Stability-activity tradeoffs constrain the adaptive evolution of RubisCO
A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO ₂ during photosynthesis. Although the majority of plants use the ancestral C ₃ photosynthetic pathway, many flowering plants have evolved a derived pathw...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 6; pp. 2223 - 2228 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
11.02.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO ₂ during photosynthesis. Although the majority of plants use the ancestral C ₃ photosynthetic pathway, many flowering plants have evolved a derived pathway named C ₄ photosynthesis. The latter concentrates CO ₂, and C ₄ RubisCOs consequently have lower specificity for, and faster turnover of, CO ₂. The C ₄ forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C ₃ and C ₄ species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C ₄ properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C ₃ to C ₄ transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability. |
---|---|
AbstractList | A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability. A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO ₂ during photosynthesis. Although the majority of plants use the ancestral C ₃ photosynthetic pathway, many flowering plants have evolved a derived pathway named C ₄ photosynthesis. The latter concentrates CO ₂, and C ₄ RubisCOs consequently have lower specificity for, and faster turnover of, CO ₂. The C ₄ forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C ₃ and C ₄ species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C ₄ properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C ₃ to C ₄ transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability. A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability. A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of ... during photosynthesis. Although the majority of plants use the ancestral ... photosynthetic pathway, many flowering plants have evolved a derived pathway named ... photosynthesis. The latter concentrates ..., and ... RubisCOs consequently have lower specificity for, and faster turnover of, ... The ... forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related ... and ... species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The ... properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The ... to ... transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability. (ProQuest: ... denotes formulae/symbols omitted.) How enzymes acquire new functions is a key question in evolutionary biology. Here, we studied the evolution of some forms of ribulose-1,5-bisphosphate carboxylase, the enzyme responsible for CO 2 fixation in photosynthesis, which has evolved enhanced activity in multiple groups of plants. We showed that the evolution of this enzyme was constrained by tradeoffs between activity and stability, two key properties of enzymes. The acquisition of enhanced activity was mediated by mutations destabilizing the structure. However, these were preceded and followed by periods in which stabilizing mutations were predominant, so that global stability was always maintained. This work shows that the natural evolution of enzymes is subject to strong