Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8

Significance Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the mechanism of this suppression was shown to be via translocation to the nucleus following cleavage of the precursor by intracellular caspase-1. We n...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 8; pp. 2497 - 2502
Main Authors Li, Suzhao, Neff, C. Preston, Barber, Kristina, Hong, Jaewoo, Luo, Yuchun, Azam, Tania, Palmer, Brent E., Fujita, Mayumi, Garlanda, Cecilia, Mantovani, Alberto, Kim, Soohyun, Dinarello, Charles Anthony
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.02.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Significance Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the mechanism of this suppression was shown to be via translocation to the nucleus following cleavage of the precursor by intracellular caspase-1. We now show that recombinant forms of IL-37 limit inflammation by extracellular binding to surface receptors but require the IL-1 family decoy receptor IL-1R8. Unexpectedly, picomolar concentrations of the IL-37 precursor optimally suppress IL-1β, IL-6, and TNFα production from human blood M1 macrophages, suggesting a unique function for a coreceptor function of IL-1R8. Assessment of IL-37 as well as IL-1R8 levels may provide previously unidentified insights into how the host limits inflammation. Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% ( P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti–IL-37 increased LPS-induced IL-6, TNFα and IL-1β ( P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background ( P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50–55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8–deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.
AbstractList Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P< 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti–IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P< 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P< 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50–55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8–deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.
Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the mechanism of this suppression was shown to be via translocation to the nucleus following cleavage of the precursor by intracellular caspase-1. We now show that recombinant forms of IL-37 limit inflammation by extracellular binding to surface receptors but require the IL-1 family decoy receptor IL-1R8. Unexpectedly, picomolar concentrations of the IL-37 precursor optimally suppress IL-1β, IL-6, and TNFα production from human blood M1 macrophages, suggesting a unique function for a coreceptor function of IL-1R8. Assessment of IL-37 as well as IL-1R8 levels may provide previously unidentified insights into how the host limits inflammation. Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% ( P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti–IL-37 increased LPS-induced IL-6, TNFα and IL-1β ( P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background ( P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50–55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8–deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.
Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti-IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50-55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8-deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti-IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50-55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8-deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.
Significance Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the mechanism of this suppression was shown to be via translocation to the nucleus following cleavage of the precursor by intracellular caspase-1. We now show that recombinant forms of IL-37 limit inflammation by extracellular binding to surface receptors but require the IL-1 family decoy receptor IL-1R8. Unexpectedly, picomolar concentrations of the IL-37 precursor optimally suppress IL-1β, IL-6, and TNFα production from human blood M1 macrophages, suggesting a unique function for a coreceptor function of IL-1R8. Assessment of IL-37 as well as IL-1R8 levels may provide previously unidentified insights into how the host limits inflammation. Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% ( P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti–IL-37 increased LPS-induced IL-6, TNFα and IL-1β ( P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background ( P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50–55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8–deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.
Similar to IL-1a and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti-IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFa mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding a-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFa and IL-6 by 50-55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8-deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.
Author Hong, Jaewoo
Fujita, Mayumi
Barber, Kristina
Neff, C. Preston
Mantovani, Alberto
Li, Suzhao
Kim, Soohyun
Azam, Tania
Palmer, Brent E.
Garlanda, Cecilia
Luo, Yuchun
Dinarello, Charles Anthony
Author_xml – sequence: 1
  givenname: Suzhao
  surname: Li
  fullname: Li, Suzhao
  organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045
– sequence: 2
  givenname: C. Preston
  surname: Neff
  fullname: Neff, C. Preston
  organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045
– sequence: 3
  givenname: Kristina
  surname: Barber
  fullname: Barber, Kristina
  organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045
– sequence: 4
  givenname: Jaewoo
  surname: Hong
  fullname: Hong, Jaewoo
  organization: Laboratory of Cytokine Immunology, Konkuk University, 143-701 Seoul, Republic of Korea
– sequence: 5
  givenname: Yuchun
  surname: Luo
  fullname: Luo, Yuchun
  organization: Department of Dermatology, University of Colorado Denver, Aurora, CO 80045
– sequence: 6
  givenname: Tania
  surname: Azam
  fullname: Azam, Tania
  organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045
– sequence: 7
  givenname: Brent E.
