QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population
Polyploidy is a key driver of significant evolutionary changes in plant species. The genus Actinidia (kiwifruit) exhibits multiple ploidy levels, which contribute to novel fruit traits, high yields and resistance to the canker-causing dieback disease incited by Pseudomonas syringae pv. actinidiae (P...
Saved in:
Published in | Pathogens (Basel) Vol. 9; no. 11; p. 967 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.11.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyploidy is a key driver of significant evolutionary changes in plant species. The genus Actinidia (kiwifruit) exhibits multiple ploidy levels, which contribute to novel fruit traits, high yields and resistance to the canker-causing dieback disease incited by Pseudomonas syringae pv. actinidiae (Psa) biovar 3. However, the genetic mechanism for resistance to Psa observed in polyploid kiwifruit is not yet known. In this study we performed detailed genetic analysis of a tetraploid Actinidia chinensis var. chinensis population derived from a cross between a female parent that exhibits weak tolerance to Psa and a highly Psa-resistant male parent. We used the capture-sequencing approach across the whole kiwifruit genome and generated the first ultra-dense maps in a tetraploid kiwifruit population. We located quantitative trait loci (QTLs) for Psa resistance on these maps. Our approach to QTL mapping is based on the use of identity-by-descent trait mapping, which allowed us to relate the contribution of specific alleles from their respective homologues in the male and female parent, to the control of Psa resistance in the progeny. We identified genes in the diploid reference genome whose function is suggested to be involved in plant defense, which underly the QTLs, including receptor-like kinases. Our study is the first to cast light on the genetics of a polyploid kiwifruit and suggest a plausible mechanism for Psa resistance in this species. |
---|---|
AbstractList | Polyploidy is a key driver of significant evolutionary changes in plant species. The genus
Actinidia
(kiwifruit) exhibits multiple ploidy levels, which contribute to novel fruit traits, high yields and resistance to the canker-causing dieback disease incited by
Pseudomonas syringae
pv.
actinidiae
(Psa) biovar 3. However, the genetic mechanism for resistance to Psa observed in polyploid kiwifruit is not yet known. In this study we performed detailed genetic analysis of a tetraploid
Actinidia chinensis
var.
chinensis
population derived from a cross between a female parent that exhibits weak tolerance to Psa and a highly Psa-resistant male parent. We used the capture-sequencing approach across the whole kiwifruit genome and generated the first ultra-dense maps in a tetraploid kiwifruit population. We located quantitative trait loci (QTLs) for Psa resistance on these maps. Our approach to QTL mapping is based on the use of identity-by-descent trait mapping, which allowed us to relate the contribution of specific alleles from their respective homologues in the male and female parent, to the control of Psa resistance in the progeny. We identified genes in the diploid reference genome whose function is suggested to be involved in plant defense, which underly the QTLs, including receptor-like kinases. Our study is the first to cast light on the genetics of a polyploid kiwifruit and suggest a plausible mechanism for Psa resistance in this species. Polyploidy is a key driver of significant evolutionary changes in plant species. The genus Actinidia (kiwifruit) exhibits multiple ploidy levels, which contribute to novel fruit traits, high yields and resistance to the canker-causing dieback disease incited by Pseudomonas syringae pv. actinidiae (Psa) biovar 3. However, the genetic mechanism for resistance to Psa observed in polyploid kiwifruit is not yet known. In this study we performed detailed genetic analysis of a tetraploid Actinidia chinensis var. chinensis population derived from a cross between a female parent that exhibits weak tolerance to Psa and a highly Psa-resistant male parent. We used the capture-sequencing approach across the whole kiwifruit genome and generated the first ultra-dense maps in a tetraploid kiwifruit population. We located quantitative trait loci (QTLs) for Psa resistance on these maps. Our approach to QTL mapping is based on the use of identity-by-descent trait mapping, which allowed us to relate the contribution of specific alleles from their respective homologues in the male and female parent, to the control of Psa resistance in the progeny. We identified genes in the diploid reference genome whose function is suggested to be involved in plant defense, which underly the QTLs, including receptor-like kinases. Our study is the first to cast light on the genetics