biophysical constraints, and evolution follows perilous paths toward adaptation. A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO 2 during photosynthesis. Although the majority of plants use the ancestral C 3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C 4 photosynthesis. The latter concentrates CO 2 , and C 4 RubisCOs consequently have lower specificity for, and faster turnover of, CO 2 . The C 4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C 3 and C 4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C 4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C 3 to C 4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability. |
Author | Christin, Pascal-Antoine Studer, Romain A. Williams, Mark A. Orengo, Christine A. |
Author_xml | – sequence: 1 givenname: Romain A. surname: Studer fullname: Studer, Romain A. – sequence: 2 givenname: Pascal-Antoine surname: Christin fullname: Christin, Pascal-Antoine – sequence: 3 givenname: Mark A. surname: Williams fullname: Williams, Mark A. – sequence: 4 givenname: Christine A. surname: Orengo fullname: Orengo, Christine A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24469821$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS3Uim4LZ05AJC5c0s7YjmNfkNAKKFKlSpSeLSdxWq-y9hI7K_Xf47DtFnoovtjW-2bm2e-YHPjgLSFvEE4Rana28SaeIkOQOK8XZIGgsBRcwQFZANC6lJzyI3Ic4woAVCXhJTminAslKS7I-VUyjRtcuitNm9w2H4o0ms6Gvo9FG3zMN-eLdGsL05lNRmxht2GYkgu-CH3xY2pcXF6-Ioe9GaJ9fb-fkOuvX34uz8uLy2_fl58vyraSKpVdx1vTNbWlWAGv66bDBjvW8LbqZdUbRm0ruTUcFRMcKKuVZFYo2ishpajYCfm067uZmrXtWuuzwUFvRrc2450Oxul_Fe9u9U3YaqaoACFyg4_3Dcbwa7Ix6bWLrR0G422YokYJDBTnCv-PcqWQU1mrjH54gq7CNPr8E38oqER-babe_W1-7_ohjwyc7YB2DDGOtt8jCHpOXM-J68fEc0X1pKJ1yczhzMENz9Q9WJmF_RRELTSllGXg7Q5YxRTGR6uszkFwnvX3O703QZub0UV9fUUBBQBywIqy3yGgy_w |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_156606 crossref_primary_10_1093_molbev_msaa143 crossref_primary_10_1016_j_pecs_2024_101184 crossref_primary_10_1093_molbev_msab079 crossref_primary_10_1093_molbev_msac047 crossref_primary_10_1021_acs_biochem_8b00132 crossref_primary_10_1080_07391102_2023_2293258 crossref_primary_10_1098_rsob_140121 crossref_primary_10_3390_ijms25105143 crossref_primary_10_1093_molbev_msy114 crossref_primary_10_1371_journal_pcbi_1008742 crossref_primary_10_1002_aic_16814 crossref_primary_10_3389_fpls_2018_00448 crossref_primary_10_3390_ijpb15030055 crossref_primary_10_15252_embj_2019104081 crossref_primary_10_3762_bjoc_11_259 crossref_primary_10_1073_pnas_1816707116 crossref_primary_10_1093_molbev_msae056 crossref_primary_10_1158_0008_5472_CAN_14_3812 crossref_primary_10_1111_jse_13039 crossref_primary_10_1021_acs_chemrev_8b00290 crossref_primary_10_1111_febs_13774 crossref_primary_10_3389_fendo_2021_698511 crossref_primary_10_1111_cge_14002 crossref_primary_10_1016_j_biochi_2015_08_004 crossref_primary_10_1080_14789450_2021_1992277 crossref_primary_10_1146_annurev_biophys_030722_125440 crossref_primary_10_1371_journal_pone_0241679 crossref_primary_10_1007_s11120_019_00619_8 crossref_primary_10_1371_journal_pone_0263887 crossref_primary_10_1080_07391102_2022_2076154 crossref_primary_10_3389_fpls_2021_662425 crossref_primary_10_1016_j_micpath_2023_106460 crossref_primary_10_1371_journal_pgen_1010030 crossref_primary_10_1007_s11011_017_0058_5 