Ranking and combining multiple predictors without labeled data

In a broad range of classification and decision-making problems, one is given the advice or predictions of several classifiers, of unknown reliability, over multiple questions or queries. This scenario is different from the standard supervised setting, where each classifier’s accuracy can be assesse...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 4; pp. 1253 - 1258
Main Authors Parisi, Fabio, Strino, Francesco, Nadler, Boaz, Kluger, Yuval
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 28.01.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In a broad range of classification and decision-making problems, one is given the advice or predictions of several classifiers, of unknown reliability, over multiple questions or queries. This scenario is different from the standard supervised setting, where each classifier’s accuracy can be assessed using available labeled data, and raises two questions: Given only the predictions of several classifiers over a large set of unlabeled test data, is it possible to (i) reliably rank them and (ii) construct a metaclassifier more accurate than most classifiers in the ensemble? Here we present a spectral approach to address these questions. First, assuming conditional independence between classifiers, we show that the off-diagonal entries of their covariance matrix correspond to a rank-one matrix. Moreover, the classifiers can be ranked using the leading eigenvector of this covariance matrix, because its entries are proportional to their balanced accuracies. Second, via a linear approximation to the maximum likelihood estimator, we derive the Spectral Meta-Learner (SML), an unsupervised ensemble classifier whose weights are equal to these eigenvector entries. On both simulated and real data, SML typically achieves a higher accuracy than most classifiers in the ensemble and can provide a better starting point than majority voting for estimating the maximum likelihood solution. Furthermore, SML is robust to the presence of small malicious groups of classifiers designed to veer the ensemble prediction away from the (unknown) ground truth.
AbstractList In a broad range of classification and decision-making problems, one is given the advice or predictions of several classifiers, of unknown reliability, over multiple questions or queries. This scenario is different from the standard supervised setting, where each classifier's accuracy can be assessed using available labeled data, and raises two questions: Given only the predictions of several classifiers over a large set of unlabeled test data, is it possible to (i) reliably rank them and (ii) construct a metaclassifier more accurate than most classifiers in the ensemble? Here we present a spectral approach to address these questions. First, assuming conditional independence between classifiers, we show that the off-diagonal entries of their covariance matrix correspond to a rank-one matrix. Moreover, the classifiers can be ranked using the leading eigenvector of this covariance matrix, because its entries are proportional to their balanced accuracies. Second, via a linear approximation to the maximum likelihood estimator, we derive the Spectral Meta-Learner (SML), an unsupervised ensemble classifier whose weights are equal to these eigenvector entries. On both simulated and real data, SML typically achieves a higher accuracy than most classifiers in the ensemble and can provide a better starting point than majority voting for estimating the maximum likelihood solution. Furthermore, SML is robust to the presence of small malicious groups of classifiers designed to veer the ensemble prediction away from the (unknown) ground truth.