of a polyploid kiwifruit and suggest a plausible mechanism for Psa resistance in this species. Polyploidy is a key driver of significant evolutionary changes in plant species. The genus Actinidia (kiwifruit) exhibits multiple ploidy levels, which contribute to novel fruit traits, high yields and resistance to the canker-causing dieback disease incited by Pseudomonas syringae pv. actinidiae (Psa) biovar 3. However, the genetic mechanism for resistance to Psa observed in polyploid kiwifruit is not yet known. In this study we performed detailed genetic analysis of a tetraploid Actinidia chinensis var. chinensis population derived from a cross between a female parent that exhibits weak tolerance to Psa and a highly Psa-resistant male parent. We used the capture-sequencing approach across the whole kiwifruit genome and generated the first ultra-dense maps in a tetraploid kiwifruit population. We located quantitative trait loci (QTLs) for Psa resistance on these maps. Our approach to QTL mapping is based on the use of identity-by-descent trait mapping, which allowed us to relate the contribution of specific alleles from their respective homologues in the male and female parent, to the control of Psa resistance in the progeny. We identified genes in the diploid reference genome whose function is suggested to be involved in plant defense, which underly the QTLs, including receptor-like kinases. Our study is the first to cast light on the genetics of a polyploid kiwifruit and suggest a plausible mechanism for Psa resistance in this species.Polyploidy is a key driver of significant evolutionary changes in plant species. The genus Actinidia (kiwifruit) exhibits multiple ploidy levels, which contribute to novel fruit traits, high yields and resistance to the canker-causing dieback disease incited by Pseudomonas syringae pv. actinidiae (Psa) biovar 3. However, the genetic mechanism for resistance to Psa observed in polyploid kiwifruit is not yet known. In this study we performed detailed genetic analysis of a tetraploid Actinidia chinensis var. chinensis population derived from a cross between a female parent that exhibits weak tolerance to Psa and a highly Psa-resistant male parent. We used the capture-sequencing approach across the whole kiwifruit genome and generated the first ultra-dense maps in a tetraploid kiwifruit population. We located quantitative trait loci (QTLs) for Psa resistance on these maps. Our approach to QTL mapping is based on the use of identity-by-descent trait mapping, which allowed us to relate the contribution of specific alleles from their respective homologues in the male and female parent, to the control of Psa resistance in the progeny. We identified genes in the diploid reference genome whose function is suggested to be involved in plant defense, which underly the QTLs, including receptor-like kinases. Our study is the first to cast light on the genetics of a polyploid kiwifruit and suggest a plausible mechanism for Psa resistance in this species. Polyploidy is a key driver of significant evolutionary changes in plant species. The genus (kiwifruit) exhibits multiple ploidy levels, which contribute to novel fruit traits, high yields and resistance to the canker-causing dieback disease incited by pv. (Psa) biovar 3. However, the genetic mechanism for resistance to Psa observed in polyploid kiwifruit is not yet known. In this study we performed detailed genetic analysis of a tetraploid var. population derived from a cross between a female parent that exhibits weak tolerance to Psa and a highly Psa-resistant male parent. We used the capture-sequencing approach across the whole kiwifruit genome and generated the first ultra-dense maps in a tetraploid kiwifruit population. We located quantitative trait loci (QTLs) for Psa resistance on these maps. Our approach to QTL mapping is based on the use of identity-by-descent trait mapping, which allowed us to relate the contribution of specific alleles from their respective homologues in the male and female parent, to the control of Psa resistance in the progeny. We identified genes in the diploid reference genome whose function is suggested to be involved in plant defense, which underly the QTLs, including receptor-like kinases. Our study is the first to cast light on the genetics of a polyploid kiwifruit and suggest a plausible mechanism for Psa resistance in this species. |
Author | Brendolise, Cyril Gea, Luis Hoeata, Kirsten Thomson, Susan Gardiner, Susan E. Morgan, Ed McCallum, John Chagné, David Hoyte, Stephen Bourke, Peter M. Wotton, Andrew Funnell, Keith Tahir, Jibran Hedderley, Duncan Lucas, Marielle McKenzie, Catherine |
