Shank3 as a potential biomarker of antidepressant response to ketamine and its neural correlates in bipolar depression

Shank3, a post-synaptic density protein involved in N-methyl-d-aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is implicated in the pathophysiology of bipolar disorder. We hypothesized that elevated baseline plasma Shank3 levels might predict antidepressant response to the NMD...

Full description

Saved in:
Bibliographic Details
Published inJournal of affective disorders Vol. 172; pp. 307 - 311
Main Authors Ortiz, Robin, Niciu, Mark J., Lukkahati, Nada, Saligan, Leorey N., Nugent, Allison C., Luckenbaugh, David A., Machado-Vieira, Rodrigo, Zarate, Carlos A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2015
Subjects
Online AccessGet full text
ISSN0165-0327
1573-2517
1573-2517
DOI10.1016/j.jad.2014.09.015

Cover

Abstract Shank3, a post-synaptic density protein involved in N-methyl-d-aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is implicated in the pathophysiology of bipolar disorder. We hypothesized that elevated baseline plasma Shank3 levels might predict antidepressant response to the NMDA receptor antagonist ketamine. Twenty-nine subjects with bipolar depression received a double-blind, randomized, subanesthetic dose (.5mg/kg) ketamine infusion. Of the patients for whom Shank3 levels were collected, 15 completed baseline 3-Tesla MRI and 17 completed post-ketamine [18F]-FDG PET. Higher baseline Shank3 levels predicted antidepressant response at Days 1 (r=−.39, p=.047), 2 (r=−.45, p=.02), and 3 (r=−.42, p=.03) and were associated with larger average (r=.58, p=.02) and right amygdala volume (r=.65, p=.009). Greater baseline Shank3 also predicted increased glucose metabolism in the hippocampus (r=.51, p=.04) and amygdala (r=.58, p=.02). Limitations include the small sample size, inability to assess the source of peripheral Shank3, and the lack of a placebo group for baseline Shank3 levels and comparative structural/functional neuroimaging. Shank3 is a potential biomarker of antidepressant response to ketamine that correlates with baseline amygdala volume and increased glucose metabolism in the amygdala and hippocampus.
AbstractList Shank3, a post-synaptic density protein involved in N-methyl-d-aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is implicated in the pathophysiology of bipolar disorder. We hypothesized that elevated baseline plasma Shank3 levels might predict antidepressant response to the NMDA receptor antagonist ketamine.BACKGROUNDShank3, a post-synaptic density protein involved in N-methyl-d-aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is implicated in the pathophysiology of bipolar disorder. We hypothesized that elevated baseline plasma Shank3 levels might predict antidepressant response to the NMDA receptor antagonist ketamine.Twenty-nine subjects with bipolar depression received a double-blind, randomized, subanesthetic dose (.5 mg/kg) ketamine infusion. Of the patients for whom Shank3 levels were collected, 15 completed baseline 3-Tesla MRI and 17 completed post-ketamine [(18)F]-FDG PET.METHODSTwenty-nine subjects with bipolar depression received a double-blind, randomized, subanesthetic dose (.5 mg/kg) ketamine infusion. Of the patients for whom Shank3 levels were collected, 15 completed baseline 3-Tesla MRI and 17 completed post-ketamine [(18)F]-FDG PET.Higher baseline Shank3 levels predicted antidepressant response at Days 1 (r=-.39, p=.047), 2 (r=-.45, p=.02), and 3 (r=-.42, p=.03) and were associated with larger average (r=.58, p=.02) and right amygdala volume (r=.65, p=.009). Greater baseline Shank3 also predicted increased glucose metabolism in the hippocampus (r=.51, p=.04) and amygdala (r=.58, p=.02).RESULTSHigher baseline Shank3 levels predicted antidepressant response at Days 1 (r=-.39, p=.047), 2 (r=-.45, p=.02), and 3 (r=-.42, p=.03) and were associated with larger average (r=.58, p=.02) and right amygdala volume (r=.65, p=.009). Greater baseline Shank3 also predicted increased glucose metabolism in the hippocampus (r=.51, p=.04) and amygdala (r=.58, p=.02).Limitations include the small sample size, inability to assess the source of peripheral Shank3, and the lack of a placebo group for baseline Shank3 levels and comparative structural/functional neuroimaging.LIMITATIONSLimitations include the small sample size, inability to assess the source of peripheral Shank3, and the lack of a placebo group for baseline Shank3 levels and comparative structural/functional neuroimaging.Shank3 is a potential biomarker of antidepressant response to ketamine that correlates with baseline amygdala volume and increased glucose metabolism in the amygdala and hippocampus.CONCLUSIONSShank3 is a potential biomarker of antidepressant response to ketamine that correlates with baseline amygdala volume and increased glucose metabolism in the amygdala and hippocampus.
