Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8
Significance Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the mechanism of this suppression was shown to be via translocation to the nucleus following cleavage of the precursor by intracellular caspase-1. We n...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 8; pp. 2497 - 2502 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.02.2015
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Significance Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the mechanism of this suppression was shown to be via translocation to the nucleus following cleavage of the precursor by intracellular caspase-1. We now show that recombinant forms of IL-37 limit inflammation by extracellular binding to surface receptors but require the IL-1 family decoy receptor IL-1R8. Unexpectedly, picomolar concentrations of the IL-37 precursor optimally suppress IL-1β, IL-6, and TNFα production from human blood M1 macrophages, suggesting a unique function for a coreceptor function of IL-1R8. Assessment of IL-37 as well as IL-1R8 levels may provide previously unidentified insights into how the host limits inflammation.
Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% ( P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti–IL-37 increased LPS-induced IL-6, TNFα and IL-1β ( P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background ( P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50–55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8–deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties. |
---|---|
AbstractList | Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P< 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti–IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P< 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P< 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50–55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8–deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties. Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the mechanism of this suppression was shown to be via translocation to the nucleus following cleavage of the precursor by intracellular caspase-1. We now show that recombinant forms of IL-37 limit inflammation by extracellular binding to surface receptors but require the IL-1 family decoy receptor IL-1R8. Unexpectedly, picomolar concentrations of the IL-37 precursor optimally suppress IL-1β, IL-6, and TNFα production from human blood M1 macrophages, suggesting a unique function for a coreceptor function of IL-1R8. Assessment of IL-37 as well as IL-1R8 levels may provide previously unidentified insights into how the host limits inflammation. Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% ( P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti–IL-37 increased LPS-induced IL-6, TNFα and IL-1β ( P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background ( P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50–55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8–deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties. Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti-IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50-55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8-deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti-IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50-55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8-deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties. Significance Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the mechanism of this suppression was shown to be via translocation to the nucleus following cleavage of the precursor by intracellular caspase-1. We now show that recombinant forms of IL-37 limit inflammation by extracellular binding to surface receptors but require the IL-1 family decoy receptor IL-1R8. Unexpectedly, picomolar concentrations of the IL-37 precursor optimally suppress IL-1β, IL-6, and TNFα production from human blood M1 macrophages, suggesting a unique function for a coreceptor function of IL-1R8. Assessment of IL-37 as well as IL-1R8 levels may provide previously unidentified insights into how the host limits inflammation. Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% ( P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti–IL-37 increased LPS-induced IL-6, TNFα and IL-1β ( P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background ( P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50–55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8–deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties. Similar to IL-1a and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti-IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFa mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding a-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFa and IL-6 by 50-55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8-deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties. |
Author | Hong, Jaewoo Fujita, Mayumi Barber, Kristina Neff, C. Preston Mantovani, Alberto Li, Suzhao Kim, Soohyun Azam, Tania Palmer, Brent E. Garlanda, Cecilia Luo, Yuchun Dinarello, Charles Anthony |
Author_xml | – sequence: 1 givenname: Suzhao surname: Li fullname: Li, Suzhao organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045 – sequence: 2 givenname: C. Preston surname: Neff fullname: Neff, C. Preston organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045 – sequence: 3 givenname: Kristina surname: Barber fullname: Barber, Kristina organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045 – sequence: 4 givenname: Jaewoo surname: Hong fullname: Hong, Jaewoo organization: Laboratory of Cytokine Immunology, Konkuk University, 143-701 Seoul, Republic of Korea – sequence: 5 givenname: Yuchun surname: Luo fullname: Luo, Yuchun organization: Department of Dermatology, University of Colorado Denver, Aurora, CO 80045 – sequence: 6 givenname: Tania surname: Azam fullname: Azam, Tania organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045 – sequence: 7 givenname: Brent E. surname: Palmer fullname: Palmer, Brent E. organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045 – sequence: 8 givenname: Mayumi surname: Fujita fullname: Fujita, Mayumi organization: Department of Dermatology, University of Colorado Denver, Aurora, CO 80045 – sequence: 9 givenname: Cecilia surname: Garlanda fullname: Garlanda, Cecilia organization: Research Institute Humanitas, 20089 Milan, Italy – sequence: 10 givenname: Alberto surname: Mantovani fullname: Mantovani, Alberto organization: Research Institute Humanitas, 20089 Milan, Italy – sequence: 11 givenname: Soohyun surname: Kim fullname: Kim, Soohyun organization: Laboratory of Cytokine Immunology, Konkuk University, 143-701 Seoul, Republic of Korea – sequence: 12 givenname: Charles Anthony surname: Dinarello fullname: Dinarello, Charles Anthony organization: Department of Medicine, University of Colorado Denver, Aurora, CO 80045 