  surname: Palmer
  fullname: Palmer, Brent E.
  organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045
– sequence: 8
  givenname: Mayumi
  surname: Fujita
  fullname: Fujita, Mayumi
  organization: Department of Dermatology, University of Colorado Denver, Aurora, CO 80045
– sequence: 9
  givenname: Cecilia
  surname: Garlanda
  fullname: Garlanda, Cecilia
  organization: Research Institute Humanitas, 20089 Milan, Italy
– sequence: 10
  givenname: Alberto
  surname: Mantovani
  fullname: Mantovani, Alberto
  organization: Research Institute Humanitas, 20089 Milan, Italy
– sequence: 11
  givenname: Soohyun
  surname: Kim
  fullname: Kim, Soohyun
  organization: Laboratory of Cytokine Immunology, Konkuk University, 143-701 Seoul, Republic of Korea
– sequence: 12
  givenname: Charles Anthony
  surname: Dinarello
  fullname: Dinarello, Charles Anthony
  organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25654981$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhS1URNPCmhVgiQ2baW2Px49NJVQVqBQJCeja8jiextGMndqeiKz463iSNoUuYHVlne9en_s4AUc-eAvAa4zOMOL1-drrdIYpoYwwjMkzMMNI4opRiY7ADCHCK1HUY3CS0gohJBuBXoBj0rCGSoFn4NfVzxy1sX0_9jrCLsQhwdDB63lVc-j80rUul-h1tiV0vR4GnV3w5QE3LscAtV_sH5sA2zHDaO9GFy3MSzuVwbDTg-u3cGFN2BbV2HUOcSd9Ey_B8073yb66j6fg5tPVj8sv1fzr5-vLj_PKNELmqq0FlrXBbGH4QhjNGoMYK-20VHe64UgyLVhL6lLdYGFaSbUuTEsM7TjR9Sm42Nddj-1gF8b60nav1tENOm5V0E79rXi3VLdho2hNG4ZEKfDhvkAMd6NNWQ0uTXPT3oYxKSxQjTEVhP0fZY3giHNBCvr-CboKY_RlEoViiDPOJC_U2z_NH1w_rLEA53vAxJBStN0BwUhNh6KmQ1GPh1IymicZxuXdYkv3rv9H3oOVSTj8gokSitCd1zd7YJXKlh-tMsqwoE3R3-31Tgelb6NL6uY7QZghhKnEQta_AUXv3sA
CitedBy_id crossref_primary_10_1016_j_intimp_2024_112525
crossref_primary_10_1016_j_cyto_2021_155773
crossref_primary_10_1073_pnas_1906817116
crossref_primary_10_1111_all_13395
crossref_primary_10_1126_sciimmunol_aaj1548
crossref_primary_10_1038_s41598_019_43364_7
crossref_primary_10_1111_imr_12616
crossref_primary_10_1111_imr_12617
crossref_primary_10_1007_s12253_016_0137_7
crossref_primary_10_1016_j_cyto_2015_03_022
crossref_primary_10_3390_vaccines8030554
crossref_primary_10_1016_j_lfs_2018_02_014
crossref_primary_10_1111_imr_12621
crossref_primary_10_7554_eLife_75889
crossref_primary_10_1038_s41423_023_01091_0
crossref_primary_10_1155_2019_2650590
crossref_primary_10_1038_cmi_2016_48
crossref_primary_10_1002_jcp_27526
crossref_primary_10_3389_fimmu_2022_804641
crossref_primary_10_1016_j_ecoenv_2020_110491
crossref_primary_10_1186_s12931_017_0675_x
crossref_primary_10_3892_etm_2022_11422
crossref_primary_10_1016_j_nbscr_2016_11_005
crossref_primary_10_3389_fcell_2022_910983
crossref_primary_10_1111_liv_12934
crossref_primary_10_1074_jbc_RA118_003698
crossref_primary_10_1155_2021_6454177
crossref_primary_10_1111_imr_12609
crossref_primary_10_1155_2023_1462048
crossref_primary_10_1016_j_cyto_2018_07_027
crossref_primary_10_1016_j_cyto_2019_01_009
crossref_primary_10_1136_jim_2016_000301
crossref_primary_10_1189_jlb_5RU0816_341R
crossref_primary_10_1016_j_celrep_2021_108955
crossref_primary_10_1038_s41598_019_42808_4