crossref_primary_10_1186_s43170_022_00117_3 crossref_primary_10_1093_ve_vex019 crossref_primary_10_1111_pce_12629 crossref_primary_10_1016_j_bpj_2015_04_020 crossref_primary_10_1016_j_ymgme_2018_05_006 crossref_primary_10_1038_s41396_021_00971_5 crossref_primary_10_1002_bies_201700174 crossref_primary_10_1002_jcc_25343 crossref_primary_10_1093_genetics_iyac154 crossref_primary_10_1186_s12862_019_1521_1 crossref_primary_10_1016_j_bbamcr_2021_118949 crossref_primary_10_1039_D1GC00763G crossref_primary_10_1111_pbi_12246 crossref_primary_10_1016_j_foodcont_2022_109236 crossref_primary_10_1002_jmv_26626 crossref_primary_10_3389_fpls_2018_00183 crossref_primary_10_1074_jbc_RA118_003792 crossref_primary_10_1186_s13068_017_0861_6 crossref_primary_10_1016_j_ijbiomac_2020_08_163 crossref_primary_10_1016_j_biotechadv_2021_107885 crossref_primary_10_1080_0047231X_2019_12290477 crossref_primary_10_3390_agriculture5041116 crossref_primary_10_1016_j_sbi_2016_10_013 crossref_primary_10_1021_acscatal_4c07922 crossref_primary_10_1021_acscentsci_7b00269 crossref_primary_10_1007_s11120_014_0056_y crossref_primary_10_1039_D0GC01796E crossref_primary_10_1111_tpj_15196 crossref_primary_10_1111_ele_14523 crossref_primary_10_1038_s41477_020_00762_4 crossref_primary_10_1111_pce_13149 crossref_primary_10_1016_j_jmb_2018_10_005 crossref_primary_10_1021_jacsau_3c00696 crossref_primary_10_4014_jmb_2209_09018 crossref_primary_10_1016_j_celrep_2022_110726 crossref_primary_10_1016_j_isci_2022_105774 crossref_primary_10_1016_j_bcp_2023_115932 crossref_primary_10_3389_fpls_2019_01426 crossref_primary_10_1093_jxb_erac368 crossref_primary_10_1093_molbev_msab146 crossref_primary_10_1038_s41467_024_48513_9 crossref_primary_10_1073_pnas_2321050121 crossref_primary_10_3389_fgene_2022_962449 crossref_primary_10_7717_peerj_12791 crossref_primary_10_1007_s11120_015_0085_1 crossref_primary_10_1371_journal_pcbi_1004207 crossref_primary_10_3389_fmolb_2018_00024 crossref_primary_10_29244_jpsl_12_1_112_122 crossref_primary_10_1021_acs_biochem_6b00678 crossref_primary_10_1371_journal_pone_0256640 crossref_primary_10_1016_j_sbi_2017_08_003 crossref_primary_10_1002_chem_201903994 crossref_primary_10_1098_rsta_2016_0352 crossref_primary_10_1146_annurev_virology_091919_092003 crossref_primary_10_1016_j_jplph_2023_154021 crossref_primary_10_1007_s00239_021_09998_w crossref_primary_10_1007_s11105_025_01547_9 crossref_primary_10_1111_ppl_70085 crossref_primary_10_3390_ijms25179231 crossref_primary_10_1111_gbi_12243 crossref_primary_10_1039_C8SE00281A crossref_primary_10_1371_journal_pone_0192697 crossref_primary_10_1016_j_sbi_2016_05_016 crossref_primary_10_3389_fgene_2022_954015 crossref_primary_10_1016_j_jmb_2016_07_003 crossref_primary_10_1093_ve_veae049 crossref_primary_10_1111_tpj_14643 crossref_primary_10_1080_07391102_2020_1784792 crossref_primary_10_1093_jxb_erz363 crossref_primary_10_1016_j_gde_2015_09_005 crossref_primary_10_1016_j_copbio_2017_07_017 crossref_primary_10_1021_acs_jpcb_8b05926 crossref_primary_10_1007_s00425_017_2781_x crossref_primary_10_1016_j_molp_2024_10_013 crossref_primary_10_1016_j_procbio_2022_07_013 crossref_primary_10_1042_BCJ20180249 crossref_primary_10_1007_s00239_015_9697_5 crossref_primary_10_1021_acs_biochem_9b00731 crossref_primary_10_1021_acs_jcim_2c01083 crossref_primary_10_1093_protein_gzu054 crossref_primary_10_1016_j_enzmictec_2020_109549 crossref_primary_10_7554_eLife_61803 crossref_primary_10_1186_s12864_015_1498_0 crossref_primary_10_1111_ppl_12616 crossref_primary_10_1038_s41598_018_28752_9 crossref_primary_10_1126_sciadv_abm6871 crossref_primary_10_1016_j_bidere_2025_100005 |