Abstract Background Shank3, a post-synaptic density protein involved in N-methyl- d -aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is implicated in the pathophysiology of bipolar disorder. We hypothesized that elevated baseline plasma Shank3 levels might predict antidepressant response to the NMDA receptor antagonist ketamine. Methods Twenty-nine subjects with bipolar depression received a double-blind, randomized, subanesthetic dose (.5 mg/kg) ketamine infusion. Of the patients for whom Shank3 levels were collected, 15 completed baseline 3-Tesla MRI and 17 completed post-ketamine [18 F]-FDG PET. Results Higher baseline Shank3 levels predicted antidepressant response at Days 1 ( r =−.39, p =.047), 2 ( r =−.45, p =.02), and 3 ( r =−.42, p =.03) and were associated with larger average ( r =.58, p =.02) and right amygdala volume ( r =.65, p =.009). Greater baseline Shank3 also predicted increased glucose metabolism in the hippocampus ( r =.51, p =.04) and amygdala ( r =.58, p =.02). Limitations Limitations include the small sample size, inability to assess the source of peripheral Shank3, and the lack of a placebo group for baseline Shank3 levels and comparative structural/functional neuroimaging. Conclusions Shank3 is a potential biomarker of antidepressant response to ketamine that correlates with baseline amygdala volume and increased glucose metabolism in the amygdala and hippocampus.
Background: Shank3, a post-synaptic density protein involved in N-methyl-d-aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is implicated in the pathophysiology of bipolar disorder. We hypothesized that elevated baseline plasma Shank3 levels might predict antidepressant response to the NMDA receptor antagonist ketamine. Methods: Twenty-nine subjects with bipolar depression received a double-blind, randomized, subanesthetic dose (.5 mg/kg) ketamine infusion. Of the patients for whom Shank3 levels were collected, 15 completed baseline 3-Tesla MRI and 17 completed post-ketamine [ super(18)F]-FDG PET. Results: Higher baseline Shank3 levels predicted antidepressant response at Days 1 (r=-.39, p=.047), 2 (r=-.45, p=.02), and 3 (r=-.42, p=.03) and were associated with larger average (r=.58, p=.02) and right amygdala volume (r=.65, p=.009). Greater baseline Shank3 also predicted increased glucose metabolism in the hippocampus (r=.51, p=.04) and amygdala (r=.58, p=.02). Limitations Limitations include the small sample size, inability to assess the source of peripheral Shank3, and the lack of a placebo group for baseline Shank3 levels and comparative structural/functional neuroimaging. Conclusions: Shank3 is a potential biomarker of antidepressant response to ketamine that correlates with baseline amygdala volume and increased glucose metabolism in the amygdala and hippocampus.
Shank3, a post-synaptic density protein involved in N-methyl-d-aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is implicated in the pathophysiology of bipolar disorder. We hypothesized that elevated baseline plasma Shank3 levels might predict antidepressant response to the NMDA receptor antagonist ketamine. Twenty-nine subjects with bipolar depression received a double-blind, randomized, subanesthetic dose (.5 mg/kg) ketamine infusion. Of the patients for whom Shank3 levels were collected, 15 completed baseline 3-Tesla MRI and 17 completed post-ketamine [(18)F]-FDG PET. Higher baseline Shank3 levels predicted antidepressant response at Days 1 (r=-.39, p=.047), 2 (r=-.45, p=.02), and 3 (r=-.42, p=.03) and were associated with larger average (r=.58, p=.02) and right amygdala volume (r=.65, p=.009). Greater baseline Shank3 also predicted increased glucose metabolism in the hippocampus (r=.51, p=.04) and amygdala (r=.58, p=.02). Limitations include the small sample size, inability to assess the source of peripheral Shank3, and the lack of a placebo group for baseline Shank3 levels and comparative structural/functional neuroimaging. Shank3 is a potential biomarker of antidepressant response to ketamine that correlates with baseline amygdala volume and increased glucose metabolism in the amygdala and hippocampus.