In a broad range of classification and decision-making problems, one is given the advice or predictions of several classifiers, of unknown reliability, over multiple questions or queries. This scenario is different from the standard supervised setting, where each classifier's accuracy can be assessed using available labeled data, and raises two questions: Given only the predictions of several classifiers over a large set of unlabeled test data, is it possible to (i) reliably rank them and (ii) construct a metaclassifier more accurate than most classifiers in the ensemble? Here we present a spectral approach to address these questions. First, assuming conditional independence between classifiers, we show that the off-diagonal entries of their covariance matrix correspond to a rank-one matrix. Moreover, the classifiers can be ranked using the leading eigenvector of this covariance matrix, because its entries are proportional to their balanced accuracies. Second, via a linear approximation to the maximum likelihood estimator, we derive the Spectral Meta-Learner (SML), an unsupervised ensemble classifier whose weights are equal to these eigenvector entries. On both simulated and real data, SML typically achieves a higher accuracy than most classifiers in the ensemble and can provide a better starting point than majority voting for estimating the maximum likelihood solution. Furthermore, SML is robust to the presence of small malicious groups of classifiers designed to veer the ensemble prediction away from the (unknown) ground truth. [PUBLICATION ABSTRACT]
A key challenge in a broad range of decision-making and classification problems is how to rank and combine the possibly conflicting suggestions of several advisers of unknown reliability. We provide mathematical insights of striking conceptual simplicity that explain mutual relationships between independent advisers. These insights enable the design of efficient, robust, and reliable methods to rank the advisers’ performances and construct improved predictions in the absence of ground truth. Furthermore, these methods are robust to the presence of small subgroups of malicious advisers (cartels) attempting to veer the combined decisions to their interest. In a broad range of classification and decision-making problems, one is given the advice or predictions of several classifiers, of unknown reliability, over multiple questions or queries. This scenario is different from the standard supervised setting, where each classifier’s accuracy can be assessed using available labeled data, and raises two questions: Given only the predictions of several classifiers over a large set of unlabeled test data, is it possible to ( i ) reliably rank them and ( ii ) construct a metaclassifier more accurate than most classifiers in the ensemble? Here we present a spectral approach to address these questions. First, assuming conditional independence between classifiers, we show that the off-diagonal entries of their covariance matrix correspond to a rank-one matrix. Moreover, the classifiers can be ranked using the leading eigenvector of this covariance matrix, because its entries are proportional to their balanced accuracies. Second, via a linear approximation to the maximum likelihood estimator, we derive the Spectral Meta-Learner (SML), an unsupervised ensemble classifier whose weights are equal to these eigenvector entries. On both simulated and real data, SML typically achieves a higher accuracy than most classifiers in the ensemble and can provide a better starting point than majority voting for estimating the maximum likelihood solution. Furthermore, SML is robust to the presence of small malicious groups of classifiers designed to veer the ensemble prediction away from the (unknown) ground truth.
In a broad range of classification and decision-making problems, one is given the advice or predictions of several classifiers, of unknown reliability, over multiple questions or queries. This scenario is different from the standard supervised setting, where each classifier's accuracy can be assessed using available labeled data, and raises two questions: Given only the predictions of several classifiers over a large set of unlabeled test data, is it possible to (i) reliably rank them and (ii) construct a metaclassifier more accurate than most classifiers in the ensemble? Here we present a spectral approach to address these questions. First, assuming conditional independence between classifiers, we show that the off-diagonal entries of their covariance matrix correspond to a rank-one matrix. Moreover, the classifiers can be ranked using the leading eigenvector of this covariance matrix, because its entries are proportional to their balanced accuracies. Second, via a linear approximation to the maximum likelihood estimator, we derive the Spectral Meta-Learner (SML), an unsupervised ensemble classifier whose weights are equal to these eigenvector entries. On both simulated and real data, SML typically achieves a higher accuracy than most classifiers in the ensemble and can provide a better starting point than majority voting for estimating the maximum likelihood solution. Furthermore, SML is robust to the presence of small malicious groups of classifiers designed to veer the ensemble prediction away from the (unknown) ground truth.In a broad range of classification and decision-making problems, one is given the advice or predictions of several classifiers, of unknown reliability, over multiple questions or queries. This scenario is different from the standard supervised setting, where each classifier's accuracy can be assessed using available labeled data, and raises two questions: Given only the predictions of several classifiers over a large set of unlabeled test data, is it possible to (i) reliably rank them and (ii) construct a metaclassifier more accurate than most classifiers in the ensemble? Here we present a spectral approach to address these questions. First, assuming conditional independence between classifiers, we show that the off-diagonal entries of their covariance matrix correspond to a rank-one matrix. Moreover, the classifiers can be ranked using the leading eigenvector of this covariance matrix, because its entries are proportional to their balanced accuracies. Second, via a linear approximation to the maximum likelihood estimator, we derive the Spectral Meta-Learner (SML), an unsupervised ensemble classifier whose weights are equal to these eigenvector entries. On both simulated and real data, SML typically achieves a higher accuracy than most classifiers in the ensemble and can provide a better starting point than majority voting for estimating the maximum likelihood solution. Furthermore, SML is robust to the presence of small malicious groups of classifiers designed to veer the ensemble prediction away from the (unknown) ground truth.