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25654981$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URNPCmhVgiQ2baW2Px49NJVQVqBQJCeja8jiextGMndqeiKz463iSNoUuYHVlne9en_s4AUc-eAvAa4zOMOL1-drrdIYpoYwwjMkzMMNI4opRiY7ADCHCK1HUY3CS0gohJBuBXoBj0rCGSoFn4NfVzxy1sX0_9jrCLsQhwdDB63lVc-j80rUul-h1tiV0vR4GnV3w5QE3LscAtV_sH5sA2zHDaO9GFy3MSzuVwbDTg-u3cGFN2BbV2HUOcSd9Ey_B8073yb66j6fg5tPVj8sv1fzr5-vLj_PKNELmqq0FlrXBbGH4QhjNGoMYK-20VHe64UgyLVhL6lLdYGFaSbUuTEsM7TjR9Sm42Nddj-1gF8b60nav1tENOm5V0E79rXi3VLdho2hNG4ZEKfDhvkAMd6NNWQ0uTXPT3oYxKSxQjTEVhP0fZY3giHNBCvr-CboKY_RlEoViiDPOJC_U2z_NH1w_rLEA53vAxJBStN0BwUhNh6KmQ1GPh1IymicZxuXdYkv3rv9H3oOVSTj8gokSitCd1zd7YJXKlh-tMsqwoE3R3-31Tgelb6NL6uY7QZghhKnEQta_AUXv3sA |
CitedBy_id | crossref_primary_10_1016_j_intimp_2024_112525 crossref_primary_10_1016_j_cyto_2021_155773 crossref_primary_10_1073_pnas_1906817116 crossref_primary_10_1111_all_13395 crossref_primary_10_1126_sciimmunol_aaj1548 crossref_primary_10_1038_s41598_019_43364_7 crossref_primary_10_1111_imr_12616 crossref_primary_10_1111_imr_12617 crossref_primary_10_1007_s12253_016_0137_7 crossref_primary_10_1016_j_cyto_2015_03_022 crossref_primary_10_3390_vaccines8030554 crossref_primary_10_1016_j_lfs_2018_02_014 crossref_primary_10_1111_imr_12621 crossref_primary_10_7554_eLife_75889 crossref_primary_10_1038_s41423_023_01091_0 crossref_primary_10_1155_2019_2650590 crossref_primary_10_1038_cmi_2016_48 crossref_primary_10_1002_jcp_27526 crossref_primary_10_3389_fimmu_2022_804641 crossref_primary_10_1016_j_ecoenv_2020_110491 crossref_primary_10_1186_s12931_017_0675_x crossref_primary_10_3892_etm_2022_11422 crossref_primary_10_1016_j_nbscr_2016_11_005 crossref_primary_10_3389_fcell_2022_910983 crossref_primary_10_1111_liv_12934 crossref_primary_10_1074_jbc_RA118_003698 crossref_primary_10_1155_2021_6454177 crossref_primary_10_1111_imr_12609 crossref_primary_10_1155_2023_1462048 crossref_primary_10_1016_j_cyto_2018_07_027 crossref_primary_10_1016_j_cyto_2019_01_009 crossref_primary_10_1136_jim_2016_000301 crossref_primary_10_1189_jlb_5RU0816_341R crossref_primary_10_1016_j_celrep_2021_108955 crossref_primary_10_1038_s41598_019_42808_4 crossref_primary_10_1111_imr_12605 crossref_primary_10_1016_j_cytogfr_2019_10_003 crossref_primary_10_1096_fj_201700524R crossref_primary_10_1111_imr_12614 crossref_primary_10_1002_iid3_1020 crossref_primary_10_1038_s41419_020_02924_w crossref_primary_10_1080_08820139_2016_1250220 crossref_primary_10_1016_j_cytogfr_2021_09_004 crossref_primary_10_1186_s41927_017_0001_8 crossref_primary_10_1007_s40618_018_0903_3 crossref_primary_10_1016_j_intimp_2020_106476 crossref_primary_10_1016_j_intimp_2022_109343 crossref_primary_10_3389_fimmu_2023_1261666 crossref_primary_10_1016_j_intimp_2023_109932 crossref_primary_10_1093_rheumatology_keaa192 crossref_primary_10_1016_j_cytogfr_2018_12_004 crossref_primary_10_3390_brainsci12060723 crossref_primary_10_5466_ijoms_21_147 crossref_primary_10_1093_infdis_jiaa713 crossref_primary_10_1016_j_cyto_2015_05_005 crossref_primary_10_4049_jimmunol_1901176 crossref_primary_10_1016_j_bbalip_2019_05_009 crossref_primary_10_3390_cells11162565 crossref_primary_10_1111_1756_185X_13122 crossref_primary_10_1016_j_immuni_2015_06_003 crossref_primary_10_1007_s10753_016_0480_6 crossref_primary_10_1016_j_smim_2023_101712 crossref_primary_10_1016_j_ecoenv_2021_112890 crossref_primary_10_1016_j_ejphar_2022_175293 crossref_primary_10_1073_pnas_2306476120 crossref_primary_10_1016_j_chembiol_2021_10_004 crossref_primary_10_1515_med_2022_0456 crossref_primary_10_1126_sciimmunol_ade5728 