nar/gki387
10.1093/jexbot/53.369.609
10.1016/j.sbi.2009.08.003
10.1093/jxb/err048
10.1016/j.jmb.2011.06.052
10.1016/S0021-9258(19)40121-X
10.1016/j.jmb.2012.05.014
10.1073/pnas.0911663107
10.1002/prot.10016
10.1098/rstb.2011.0145
10.1093/molbev/msq335
10.1093/jxb/erg141
10.1016/j.plaphy.2008.01.001
10.1016/j.jmb.2009.11.005
10.1038/nrg1672
10.1073/pnas.0508042102
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Feb 11, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Feb 11, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1310811111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts

CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Structural constraints on the evolution of RubisCO
EISSN 1091-6490
EndPage 2228
ExternalDocumentID PMC3926066
3221558781
24469821
10_1073_pnas_1310811111
111_6_2223
23768844
US201600140152
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c589t-dd4cadb7e2150477bd1b1d3b4c5f85fa32ec84ea4193640237983e692f9688653
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:26:03 EDT 2025
Fri Jul 11 07:56:19 EDT 2025
Thu Jul 10 23:18:55 EDT 2025
Mon Jun 30 08:24:19 EDT 2025
Thu Apr 03 07:04:41 EDT 2025
Tue Jul 01 01:52:59 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Wed Nov 11 00:30:30 EST 2020
Thu May 29 08:40:43 EDT 2025
Wed Dec 27 19:19:29 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c589t-dd4cadb7e2150477bd1b1d3b4c5f85fa32ec84ea4193640237983e692f9688653
Notes http://dx.doi.org/10.1073/pnas.1310811111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: R.A.S., P.-A.C., M.A.W., and C.A.O. designed research; R.A.S. performed research; R.A.S., P.-A.C., M.A.W., and C.A.O. analyzed data; and R.A.S., P.-A.C., M.A.W., and C.A.O. wrote the paper.
Edited by George H. Lorimer, University of Maryland, College Park, MD, and approved January 2, 2014 (received for review June 6, 2013)
OpenAccessLink https://www.pnas.org/content/pnas/111/6/2223.full.pdf
PMID 24469821
PQID 1499056047
PQPubID 42026
PageCount 6
ParticipantIDs pubmed_primary_24469821
crossref_primary_10_1073_pnas_1310811111
proquest_miscellaneous_1803094491
pnas_primary_111_6_2223
jstor_primary_23768844
fao_agris_US201600140152
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3926066
crossref_citationtrail_10_1073_pnas_1310811111
proquest_miscellaneous_1499142879
proquest_journals_1499056047
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-11
PublicationDateYYYYMMDD 2014-02-11
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
20142476 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3475-80
16581913 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74
2295620 - J Biol Chem. 1990 Jan 15;265(2):808-14
21745478 - J Mol Biol. 2011 Sep 2;411(5):1083-98
21172830 - Mol Biol Evol. 2011 Apr;28(4):1491-503
22115274 - New Phytol. 2012 Jan;193(2):304-12
16667442 - Plant Physiol. 1990 May;93(1):244-9
18463696 - PLoS Comput Biol. 2008 Feb;4(2):e1000002
22232761 - Philos Trans R Soc Lond B Biol Sci. 2012 Feb 19;367(1588):483-92
18294858 - Plant Physiol Biochem. 2008 Mar;46(3):275-91
17681537 - J Mol Biol. 2007 Sep 21;372(3):774-97
17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
22404472 - Annu Rev Plant Biol. 2012;63:19-47
20605250 - Trends Ecol Evol. 2010 Jul;25(7):403-9
11886880 - J Exp Bot. 2002 Apr;53(369):609-20
16641091 - Proc Natl Acad Sci U S A. 2006 May 9;103(19):7246-51
12709478 - J Exp Bot. 2003 May;54(386):1321-33
4019498 - J Biol Chem. 1985 Aug 15;260(17):9894-904
20634811 - Nat Rev Genet. 2010 Aug;11(8):572-82
19911053 - PLoS Comput Biol. 2009 Nov;5(11):e1000564
15980494 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8
16074985 - Nat Rev Genet. 2005 Sep;6(9):678-87
11746707 - Proteins. 2002 Jan 1;46(1):105-9
18695049 - Mol Biol Evol. 2008 Nov;25(11):2361-8
19765975 - Curr Opin Struct Biol. 2009 Oct;19(5):596-604
12079336 - J Mol Biol. 2002 Jun 28;320(1):85-95
17470296 - BMC Bioinformatics. 2007;8:141
19913034 - J Mol Biol. 2010 Feb 12;396(1):47-59
21849620 - Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14688-93
19935669 - Nat Rev Mol Cell Biol. 2009 Dec;10(12):866-76
16282373 - Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17225-30
8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
19528653 - Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9995-10000
12144785 - J Mol Biol. 2002 Aug 9;321(2):285-96
17498284 - BMC Evol Biol. 2007;7:73
21414957 - J Exp Bot. 2011 May;62(9):3155-69
22609438 - J Mol Biol. 2012 Sep 7;422(1):75-86
21942934 - BMC Evol Biol. 2011;11:266
References_xml – ident: e_1_3_3_28_2
  doi: 10.1016/j.tree.2010.04.007
– ident: e_1_3_3_23_2
  doi: 10.1016/S0022-2836(02)00599-5