AuthorAffiliation | 7 Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; peter.bourke@wur.nl 5 The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; Kirsten.hoeata@plantandfood.co.nz (K.H.); Catherine.mckenzie@plantandfood.co.nz (C.M.) 4 The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand; susan.thomson@plantandfood.co.nz 6 The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; Andrew.Wotton@plantandfood.co.nz (A.W.); Keith.Funnell@plantandfood.co.nz (K.F.); Ed.Morgan@plantandfood.co.nz (E.M.); duncan.hedderley@plantandfood.co.nz (D.H.); David.Chagne@plantandfood.co.nz (D.C.) 3 Breeding Department, Enza Zaden, 1602 DB Enkhuizen, The Netherlands; m.lucas@enzazaden.nl 1 The New Zealand Institute for Plant and Food Research Limited, |
AuthorAffiliation_xml | – name: 2 The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand; stephen.hoyte@plantandfood.co.nz – name: 5 The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; Kirsten.hoeata@plantandfood.co.nz (K.H.); Catherine.mckenzie@plantandfood.co.nz (C.M.) – name: 3 Breeding Department, Enza Zaden, 1602 DB Enkhuizen, The Netherlands; m.lucas@enzazaden.nl – name: 1 The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland 1025, New Zealand; Jibran.Tahir@plantandfood.co.nz (J.T.); cyril.brendolise@plantandfood.co.nz (C.B.) – name: 7 Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; peter.bourke@wur.nl – name: 6 The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; Andrew.Wotton@plantandfood.co.nz (A.W.); Keith.Funnell@plantandfood.co.nz (K.F.); Ed.Morgan@plantandfood.co.nz (E.M.); duncan.hedderley@plantandfood.co.nz (D.H.); David.Chagne@plantandfood.co.nz (D.C.) – name: 4 The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand; susan.thomson@plantandfood.co.nz |
Author_xml | – sequence: 1 givenname: Jibran orcidid: 0000-0001-5134-6245 surname: Tahir fullname: Tahir, Jibran – sequence: 2 givenname: Cyril orcidid: 0000-0001-8213-8094 surname: Brendolise fullname: Brendolise, Cyril – sequence: 3 givenname: Stephen surname: Hoyte fullname: Hoyte, Stephen – sequence: 4 givenname: Marielle surname: Lucas fullname: Lucas, Marielle – sequence: 5 givenname: Susan surname: Thomson fullname: Thomson, Susan – sequence: 6 givenname: Kirsten surname: Hoeata fullname: Hoeata, Kirsten – sequence: 7 givenname: Catherine orcidid: 0000-0002-3075-954X surname: McKenzie fullname: McKenzie, Catherine – sequence: 8 givenname: Andrew surname: Wotton fullname: Wotton, Andrew – sequence: 9 givenname: Keith orcidid: 0000-0002-2012-1489 surname: Funnell fullname: Funnell, Keith – sequence: 10 givenname: Ed orcidid: 0000-0002-5353-2639 surname: Morgan fullname: Morgan, Ed – sequence: 11 givenname: Duncan orcidid: 0000-0001-7522-2212 surname: Hedderley fullname: Hedderley, Duncan – sequence: 12 givenname: David surname: Chagné fullname: Chagné, David – sequence: 13 givenname: Peter M. orcidid: 0000-0002-0665-6508 surname: Bourke fullname: Bourke, Peter M. – sequence: 14 givenname: John orcidid: 0000-0002-7773-6732 surname: McCallum fullname: McCallum, John – sequence: 15 givenname: Susan E. surname: Gardiner fullname: Gardiner, Susan E. – sequence: 16 givenname: Luis orcidid: 0000-0003-4949-5027 surname: Gea fullname: Gea, Luis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33233616$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhleoiJbSOydkiUs5pPhj611fkKqIj4ggAgrn1cQ7Thw29mJ7i_I7-MM4TVu1kZDwxR77eV_NjOd5ceS8w6J4yeiFEIq-7SGt_BJdVIxRJasnxQmnlRzRmlVHD87HxVmMa5pXTXfxs-JYCC6EZPKk-PNtPiVfoO-tWxLjA_mO0cYETiNJnozB_cQQycS1g8aWLLZkFnFo_cY7iCRuQ9YBkv76goBO1tnW5vB8FuENsY4AmWMK0HfetuTqDiB6ZV1O3Eby2f62Jgw2kZnvhw6S9e5F8dRAF_Hsdj8tfnx4Px9_Gk2_fpyMr6YjfVmrNAJpQBvBMNePFeeKG1S5StUyJUBKLRHQaKEpZdIwjlybS24kaoO8bkGcFpO9b-th3fTBbiBsGw-2ubnwYdlASFZ32Bg0pZZlW9dVXVLGFmxRSmUWgslyIcXO693eqx8WG2w1ulx298j08Yuzq2bpr5uqooqWKhuc3xoE_2vAmJqNjRq7Dhz6ITa8VLVgtGLyP1BZ5haUFc_o6wN07Yfgcld3lKgFzWymXj1M_j7ruzHJAN0DOvgYA5p7hNFmN4zN4TBmiTyQaJtuvjeXb7t_C_8C8nvoSw |
CitedBy_id | crossref_primary_10_1007_s11032_023_01419_8 crossref_primary_10_1093_aobpla_plad016 crossref_primary_10_1146_annurev_phyto_021622_095110 crossref_primary_10_3390_plants13152156 crossref_primary_10_1007_s11032_025_01550_8 crossref_primary_10_1007_s11032_025_01552_6 crossref_primary_10_1016_j_hpj_2023_12_014 crossref_primary_10_3390_ijms242115952 crossref_primary_10_1111_pbi_13958 crossref_primary_10_3389_fpls_2022_965397 crossref_primary_10_3389_fpls_2024_1488572 crossref_primary_10_3390_ijms24054618 crossref_primary_10_1007_s11032_024_01476_7 crossref_primary_10_1016_j_arabjc_2023_104991 crossref_primary_10_3390_plants13010110 crossref_primary_10_2503_hortj_QH_136 crossref_primary_10_3390_plants11091154 crossref_primary_10_1111_pce_15189 crossref_primary_10_1016_j_scienta_2024_113816 crossref_primary_10_3389_fpls_2023_1255506 crossref_primary_10_3390_pr10112243 |