Shank3, a post-synaptic density protein involved in N-methyl-d-aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is implicated in the pathophysiology of bipolar disorder. We hypothesized that elevated baseline plasma Shank3 levels might predict antidepressant response to the NMDA receptor antagonist ketamine. Twenty-nine subjects with bipolar depression received a double-blind, randomized, subanesthetic dose (.5mg/kg) ketamine infusion. Of the patients for whom Shank3 levels were collected, 15 completed baseline 3-Tesla MRI and 17 completed post-ketamine [18F]-FDG PET. Higher baseline Shank3 levels predicted antidepressant response at Days 1 (r=−.39, p=.047), 2 (r=−.45, p=.02), and 3 (r=−.42, p=.03) and were associated with larger average (r=.58, p=.02) and right amygdala volume (r=.65, p=.009). Greater baseline Shank3 also predicted increased glucose metabolism in the hippocampus (r=.51, p=.04) and amygdala (r=.58, p=.02). Limitations include the small sample size, inability to assess the source of peripheral Shank3, and the lack of a placebo group for baseline Shank3 levels and comparative structural/functional neuroimaging. Shank3 is a potential biomarker of antidepressant response to ketamine that correlates with baseline amygdala volume and increased glucose metabolism in the amygdala and hippocampus.
Author Machado-Vieira, Rodrigo
Ortiz, Robin
Niciu, Mark J.
Saligan, Leorey N.
Luckenbaugh, David A.
Zarate, Carlos A.
Lukkahati, Nada
Nugent, Allison C.
AuthorAffiliation 3 School of Nursing, University of Nevada at Las Vegas, Las Vegas, NV, USA
2 National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
1 National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA
AuthorAffiliation_xml – name: 1 National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA
– name: 3 School of Nursing, University of Nevada at Las Vegas, Las Vegas, NV, USA
– name: 2 National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
Author_xml – sequence: 1
  givenname: Robin
  surname: Ortiz
  fullname: Ortiz, Robin
  organization: National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics & Pathophysiology Branch, Building 10/Clinical Research Center (CRC), 10 Center Dr., Room 7-5342, Bethesda, MD 20892, USA
– sequence: 2
  givenname: Mark J.
  surname: Niciu
  fullname: Niciu, Mark J.
  organization: National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics & Pathophysiology Branch, Building 10/Clinical Research Center (CRC), 10 Center Dr., Room 7-5342, Bethesda, MD 20892, USA
– sequence: 3
  givenname: Nada
  surname: Lukkahati
  fullname: Lukkahati, Nada
  organization: National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
– sequence: 4
  givenname: Leorey N.
  surname: Saligan
  fullname: Saligan, Leorey N.
  organization: National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
– sequence: 5
  givenname: Allison C.
  surname: Nugent
  fullname: Nugent, Allison C.
  organization: National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics & Pathophysiology Branch, Building 10/Clinical Research Center (CRC), 10 Center Dr., Room 7-5342, Bethesda, MD 20892, USA
– sequence: 6
  givenname: David A.
  surname: Luckenbaugh
  fullname: Luckenbaugh, David A.
  organization: National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics & Pathophysiology Branch, Building 10/Clinical Research Center (CRC), 10 Center Dr., Room 7-5342, Bethesda, MD 20892, USA
– sequence: 7
  givenname: Rodrigo
  surname: Machado-Vieira
  fullname: Machado-Vieira, Rodrigo
  organization: National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics & Pathophysiology Branch, Building 10/Clinical Research Center (CRC), 10 Center Dr., Room 7-5342, Bethesda, MD 20892, USA
– sequence: 8
  givenname: Carlos A.
  surname: Zarate
  fullname: Zarate, Carlos A.