crossref_primary_10_1111_imr_12605
crossref_primary_10_1016_j_cytogfr_2019_10_003
crossref_primary_10_1096_fj_201700524R
crossref_primary_10_1111_imr_12614
crossref_primary_10_1002_iid3_1020
crossref_primary_10_1038_s41419_020_02924_w
crossref_primary_10_1080_08820139_2016_1250220
crossref_primary_10_1016_j_cytogfr_2021_09_004
crossref_primary_10_1186_s41927_017_0001_8
crossref_primary_10_1007_s40618_018_0903_3
crossref_primary_10_1016_j_intimp_2020_106476
crossref_primary_10_1016_j_intimp_2022_109343
crossref_primary_10_3389_fimmu_2023_1261666
crossref_primary_10_1016_j_intimp_2023_109932
crossref_primary_10_1093_rheumatology_keaa192
crossref_primary_10_1016_j_cytogfr_2018_12_004
crossref_primary_10_3390_brainsci12060723
crossref_primary_10_5466_ijoms_21_147
crossref_primary_10_1093_infdis_jiaa713
crossref_primary_10_1016_j_cyto_2015_05_005
crossref_primary_10_4049_jimmunol_1901176
crossref_primary_10_1016_j_bbalip_2019_05_009
crossref_primary_10_3390_cells11162565
crossref_primary_10_1111_1756_185X_13122
crossref_primary_10_1016_j_immuni_2015_06_003
crossref_primary_10_1007_s10753_016_0480_6
crossref_primary_10_1016_j_smim_2023_101712
crossref_primary_10_1016_j_ecoenv_2021_112890
crossref_primary_10_1016_j_ejphar_2022_175293
crossref_primary_10_1073_pnas_2306476120
crossref_primary_10_1016_j_chembiol_2021_10_004
crossref_primary_10_1515_med_2022_0456
crossref_primary_10_1126_sciimmunol_ade5728
crossref_primary_10_1177_0022034520945209
crossref_primary_10_1038_s41419_021_03852_z
crossref_primary_10_1073_pnas_1619667114
crossref_primary_10_1007_s10529_024_03539_3
crossref_primary_10_3389_fimmu_2021_603649
crossref_primary_10_3390_cells12232766
crossref_primary_10_1016_j_cyto_2017_02_008
crossref_primary_10_3389_fimmu_2021_652846
crossref_primary_10_1093_rheumatology_kew325
crossref_primary_10_1016_j_cyto_2019_154853
crossref_primary_10_1016_j_jab_2017_04_001
crossref_primary_10_1161_CIRCRESAHA_122_321787
crossref_primary_10_1038_onc_2017_405
crossref_primary_10_1002_eji_202149724
crossref_primary_10_1016_j_clim_2019_03_001
crossref_primary_10_1016_j_intimp_2023_110098
crossref_primary_10_1002_eji_201848056
crossref_primary_10_1126_scisignal_aan3589
crossref_primary_10_3389_fimmu_2021_636896
crossref_primary_10_1038_srep14478
crossref_primary_10_18632_oncotarget_17713
crossref_primary_10_18632_aging_203515
crossref_primary_10_1007_s00299_019_02377_2
crossref_primary_10_1007_s12032_016_0782_4
crossref_primary_10_1016_j_biopha_2019_109705
crossref_primary_10_1038_onc_2016_444
crossref_primary_10_3389_fimmu_2022_931783
crossref_primary_10_3390_ijms24054811
crossref_primary_10_1002_cnr2_1151
crossref_primary_10_1016_j_jri_2017_09_011
crossref_primary_10_1016_j_pep_2020_105677
crossref_primary_10_1038_s41598_021_87592_2
crossref_primary_10_1038_s41588_023_01598_2
crossref_primary_10_1016_j_jbc_2021_100630
crossref_primary_10_1016_j_autrev_2015_08_006
crossref_primary_10_1038_s41584_019_0277_8
crossref_primary_10_4049_jimmunol_1502334