Cites_doi | 10.1016/j.tree.2010.04.007 10.1016/S0022-2836(02)00599-5 10.1038/243359a0 10.1146/annurev-arplant-042811-105511 10.1093/molbev/msn178 10.1371/journal.pcbi.1000002 10.1073/pnas.0510098103 10.1016/S0021-9258(17)39320-1 10.1371/journal.pcbi.1000564 10.1111/j.1469-8137.2011.03972.x 10.1093/molbev/msm088 10.1073/pnas.0901522106 10.1186/1471-2105-8-141 10.1038/nrg2808 10.1073/pnas.1109503108 10.1006/jmbi.1993.1626 10.1104/pp.93.1.244 10.1016/j.jmb.2007.05.022 10.1186/1471-2148-7-73 10.1016/S0022-2836(02)00400-X 10.1073/pnas.0600605103 10.1186/1471-2148-11-266 10.1038/nrm2805 10.1093/nar/gki387 10.1093/jexbot/53.369.609 10.1016/j.sbi.2009.08.003 10.1093/jxb/err048 10.1016/j.jmb.2011.06.052 10.1016/S0021-9258(19)40121-X 10.1016/j.jmb.2012.05.014 10.1073/pnas.0911663107 10.1002/prot.10016 10.1098/rstb.2011.0145 10.1093/molbev/msq335 10.1093/jxb/erg141 10.1016/j.plaphy.2008.01.001 10.1016/j.jmb.2009.11.005 10.1038/nrg1672 10.1073/pnas.0508042102 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Feb 11, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Feb 11, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1310811111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Structural constraints on the evolution of RubisCO |
EISSN | 1091-6490 |
EndPage | 2228 |
ExternalDocumentID | PMC3926066 3221558781 24469821 10_1073_pnas_1310811111 111_6_2223 23768844 US201600140152 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c589t-dd4cadb7e2150477bd1b1d3b4c5f85fa32ec84ea4193640237983e692f9688653 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:26:03 EDT 2025 Fri Jul 11 07:56:19 EDT 2025 Thu Jul 10 23:18:55 EDT 2025 Mon Jun 30 08:24:19 EDT 2025 Thu Apr 03 07:04:41 EDT 2025 Tue Jul 01 01:52:59 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Wed Nov 11 00:30:30 EST 2020 Thu May 29 08:40:43 EDT 2025 Wed Dec 27 19:19:29 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c589t-dd4cadb7e2150477bd1b1d3b4c5f85fa32ec84ea4193640237983e692f9688653 |
Notes | http://dx.doi.org/10.1073/pnas.1310811111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: R.A.S., P.-A.C., M.A.W., and C.A.O. designed research; R.A.S. performed research; R.A.S., P.-A.C., M.A.W., and C.A.O. analyzed data; and R.A.S., P.-A.C., M.A.W., and C.A.O. wrote the paper. Edited by George H. Lorimer, University of Maryland, College Park, MD, and approved January 2, 2014 (received for review June 6, 2013) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/6/2223.full.pdf |
PMID | 24469821 |
PQID | 1499056047 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_24469821 crossref_primary_10_1073_pnas_1310811111 proquest_miscellaneous_1803094491 pnas_primary_111_6_2223 jstor_primary_23768844 fao_agris_US201600140152 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3926066 crossref_citationtrail_10_1073_pnas_1310811111 proquest_miscellaneous_1499142879 proquest_journals_1499056047 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-11 |