  email: zaratec@mail.nih.gov
  organization: National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics & Pathophysiology Branch, Building 10/Clinical Research Center (CRC), 10 Center Dr., Room 7-5342, Bethesda, MD 20892, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25451430$$D View this record in MEDLINE/PubMed
BookMark eNqNUk2LFDEQbWTF_dAf4EVy9DJjJd3pdBAWZPELFjysnkM6Xe1mpidpk8zA_ntrmFnRBVdPFZL3Xl5VvfPqJMSAVfWSw5IDb9-slis7LAXwZgl6CVw-qc64VPVCSK5OqjPCyAXUQp1W5zmvAKDVCp5Vp0I2kjc1nFW7m1sb1jWzmVk2x4KheDux3seNTWtMLI7M0t2Ac8Kc6ciozjFkZCWyNRa78QEJMzBfMgu4TcR3MSWcbMHMfCC1OU42saOIj-F59XS0U8YXx3pRffvw_uvVp8X1l4-fr95dL5zsdFloZbEXbSu17TV0oumG1uq27oSUttFukNCNQjkY5dDZvtN2lL2QwvJ6AA6yvqguD7rztt_g4Kg9smfm5Km9OxOtN3--BH9rvsedaRoAAZoEXh8FUvyxxVzMxmeH02QDxm02XCkFSnbNf0DbFupOE5igr3639cvP_V4IoA4Al2LOCUfjfLGFJkcu_WQ4mH0CzMpQAsw-AQa0oQQQkz9g3os_xnl74CCtYucxmew8BoeDT-iKGaJ_lH35gO0mH7yz0xrvMK_iNgXaseEmCwPmZp_KfSg5jVi2WpCA_rvAPz7_CWsf8kk
CitedBy_id crossref_primary_10_1016_S2215_0366_23_00183_9
crossref_primary_10_2217_bmm_2016_0130
crossref_primary_10_1080_14740338_2022_2047928
crossref_primary_10_1038_s41398_020_00933_z
crossref_primary_10_1016_j_jad_2016_10_026
crossref_primary_10_1186_s12864_019_5649_6
crossref_primary_10_1111_bph_15071
crossref_primary_10_1177_2040622315579059
crossref_primary_10_1007_s11920_019_1072_6
crossref_primary_10_3390_ijms231911423
crossref_primary_10_1016_j_neuropharm_2015_07_037
crossref_primary_10_1016_j_encep_2016_06_005
crossref_primary_10_1016_j_bpsc_2022_11_005
crossref_primary_10_1016_j_psychres_2016_07_058
crossref_primary_10_1016_j_jpain_2015_05_008
crossref_primary_10_1016_j_bbi_2019_06_033
crossref_primary_10_1080_14737159_2018_1470927
crossref_primary_10_1055_a_1546_9483
crossref_primary_10_1038_s41380_022_01652_1
crossref_primary_10_1097_JCP_0000000000001132
Cites_doi 10.1523/JNEUROSCI.3017-13.2013
10.1176/appi.ajp.160.8.1516
10.1002/hbm.22068
10.1001/archpsyc.63.8.856
10.1038/nature12630
10.1016/j.pscychresns.2013.05.004
10.1016/j.biopsych.2011.12.010
10.1523/JNEUROSCI.4354-04.2005
10.1016/j.jpsychires.2011.06.006
10.1016/j.molcel.2013.02.014
10.1016/j.neuroscience.2012.09.057
10.1111/bdi.12118
10.1186/gb-2012-13-6-r43
10.1002/da.22224
10.1016/j.neuroscience.2013.03.030
10.1002/dneu.22128
10.1371/journal.pone.0038971
10.1038/nature09965
10.1016/j.neuroscience.2010.08.041
10.1016/j.jad.2012.09.003
10.1001/archgenpsychiatry.2007.37
10.31887/DCNS.2014.16.1/rduman
10.1001/archgenpsychiatry.2010.90
10.1073/pnas.96.14.8235
10.5498/wjp.v2.i3.49
ContentType Journal Article
Copyright 2014
Published by Elsevier B.V.