Cites_doi | 10.1186/s12870-019-1926-4 10.3389/fgene.2020.01014 10.1371/annotation/af157ddc-200a-4105-b243-3f01251cc677 10.1186/s12864-015-2252-3 10.1146/annurev.genet.34.1.401 10.3389/fpls.2012.00209 10.1111/j.1469-8137.1995.tb03005.x 10.1111/j.1469-8137.2011.03729.x 10.1534/genetics.120.303080 10.1038/ncomms3640 10.1038/s41438-019-0184-9 10.1007/s10709-012-9693-2 10.1371/journal.pone.0063939 10.1093/bioinformatics/btp352 10.3389/fpls.2019.00099 10.1007/s00122-013-2238-y 10.1007/BF00023275 10.17660/ActaHortic.2015.1095.21 10.1159/000351430 10.1186/s12870-019-1766-2 10.1038/s41477-019-0489-6 10.1534/g3.119.400269 10.1534/genetics.118.301468 10.1094/MPMI-21-5-0507 10.1007/s00425-015-2450-x 10.1098/rstb.2018.0310 10.1007/BF00982801 10.1093/bioinformatics/bty777 10.1101/gr.1596604 10.1080/07352689309701903 10.1186/s12859-016-1416-8 10.1093/bioinformatics/btu170 10.1093/bioinformatics/btp698 10.1093/molbev/msu085 10.1105/tpc.17.00289 10.1111/1755-0998.12549 10.1186/1471-2105-12-172 10.1111/tpj.13496 10.3390/ijms13078696 10.1126/science.264.5157.421 10.1146/annurev.ecolsys.33.010802.150437 10.1007/s00122-017-2974-5 10.1111/mec.12581 10.1038/hdy.2013.138 10.1007/s00122-014-2347-2 10.1371/journal.pone.0151169 10.1093/gigascience/giz027 10.1038/s41438-020-0333-1 10.1104/pp.110.161547 10.1146/annurev.phyto.34.1.479 10.1038/s41438-019-0202-y 10.1186/2193-1801-3-547 10.1093/genetics/159.2.869 10.1093/jhered/esx022 10.1534/g3.119.400378 10.3389/fpls.2018.00513 10.1007/s10681-018-2331-z 10.1146/annurev.ecolsys.29.1.467 10.1534/genetics.115.185579 10.1080/03036758.2019.1676797 10.1093/bioinformatics/bty371 10.1038/s41598-019-48639-7 10.1038/nrg1711 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7T7 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/pathogens9110967 |
DatabaseName | CrossRef PubMed Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-0817 |
ExternalDocumentID | oai_doaj_org_article_fef4c64d88784011b1b469fb3164b63a PMC7709049 33233616 10_3390_pathogens9110967 |
Genre | Journal Article |
GeographicLocations | New Zealand |
GeographicLocations_xml | – name: New Zealand |
GrantInformation_xml | – fundername: Agricultural and Marketing Research and Development Trust grantid: P16001 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE IHR KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7T7 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c589t-a6facf31e911e72292fe90009d193a66c6eaefc3c0016f12e2cf52f6ecfe28da3 |
IEDL.DBID | M48 |
ISSN | 2076-0817 |
IngestDate | Wed Aug 27 01:30:41 EDT 2025 Thu Aug 21 13:44:03 EDT 2025 Fri Jul 11 01:31:25 EDT 2025 Fri Jul 11 16:38:06 EDT 2025 Fri Jul 25 11:58:23 EDT 2025 Thu Jan 02 22:41:20 EST 2025 Tue Jul 01 04:15:35 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | chromosome pairing polygenic resistance perennials polyploid genetics QTLs bacterial pathogen kiwifruit |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c589t-a6facf31e911e72292fe90009d193a66c6eaefc3c0016f12e2cf52f6ecfe28da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4949-5027 0000-0001-5134-6245 0000-0002-2012-1489 0000-0001-7522-2212 0000-0002-3075-954X 0000-0002-7773-6732 0000-0001-8213-8094 0000-0002-0665-6508 0000-0002-5353-2639 |
OpenAccessLink | https://www.proquest.com/docview/2463830464?pq-origsite=%requestingapplication% |
PMID | 33233616 |
PQID | 2463830464 |
PQPubID | 2032351 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fef4c64d88784011b1b469fb3164b63a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7709049 proquest_miscellaneous_2498310716 proquest_miscellaneous_2464193472 proquest_journals_2463830464 pubmed_primary_33233616 crossref_primary_10_3390_pathogens9110967 crossref_citationtrail_10_3390_pathogens9110967 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201120 |
PublicationDateYYYYMMDD | 2020-11-20 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201120 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Pathogens (Basel) |
PublicationTitleAlternate | Pathogens |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Doyle (ref_62) 1987; 19 Osabe (ref_7) 2012; 13 Behling (ref_23) 2020; 50 ref_57 Young (ref_54) 1996; 34 Sattler (ref_5) 2016; 243 Akagi (ref_43) 2019; 5 ref_18 Hackett (ref_71) 2014; 127 Wu (ref_8) 2001; 159 Gea (ref_39) 2014; 3 Bourke (ref_33) 2018; 34 Bourke (ref_47) 2019; 9 Vanneste (ref_61) 2012; 65 Szadkowski (ref_19) 2011; 191 Li (ref_65) 2009; 25 Wu (ref_16) 2014; 127 ref_60 Madlung (ref_21) 2013; 140 Tahir (ref_38) 2019; 6 Wu (ref_29) 2019; 6 Bretagnolle (ref_1) 1995; 129 Ramsey (ref_2) 1998; 29 Huang (ref_27) 2013; 4 Knaus (ref_67) 2017; 17 ref_24 ref_68 Bourke (ref_10) 2017; 90 ref_66 Murphy (ref_70) 1973; 25 Otto (ref_3) 2000; 34 ref_28 Zhou (ref_58) 2019; 374 ref_26 Klaassen (ref_50) 2019; 215 Gerard (ref_69) 2018; 210 Quenouille (ref_52) 2014; 112 Zheng (ref_48) 2016; 203 Bourke (ref_51) 2017; 130 Mertten (ref_15) 2012; 140 ref_72 Xu (ref_20) 2014; 31 Afzal (ref_55) 2008; 21 Dufresne (ref_42) 2014; 23 Comai (ref_12) 2005; 6 Everett (ref_25) 2011; 6 ref_31 ref_30 Masterson (ref_4) 1994; 264 Mason (ref_22) 2020; 11 Bolger (ref_63) 2014; 30 ref_37 Mollinari (ref_35) 2019; 9 Pereira (ref_36) 2020; 215 Song (ref_46) 2020; 7 Hackett (ref_32) 2017; 108 Koch (ref_53) 1991; 53 Soltis (ref_13) 1993; 12 Atkinson (ref_17) 1997; 205 Bourke (ref_11) 2018; 9 Eckardt (ref_56) 2017; 29 Behrouzi (ref_34) 2018; 35 ref_44 Zipfel (ref_59) 2010; 154 ref_41 ref_40 Latta (ref_45) 2019; 9 Ramsey (ref_14) 2002; 33 Li (ref_64) 2010; 26 ref_49 Cao (ref_9) 2004; 14 ref_6 |