crossref_primary_10_1016_j_cyto_2020_155334
crossref_primary_10_1111_cpr_12692
crossref_primary_10_1007_s11033_022_07573_0
crossref_primary_10_17235_reed_2019_6460_2019
crossref_primary_10_1016_j_kint_2023_12_006
crossref_primary_10_1084_jem_20221437
crossref_primary_10_3389_fimmu_2016_00149
crossref_primary_10_1038_s41598_019_44235_x
crossref_primary_10_3389_fimmu_2023_1278521
crossref_primary_10_1016_j_imlet_2016_04_004
crossref_primary_10_1371_journal_pone_0169922
crossref_primary_10_3389_fimmu_2019_01197
crossref_primary_10_1016_j_ebiom_2019_06_011
crossref_primary_10_1038_s41419_018_0664_0
crossref_primary_10_1080_08830185_2019_1677644
crossref_primary_10_1016_j_cjca_2019_04_007
crossref_primary_10_1073_pnas_1523212113
crossref_primary_10_3390_ijms232113242
crossref_primary_10_1016_j_cyto_2015_06_017
crossref_primary_10_1016_j_jaci_2019_07_009
crossref_primary_10_4049_jimmunol_1401810
crossref_primary_10_3389_fimmu_2021_696605
crossref_primary_10_1016_j_intimp_2020_107087
crossref_primary_10_1002_JLB_3MIR0120_625R
crossref_primary_10_1016_j_intimp_2019_01_037
crossref_primary_10_3390_ijms25020699
crossref_primary_10_1016_j_cyto_2018_02_015
crossref_primary_10_3390_ijms20153701
crossref_primary_10_1016_j_imlet_2015_08_001
crossref_primary_10_1155_2019_6085801
crossref_primary_10_1161_ATVBAHA_115_306543
crossref_primary_10_1016_j_bbi_2020_09_026
crossref_primary_10_3390_antib10040041
crossref_primary_10_1186_s13046_016_0293_3
crossref_primary_10_1016_j_clim_2024_110368
crossref_primary_10_1101_cshperspect_a028506
crossref_primary_10_1038_s41598_017_06124_z
crossref_primary_10_1158_2326_6066_CIR_18_0698
crossref_primary_10_1084_jem_20190314
crossref_primary_10_3389_fimmu_2019_01266
crossref_primary_10_1016_j_intimp_2018_04_002
crossref_primary_10_3389_fimmu_2019_02632
crossref_primary_10_1038_s41413_018_0039_2
crossref_primary_10_1586_17476348_2015_1109452
crossref_primary_10_3389_fmicb_2021_633047
crossref_primary_10_3389_fimmu_2024_1427100
crossref_primary_10_1158_2326_6066_CIR_17_0498
crossref_primary_10_1080_08820139_2024_2443253
crossref_primary_10_1016_j_intimp_2016_05_003
crossref_primary_10_1016_j_jcyt_2023_12_004
crossref_primary_10_1016_j_cyto_2024_156598
crossref_primary_10_1093_ibd_izaa124
crossref_primary_10_3892_etm_2019_7824
crossref_primary_10_1007_s11357_022_00587_3
crossref_primary_10_1111_acel_13074
crossref_primary_10_1007_s12026_017_8938_7
crossref_primary_10_1016_j_cellimm_2023_104759
crossref_primary_10_1189_jlb_3MA0616_287R
crossref_primary_10_1016_j_cyto_2016_06_023
crossref_primary_10_3390_molecules25010020
crossref_primary_10_1016_j_joca_2018_08_016
crossref_primary_10_1111_liv_13642
crossref_primary_10_1093_cvr_cvaf012
crossref_primary_10_1016_j_cyto_2016_01_006
crossref_primary_10_1155_2018_3058640
crossref_primary_10_1002_eji_201545828
crossref_primary_10_1016_j_intimp_2021_107803
crossref_primary_10_3390_ijms24010372
crossref_primary_10_1111_jocd_13290
crossref_primary_10_1073_pnas_1821111116
crossref_primary_10_1681_ASN_2019050545