– ident: e_1_3_3_11_2
  doi: 10.1038/243359a0
– ident: e_1_3_3_12_2
  doi: 10.1146/annurev-arplant-042811-105511
– ident: e_1_3_3_24_2
  doi: 10.1093/molbev/msn178
– ident: e_1_3_3_5_2
  doi: 10.1371/journal.pcbi.1000002
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.0510098103
– ident: e_1_3_3_33_2
  doi: 10.1016/S0021-9258(17)39320-1
– ident: e_1_3_3_27_2
  doi: 10.1371/journal.pcbi.1000564
– ident: e_1_3_3_14_2
  doi: 10.1111/j.1469-8137.2011.03972.x
– ident: e_1_3_3_39_2
  doi: 10.1093/molbev/msm088
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.0901522106
– ident: e_1_3_3_22_2
  doi: 10.1186/1471-2105-8-141
– ident: e_1_3_3_6_2
  doi: 10.1038/nrg2808
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.1109503108
– ident: e_1_3_3_37_2
  doi: 10.1006/jmbi.1993.1626
– ident: e_1_3_3_34_2
  doi: 10.1104/pp.93.1.244
– ident: e_1_3_3_36_2
  doi: 10.1016/j.jmb.2007.05.022
– ident: e_1_3_3_26_2
  doi: 10.1186/1471-2148-7-73
– ident: e_1_3_3_7_2
  doi: 10.1016/S0022-2836(02)00400-X
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.0600605103
– ident: e_1_3_3_25_2
  doi: 10.1186/1471-2148-11-266
– ident: e_1_3_3_1_2
  doi: 10.1038/nrm2805
– ident: e_1_3_3_38_2
  doi: 10.1093/nar/gki387
– ident: e_1_3_3_18_2
  doi: 10.1093/jexbot/53.369.609
– ident: e_1_3_3_4_2
  doi: 10.1016/j.sbi.2009.08.003
– ident: e_1_3_3_13_2
  doi: 10.1093/jxb/err048
– ident: e_1_3_3_29_2
  doi: 10.1016/j.jmb.2011.06.052
– ident: e_1_3_3_19_2
  doi: 10.1016/S0021-9258(19)40121-X
– ident: e_1_3_3_35_2
  doi: 10.1016/j.jmb.2012.05.014
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0911663107
– ident: e_1_3_3_3_2
  doi: 10.1002/prot.10016
– ident: e_1_3_3_17_2
  doi: 10.1098/rstb.2011.0145
– ident: e_1_3_3_20_2
  doi: 10.1093/molbev/msq335
– ident: e_1_3_3_30_2
  doi: 10.1093/jxb/erg141
– ident: e_1_3_3_16_2
  doi: 10.1016/j.plaphy.2008.01.001
– ident: e_1_3_3_31_2
  doi: 10.1016/j.jmb.2009.11.005
– ident: e_1_3_3_2_2
  doi: 10.1038/nrg1672
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.0508042102
– reference: 16641091 - Proc Natl Acad Sci U S A. 2006 May 9;103(19):7246-51
– reference: 16074985 - Nat Rev Genet. 2005 Sep;6(9):678-87
– reference: 17470296 - BMC Bioinformatics. 2007;8:141
– reference: 18294858 - Plant Physiol Biochem. 2008 Mar;46(3):275-91
– reference: 21849620 - Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14688-93
– reference: 19935669 - Nat Rev Mol Cell Biol. 2009 Dec;10(12):866-76
– reference: 21172830 - Mol Biol Evol. 2011 Apr;28(4):1491-503
– reference: 18695049 - Mol Biol Evol. 2008 Nov;25(11):2361-8
– reference: 19528653 - Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9995-10000
– reference: 22404472 - Annu Rev Plant Biol. 2012;63:19-47
– reference: 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
– reference: 19913034 - J Mol Biol. 2010 Feb 12;396(1):47-59
– reference: 20605250 - Trends Ecol Evol. 2010 Jul;25(7):403-9
– reference: 11886880 - J Exp Bot. 2002 Apr;53(369):609-20
– reference: 16667442 - Plant Physiol. 1990 May;93(1):244-9
– reference: 18463696 - PLoS Comput Biol. 2008 Feb;4(2):e1000002
– reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
– reference: 22232761 - Philos Trans R Soc Lond B Biol Sci. 2012 Feb 19;367(1588):483-92
– reference: 16282373 - Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17225-30
– reference: 12079336 - J Mol Biol. 2002 Jun 28;320(1):85-95
– reference: 17681537 - J Mol Biol. 2007 Sep 21;372(3):774-97
– reference: 4019498 - J Biol Chem. 1985 Aug 15;260(17):9894-904
– reference: 22115274 - New Phytol. 2012 Jan;193(2):304-12
– reference: 21942934 - BMC Evol Biol. 2011;11:266
– reference: 11746707 - Proteins. 2002 Jan 1;46(1):105-9
– reference: 15980494 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8
– reference: 12709478 - J Exp Bot. 2003 May;54(386):1321-33
– reference: 21414957 - J Exp Bot. 2011 May;62(9):3155-69
– reference: 19765975 - Curr Opin Struct Biol. 2009 Oct;19(5):596-604
– reference: 12144785 - J Mol Biol. 2002 Aug 9;321(2):285-96
– reference: 2295620 - J Biol Chem. 1990 Jan 15;265(2):808-14
– reference: 16581913 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74
– reference: 20142476 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3475-80
– reference: 20634811 - Nat Rev Genet. 2010 Aug;11(8):572-82
– reference: 22609438 - J Mol Biol. 2012 Sep 7;422(1):75-86
– reference: 19911053 - PLoS Comput Biol. 2009 Nov;5(11):e1000564
– reference: 17498284 - BMC Evol Biol. 2007;7:73
– reference: 21745478 - J Mol Biol. 2011 Sep 2;411(5):1083-98
SSID ssj0009580
Score 2.4865108
Snippet A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO ₂ during...