Copyright_xml – notice: 2014
– notice: Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1016/j.jad.2014.09.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Neurosciences Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1573-2517
EndPage 311
ExternalDocumentID PMC4400209
25451430
10_1016_j_jad_2014_09_015
S0165032714005692
1_s2_0_S0165032714005692
Genre Research Support, N.I.H., Intramural
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA MH002927
– fundername: Intramural NIH HHS
  grantid: ZIA MH002857
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAWTL
AAXKI
AAXUO
ABBQC
ABFNM
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ACDAQ
ACGFS
ACHQT
ACIEU
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
HMW
IHE
J1W
KOM
M29
M2V
M39
M3V
M41
MO0
N9A
O-L
O9-
OAUVE
OH0
OU-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
T5K
UV1
Z5R
~G-
0SF
29J
53G
AACTN
AAEDT
AAGKA
AAQXK
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADVLN
AFCTW
AFJKZ
AFKWA
AGHFR
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HEG
HMK
HMO
HVGLF
HZ~
NCXOZ
R2-
RIG
SEW
SNS
SPS
WUQ
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
ZA5
AAYWO
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c589t-97aeb26659ab908248d6a9638255a49cd508f27c0f5d8ab89af5b252a13d01053
IEDL.DBID AIKHN
ISSN 0165-0327
1573-2517
IngestDate Thu Aug 21 13:56:20 EDT 2025
Fri Sep 05 09:48:05 EDT 2025
Thu Sep 04 16:42:27 EDT 2025
Mon Jul 21 06:03:04 EDT 2025
Tue Jul 01 02:04:02 EDT 2025
Thu Apr 24 22:49:58 EDT 2025
Fri Feb 23 02:22:44 EST 2024
Sun Feb 23 10:18:53 EST 2025
Tue Aug 26 17:13:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ketamine
Shank3
MRI
Bipolar depression
PET
Language English
License Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c589t-97aeb26659ab908248d6a9638255a49cd508f27c0f5d8ab89af5b252a13d01053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://doi.org/10.1016/j.jad.2014.09.015
PMID 25451430
PQID 1660389758
PQPubID 23462
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4400209
proquest_miscellaneous_1777075849
proquest_miscellaneous_1660389758
pubmed_primary_25451430
crossref_citationtrail_10_1016_j_jad_2014_09_015
crossref_primary_10_1016_j_jad_2014_09_015
elsevier_sciencedirect_doi_10_1016_j_jad_2014_09_015
elsevier_clinicalkeyesjournals_1_s2_0_S0165032714005692
elsevier_clinicalkey_doi_10_1016_j_jad_2014_09_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of affective disorders
PublicationTitleAlternate J Affect Disord
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Li, Su, Hu, Lanius, Webster, Chung, Chen, Bai, Barker, Barrett, Li, Li, Benedek, Ursano (bib23) 2011; 45
Shen, Petersen, Behar, Brown, Nixon, Mason, Petroff, Shulman, Shulman, Rothman (bib19) 1999; 96
Licznerski, Duman (bib9) 2013; 251
Davies, Volta, Pidsley, Lunnon, Dixit, Lovestone, Coarfa, Harris, Milosavljevic, Troakes, Al-Sarraj, Dobson, Schalkwyk, Mill (bib2) 2012; 13
Zarate, Singh, Carlson, Brutsche, Ameli, Luckenbaugh, Charney, Manji (bib22) 2006; 63
Nugent, Diazgranados, Carlson, Ibrahim, Luckenbaugh, Brutsche, Herscovitch, Drevets, Zarate (bib12) 2014; 16
Kouser, Speed, Dewey, Reimers, Widman, Gupta, Liu, Jaramillo, Bangash, Xiao, Worley, Powell (bib8) 2013; 33
Bringas, Carvajal-Flores, Lopez-Ramirez, Atzori, Flores (bib1) 2013; 241
Vassilopoulou, Papathanasiou, Michopoulos, Boufidou, Oulis, Kelekis, Rizos, Nikolaou, Pantelis, Velakoulis, Lykouras (bib20) 2013; 146
Roussignol, Ango, Romorini, Tu, Sala, Worley, Bockaert, Fagni (bib16) 2005; 25
Lee, Dodart, Aron, Finley, Bronson, Haigis, Yanker, Harper (bib1001) 2013; 50
Pillai, de Jong, Kanatsou, Krugers, Knapman, Heinzmann, Holsboer, Landgraf, Joels, Touma (bib14) 2012; 7
Niciu, Mathews, Nugent, Ionescu, Furey, Richards, Machado-Vieira, Zarate (bib10) 2014; 31
Deakin, Lees, McKie, Hallak, Williams, Dursun (bib3) 2008; 65
Sheline, Gado, Kraemer (bib18) 2003; 160