crossref_primary_10_1007_s12672_024_01608_7
crossref_primary_10_3390_ijms252312878
crossref_primary_10_1038_aps_2015_51
crossref_primary_10_3389_fimmu_2018_02482
crossref_primary_10_1186_s12964_020_00632_8
Cites_doi 10.4049/jimmunol.180.8.5477
10.1074/jbc.M109.004184
10.4049/jimmunol.0802729
10.1073/pnas.1416714111
10.1073/pnas.212519099
10.3389/fimmu.2013.00391
10.1073/pnas.0607917103
10.2119/2006-00005.Dinarello
10.1371/journal.ppat.1004462
10.1038/ni968
10.1016/j.smim.2013.10.023
10.1016/j.smim.2013.10.004
10.1006/cyto.2000.0799
10.1073/pnas.1111982108
10.1038/ncomms5711
10.1111/j.1440-1746.2012.07187.x
10.1016/j.it.2009.06.001
10.1038/ni.3103
10.1158/0008-5472.CAN-07-0560
10.3389/fimmu.2013.00180
10.1038/ni.1944
10.1073/pnas.1324140111
10.3389/fimmu.2012.00322
10.1073/pnas.0308680101
10.1006/cyto.2002.0873
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Feb 24, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Feb 24, 2015
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1424626112
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
CrossRef

AGRICOLA
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Extracellular properties of IL-37 require IL-1R8
EISSN 1091-6490
EndPage 2502
ExternalDocumentID PMC4345608
3615247801
25654981
10_1073_pnas_1424626112
112_8_2497
26461845
US201600149189
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI007405
– fundername: NIAID NIH HHS
  grantid: R01 AI015614
– fundername: NIAID NIH HHS
  grantid: R56 AI015614
– fundername: NIAMS NIH HHS
  grantid: R01 AR045584
– fundername: National Research Foundation of Korea (NRF)
  grantid: MEST: 2012R1A2A1A01001791
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI-15614
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AR-45584
– fundername: American Heart Association (AHA)
  grantid: 12POST12030134
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c589t-b38193c16dc7d8ca65c066095b4afa57096a86b23ecec18cb94aa5c0b2c4f72a3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:18:03 EDT 2025
Fri Jul 11 00:47:31 EDT 2025
Fri Jul 11 06:23:23 EDT 2025
Mon Jun 30 08:10:18 EDT 2025
Thu Apr 03 07:04:48 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Tue Jul 01 01:53:21 EDT 2025
Wed Nov 11 00:29:50 EST 2020
Fri May 30 12:01:42 EDT 2025
Thu Apr 03 09:42:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords inflammasome
endotoxemia
immunity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c589t-b38193c16dc7d8ca65c066095b4afa57096a86b23ecec18cb94aa5c0b2c4f72a3
Notes http://dx.doi.org/10.1073/pnas.1424626112
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: S.L., C.P.N., Y.L., B.E.P., M.F., S.K., and C.A.D. designed research; S.L., C.P.N., K.B., J.H., Y.L., T.A., B.E.P., M.F., C.G., A.M., S.K., and C.A.D. performed research; S.L., J.H., B.E.P., C.G., A.M., S.K., and C.A.D. contributed new reagents/analytic tools; S.L., C.P.N., K.B., Y.L., T.A., B.E.P., M.F., C.G., A.M., and C.A.D. analyzed data; and S.L., C.P.N., B.E.P., M.F., C.G., A.M., S.K., and C.A.D. wrote the paper.