Author Parisi, Fabio
Kluger, Yuval
Strino, Francesco
Nadler, Boaz
Author_xml – sequence: 1
  givenname: Fabio
  surname: Parisi
  fullname: Parisi, Fabio
– sequence: 2
  givenname: Francesco
  surname: Strino
  fullname: Strino, Francesco
– sequence: 3
  givenname: Boaz
  surname: Nadler
  fullname: Nadler, Boaz
– sequence: 4
  givenname: Yuval
  surname: Kluger
  fullname: Kluger, Yuval
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24474744$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1URLcLZ05AJC5c0s7EdhxfKlUVX1IlJKBny3HsrZfEXuIExH-Po-22UAkJzcGy5jfPz_NOyFGIwRLyHOEUQdCzXdDpFCuUIAUiPiIrBIllzSQckRVAJcqGVeyYnKS0BQDJG3hCjivGRC62Iuefdfjmw6bQoStMHFofltsw95Pf9bbYjbbzZopjKn766SbOU9Hr1va2Kzo96afksdN9ss9uzzW5fvf26-WH8urT-4-XF1el4Y2cSp29WifQ8VzatB13dYXUsYqy2oAzFFE2jrfGCE5pzZ1FYLSzdSuFhIauyfledze3g-2MDdOoe7Ub_aDHXypqr_7uBH-jNvGHohKhzq-vyZtbgTF-n22a1OCTsX2vg41zUtgABdEI_A-UyUpgnTeZ0dcP0G2cx5A3sVBMShCcZ-rln-bvXB9SyADfA2aMKY3WKeMnPfm4_MX3CkEtaaslbXWfdp47ezB3kP73xMHK0rijERXLWF79mrzYA9uUQ7-3SkUtgS4Cr_Z9p6PSm9Endf2lAqwBkDZNDvU3Cm3Igg
CitedBy_id crossref_primary_10_1109_LGRS_2020_2990332
crossref_primary_10_1109_MC_2016_294
crossref_primary_10_1145_3371925
crossref_primary_10_1080_24725854_2024_2417258
crossref_primary_10_1016_j_eswa_2019_06_022
crossref_primary_10_1016_j_jneumeth_2017_10_011
crossref_primary_10_1109_TNSRE_2023_3241241
crossref_primary_10_3390_e27030307
crossref_primary_10_1093_bioadv_vbae093
crossref_primary_10_1016_j_conengprac_2019_03_013
crossref_primary_10_1038_s41592_019_0509_5
crossref_primary_10_1073_pnas_2100761118
crossref_primary_10_1007_s13748_024_00360_x
crossref_primary_10_1093_pq_pqx046
crossref_primary_10_1016_j_atmosres_2024_107520
crossref_primary_10_1109_LSP_2019_2918945
crossref_primary_10_1016_j_jneumeth_2020_108855
crossref_primary_10_3389_fninf_2019_00016
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1109_TSP_2018_2860562
crossref_primary_10_1007_s10827_018_0694_8
crossref_primary_10_1016_j_knosys_2023_110809
crossref_primary_10_1093_nar_gkv865
crossref_primary_10_3389_fnins_2016_00430
crossref_primary_10_1016_j_rse_2016_01_010
crossref_primary_10_1175_JHM_D_20_0097_1
crossref_primary_10_14778_3275536_3275541
crossref_primary_10_3390_math13030420
crossref_primary_10_1016_j_ins_2016_05_042
crossref_primary_10_2139_ssrn_2607083
crossref_primary_10_1109_TNSRE_2017_2699784
crossref_primary_10_1093_nar_gkab1032
crossref_primary_10_1016_j_rse_2019_111219
crossref_primary_10_1098_rsos_181806
crossref_primary_10_1038_s41467_023_36492_2
crossref_primary_10_14778_3157794_3157797
crossref_primary_10_1109_TIT_2020_3045613
crossref_primary_10_1007_s00778_020_00613_w
crossref_primary_10_1093_bioinformatics_btac112