PublicationDateYYYYMMDD | 2014-02-11 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 20142476 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3475-80 16581913 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74 2295620 - J Biol Chem. 1990 Jan 15;265(2):808-14 21745478 - J Mol Biol. 2011 Sep 2;411(5):1083-98 21172830 - Mol Biol Evol. 2011 Apr;28(4):1491-503 22115274 - New Phytol. 2012 Jan;193(2):304-12 16667442 - Plant Physiol. 1990 May;93(1):244-9 18463696 - PLoS Comput Biol. 2008 Feb;4(2):e1000002 22232761 - Philos Trans R Soc Lond B Biol Sci. 2012 Feb 19;367(1588):483-92 18294858 - Plant Physiol Biochem. 2008 Mar;46(3):275-91 17681537 - J Mol Biol. 2007 Sep 21;372(3):774-97 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 22404472 - Annu Rev Plant Biol. 2012;63:19-47 20605250 - Trends Ecol Evol. 2010 Jul;25(7):403-9 11886880 - J Exp Bot. 2002 Apr;53(369):609-20 16641091 - Proc Natl Acad Sci U S A. 2006 May 9;103(19):7246-51 12709478 - J Exp Bot. 2003 May;54(386):1321-33 4019498 - J Biol Chem. 1985 Aug 15;260(17):9894-904 20634811 - Nat Rev Genet. 2010 Aug;11(8):572-82 19911053 - PLoS Comput Biol. 2009 Nov;5(11):e1000564 15980494 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8 16074985 - Nat Rev Genet. 2005 Sep;6(9):678-87 11746707 - Proteins. 2002 Jan 1;46(1):105-9 18695049 - Mol Biol Evol. 2008 Nov;25(11):2361-8 19765975 - Curr Opin Struct Biol. 2009 Oct;19(5):596-604 12079336 - J Mol Biol. 2002 Jun 28;320(1):85-95 17470296 - BMC Bioinformatics. 2007;8:141 19913034 - J Mol Biol. 2010 Feb 12;396(1):47-59 21849620 - Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14688-93 19935669 - Nat Rev Mol Cell Biol. 2009 Dec;10(12):866-76 16282373 - Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17225-30 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 19528653 - Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9995-10000 12144785 - J Mol Biol. 2002 Aug 9;321(2):285-96 17498284 - BMC Evol Biol. 2007;7:73 21414957 - J Exp Bot. 2011 May;62(9):3155-69 22609438 - J Mol Biol. 2012 Sep 7;422(1):75-86 21942934 - BMC Evol Biol. 2011;11:266 |
References_xml | – ident: e_1_3_3_28_2 doi: 10.1016/j.tree.2010.04.007 – ident: e_1_3_3_23_2 doi: 10.1016/S0022-2836(02)00599-5 – ident: e_1_3_3_11_2 doi: 10.1038/243359a0 – ident: e_1_3_3_12_2 doi: 10.1146/annurev-arplant-042811-105511 – ident: e_1_3_3_24_2 doi: 10.1093/molbev/msn178 – ident: e_1_3_3_5_2 doi: 10.1371/journal.pcbi.1000002 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.0510098103 – ident: e_1_3_3_33_2 doi: 10.1016/S0021-9258(17)39320-1 – ident: e_1_3_3_27_2 doi: 10.1371/journal.pcbi.1000564 – ident: e_1_3_3_14_2 doi: 10.1111/j.1469-8137.2011.03972.x – ident: e_1_3_3_39_2 doi: 10.1093/molbev/msm088 – ident: e_1_3_3_9_2 doi: 10.1073/pnas.0901522106 – ident: e_1_3_3_22_2 doi: 10.1186/1471-2105-8-141 – ident: e_1_3_3_6_2 doi: 10.1038/nrg2808 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.1109503108 – ident: e_1_3_3_37_2 doi: 10.1006/jmbi.1993.1626 – ident: e_1_3_3_34_2 doi: 10.1104/pp.93.1.244 – ident: e_1_3_3_36_2 doi: 10.1016/j.jmb.2007.05.022 – ident: e_1_3_3_26_2 doi: 10.1186/1471-2148-7-73 – ident: e_1_3_3_7_2 doi: 10.1016/S0022-2836(02)00400-X – ident: e_1_3_3_10_2 doi: 10.1073/pnas.0600605103 – ident: e_1_3_3_25_2 doi: 10.1186/1471-2148-11-266 – ident: e_1_3_3_1_2 doi: 10.1038/nrm2805 – ident: e_1_3_3_38_2 doi: 10.1093/nar/gki387 – ident: e_1_3_3_18_2 doi: 10.1093/jexbot/53.369.609 – ident: e_1_3_3_4_2 doi: 10.1016/j.sbi.2009.08.003 – ident: e_1_3_3_13_2 doi: 10.1093/jxb/err048 – ident: e_1_3_3_29_2 doi: 10.1016/j.jmb.2011.06.052 – ident: e_1_3_3_19_2 doi: 10.1016/S0021-9258(19)40121-X – ident: e_1_3_3_35_2 doi: 10.1016/j.jmb.2012.05.014 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.0911663107 – ident: e_1_3_3_3_2 doi: 10.1002/prot.10016 – ident: e_1_3_3_17_2 doi: 10.1098/rstb.2011.0145 – ident: e_1_3_3_20_2 doi: 10.1093/molbev/msq335 – ident: e_1_3_3_30_2 doi: 10.1093/jxb/erg141 – ident: e_1_3_3_16_2 doi: 10.1016/j.plaphy.2008.01.001 – ident: e_1_3_3_31_2 doi: 10.1016/j.jmb.2009.11.005 – ident: e_1_3_3_2_2 doi: 10.1038/nrg1672 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.0508042102 – reference: 16641091 - Proc Natl Acad Sci U S A. 2006 May 9;103(19):7246-51 – reference: 16074985 - Nat Rev Genet. 2005 Sep;6(9):678-87 – reference: 17470296 - BMC Bioinformatics. 2007;8:141 – reference: 18294858 - Plant Physiol Biochem. 2008 Mar;46(3):275-91 – reference: 21849620 - Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14688-93 – reference: 19935669 - Nat Rev Mol Cell Biol. 2009 Dec;10(12):866-76 – reference: 21172830 - Mol Biol Evol. 2011 Apr;28(4):1491-503 – reference: 18695049 - Mol Biol Evol. 2008 Nov;25(11):2361-8 – reference: 19528653 - Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9995-10000 – reference: 22404472 - Annu Rev Plant Biol. 2012;63:19-47 – reference: 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 – reference: 19913034 - J Mol Biol. 2010 Feb 12;396(1):47-59 – reference: 20605250 - Trends Ecol Evol. 2010 Jul;25(7):403-9 – reference: 11886880 - J Exp Bot. 2002 Apr;53(369):609-20 – reference: 16667442 - Plant Physiol. 1990 May;93(1):244-9 – reference: 18463696 - PLoS Comput Biol. 2008 Feb;4(2):e1000002 – reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 – reference: 22232761 - Philos Trans R Soc Lond B Biol Sci. 2012 Feb 19;367(1588):483-92 – reference: 16282373 - Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17225-30 – reference: 12079336 - J Mol Biol. 2002 Jun 28;320(1):85-95 – reference: 17681537 - J Mol Biol. 2007 Sep 21;372(3):774-97 – reference: 4019498 - J Biol Chem. 1985 Aug 15;260(17):9894-904 – reference: 22115274 - New Phytol. 2012 Jan;193(2):304-12 – reference: 21942934 - BMC Evol Biol. 2011;11:266 – reference: 11746707 - Proteins. 2002 Jan 1;46(1):105-9 – reference: 15980494 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8 – reference: 12709478 - J Exp Bot. 2003 May;54(386):1321-33 – reference: 21414957 - J Exp Bot. 2011 May;62(9):3155-69 – reference: 19765975 - Curr Opin Struct Biol. 2009 Oct;19(5):596-604 – reference: 12144785 - J Mol Biol. 2002 Aug 9;321(2):285-96 – reference: 2295620 - J Biol Chem. 1990 Jan 15;265(2):808-14 – reference: 16581913 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74 – reference: 20142476 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3475-80 – reference: 20634811 - Nat Rev Genet. 2010 Aug;11(8):572-82 – reference: 22609438 - J Mol Biol. 2012 Sep 7;422(1):75-86 – reference: 19911053 - PLoS Comput Biol. 2009 Nov;5(11):e1000564 – reference: 17498284 - BMC Evol Biol. 2007;7:73 – reference: 21745478 - J Mol Biol. 2011 Sep 2;411(5):1083-98 |