crossref_primary_10_1177_0022034520945209 crossref_primary_10_1038_s41419_021_03852_z crossref_primary_10_1073_pnas_1619667114 crossref_primary_10_1007_s10529_024_03539_3 crossref_primary_10_3389_fimmu_2021_603649 crossref_primary_10_3390_cells12232766 crossref_primary_10_1016_j_cyto_2017_02_008 crossref_primary_10_3389_fimmu_2021_652846 crossref_primary_10_1093_rheumatology_kew325 crossref_primary_10_1016_j_cyto_2019_154853 crossref_primary_10_1016_j_jab_2017_04_001 crossref_primary_10_1161_CIRCRESAHA_122_321787 crossref_primary_10_1038_onc_2017_405 crossref_primary_10_1002_eji_202149724 crossref_primary_10_1016_j_clim_2019_03_001 crossref_primary_10_1016_j_intimp_2023_110098 crossref_primary_10_1002_eji_201848056 crossref_primary_10_1126_scisignal_aan3589 crossref_primary_10_3389_fimmu_2021_636896 crossref_primary_10_1038_srep14478 crossref_primary_10_18632_oncotarget_17713 crossref_primary_10_18632_aging_203515 crossref_primary_10_1007_s00299_019_02377_2 crossref_primary_10_1007_s12032_016_0782_4 crossref_primary_10_1016_j_biopha_2019_109705 crossref_primary_10_1038_onc_2016_444 crossref_primary_10_3389_fimmu_2022_931783 crossref_primary_10_3390_ijms24054811 crossref_primary_10_1002_cnr2_1151 crossref_primary_10_1016_j_jri_2017_09_011 crossref_primary_10_1016_j_pep_2020_105677 crossref_primary_10_1038_s41598_021_87592_2 crossref_primary_10_1038_s41588_023_01598_2 crossref_primary_10_1016_j_jbc_2021_100630 crossref_primary_10_1016_j_autrev_2015_08_006 crossref_primary_10_1038_s41584_019_0277_8 crossref_primary_10_4049_jimmunol_1502334 crossref_primary_10_1016_j_cyto_2020_155334 crossref_primary_10_1111_cpr_12692 crossref_primary_10_1007_s11033_022_07573_0 crossref_primary_10_17235_reed_2019_6460_2019 crossref_primary_10_1016_j_kint_2023_12_006 crossref_primary_10_1084_jem_20221437 crossref_primary_10_3389_fimmu_2016_00149 crossref_primary_10_1038_s41598_019_44235_x crossref_primary_10_3389_fimmu_2023_1278521 crossref_primary_10_1016_j_imlet_2016_04_004 crossref_primary_10_1371_journal_pone_0169922 crossref_primary_10_3389_fimmu_2019_01197 crossref_primary_10_1016_j_ebiom_2019_06_011 crossref_primary_10_1038_s41419_018_0664_0 crossref_primary_10_1080_08830185_2019_1677644 crossref_primary_10_1016_j_cjca_2019_04_007 crossref_primary_10_1073_pnas_1523212113 crossref_primary_10_3390_ijms232113242 crossref_primary_10_1016_j_cyto_2015_06_017 crossref_primary_10_1016_j_jaci_2019_07_009 crossref_primary_10_4049_jimmunol_1401810 crossref_primary_10_3389_fimmu_2021_696605 crossref_primary_10_1016_j_intimp_2020_107087 crossref_primary_10_1002_JLB_3MIR0120_625R crossref_primary_10_1016_j_intimp_2019_01_037 crossref_primary_10_3390_ijms25020699 crossref_primary_10_1016_j_cyto_2018_02_015 crossref_primary_10_3390_ijms20153701 crossref_primary_10_1016_j_imlet_2015_08_001 crossref_primary_10_1155_2019_6085801 crossref_primary_10_1161_ATVBAHA_115_306543 crossref_primary_10_1016_j_bbi_2020_09_026 crossref_primary_10_3390_antib10040041 crossref_primary_10_1186_s13046_016_0293_3 crossref_primary_10_1016_j_clim_2024_110368 crossref_primary_10_1101_cshperspect_a028506 crossref_primary_10_1038_s41598_017_06124_z crossref_primary_10_1158_2326_6066_CIR_18_0698 crossref_primary_10_1084_jem_20190314 crossref_primary_10_3389_fimmu_2019_01266 crossref_primary_10_1016_j_intimp_2018_04_002 crossref_primary_10_3389_fimmu_2019_02632 crossref_primary_10_1038_s41413_018_0039_2 crossref_primary_10_1586_17476348_2015_1109452 crossref_primary_10_3389_fmicb_2021_633047 