crossref_primary_10_1109_JSTARS_2021_3137231
crossref_primary_10_1109_TBME_2023_3303289
crossref_primary_10_1109_TGRS_2019_2928452
crossref_primary_10_1093_bib_bbae612
crossref_primary_10_1137_20M1365715
crossref_primary_10_1109_LSP_2021_3052135
crossref_primary_10_1038_s41467_019_09799_2
crossref_primary_10_1186_s40537_019_0186_3
crossref_primary_10_2139_ssrn_3603331
crossref_primary_10_1109_TSG_2018_2816027
crossref_primary_10_1016_j_patcog_2022_108721
crossref_primary_10_1093_bib_bbac588
crossref_primary_10_1109_TAC_2017_2727679
crossref_primary_10_1007_s00778_019_00552_1
crossref_primary_10_1038_ng_3477
Cites_doi 10.1016/0167-9473(93)E0056-A
10.1145/1401890.1401965
10.1016/S1574-0706(05)01004-9
10.1016/j.ejca.2007.01.025
10.1016/S1574-0706(05)01010-4
10.1016/0895-4356(88)90110-2
10.1080/01621459.1974.10480137
10.1093/nar/gks048
10.1016/j.dss.2010.08.028
10.1371/journal.pone.0026074
10.1109/Allerton.2011.6120180
10.1126/scitranslmed.3006112
10.2139/ssrn.1719622
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 28, 2014
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 28, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1219097111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Virology and AIDS Abstracts

CrossRef

MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Ranking and combining predictors without labels
EISSN 1091-6490
EndPage 1258
ExternalDocumentID PMC3910607
3207865271
24474744
10_1073_pnas_1219097111
111_4_1253
23769031
US201600138821
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA158167
– fundername: NCI NIH HHS
  grantid: R0-1 CA158167
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c589t-a073ef71f5f5facbd5f6213f42346c0fc31198f5bcc753365fe1043de6b979083
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:35:12 EDT 2025
Thu Jul 10 23:42:53 EDT 2025
Fri Jul 11 01:18:46 EDT 2025
Mon Jun 30 07:45:09 EDT 2025
Mon Jul 21 06:05:26 EDT 2025
Tue Jul 01 01:52:58 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Wed Nov 11 00:30:31 EST 2020
Thu May 29 08:40:44 EDT 2025
Thu Apr 03 09:39:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords spectral analysis
classifier balanced accuracy
crowdsourcing
cartels
unsupervised learning
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c589t-a073ef71f5f5facbd5f6213f42346c0fc31198f5bcc753365fe1043de6b979083
Notes http://dx.doi.org/10.1073/pnas.1219097111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: F.P., F.S., B.N., and Y.K. designed research, performed research, analyzed data, and wrote the paper.
Edited by Peter J. Bickel, University of California, Berkeley, CA, and approved December 17, 2013 (received for review November 1, 2012)
1F.P. and F.S. contributed equally to this work.