SSID | ssj0009580 |
Score | 2.4865108 |
Snippet | A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO ₂ during... A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during... How enzymes acquire new functions is a key question in evolutionary biology. Here, we studied the evolution of some forms of ribulose-1,5-bisphosphate... A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of ... during... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2223 |
SubjectTerms | Active sites Adaptation, Physiological Amino acids Angiospermae Binding sites Biological adaptation Biological Evolution Biological Sciences Carbon Dioxide - metabolism convergent evolution Dimers Ecological adaptation Enzyme Stability Enzymes Evolution evolutionary adaptation Flowering plants Flowers & plants Genetic mutation Models, Molecular Molecular structure Mutation Photosynthesis Phylogenetics Phylogeny Plant Physiological Phenomena Plants Positive selection ribulose-bisphosphate carboxylase Ribulose-Bisphosphate Carboxylase - chemistry Ribulose-Bisphosphate Carboxylase - genetics Ribulose-Bisphosphate Carboxylase - physiology |
Title | Stability-activity tradeoffs constrain the adaptive evolution of RubisCO |
URI | https://www.jstor.org/stable/23768844 http://www.pnas.org/content/111/6/2223.abstract https://www.ncbi.nlm.nih.gov/pubmed/24469821 https://www.proquest.com/docview/1499056047 https://www.proquest.com/docview/1499142879 https://www.proquest.com/docview/1803094491 https://pubmed.ncbi.nlm.nih.gov/PMC3926066 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKeOEFMWAsMFCQeBiaUprEiZ3HatpUodFWopX2FtmJMypBMjUpEnw1vhx3TuKk66iAl6iKHcf1_Xy-u9wfQt6pQCpXMN-RNPUdmo4S2HNCwHZPfMXkyJMJRiN_moaTJf14HVwPBr96XkubSg6Tn_fGlfwPVeEe0BWjZP-BsmZQuAG_gb5wBQrD9a9oDJKi9m394WB4gq4CUa1FqoosK9GfvNQFILRsKVJxq72E1PdmSjoNyUauyvNZX0KdmxOtbP0Hpq3BcNyFnzQ8oTxzzubTrpgxuiU21ZSLb_huA5A6i0GdsWAuSoCGM86rovdZv2_6wRCi7tnZWuU3RZcLASXjcd9e4VJ0cXY7e8W-KfcZtQeHJ63Dq4eq5s0g2jghrauLGubdDL3aZcVeHci8c0YAU8PCxrkohy4ItxwPDbc7DlsXgOksvlxeXcWLi-vFdmt9-nsgLAWcYdj_Qw90FL81FZmMz7yOf2r-SZtXivkf7rx7SyR6kImi9Y3FhLvQ9T7l564Pb08oWjwhjxttxh7X0DwkA5U_JYftQtunTVLz98_IZBertsGqbbBqA97sFqu2wapdZHaD1edkeXmxOJ84TRUPJwl4VDlpSoHSkilYrxFlTKaudFNf0iTIeJAJ31MJp0pQUCVCCiIki7ivwsjLopDzMPCPyEFe5OqY2PCUGEnQ2P0gogEbCanSMB1lzE1QdBcWGbYLGSdNinuc_NdYu1owP8bljLuVt8ipeeC2zu7y567HQJlY3ADM4-VnDzMzautE4FnkSJPLDIGeZpxTapEXehQzNCjbYYzAtMhJS9K4YSjwMgqiIWgglFnkrWkGdo_f8ESuik3dB5MksmhPH47fTSmNXJyARkk3NYolYz1oYVv4MR0w3fx2S776otPOgyaF1o6X-6f-ijzqdv0JOajWG_Ua5PZKvtH74zdNUO0M |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability-activity+tradeoffs+constrain+the+adaptive+evolution+of+RubisCO&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Studer%2C+Romain+A&rft.au=Christin%2C+Pascal-Antoine&rft.au=Williams%2C+Mark+A&rft.au=Orengo%2C+Christine+A&rft.date=2014-02-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=6&rft.spage=2223&rft_id=info:doi/10.1073%2Fpnas.1310811111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3221558781 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F6.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F6.cover.gif |