Contributed by Charles Anthony Dinarello, January 6, 2015 (sent for review November 12, 2014)
OpenAccessLink https://www.pnas.org/content/pnas/112/8/2497.full.pdf
PMID 25654981
PQID 1660767697
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1803114826
jstor_primary_26461845
pubmed_primary_25654981
proquest_journals_1660767697
fao_agris_US201600149189
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4345608
crossref_citationtrail_10_1073_pnas_1424626112
proquest_miscellaneous_1658707782
crossref_primary_10_1073_pnas_1424626112
pnas_primary_112_8_2497
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-24
PublicationDateYYYYMMDD 2015-02-24
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Yang Y (e_1_3_3_23_2) 2014
Schmit A (e_1_3_3_22_2) 2002; 13
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
Polentarutti N (e_1_3_3_17_2) 2003; 14
Yousif NG (e_1_3_3_5_2) 2011; 124
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_3_2
e_1_3_3_21_2
24275599 - Semin Immunol. 2013 Dec 15;25(6):466-8
24246227 - Semin Immunol. 2013 Dec 15;25(6):394-407
16557334 - Mol Med. 2005 Jan-Dec;11(1-12):1-15
12925853 - Nat Immunol. 2003 Sep;4(9):920-7
20935647 - Nat Immunol. 2010 Nov;11(11):1014-22
25294929 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15178-83
24312098 - Front Immunol. 2013 Nov 20;4:391
19699681 - Trends Immunol. 2009 Sep;30(9):439-46
25375146 - PLoS Pathog. 2014 Nov;10(11):e1004462
14993616 - Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3522-6
12096920 - Cytokine. 2002 Apr 21;18(2):61-71
12231473 - Eur Cytokine Netw. 2002 Jul-Sep;13(3):298-305
23112799 - Front Immunol. 2012 Oct 29;3:322
19592492 - J Biol Chem. 2009 Sep 18;284(38):25900-11
21873195 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16711-6
19234154 - J Immunol. 2009 Mar 1;182(5):2601-9
14715412 - Eur Cytokine Netw. 2003 Oct-Dec;14(4):211-8
23847621 - Front Immunol. 2013 Jul 09;4:180
18390730 - J Immunol. 2008 Apr 15;180(8):5477-82
17075045 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16852-7
24481253 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2650-5
25182023 - Nat Commun. 2014;5:4711
25729923 - Nat Immunol. 2015 Apr;16(4):354-65
17616656 - Cancer Res. 2007 Jul 1;67(13):6017-21
12381835 - Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13723-8
25207880 - Kidney Int. 2015 Feb;87(2):396-408
22646996 - J Gastroenterol Hepatol. 2012 Oct;27(10):1609-16
11145836 - Cytokine. 2001 Jan 7;13(1):1-7
References_xml – ident: e_1_3_3_7_2
  doi: 10.4049/jimmunol.180.8.5477
– ident: e_1_3_3_25_2
  doi: 10.1074/jbc.M109.004184
– ident: e_1_3_3_18_2
  doi: 10.4049/jimmunol.0802729
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.1416714111
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.212519099
– ident: e_1_3_3_21_2
  doi: 10.3389/fimmu.2013.00391
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.0607917103
– ident: e_1_3_3_29_2
  doi: 10.2119/2006-00005.Dinarello
– ident: e_1_3_3_11_2
  doi: 10.1371/journal.ppat.1004462
– ident: e_1_3_3_15_2
  doi: 10.1038/ni968
– ident: e_1_3_3_24_2
  doi: 10.1016/j.smim.2013.10.023
– ident: e_1_3_3_1_2
  doi: 10.1016/j.smim.2013.10.004
– ident: e_1_3_3_12_2
  doi: 10.1006/cyto.2000.0799
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.1111982108
– ident: e_1_3_3_4_2
  doi: 10.1038/ncomms5711
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1440-1746.2012.07187.x
– volume: 124