A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during...
How enzymes acquire new functions is a key question in evolutionary biology. Here, we studied the evolution of some forms of ribulose-1,5-bisphosphate...
A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of ... during...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2223
SubjectTerms Active sites
Adaptation, Physiological
Amino acids
Angiospermae
Binding sites
Biological adaptation
Biological Evolution
Biological Sciences
Carbon Dioxide - metabolism
convergent evolution
Dimers
Ecological adaptation
Enzyme Stability
Enzymes
Evolution
evolutionary adaptation
Flowering plants
Flowers & plants
Genetic mutation
Models, Molecular
Molecular structure
Mutation
Photosynthesis
Phylogenetics
Phylogeny
Plant Physiological Phenomena
Plants
Positive selection
ribulose-bisphosphate carboxylase
Ribulose-Bisphosphate Carboxylase - chemistry
Ribulose-Bisphosphate Carboxylase - genetics
Ribulose-Bisphosphate Carboxylase - physiology
Title Stability-activity tradeoffs constrain the adaptive evolution of RubisCO
URI https://www.jstor.org/stable/23768844
http://www.pnas.org/content/111/6/2223.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24469821
https://www.proquest.com/docview/1499056047
https://www.proquest.com/docview/1499142879
https://www.proquest.com/docview/1803094491
https://pubmed.ncbi.nlm.nih.gov/PMC3926066
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKeOEFMWAsMFCQeBiaUprEiZ3HatpUodFWopX2FtmJMypBMjUpEnw1vhx3TuKk66iAl6iKHcf1_Xy-u9wfQt6pQCpXMN-RNPUdmo4S2HNCwHZPfMXkyJMJRiN_moaTJf14HVwPBr96XkubSg6Tn_fGlfwPVeEe0BWjZP-BsmZQuAG_gb5wBQrD9a9oDJKi9m394WB4gq4CUa1FqoosK9GfvNQFILRsKVJxq72E1PdmSjoNyUauyvNZX0KdmxOtbP0Hpq3BcNyFnzQ8oTxzzubTrpgxuiU21ZSLb_huA5A6i0GdsWAuSoCGM86rovdZv2_6wRCi7tnZWuU3RZcLASXjcd9e4VJ0cXY7e8W-KfcZtQeHJ63Dq4eq5s0g2jghrauLGubdDL3aZcVeHci8c0YAU8PCxrkohy4ItxwPDbc7DlsXgOksvlxeXcWLi-vFdmt9-nsgLAWcYdj_Qw90FL81FZmMz7yOf2r-SZtXivkf7rx7SyR6kImi9Y3FhLvQ9T7l564Pb08oWjwhjxttxh7X0DwkA5U_JYftQtunTVLz98_IZBertsGqbbBqA97sFqu2wapdZHaD1edkeXmxOJ84TRUPJwl4VDlpSoHSkilYrxFlTKaudFNf0iTIeJAJ31MJp0pQUCVCCiIki7ivwsjLopDzMPCPyEFe5OqY2PCUGEnQ2P0gogEbCanSMB1lzE1QdBcWGbYLGSdNinuc_NdYu1owP8bljLuVt8ipeeC2zu7y567HQJlY3ADM4-VnDzMzautE4FnkSJPLDIGeZpxTapEXehQzNCjbYYzAtMhJS9K4YSjwMgqiIWgglFnkrWkGdo_f8ESuik3dB5MksmhPH47fTSmNXJyARkk3NYolYz1oYVv4MR0w3fx2S776otPOgyaF1o6X-6f-ijzqdv0JOajWG_Ua5PZKvtH74zdNUO0M
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability-activity+tradeoffs+constrain+the+adaptive+evolution+of+RubisCO&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Studer%2C+Romain+A&rft.au=Christin%2C+Pascal-Antoine&rft.au=Williams%2C+Mark+A&rft.au=Orengo%2C+Christine+A&rft.date=2014-02-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=6&rft.spage=2223&rft_id=info:doi/10.1073%2Fpnas.1310811111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3221558781
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F6.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F6.cover.gif