crossref_primary_10_3389_fimmu_2024_1427100 crossref_primary_10_1158_2326_6066_CIR_17_0498 crossref_primary_10_1080_08820139_2024_2443253 crossref_primary_10_1016_j_intimp_2016_05_003 crossref_primary_10_1016_j_jcyt_2023_12_004 crossref_primary_10_1016_j_cyto_2024_156598 crossref_primary_10_1093_ibd_izaa124 crossref_primary_10_3892_etm_2019_7824 crossref_primary_10_1007_s11357_022_00587_3 crossref_primary_10_1111_acel_13074 crossref_primary_10_1007_s12026_017_8938_7 crossref_primary_10_1016_j_cellimm_2023_104759 crossref_primary_10_1189_jlb_3MA0616_287R crossref_primary_10_1016_j_cyto_2016_06_023 crossref_primary_10_3390_molecules25010020 crossref_primary_10_1016_j_joca_2018_08_016 crossref_primary_10_1111_liv_13642 crossref_primary_10_1093_cvr_cvaf012 crossref_primary_10_1016_j_cyto_2016_01_006 crossref_primary_10_1155_2018_3058640 crossref_primary_10_1002_eji_201545828 crossref_primary_10_1016_j_intimp_2021_107803 crossref_primary_10_3390_ijms24010372 crossref_primary_10_1111_jocd_13290 crossref_primary_10_1073_pnas_1821111116 crossref_primary_10_1681_ASN_2019050545 crossref_primary_10_1007_s12672_024_01608_7 crossref_primary_10_3390_ijms252312878 crossref_primary_10_1038_aps_2015_51 crossref_primary_10_3389_fimmu_2018_02482 crossref_primary_10_1186_s12964_020_00632_8 |
Cites_doi | 10.4049/jimmunol.180.8.5477 10.1074/jbc.M109.004184 10.4049/jimmunol.0802729 10.1073/pnas.1416714111 10.1073/pnas.212519099 10.3389/fimmu.2013.00391 10.1073/pnas.0607917103 10.2119/2006-00005.Dinarello 10.1371/journal.ppat.1004462 10.1038/ni968 10.1016/j.smim.2013.10.023 10.1016/j.smim.2013.10.004 10.1006/cyto.2000.0799 10.1073/pnas.1111982108 10.1038/ncomms5711 10.1111/j.1440-1746.2012.07187.x 10.1016/j.it.2009.06.001 10.1038/ni.3103 10.1158/0008-5472.CAN-07-0560 10.3389/fimmu.2013.00180 10.1038/ni.1944 10.1073/pnas.1324140111 10.3389/fimmu.2012.00322 10.1073/pnas.0308680101 10.1006/cyto.2002.0873 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Feb 24, 2015 |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Feb 24, 2015 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1424626112 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef AGRICOLA Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Extracellular properties of IL-37 require IL-1R8 |
EISSN | 1091-6490 |
EndPage | 2502 |
ExternalDocumentID | PMC4345608 3615247801 25654981 10_1073_pnas_1424626112 112_8_2497 26461845 US201600149189 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI007405 – fundername: NIAID NIH HHS grantid: R01 AI015614 – fundername: NIAID NIH HHS grantid: R56 AI015614 – fundername: NIAMS NIH HHS grantid: R01 AR045584 – fundername: National Research Foundation of Korea (NRF) grantid: MEST: 2012R1A2A1A01001791 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: AI-15614 – fundername: HHS | National Institutes of Health (NIH) grantid: AR-45584 – fundername: American Heart Association (AHA) grantid: 12POST12030134 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c589t-b38193c16dc7d8ca65c066095b4afa57096a86b23ecec18cb94aa5c0b2c4f72a3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:18:03 EDT 2025 Fri Jul 11 00:47:31 EDT 2025 Fri Jul 11 06:23:23 EDT 2025 Mon Jun 30 08:10:18 EDT 2025 Thu Apr 03 07:04:48 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Tue Jul 01 01:53:21 EDT 2025 Wed Nov 11 00:29:50 EST 2020 Fri May 30 12:01:42 EDT 2025 Thu Apr 03 09:42:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | inflammasome endotoxemia immunity |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c589t-b38193c16dc7d8ca65c066095b4afa57096a86b23ecec18cb94aa5c0b2c4f72a3 |