Diazgranados, Ibrahim, Brutsche, Newberg, Kronstein, Khalife, Kammerer, Quezado, Luckenbaugh, Salvadore, Machado-Vieira, Manji, Zarate (bib4) 2010; 67
Peca, Feliciano, Ting, Wang, Wells, Venkatraman, Lascola, Fu, Feng (bib1002) 2011; 472
Nugent, Luckenbaugh, Wood, Bogers, Zarate, Drevets (bib13) 2013; 34
Han, Holder, Schaaf, Lu, Chen, Kang, Tang, Wu, Hao, Cheung, Yu, Sun, Breman, Patel, Lu, Zoghbi (bib7) 2013; 503
Serafini (bib17) 2012; 2
Raab, Boeckers, Neuhuber (bib15) 2010; 171
Guilmatre, Huguet, Delorme, Bourgeron (bib6) 2014; 74
Duman (bib5) 2014; 16
Nugent, Davis, Zarate, Drevets (bib11) 2013; 213
Zarate, Brutsche, Ibrahim, Franco-Chaves, Diazgranados, Cravchik, Selter, Marquardt, Liberty, Luckenbaugh (bib21) 2012; 71
Deakin (10.1016/j.jad.2014.09.015_bib3) 2008; 65
Zhang (10.1016/j.jad.2014.09.015_bib23) 2011; 45
Lee (10.1016/j.jad.2014.09.015_bib1001) 2013; 50
Pillai (10.1016/j.jad.2014.09.015_bib14) 2012; 7
Licznerski (10.1016/j.jad.2014.09.015_bib9) 2013; 251
Kouser (10.1016/j.jad.2014.09.015_bib8) 2013; 33
Han (10.1016/j.jad.2014.09.015_bib7) 2013; 503
Niciu (10.1016/j.jad.2014.09.015_bib10) 2014; 31
Peca (10.1016/j.jad.2014.09.015_bib1002) 2011; 472
Diazgranados (10.1016/j.jad.2014.09.015_bib4) 2010; 67
Duman (10.1016/j.jad.2014.09.015_bib5) 2014; 16
Guilmatre (10.1016/j.jad.2014.09.015_bib6) 2014; 74
Shen (10.1016/j.jad.2014.09.015_bib19) 1999; 96
Vassilopoulou (10.1016/j.jad.2014.09.015_bib20) 2013; 146
Davies (10.1016/j.jad.2014.09.015_bib2) 2012; 13
Sheline (10.1016/j.jad.2014.09.015_bib18) 2003; 160
Serafini (10.1016/j.jad.2014.09.015_bib17) 2012; 2
Nugent (10.1016/j.jad.2014.09.015_bib12) 2014; 16
Raab (10.1016/j.jad.2014.09.015_bib15) 2010; 171
Nugent (10.1016/j.jad.2014.09.015_bib11) 2013; 213
Roussignol (10.1016/j.jad.2014.09.015_bib16) 2005; 25
Bringas (10.1016/j.jad.2014.09.015_bib1) 2013; 241
Zarate (10.1016/j.jad.2014.09.015_bib22) 2006; 63
Nugent (10.1016/j.jad.2014.09.015_bib13) 2013; 34
Zarate (10.1016/j.jad.2014.09.015_bib21) 2012; 71
References_xml – volume: 96
  start-page: 8235
  year: 1999
  end-page: 8240
  ident: bib19
  article-title: Determination of the rate of the glutamate/glutamine cycle in the human brain by
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 11
  year: 2014
  end-page: 27
  ident: bib5
  article-title: Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections
  publication-title: Dialogues Clin. Neurosci.
– volume: 50
  start-page: 172
  year: 2013
  end-page: 184
  ident: bib1001
  article-title: Altered social behavior and neuronal development in mice lack the Uba6-Use1 ubiquitin transfer system
  publication-title: Molecular Cell
– volume: 241
  start-page: 170
  year: 2013
  end-page: 187
  ident: bib1
  article-title: Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder
  publication-title: Neuroscience
– volume: 16
  start-page: 119
  year: 2014
  end-page: 128
  ident: bib12
  article-title: Neural correlates of rapid antidepressant response to ketamine in bipolar disorder
  publication-title: Bipolar Disord.
– volume: 13
  start-page: R43
  year: 2012
  ident: bib2
  article-title: Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood
  publication-title: Genome Biol.
– volume: 171
  start-page: 421
  year: 2010
  end-page: 433
  ident: bib15
  article-title: Proline-rich synapse-associated protein-1 and 2 (ProSAP1/Shank2 and ProSAP2/Shank3)-scaffolding proteins are also present in postsynaptic specializations of the peripheral nervous system
  publication-title: Neuroscience
– volume: 251
  start-page: 33
  year: 2013
  end-page: 50
  ident: bib9
  article-title: Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression
  publication-title: Neuroscience
– volume: 34
  start-page: 2313
  year: 2013
  end-page: 2329
  ident: bib13
  article-title: Automated subcortical segmentation using FIRST: test-retest reliability, interscanner reliability, and comparison to manual segmentation
  publication-title: Hum. Brain Mapp.