References_xml | – ident: ref_31 doi: 10.1186/s12870-019-1926-4 – volume: 11 start-page: 1014 year: 2020 ident: ref_22 article-title: Homoeologous Exchanges, Segmental Allopolyploidy, and Polyploid Genome Evolution publication-title: Front. Genet. doi: 10.3389/fgene.2020.01014 – ident: ref_26 doi: 10.1371/annotation/af157ddc-200a-4105-b243-3f01251cc677 – ident: ref_68 doi: 10.1186/s12864-015-2252-3 – volume: 34 start-page: 401 year: 2000 ident: ref_3 article-title: Polyploid Incidence and Evolution publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.34.1.401 – ident: ref_57 doi: 10.3389/fpls.2012.00209 – volume: 129 start-page: 1 year: 1995 ident: ref_1 article-title: Gametes with the Somatic Chromosome Number: Mechanisms of Their Formation and Role in the Evolution of Autopolyploid Plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.1995.tb03005.x – volume: 191 start-page: 884 year: 2011 ident: ref_19 article-title: Polyploid Formation Pathways Have an Impact on Genetic Rearrangements in Resynthesized Brassica Napus publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03729.x – volume: 215 start-page: 579 year: 2020 ident: ref_36 article-title: Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population publication-title: Genetics doi: 10.1534/genetics.120.303080 – volume: 4 start-page: 2640 year: 2013 ident: ref_27 article-title: Draft Genome of the Kiwifruit Actinidia Chinensis publication-title: Nat. Commun. doi: 10.1038/ncomms3640 – volume: 6 start-page: 101 year: 2019 ident: ref_38 article-title: Multiple Quantitative Trait Loci Contribute to Resistance to Bacterial Canker Incited by Pseudomonas Syringae Pv. Actinidiae in Kiwifruit (Actinidia Chinensis) publication-title: Hortic. Res. doi: 10.1038/s41438-019-0184-9 – volume: 140 start-page: 455 year: 2012 ident: ref_15 article-title: Meiotic Chromosome Pairing in Actinidia Chinensis Var. Deliciosa publication-title: Genetica doi: 10.1007/s10709-012-9693-2 – volume: 65 start-page: 1 year: 2012 ident: ref_61 article-title: Survival of Pseudomonas Syringae Pv. Actinidiae on Cryptomeria Japonica, a Non-Host Plant Used as Shelter Belts in Kiwifruit Orchards publication-title: N. Z. Plant Prot. – ident: ref_72 doi: 10.1371/journal.pone.0063939 – volume: 25 start-page: 2078 year: 2009 ident: ref_65 article-title: The Sequence Alignment/Map Format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – ident: ref_6 doi: 10.3389/fpls.2019.00099 – volume: 127 start-page: 549 year: 2014 ident: ref_16 article-title: Meiotic Chromosome Pairing Behaviour of Natural Tetraploids and Induced Autotetraploids of Actinidia Chinensis publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-013-2238-y – volume: 53 start-page: 235 year: 1991 ident: ref_53 article-title: Genetic Analysis of, and Selection for, Factors Affecting Quantitative Resistance to Xanthomonas Campestris Pv. Oryzae in Rice publication-title: Euphytica doi: 10.1007/BF00023275 – ident: ref_60 doi: 10.17660/ActaHortic.2015.1095.21 – volume: 140 start-page: 270 year: 2013 ident: ref_21 article-title: Genetic and Epigenetic Aspects of Polyploid Evolution in Plants publication-title: Cytogenet. Genome Res. doi: 10.1159/000351430 – ident: ref_44 doi: 10.1186/s12870-019-1766-2 – volume: 5 start-page: 801 year: 2019 ident: ref_43 article-title: Two Y-Chromosome-Encoded Genes Determine Sex in Kiwifruit publication-title: Nat. Plants doi: 10.1038/s41477-019-0489-6 – volume: 9 start-page: 2107 year: 2019 ident: ref_47 article-title: Quantifying the Power and Precision of QTL Analysis in Autopolyploids under Bivalent and Multivalent Genetic Models publication-title: Genes Genomes Genet. doi: 10.1534/g3.119.400269 – volume: 210 start-page: 789 year: 2018 ident: ref_69 article-title: Genotyping Polyploids from Messy Sequencing Data publication-title: Genetics doi: 10.1534/genetics.118.301468 – volume: 21 start-page: 507 year: 2008 ident: ref_55 article-title: Plant Receptor-Like Serine Threonine Kinases: Roles in Signaling and Plant Defense publication-title: Mol. Plant-Microbe Interactions doi: 10.1094/MPMI-21-5-0507 – ident: ref_66 – volume: 243 start-page: 281 year: 2016 ident: ref_5 article-title: The Polyploidy and Its Key Role in Plant Breeding publication-title: Planta doi: 10.1007/s00425-015-2450-x – volume: 374 start-page: 20180310 year: 2019 ident: ref_58 article-title: Early Signalling Mechanisms Underlying Receptor Kinase-Mediated Immunity in Plants publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2018.0310 – volume: 205 start-page: 111 year: 1997 ident: ref_17 article-title: The Allopolyploid Origin of Kiwifruit, Actinidia Deliciosa (Actinidiaceae) publication-title: Plant Syst. Evol. doi: 10.1007/BF00982801 – volume: 35 start-page: 1083 year: 2018 ident: ref_34 article-title: De Novo Construction of Polyploid Linkage Maps Using Discrete Graphical Models publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty777 – ident: ref_28 – volume: 14 start-page: 459 year: 2004 ident: ref_9 article-title: Correct Estimation of Preferential Chromosome Pairing in Autotetraploids publication-title: Genome Res. doi: 10.1101/gr.1596604 – volume: 12 start-page: 243 year: 1993 ident: ref_13 article-title: Molecular Data and the Dynamic Nature of Polyploidy publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689309701903 – ident: ref_37 doi: 10.1186/s12859-016-1416-8 – ident: ref_24 – volume: 30 start-page: 2114 year: 2014 ident: ref_63 article-title: Trimmomatic: A Flexible Trimmer for Illumina Sequence Data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 26 start-page: 589 year: 2010 ident: ref_64 article-title: Fast and Accurate Long-Read Alignment with Burrows–Wheeler Transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp698 – volume: 31 start-page: 1066 year: 2014 ident: ref_20 article-title: Genome-Wide Disruption of Gene Expression in Allopolyploids but Not Hybrids of Rice Subspecies publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu085 – volume: 29 start-page: 601 year: 2017 ident: ref_56 article-title: The Plant Cell Reviews Plant Immunity: Receptor-Like Kinases, Ros-Rlk Crosstalk, Quantitative Resistance, and the Growth/Defense Trade-Off publication-title: Plant Cell doi: 10.1105/tpc.17.00289 – volume: 17 start-page: 44 year: 2017 ident: ref_67 article-title: Vcfr: A Package to Manipulate and Visualize Variant Call Format Data in R publication-title: Mol. Ecol. Resour. doi: 10.1111/1755-0998.12549 – ident: ref_41 doi: 10.1186/1471-2105-12-172 – ident: ref_40 – volume: 90 start-page: 330 year: 2017 ident: ref_10 article-title: Partial Preferential Chromosome Pairing Is Genotype Dependent in Tetraploid Rose publication-title: Plant J. doi: 10.1111/tpj.13496 – volume: 13 start-page: 8696 year: 2012 ident: ref_7 article-title: Multiple Mechanisms and Challenges for the Application of Allopolyploidy in Plants publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms13078696 – volume: 6 start-page: 67 year: 2011 ident: ref_25 article-title: First Report of Pseudomonas Syringae Pv publication-title: Actinidiae Causing Kiwifruit Bacterial Canker in New ZealandAustralas. Plant Dis. Notes – volume: 264 start-page: 421 year: 1994 ident: ref_4 article-title: Stomatal Size in Fossil Plants: Evidence for Polyploidy in Majority of Angiosperms publication-title: Science doi: 10.1126/science.264.5157.421 – volume: 33 start-page: 589 year: 2002 ident: ref_14 article-title: Neopolyploidy in Flowering Plants publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.ecolsys.33.010802.150437 – ident: ref_18 – volume: 130 start-page: 2527 year: 2017 ident: ref_51 article-title: An Ultra-Dense Integrated Linkage Map for Hexaploid Chrysanthemum Enables Multi-Allelic Qtl Analysis publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-017-2974-5 – volume: 23 start-page: 40 year: 2014 ident: ref_42 article-title: Recent Progress and Challenges in Population Genetics of Polyploid Organisms: An Overview of Current State-of-the-Art Molecular and Statistical Tools publication-title: Mol. Ecol. doi: 10.1111/mec.12581 – volume: 112 start-page: 579 year: 2014 ident: ref_52 article-title: Quantitative Trait Loci from the Host Genetic Background Modulate the Durability of a Resistance Gene: A Rational Basis for Sustainable Resistance Breeding in Plants publication-title: Heredity doi: 10.1038/hdy.2013.138 – volume: 127 start-page: 1885 year: 2014 ident: ref_71 article-title: QTL Mapping in Autotetraploids Using SNP Dosage Information publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-014-2347-2 – ident: ref_49 doi: 10.1371/journal.pone.0151169 – ident: ref_30 doi: 10.1093/gigascience/giz027 – volume: 7 start-page: 108 year: 2020 ident: ref_46 article-title: High-Density Genetic Map Construction and Identification of Loci Controlling Flower-Type Traits in Chrysanthemum (Chrysanthemum × Morifolium Ramat.) publication-title: Horticult. Res. doi: 10.1038/s41438-020-0333-1 – volume: 154 start-page: 551 year: 2010 ident: ref_59 article-title: Pathogen-Associated Molecular Pattern-Triggered Immunity: Veni, Vidi…? publication-title: Plant Physiol. doi: 10.1104/pp.110.161547 – volume: 34 start-page: 479 year: 1996 ident: ref_54 article-title: QTL Mapping and Quantitative Disease Resistance in Plants publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.34.1.479 – volume: 6 start-page: 117 year: 2019 ident: ref_29 article-title: A High-Quality Actinidia Chinensis (Kiwifruit) Genome publication-title: Hortic. Res. doi: 10.1038/s41438-019-0202-y – volume: 3 start-page: 547 year: 2014 ident: ref_39 article-title: Genetic Analysis of Resistance to Pseudomonas Syringae Pv. Actinidiae (Psa) in a Kiwifruit Progeny Test: An Application of Generalised Linear Mixed Models (GLMMs) publication-title: SpringerPlus doi: 10.1186/2193-1801-3-547 – volume: 159 start-page: 869 year: 2001 ident: ref_8 article-title: A General Polyploid Model for Analyzing Gene Segregation in Outcrossing Tetraploid Species publication-title: Genetics doi: 10.1093/genetics/159.2.869 – volume: 25 start-page: 578 year: 1973 ident: ref_70 article-title: An Introduction to Genetic Statistics publication-title: Am. J. Human Genet. – volume: 108 start-page: 438 year: 2017 ident: ref_32 article-title: Tetraploidsnpmap: Software for Linkage Analysis and Qtl Mapping in Autotetraploid Populations Using Snp Dosage Data publication-title: J. Hered. doi: 10.1093/jhered/esx022 – volume: 9 start-page: 3297 year: 2019 ident: ref_35 article-title: Linkage Analysis and Haplotype Phasing in Experimental Autopolyploid Populations with High Ploidy Level Using Hidden Markov Models publication-title: Genes Genomes Genet. doi: 10.1534/g3.119.400378 – volume: 9 start-page: 513 year: 2018 ident: ref_11 article-title: Tools for Genetic Studies in Experimental Populations of Polyploids publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00513 – volume: 215 start-page: 14 year: 2019 ident: ref_50 article-title: Multi-Allelic QTL Analysis of Protein Content in a Bi-Parental Population of Cultivated Tetraploid Potato publication-title: Euphytica doi: 10.1007/s10681-018-2331-z – volume: 19 start-page: 11 year: 1987 ident: ref_62 article-title: A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue publication-title: Phytochem. Bull. – volume: 29 start-page: 467 year: 1998 ident: ref_2 article-title: Pathways, Mechanisms and Rates of Polyploid Formation in Flowering Plants publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.ecolsys.29.1.467 – volume: 203 start-page: 119 year: 2016 ident: ref_48 article-title: Probabilistic Multilocus Haplotype Reconstruction in Outcrossing Tetraploids publication-title: Genetics doi: 10.1534/genetics.115.185579 – volume: 50 start-page: 189 year: 2020 ident: ref_23 article-title: The Importance and Prevalence of Allopolyploidy in Aotearoa New Zealand publication-title: J. R. Soc. N. Z. doi: 10.1080/03036758.2019.1676797 – volume: 34 start-page: 3496 year: 2018 ident: ref_33 article-title: Polymapr—Linkage Analysis and Genetic Map Construction from F1 Populations of Outcrossing Polyploids publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty371 – volume: 9 start-page: 12298 year: 2019 ident: ref_45 article-title: Comparative Linkage Mapping of Diploid, Tetraploid, and Hexaploid Avena Species Suggests Extensive Chromosome Rearrangement in Ancestral Diploids publication-title: Sci. Rep. doi: 10.1038/s41598-019-48639-7 – volume: 6 start-page: 836 year: 2005 ident: ref_12 article-title: The Advantages and Disadvantages of Being Polyploid publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1711 |
SSID | ssj0000800817 |
Score | 2.2838557 |
Snippet | Polyploidy is a key driver of significant evolutionary changes in plant species. The genus Actinidia (kiwifruit) exhibits multiple ploidy levels, which... Polyploidy is a key driver of significant evolutionary changes in plant species. The genus (kiwifruit) exhibits multiple ploidy levels, which contribute to... Polyploidy is a key driver of significant evolutionary changes in plant species. The genus Actinidia (kiwifruit) exhibits multiple ploidy levels, which... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 967 |
SubjectTerms | Actinidia Actinidia chinensis alleles Artificial chromosomes bacterial pathogen Canker Datasets Dieback Diploids diploidy exhibitions females Flowers & plants Food quality fruit characteristics Gene mapping Genetic analysis Genetic crosses Genetics Genomes Genotype & phenotype Haplotypes Homology Horticulture Kinases Kiwifruit light males Mapping pathogens perennials phosphotransferases (kinases) Plant species Ploidy polygenic resistance polyploid genetics Polyploidy Population Progeny Pseudomonas Pseudomonas syringae Pseudomonas syringae pv. actinidiae QTLs Quantitative trait loci tetraploidy yields |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcLBQ0SB3oI3djO61gqqgooWtBW6i2ynTFNqZJVkwXt7-APM5Nkw26FyoVrPJHsmbH9TWYynxCvU5f6KV0jQeLjKNCm8IGZGvJlL51DozHtMvgnn-PjU_3hLDrboPrimrC-PXCvuH2PXrtYF7QZKBYJQxtaiui8VYTzbaw6aER33kYwdTHgoDRM-rykorie66vPa7JJk3GPzY5W_s891LXr_xvGvF4quXH3HN0TdwfQCAf9ZO-LW1g9ELd7GsnVQ_Hry_wTnBjutPANCITCV2wYFpI9oa3h0FTfCeQBs3Q4LMCuYNbgsqjJA00DzYo_7RmExY-3wL85VCX5DMKbWWP2oKzAwBxpVovLuizgYC0AXITJ1e8NfCx_lv5qWbYwG-nAHonTo_fzw-NgIFsIXJRmbWBib5xXIZJ-MJEykx6ZUDQrCOKZOHYxGvROOQaJPpQonY-kj9F5lGlh1GOxU9UVPhWgSfXoOWPqM62ksxaVSaZTl9nEZpGeiP216nM3dCJnQozLnCISNlZ-3VgTsTe-sei7cNwg-46tOcpx_-zuAXlVPnhV_i-vmojdtS_kw6ZucqnpsOJMMq3g1ThM25FzLKbCetnJaFKYTuRNMhnTu1GkOhFPevcaZ6uUVCrmkWTL8baWsz1SleddW_AkmWYU7z37H-t_Lu5I_rAQhnSM7oqd9mqJLwh9tfZlt9F-A78FMoE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKyQuiDeGggaJAz2YxrubtX1CbdWqAlqFKpV6s9br2daiskOcgPI7-MPMOI5LKpSrdyytdx47L88nxIfEJX5A10gYezMMtS18aAeWZNlL59BqTNoK_umZObnQXy6Hl13CrenaKlc2sTXURe04R74nNUkKl_H058nPkFGjuLraQWjcF9tkghMKvrYPjs5G532Whf2hJIqX9UlF8T33WV_XxJsm5VmbLbz87X3Uju3_n695t2Xynzvo-LF41DmPsL_k9hNxD6un4sESTnLxTPz5Pv4Gp5YnLlwBOaNwjg27h8RXmNVwaKsf5OwBo3U4LCBfwKjBeVHTp9kGmgWn-CzC5Ncn4N8dqpJkB-HjqLG7UFZgYYy0q8lNXRawvyIAbsbkLvgGvpa_Sz-dlzMY9bBgz8XF8dH48CTsQBdCN0zSWWiNt86rCOl8MJYylR4ZWDQtyNWzxjiDFr1Tjp1FH0mUzg-lN-g8yqSw6oXYquoKXwnQdPTouXLqU62ky3NUNh4MXJrHeTrUgdhbHX3muonkDIxxk1FkwszK7jIrELv9G5PlNI4NtAfMzZ6O52i3D-rpVdapZebRa2d0QaaWIt0oyqNcm9TniqLI3CgbiJ2VLGSdcjfZrSgG4n2_TGrJtRZbYT1vaTQdmI7lJpqUYd4oYg3Ey6V49btVSipleCVeE7y1z1lfqcrrdjx4HA9Sivteb976G_FQcuogishQ7oit2XSOb8m_muXvOiX6C6csK6Q priority: 102 providerName: ProQuest |
Title | QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33233616 https://www.proquest.com/docview/2463830464 https://www.proquest.com/docview/2464193472 https://www.proquest.com/docview/2498310716 https://pubmed.ncbi.nlm.nih.gov/PMC7709049 https://doaj.org/article/fef4c64d88784011b1b469fb3164b63a |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgExIviN8rG5WReGAPGY3tOMkDQtu0aQI6lamV9hY5znkLVEnXtED_Dv5h7tI00KmaeIviS-Sc7-zv8zl3jL2NbOR6uIx4odOBp0zmPNMzaMtOWAtGQVRH8Pvn-mykPl0Gl39_j24UWG2kdlRPajQdH_y6WXxEh_9AjBMpOx2dvi5R3VVM6TN1eJ9t47oUkpv2G7D_rcFGUV2CVyB59-h6Gbfc-JK1dapO578Jg94-SvnP2nT6mD1qQCU_XFrBE3YPiqfswbLM5OIZ-_11-IX3DWViuOIIUvkFVAQbcbz5rOTHpviOIJBTFQ8LGU8XfFDBPCvRQk3FqwVt_Rngkx8HnH6DKHK0KeDvBpXZ53nBDR8C9moyLvOMH64EOB3SpNPxFf-c_8zddJ7P-KAtF_acjU5PhsdnXlOMwbNBFM88o52xTvqA-oFQiFg4oIKjcYYQ0GhtNRhwVloCkc4XIKwLhNNgHYgoM_IF2yrKAnYYV6h6cBRRdbGSwqYpSBP2ejZOwzQOVIe9X6k-sU2mciqYMU6QsdBgJbcHq8P22ycmyywdd8ge0Wi2cpRfu75RTq-Sxl0TB05ZrTKcgpEB-37qp0rHLpXILlMtTYftrWwhWdlsIhROZhRpxi940zaju1IMxhRQzmsZhQpTobhLJqbyb8hkO-zl0rza3koppNTUEq4Z3trnrLcU-XWdNjwMezHywVf_0bdd9lDQvoLv4yy6x7Zm0zm8RvA1S7ts--jkfHDRrTcvurWH_QGXlTVS |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiDeBAosEEj24jXc3fhwQakurlDwUqlTqzazXs61FZYc4ocrv4H_wG5lxHJdUKLdevZNovfPt7MzOeD7G3gcmsC08Rhzfem1H6cQ6uqURy1YYA1pBUGbw-wOvc6q-nrXPNtif5bcwVFa5tImloU5yQ3fku0IhUiiNpz6PfzrEGkXZ1SWFxgIWXZhfYchWfDr-gvr9IMTR4eig41SsAo5pB-HU0Z7VxkoXcJuDL0QoLBBzZpigL6M9z3igwRppyBuyrgBhbFtYD4wFESRa4v_eYZtKYijTYJv7h4PhSX2rQ_5X4PqLfKiUYYvqui9yxEIRUm_Pks7--vwraQL-59veLNH858w7esgeVM4q31ug6xHbgOwxu7ugr5w_Yb-_jXq8r6nDwzlH55efQEHuKOKIT3N-oLMf6FxyYgcxkPB4zocFzJIcl1IXvJjTlaIGPv61w-nziixFrAL_OCz0Nk8zrvkIcFbjyzxN-N5SgFPxJ1XdF7ybXqV2MkunfFjTkD1lp7eijmeskeUZvGBc4dKDpUytDZUUJo5Bar_VMmHsx2FbNdnucukjU3VAJyKOywgjIVJWdFNZTbZd_2K86P6xRnaftFnLUd_u8kE-OY8qMxBZsMp4KkHTjpG168ZurLzQxhKj1tiTusm2lliIKmNSRNfQb7J39TCaAcrt6AzyWSmjcMGUL9bJhEQrhxFykz1fwKuerZRCSo9G_BXgrbzO6kiWXpTtyH2_FWKc-XL91N-ye51Rvxf1jgfdV-y-oGsL10UjvcUa08kMXqNvN43fVBuKs--3vYf_AraxaiM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiDeBAosEEj2Y2LsbOz4g1Kda0kahSqXezHo921pUdogTqvwO_g2_jhk_UlKh3Hr1bqL1zjezMzvj-Rh73zM96-Ix4gTW7zpKJ9bRrkYsW2EMaAW9MoN_PPAPTtXXs-7ZGvvTfAtDZZWNTSwNdZIbuiPvCIVIoTSe6ti6LGK4u_9l_NMhBinKtDZ0GhVE-jC_wvCt-Hy4i7L-IMT-3mjnwKkZBhzT7YVTR_tWGys9QJWHQIhQWCAWzTBBv0b7vvFBgzXSkGdkPQHC2K6wPhgLopdoif97h60HGBW5Lba-vTcYnixueMgX63lBlRuVMnSpxvsiR1wUIfX5LKntr8_CkjLgf37uzXLNf86__YfsQe248q0KaY_YGmSP2d2KynL-hP3-Njrix5q6PZxzdIT5CRTkmiKm-DTnOzr7gY4mJ6YQAwmP53xYwCzJcSt1wYs5XS9q4ONfnzh9apGliFvgH4eF3uRpxjUfAa5qfJmnCd9qJnAqBKUK_IL306vUTmbplA8XlGRP2emtiOMZa2V5Bi8YV7j1YClra0MlhYljkDpwXRPGQRx2VZt1mq2PTN0NnUg5LiOMikhY0U1htdnm4hfjqhPIirnbJM3FPOrhXT7IJ-dRbRIiC1YZXyVo5jHK9rzYi5Uf2lhiBBv7UrfZRoOFqDYsRXStBm32bjGMJoHyPDqDfFbOUbhhKhCr5oREMYfRcps9r-C1WK2UQkqfRoIl4C29zvJIll6UrcmDwA0x5ny5eulv2T3U3ejocNB_xe4LusHwPLTXG6w1nczgNbp50_hNrU-cfb9tFf4LM5huWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QTL+Mapping+for+Resistance+to+Cankers+Induced+by+Pseudomonas+syringae+pv.+actinidiae+%28Psa%29+in+a+Tetraploid+Actinidia+chinensis+Kiwifruit+Population&rft.jtitle=Pathogens+%28Basel%29&rft.au=Tahir%2C+Jibran&rft.au=Brendolise%2C+Cyril&rft.au=Hoyte%2C+Stephen&rft.au=Lucas%2C+Marielle&rft.date=2020-11-20&rft.issn=2076-0817&rft.eissn=2076-0817&rft.volume=9&rft.issue=11&rft_id=info:doi/10.3390%2Fpathogens9110967&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0817&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0817&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0817&client=summon |