OpenAccessLink http://europepmc.org/articles/PMC3910607
PMID 24474744
PQID 1494990755
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1219097111
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3910607
proquest_miscellaneous_1492716580
crossref_citationtrail_10_1073_pnas_1219097111
proquest_journals_1494990755
proquest_miscellaneous_1803078717
pnas_primary_111_4_1253
pubmed_primary_24474744
jstor_primary_23769031
fao_agris_US201600138821
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-28
PublicationDateYYYYMMDD 2014-01-28
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Stock JH (e_1_3_3_12_2) 2006
Welinder P (e_1_3_3_21_2) 2010
e_1_3_3_17_2
e_1_3_3_16_2
Witten IH (e_1_3_3_25_2) 2011
Snow R (e_1_3_3_28_2) 2008
e_1_3_3_14_2
e_1_3_3_30_2
e_1_3_3_10_2
Raykar VC (e_1_3_3_23_2) 2010; 11
Jin R (e_1_3_3_26_2) 2003
Smyth P (e_1_3_3_19_2) 1994
Timmermann A (e_1_3_3_13_2) 2006
Dawid AP (e_1_3_3_15_2) 1979; 28
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
Dietterich TG (e_1_3_3_24_2) 2000
e_1_3_3_7_2
e_1_3_3_9_2
Linstone H (e_1_3_3_11_2) 1975
e_1_3_3_27_2
e_1_3_3_29_2
Whitehill J (e_1_3_3_18_2) 2009; 22
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
17329094 - Eur J Cancer. 2007 Apr;43(6):1002-10
22046256 - PLoS One. 2011;6(10):e26074
23596205 - Sci Transl Med. 2013 Apr 17;5(181):181re1
3054000 - J Clin Epidemiol. 1988;41(9):923-37
22307239 - Nucleic Acids Res. 2012 May;40(9):e70
References_xml – start-page: 254
  volume-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing
  year: 2008
  ident: e_1_3_3_28_2
– volume: 22
  start-page: 2035
  year: 2009
  ident: e_1_3_3_18_2
  article-title: Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_3_3_27_2
  doi: 10.1016/0167-9473(93)E0056-A
– ident: e_1_3_3_20_2
  doi: 10.1145/1401890.1401965
– ident: e_1_3_3_3_2
– ident: e_1_3_3_9_2
– start-page: 135
  volume-title: Handbook of Economic Forecasting
  year: 2006
  ident: e_1_3_3_13_2
  doi: 10.1016/S1574-0706(05)01004-9
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques
  year: 2011
  ident: e_1_3_3_25_2
– volume-title: Delphi Method: Techniques and Applications
  year: 1975
  ident: e_1_3_3_11_2
– ident: e_1_3_3_4_2
– ident: e_1_3_3_8_2
  doi: 10.1016/j.ejca.2007.01.025
– start-page: 515
  volume-title: Handbook of Economic Forecasting
  year: 2006
  ident: e_1_3_3_12_2
  doi: 10.1016/S1574-0706(05)01010-4
– ident: e_1_3_3_17_2
– volume: 11
  start-page: 12971322
  year: 2010
  ident: e_1_3_3_23_2
  article-title: Learning from crowds
  publication-title: J Mach Learn Res
– ident: e_1_3_3_29_2
  doi: 10.1016/0895-4356(88)90110-2
– ident: e_1_3_3_22_2
– start-page: 1
  volume-title: Lecture Notes in Computer Science
  year: 2000
  ident: e_1_3_3_24_2
– ident: e_1_3_3_2_2
– ident: e_1_3_3_5_2
– ident: e_1_3_3_14_2
  doi: 10.1080/01621459.1974.10480137
– ident: e_1_3_3_7_2
  doi: 10.1093/nar/gks048
– start-page: 1085
  volume-title: Advances in Neural Information Processing Systems
  year: 1994
  ident: e_1_3_3_19_2
– ident: e_1_3_3_1_2
  doi: 10.1016/j.dss.2010.08.028
– volume: 28
  start-page: 20
  year: 1979
  ident: e_1_3_3_15_2
  publication-title: J R Stat Soc Ser C Appl Stat
– ident: e_1_3_3_30_2
  doi: 10.1371/journal.pone.0026074
– start-page: 2424
  volume-title: Advances in Neural Information Processing Systems 23
  year: 2010
  ident: e_1_3_3_21_2
– ident: e_1_3_3_16_2
  doi: 10.1109/Allerton.2011.6120180
– ident: e_1_3_3_10_2
  doi: 10.1126/scitranslmed.3006112
– ident: e_1_3_3_6_2
  doi: 10.2139/ssrn.1719622
– start-page: 897
  volume-title: Advances in Neural Information Processing Systems
  year: 2003
  ident: e_1_3_3_26_2
– reference: 17329094 - Eur J Cancer. 2007 Apr;43(6):1002-10
– reference: 22046256 - PLoS One. 2011;6(10):e26074
– reference: 3054000 - J Clin Epidemiol. 1988;41(9):923-37
– reference: 22307239 - Nucleic Acids Res. 2012 May;40(9):e70
– reference: 23596205 - Sci Transl Med. 2013 Apr 17;5(181):181re1
SSID ssj0009580
Score 2.47003
Snippet In a broad range of classification and decision-making problems, one is given the advice or predictions of several classifiers, of unknown reliability, over...