Notes | http://dx.doi.org/10.1073/pnas.1424626112 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: S.L., C.P.N., Y.L., B.E.P., M.F., S.K., and C.A.D. designed research; S.L., C.P.N., K.B., J.H., Y.L., T.A., B.E.P., M.F., C.G., A.M., S.K., and C.A.D. performed research; S.L., J.H., B.E.P., C.G., A.M., S.K., and C.A.D. contributed new reagents/analytic tools; S.L., C.P.N., K.B., Y.L., T.A., B.E.P., M.F., C.G., A.M., and C.A.D. analyzed data; and S.L., C.P.N., B.E.P., M.F., C.G., A.M., S.K., and C.A.D. wrote the paper. Contributed by Charles Anthony Dinarello, January 6, 2015 (sent for review November 12, 2014) |
OpenAccessLink | https://www.pnas.org/content/pnas/112/8/2497.full.pdf |
PMID | 25654981 |
PQID | 1660767697 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1803114826 jstor_primary_26461845 pubmed_primary_25654981 proquest_journals_1660767697 fao_agris_US201600149189 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4345608 crossref_citationtrail_10_1073_pnas_1424626112 proquest_miscellaneous_1658707782 crossref_primary_10_1073_pnas_1424626112 pnas_primary_112_8_2497 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-24 |
PublicationDateYYYYMMDD | 2015-02-24 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Yang Y (e_1_3_3_23_2) 2014 Schmit A (e_1_3_3_22_2) 2002; 13 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 Polentarutti N (e_1_3_3_17_2) 2003; 14 Yousif NG (e_1_3_3_5_2) 2011; 124 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_3_2 e_1_3_3_21_2 24275599 - Semin Immunol. 2013 Dec 15;25(6):466-8 24246227 - Semin Immunol. 2013 Dec 15;25(6):394-407 16557334 - Mol Med. 2005 Jan-Dec;11(1-12):1-15 12925853 - Nat Immunol. 2003 Sep;4(9):920-7 20935647 - Nat Immunol. 2010 Nov;11(11):1014-22 25294929 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15178-83 24312098 - Front Immunol. 2013 Nov 20;4:391 19699681 - Trends Immunol. 2009 Sep;30(9):439-46 25375146 - PLoS Pathog. 2014 Nov;10(11):e1004462 14993616 - Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3522-6 12096920 - Cytokine. 2002 Apr 21;18(2):61-71 12231473 - Eur Cytokine Netw. 2002 Jul-Sep;13(3):298-305 23112799 - Front Immunol. 2012 Oct 29;3:322 19592492 - J Biol Chem. 2009 Sep 18;284(38):25900-11 21873195 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16711-6 19234154 - J Immunol. 2009 Mar 1;182(5):2601-9 14715412 - Eur Cytokine Netw. 2003 Oct-Dec;14(4):211-8 23847621 - Front Immunol. 2013 Jul 09;4:180 18390730 - J Immunol. 2008 Apr 15;180(8):5477-82 17075045 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16852-7 24481253 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2650-5 25182023 - Nat Commun. 2014;5:4711 25729923 - Nat Immunol. 2015 Apr;16(4):354-65 17616656 - Cancer Res. 2007 Jul 1;67(13):6017-21 12381835 - Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13723-8 25207880 - Kidney Int. 2015 Feb;87(2):396-408 22646996 - J Gastroenterol Hepatol. 2012 Oct;27(10):1609-16 11145836 - Cytokine. 2001 Jan 7;13(1):1-7 |