  start-page: A8603
  year: 2011
  ident: e_1_3_3_5_2
  article-title: Expression of IL-37 in mouse protects the myocardium against ischemic injury via modulation of NF-κB activation
  publication-title: Circulation
– ident: e_1_3_3_27_2
  doi: 10.1016/j.it.2009.06.001
– ident: e_1_3_3_28_2
  doi: 10.1038/ni.3103
– volume: 14
  start-page: 211
  year: 2003
  ident: e_1_3_3_17_2
  article-title: Unique pattern of expression and inhibition of IL-1 signaling by the IL-1 receptor family member TIR8/SIGIRR
  publication-title: Eur Cytokine Netw
– ident: e_1_3_3_20_2
  doi: 10.1158/0008-5472.CAN-07-0560
– ident: e_1_3_3_19_2
  doi: 10.3389/fimmu.2013.00180
– volume: 13
  start-page: 298
  year: 2002
  ident: e_1_3_3_22_2
  article-title: Dose-effect of interleukin-10 and its immunoregulatory role in Crohn’s disease
  publication-title: Eur Cytokine Netw
– ident: e_1_3_3_2_2
  doi: 10.1038/ni.1944
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.1324140111
– ident: e_1_3_3_9_2
  doi: 10.3389/fimmu.2012.00322
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0308680101
– year: 2014
  ident: e_1_3_3_23_2
  article-title: IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia-reperfusion injury
  publication-title: Kidney Int
– ident: e_1_3_3_13_2
  doi: 10.1006/cyto.2002.0873
– reference: 24246227 - Semin Immunol. 2013 Dec 15;25(6):394-407
– reference: 22646996 - J Gastroenterol Hepatol. 2012 Oct;27(10):1609-16
– reference: 14993616 - Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3522-6
– reference: 24312098 - Front Immunol. 2013 Nov 20;4:391
– reference: 20935647 - Nat Immunol. 2010 Nov;11(11):1014-22
– reference: 19592492 - J Biol Chem. 2009 Sep 18;284(38):25900-11
– reference: 18390730 - J Immunol. 2008 Apr 15;180(8):5477-82
– reference: 17616656 - Cancer Res. 2007 Jul 1;67(13):6017-21
– reference: 25375146 - PLoS Pathog. 2014 Nov;10(11):e1004462
– reference: 12231473 - Eur Cytokine Netw. 2002 Jul-Sep;13(3):298-305
– reference: 23112799 - Front Immunol. 2012 Oct 29;3:322
– reference: 12925853 - Nat Immunol. 2003 Sep;4(9):920-7
– reference: 19234154 - J Immunol. 2009 Mar 1;182(5):2601-9
– reference: 17075045 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16852-7
– reference: 25182023 - Nat Commun. 2014;5:4711
– reference: 24481253 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2650-5
– reference: 21873195 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16711-6
– reference: 24275599 - Semin Immunol. 2013 Dec 15;25(6):466-8
– reference: 25294929 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15178-83
– reference: 25207880 - Kidney Int. 2015 Feb;87(2):396-408
– reference: 11145836 - Cytokine. 2001 Jan 7;13(1):1-7
– reference: 12096920 - Cytokine. 2002 Apr 21;18(2):61-71
– reference: 23847621 - Front Immunol. 2013 Jul 09;4:180
– reference: 25729923 - Nat Immunol. 2015 Apr;16(4):354-65
– reference: 12381835 - Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13723-8
– reference: 19699681 - Trends Immunol. 2009 Sep;30(9):439-46
– reference: 14715412 - Eur Cytokine Netw. 2003 Oct-Dec;14(4):211-8
– reference: 16557334 - Mol Med. 2005 Jan-Dec;11(1-12):1-15
SSID ssj0009580
Score 2.5621958
Snippet Significance Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the...
Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we...
Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the mechanism of this...