– volume: 503
  start-page: 72
  year: 2013
  end-page: 77
  ident: bib7
  article-title: SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties
  publication-title: Nature
– volume: 146
  start-page: 197
  year: 2013
  end-page: 204
  ident: bib20
  article-title: A magnetic resonance imaging study of hippocampal, amygdala and subgenual prefrontal cortex volumes in major depression subtypes: melancholic
  publication-title: J. Affect. Disord.
– volume: 213
  start-page: 179
  year: 2013
  end-page: 185
  ident: bib11
  article-title: Reduced thalamic volumes in major depressive disorder
  publication-title: Psychiatry Res.
– volume: 2
  start-page: 49
  year: 2012
  end-page: 57
  ident: bib17
  article-title: Neuroplasticity and major depression, the role of modern antidepressant drugs
  publication-title: World J. Psychiatry
– volume: 7
  start-page: e38971
  year: 2012
  ident: bib14
  article-title: Dendritic morphology of hippocampal and amygdalar neurons in adolescent mice is resilient to genetic differences in stress reactivity
  publication-title: PloS One
– volume: 45
  start-page: 1426
  year: 2011
  end-page: 1431
  ident: bib23
  article-title: P11 expression and PET in bipolar disorders
  publication-title: J. Psychiatr Res.
– volume: 31
  start-page: 297
  year: 2014
  end-page: 307
  ident: bib10
  article-title: Developing biomarkers in mood disorders research through the use of rapid-acting antidepressants
  publication-title: Depress. Anxiety
– volume: 71
  start-page: 939
  year: 2012
  end-page: 946
  ident: bib21
  article-title: Replication of ketamine׳s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial
  publication-title: Biol. Psychiatry
– volume: 33
  start-page: 18448
  year: 2013
  end-page: 18468
  ident: bib8
  article-title: Loss of predominant shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission
  publication-title: J. Neurosci.
– volume: 67
  start-page: 793
  year: 2010
  end-page: 802
  ident: bib4
  article-title: A randomized add-on trial of an N-methyl-
  publication-title: Arch. Gen. Psychiatry
– volume: 65
  start-page: 154
  year: 2008
  end-page: 164
  ident: bib3
  article-title: Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study
  publication-title: Arch. Gen. Psychiatry
– volume: 25
  start-page: 3560
  year: 2005
  end-page: 3570
  ident: bib16
  article-title: Shank expression is sufficient to induce functional dendritic spine synapses in spiny neurons
  publication-title: J. Neurosci.
– volume: 160
  start-page: 1516
  year: 2003
  end-page: 1518
  ident: bib18
  article-title: Untreated depression and hippocampal volume loss
  publication-title: Am. J. Psychiatry
– volume: 74
  start-page: 113
  year: 2014
  end-page: 122
  ident: bib6
  article-title: The emerging role of SHANK genes in neuropsychiatric disorders
  publication-title: Dev. Neurobiol.
– volume: 472
  start-page: 437
  year: 2011
  end-page: 442
  ident: bib1002
  article-title: Shank3 mutant mice display autistic-like behaviours and striatal dysfunction
  publication-title: Nature
– volume: 63
  start-page: 856
  year: 2006
  end-page: 864
  ident: bib22
  article-title: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression
  publication-title: Arch. Gen. Psychiatry
– volume: 33
  start-page: 18448
  year: 2013
  ident: 10.1016/j.jad.2014.09.015_bib8
  article-title: Loss of predominant shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3017-13.2013
– volume: 160
  start-page: 1516
  year: 2003
  ident: 10.1016/j.jad.2014.09.015_bib18
  article-title: Untreated depression and hippocampal volume loss
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.160.8.1516
– volume: 34
  start-page: 2313
  year: 2013
  ident: 10.1016/j.jad.2014.09.015_bib13
  article-title: Automated subcortical segmentation using FIRST: test-retest reliability, interscanner reliability, and comparison to manual segmentation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22068
– volume: 63
  start-page: 856
  year: 2006
  ident: 10.1016/j.jad.2014.09.015_bib22
  article-title: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.63.8.856
– volume: 503
  start-page: 72
  year: 2013
  ident: 10.1016/j.jad.2014.09.015_bib7
  article-title: SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties
  publication-title: Nature
  doi: 10.1038/nature12630
– volume: 213
  start-page: 179
  year: 2013
  ident: 10.1016/j.jad.2014.09.015_bib11
  article-title: Reduced thalamic volumes in major depressive disorder
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2013.05.004
– volume: 71
  start-page: 939
  year: 2012
  ident: 10.1016/j.jad.2014.09.015_bib21
  article-title: Replication of ketamine׳s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2011.12.010
– volume: 25
  start-page: 3560
  year: 2005
  ident: 10.1016/j.jad.2014.09.015_bib16
  article-title: Shank expression is sufficient to induce functional dendritic spine synapses in spiny neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4354-04.2005
– volume: 45
  start-page: 1426
  year: 2011
  ident: 10.1016/j.jad.2014.09.015_bib23
  article-title: P11 expression and PET in bipolar disorders
  publication-title: J. Psychiatr Res.