References_xml | – ident: e_1_3_3_7_2 doi: 10.4049/jimmunol.180.8.5477 – ident: e_1_3_3_25_2 doi: 10.1074/jbc.M109.004184 – ident: e_1_3_3_18_2 doi: 10.4049/jimmunol.0802729 – ident: e_1_3_3_6_2 doi: 10.1073/pnas.1416714111 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.212519099 – ident: e_1_3_3_21_2 doi: 10.3389/fimmu.2013.00391 – ident: e_1_3_3_26_2 doi: 10.1073/pnas.0607917103 – ident: e_1_3_3_29_2 doi: 10.2119/2006-00005.Dinarello – ident: e_1_3_3_11_2 doi: 10.1371/journal.ppat.1004462 – ident: e_1_3_3_15_2 doi: 10.1038/ni968 – ident: e_1_3_3_24_2 doi: 10.1016/j.smim.2013.10.023 – ident: e_1_3_3_1_2 doi: 10.1016/j.smim.2013.10.004 – ident: e_1_3_3_12_2 doi: 10.1006/cyto.2000.0799 – ident: e_1_3_3_3_2 doi: 10.1073/pnas.1111982108 – ident: e_1_3_3_4_2 doi: 10.1038/ncomms5711 – ident: e_1_3_3_10_2 doi: 10.1111/j.1440-1746.2012.07187.x – volume: 124 start-page: A8603 year: 2011 ident: e_1_3_3_5_2 article-title: Expression of IL-37 in mouse protects the myocardium against ischemic injury via modulation of NF-κB activation publication-title: Circulation – ident: e_1_3_3_27_2 doi: 10.1016/j.it.2009.06.001 – ident: e_1_3_3_28_2 doi: 10.1038/ni.3103 – volume: 14 start-page: 211 year: 2003 ident: e_1_3_3_17_2 article-title: Unique pattern of expression and inhibition of IL-1 signaling by the IL-1 receptor family member TIR8/SIGIRR publication-title: Eur Cytokine Netw – ident: e_1_3_3_20_2 doi: 10.1158/0008-5472.CAN-07-0560 – ident: e_1_3_3_19_2 doi: 10.3389/fimmu.2013.00180 – volume: 13 start-page: 298 year: 2002 ident: e_1_3_3_22_2 article-title: Dose-effect of interleukin-10 and its immunoregulatory role in Crohn’s disease publication-title: Eur Cytokine Netw – ident: e_1_3_3_2_2 doi: 10.1038/ni.1944 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.1324140111 – ident: e_1_3_3_9_2 doi: 10.3389/fimmu.2012.00322 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.0308680101 – year: 2014 ident: e_1_3_3_23_2 article-title: IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia-reperfusion injury publication-title: Kidney Int – ident: e_1_3_3_13_2 doi: 10.1006/cyto.2002.0873 – reference: 24246227 - Semin Immunol. 2013 Dec 15;25(6):394-407 – reference: 22646996 - J Gastroenterol Hepatol. 2012 Oct;27(10):1609-16 – reference: 14993616 - Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3522-6 – reference: 24312098 - Front Immunol. 2013 Nov 20;4:391 – reference: 20935647 - Nat Immunol. 2010 Nov;11(11):1014-22 – reference: 19592492 - J Biol Chem. 2009 Sep 18;284(38):25900-11 – reference: 18390730 - J Immunol. 2008 Apr 15;180(8):5477-82 – reference: 17616656 - Cancer Res. 2007 Jul 1;67(13):6017-21 – reference: 25375146 - PLoS Pathog. 2014 Nov;10(11):e1004462 – reference: 12231473 - Eur Cytokine Netw. 2002 Jul-Sep;13(3):298-305 – reference: 23112799 - Front Immunol. 2012 Oct 29;3:322 – reference: 12925853 - Nat Immunol. 2003 Sep;4(9):920-7 – reference: 19234154 - J Immunol. 2009 Mar 1;182(5):2601-9 – reference: 17075045 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16852-7 – reference: 25182023 - Nat Commun. 2014;5:4711 – reference: 24481253 - Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2650-5 – reference: 21873195 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16711-6 – reference: 24275599 - Semin Immunol. 2013 Dec 15;25(6):466-8 – reference: 25294929 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15178-83 – reference: 25207880 - Kidney Int. 2015 Feb;87(2):396-408 – reference: 11145836 - Cytokine. 2001 Jan 7;13(1):1-7 – reference: 12096920 - Cytokine. 2002 Apr 21;18(2):61-71 – reference: 23847621 - Front Immunol. 2013 Jul 09;4:180 – reference: 25729923 - Nat Immunol. 2015 Apr;16(4):354-65 – reference: 12381835 - Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13723-8 – reference: 19699681 - Trends Immunol. 2009 Sep;30(9):439-46 – reference: 14715412 - Eur Cytokine Netw. 2003 Oct-Dec;14(4):211-8 – reference: 16557334 - Mol Med. 2005 Jan-Dec;11(1-12):1-15 |
SSID | ssj0009580 |
Score | 2.5621958 |