Similar to IL-1a and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2497
SubjectTerms Animals
Biological Sciences
Blood
Bone marrow
caspase-1
Cell Differentiation - drug effects
Cells
Cytokines
Endotoxemia - metabolism
Endotoxemia - pathology
Enzyme Activation - drug effects
Extracellular Space - chemistry
Flow Cytometry
Gene expression
Gene Expression Regulation - drug effects
Humans
Immobilized Proteins - metabolism
immunity
Immunity, Innate
inflammation
Inflammation - immunology
Inflammation - pathology
Interleukin-1 - chemistry
Interleukin-1 - metabolism
interleukin-1beta
Interleukin-1beta - metabolism
interleukin-6
Interleukin-6 - metabolism
Lipopolysaccharides - pharmacology
macrophages
Macrophages - cytology
Macrophages - drug effects
Macrophages - enzymology
Macrophages - metabolism
Mice
Neutralization Tests
p38 Mitogen-Activated Protein Kinases - metabolism
Protein Structure, Tertiary
receptors
Receptors, Interleukin-1 - chemistry
Receptors, Interleukin-1 - metabolism
Recombinant Proteins - pharmacology
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rodents
tumor necrosis factor-alpha
Tumor Necrosis Factor-alpha - metabolism
Title Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8
URI https://www.jstor.org/stable/26461845
http://www.pnas.org/content/112/8/2497.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25654981
https://www.proquest.com/docview/1660767697
https://www.proquest.com/docview/1658707782
https://www.proquest.com/docview/1803114826
https://pubmed.ncbi.nlm.nih.gov/PMC4345608
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWCsMJCReBiqUpZv53GqhgrqpgpWaW-R4zg0EiRTmxbYC_8wfwR3tvPRqkywl6qJHcfN_XK-u_7uTMibIONMCIGpW2lgeTLjVhSAz5PJNHLslPuuyuI_vwjGM-_jlX_V6_3usJZWVTIUNzvzSu4iVTgHcsUs2f-QbDMonIDvIF_4BAnD5z_J-OxHteAYeldcUjQ_FTHjwwRe6EFezPMkxx0ACrAnkXUFwteJihjkWOfVojS1l-BgXQ6SVTVYSGQGS82pnFh2HQBJwUv9Ca1IgikXqukT6xq202YhXNa0g4s6znjaZq0YVbIcWIPpRbsH8iTXDKGbOS_b8LQuGDkaKp5I1fIF8D8SwwVRKqpolpZxTTDm8ntZdiMats4QbyOat82uq8odWF49c53U2huMHyvw9P6jjXq3nQ6OWVdZe5oabBZ-MAadnYsKaEHcCbngyyHmBYILaMbsQOz6m8IYGJDgcOtNaLbqeE_PR54L5ipmpt93wKlx1DLSLRHNdMKU-WF1IarQfbd1b6xgbW60YU7dy3hZ82qxWC9ctctx2ub_dgyqy0fkofGE6KmG9T7pyeIx2a9FQI9NQfS3T8ivDZxThXNaZlThnBqcU41z2sU5HFCFcwo41wfrkgLOqcE5BZziMDbVOKcK57TGOdU4f0pm788uR2PLbBxiCZ9FlZVgGMIVdpCKMGWCB74AyxoecOLxjPshuO2cBYnjwmjCZiKJPM6hT-IILwsd7h6QvaIs5CGhJ6mfRsyJZBJlHuOcyciTIkoT3wdP4sTvk2H9_GNhqurj5i5fY8XuCN0YpRC3suuT4-aCa11Q5u9dD0GgMf8C71I8--xgMUiMaNgs6pMDJeVmCPBrcOsmmM8zNUoztO3ELEak98lRjYTY6DC4GTyWEFnu0Py6aYYVBmXKC1musI8Pi3oIrsQtfRgYB1hSOMAJKHC1UzNQ7ZNwA3ZNB6xwv9lS5HNV6d68MM_vfOUL8qDVMEdkr1qs5EvwIqrklXr5_gDDNhsQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+forms+of+IL-37+inhibit+innate+inflammation+in+vitro+and+in+vivo+but+require+the+IL-1+family+decoy+receptor+IL-1R8&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Suzhao&rft.au=Neff%2C+C.+Preston&rft.au=Barber%2C+Kristina&rft.au=Hong%2C+Jaewoo&rft.date=2015-02-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=8&rft.spage=2497&rft.epage=2502&rft_id=info:doi/10.1073%2Fpnas.1424626112&rft_id=info%3Apmid%2F25654981&rft.externalDocID=PMC4345608
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F8.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F8.cover.gif