A key challenge in a broad range of decision-making and classification problems is how to rank and combine the possibly conflicting suggestions of several...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1253
SubjectTerms Approximation
Cartels
covariance
Covariance matrices
Datasets
Decision making
Eigenvectors
Estimate reliability
Initial guess
Likelihood Functions
Machine learning
Majority voting
Matrix
Maximum likelihood estimation
Maximum likelihood method
Models, Theoretical
Physical Sciences
prediction
Simulation
Test data
Title Ranking and combining multiple predictors without labeled data
URI https://www.jstor.org/stable/23769031
http://www.pnas.org/content/111/4/1253.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24474744
https://www.proquest.com/docview/1494990755
https://www.proquest.com/docview/1492716580
https://www.proquest.com/docview/1803078717
https://pubmed.ncbi.nlm.nih.gov/PMC3910607
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYeOEFMWAsMFCQeBiqMnJpYucFaSCmiYeqglWCp8hJnFFppFUvPOzX8x3HdtqpQ4AqRVXsOJfz-fizfS6MvWkSsGCVl0GN0R4TlFIEMi9DdLywqeKsBkXWBrKj7GIy_Pwt3dho194lq_K0utnpV_I_UsU5yJW8ZP9Bsq5RnMB_yBdHSBjHv5LxF6kTH1jftFIne-htBOcL2oXR6XRouZUskCFzjDP1wLikOV46duPY0loNjOwy4VnvdGI0wXIQDMajPoXxmDIZarOAc1l2hl2drfBiqjN7d-k71LJyRSNZGxfEDzN547T-9fqqO_t9_cu8vFmRiMiKxXp4q06LgoQE2bDLA-rUrFGq081FBK00wbGSndoc6odSELdySUEwcgp31TWyIdv5Ty1csBRMjLpQkrcCaNuiPXY_xlwisUs6LjKzCG3MJ568u3U3ChZtrt9iLnuNnFkTVoqLi6t2zVFum9pucJfLR-yhmXT4Zx2CDtg91T5mB1aY_omJPf72CXtvIOUDUr6DlG8h5feQ8g2kfAMpnyD1lE3OP11-vAhMio2gSkW-CiReWTU8alL8ZFXWaZPFUdKAZA-zCt01iaJcNGlZVZjXJlnaKMzfk1plZc5z0PdDtt_OWnXEfNWoOhJAJKccaGEuyrrOY6EqsAHB5dBjp_bzFZWJP09pUK4LbQfBk4I-YtF_eo-duAvmXeiVu6seQR6FvALai8nXmMIm0ha8iFF0qIXkmiAzsBxDmcee6VZc05gJDwvCoseOrSAL09txMx3GCQQ79dhrVwxdTBtsslWzta4T8wicPvxDHUHDquARpwfQ2OgfzSDNY3wLNa4CxYLfLmmnP3RM-AS0Pwv58zvbfMEe9H31mO2vFmv1Enx6Vb7S_eE3ZmHH3g
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ranking+and+combining+multiple+predictors+without+labeled+data&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Parisi%2C+Fabio&rft.au=Strino%2C+Francesco&rft.au=Nadler%2C+Boaz&rft.au=Kluger%2C+Yuval&rft.date=2014-01-28&rft.eissn=1091-6490&rft.volume=111&rft.issue=4&rft.spage=1253&rft_id=info:doi/10.1073%2Fpnas.1219097111&rft_id=info%3Apmid%2F24474744&rft.externalDocID=24474744
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F4.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F4.cover.gif