Snippet | Significance Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the... Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we... Interleukin-1 family members are highly inflammatory but IL-37 member broadly suppresses inflammation and specific immunity. Initially, the mechanism of this... Similar to IL-1a and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2497 |
SubjectTerms | Animals Biological Sciences Blood Bone marrow caspase-1 Cell Differentiation - drug effects Cells Cytokines Endotoxemia - metabolism Endotoxemia - pathology Enzyme Activation - drug effects Extracellular Space - chemistry Flow Cytometry Gene expression Gene Expression Regulation - drug effects Humans Immobilized Proteins - metabolism immunity Immunity, Innate inflammation Inflammation - immunology Inflammation - pathology Interleukin-1 - chemistry Interleukin-1 - metabolism interleukin-1beta Interleukin-1beta - metabolism interleukin-6 Interleukin-6 - metabolism Lipopolysaccharides - pharmacology macrophages Macrophages - cytology Macrophages - drug effects Macrophages - enzymology Macrophages - metabolism Mice Neutralization Tests p38 Mitogen-Activated Protein Kinases - metabolism Protein Structure, Tertiary receptors Receptors, Interleukin-1 - chemistry Receptors, Interleukin-1 - metabolism Recombinant Proteins - pharmacology RNA, Messenger - genetics RNA, Messenger - metabolism Rodents tumor necrosis factor-alpha Tumor Necrosis Factor-alpha - metabolism |
Title | Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8 |
URI | https://www.jstor.org/stable/26461845 http://www.pnas.org/content/112/8/2497.abstract https://www.ncbi.nlm.nih.gov/pubmed/25654981 https://www.proquest.com/docview/1660767697 https://www.proquest.com/docview/1658707782 https://www.proquest.com/docview/1803114826 https://pubmed.ncbi.nlm.nih.gov/PMC4345608 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWCsMJCReBiqUpZv53GqhgrqpgpWaW-R4zg0EiRTmxbYC_8wfwR3tvPRqkywl6qJHcfN_XK-u_7uTMibIONMCIGpW2lgeTLjVhSAz5PJNHLslPuuyuI_vwjGM-_jlX_V6_3usJZWVTIUNzvzSu4iVTgHcsUs2f-QbDMonIDvIF_4BAnD5z_J-OxHteAYeldcUjQ_FTHjwwRe6EFezPMkxx0ACrAnkXUFwteJihjkWOfVojS1l-BgXQ6SVTVYSGQGS82pnFh2HQBJwUv9Ca1IgikXqukT6xq202YhXNa0g4s6znjaZq0YVbIcWIPpRbsH8iTXDKGbOS_b8LQuGDkaKp5I1fIF8D8SwwVRKqpolpZxTTDm8ntZdiMats4QbyOat82uq8odWF49c53U2huMHyvw9P6jjXq3nQ6OWVdZe5oabBZ-MAadnYsKaEHcCbngyyHmBYILaMbsQOz6m8IYGJDgcOtNaLbqeE_PR54L5ipmpt93wKlx1DLSLRHNdMKU-WF1IarQfbd1b6xgbW60YU7dy3hZ82qxWC9ctctx2ub_dgyqy0fkofGE6KmG9T7pyeIx2a9FQI9NQfS3T8ivDZxThXNaZlThnBqcU41z2sU5HFCFcwo41wfrkgLOqcE5BZziMDbVOKcK57TGOdU4f0pm788uR2PLbBxiCZ9FlZVgGMIVdpCKMGWCB74AyxoecOLxjPshuO2cBYnjwmjCZiKJPM6hT-IILwsd7h6QvaIs5CGhJ6mfRsyJZBJlHuOcyciTIkoT3wdP4sTvk2H9_GNhqurj5i5fY8XuCN0YpRC3suuT4-aCa11Q5u9dD0GgMf8C71I8--xgMUiMaNgs6pMDJeVmCPBrcOsmmM8zNUoztO3ELEak98lRjYTY6DC4GTyWEFnu0Py6aYYVBmXKC1musI8Pi3oIrsQtfRgYB1hSOMAJKHC1UzNQ7ZNwA3ZNB6xwv9lS5HNV6d68MM_vfOUL8qDVMEdkr1qs5EvwIqrklXr5_gDDNhsQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+forms+of+IL-37+inhibit+innate+inflammation+in+vitro+and+in+vivo+but+require+the+IL-1+family+decoy+receptor+IL-1R8&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Suzhao&rft.au=Neff%2C+C.+Preston&rft.au=Barber%2C+Kristina&rft.au=Hong%2C+Jaewoo&rft.date=2015-02-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=8&rft.spage=2497&rft.epage=2502&rft_id=info:doi/10.1073%2Fpnas.1424626112&rft_id=info%3Apmid%2F25654981&rft.externalDocID=PMC4345608 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F8.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F8.cover.gif |