  doi: 10.1016/j.jpsychires.2011.06.006
– volume: 50
  start-page: 172
  year: 2013
  ident: 10.1016/j.jad.2014.09.015_bib1001
  article-title: Altered social behavior and neuronal development in mice lack the Uba6-Use1 ubiquitin transfer system
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2013.02.014
– volume: 251
  start-page: 33
  year: 2013
  ident: 10.1016/j.jad.2014.09.015_bib9
  article-title: Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2012.09.057
– volume: 16
  start-page: 119
  year: 2014
  ident: 10.1016/j.jad.2014.09.015_bib12
  article-title: Neural correlates of rapid antidepressant response to ketamine in bipolar disorder
  publication-title: Bipolar Disord.
  doi: 10.1111/bdi.12118
– volume: 13
  start-page: R43
  year: 2012
  ident: 10.1016/j.jad.2014.09.015_bib2
  article-title: Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-6-r43
– volume: 31
  start-page: 297
  year: 2014
  ident: 10.1016/j.jad.2014.09.015_bib10
  article-title: Developing biomarkers in mood disorders research through the use of rapid-acting antidepressants
  publication-title: Depress. Anxiety
  doi: 10.1002/da.22224
– volume: 241
  start-page: 170
  year: 2013
  ident: 10.1016/j.jad.2014.09.015_bib1
  article-title: Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.03.030
– volume: 74
  start-page: 113
  year: 2014
  ident: 10.1016/j.jad.2014.09.015_bib6
  article-title: The emerging role of SHANK genes in neuropsychiatric disorders
  publication-title: Dev. Neurobiol.
  doi: 10.1002/dneu.22128
– volume: 7
  start-page: e38971
  year: 2012
  ident: 10.1016/j.jad.2014.09.015_bib14
  article-title: Dendritic morphology of hippocampal and amygdalar neurons in adolescent mice is resilient to genetic differences in stress reactivity
  publication-title: PloS One
  doi: 10.1371/journal.pone.0038971
– volume: 472
  start-page: 437
  year: 2011
  ident: 10.1016/j.jad.2014.09.015_bib1002
  article-title: Shank3 mutant mice display autistic-like behaviours and striatal dysfunction
  publication-title: Nature
  doi: 10.1038/nature09965
– volume: 171
  start-page: 421
  year: 2010
  ident: 10.1016/j.jad.2014.09.015_bib15
  article-title: Proline-rich synapse-associated protein-1 and 2 (ProSAP1/Shank2 and ProSAP2/Shank3)-scaffolding proteins are also present in postsynaptic specializations of the peripheral nervous system
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2010.08.041
– volume: 146
  start-page: 197
  year: 2013
  ident: 10.1016/j.jad.2014.09.015_bib20
  article-title: A magnetic resonance imaging study of hippocampal, amygdala and subgenual prefrontal cortex volumes in major depression subtypes: melancholic versus psychotic depression
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2012.09.003
– volume: 65
  start-page: 154
  year: 2008
  ident: 10.1016/j.jad.2014.09.015_bib3
  article-title: Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2007.37
– volume: 16
  start-page: 11
  year: 2014
  ident: 10.1016/j.jad.2014.09.015_bib5
  article-title: Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections
  publication-title: Dialogues Clin. Neurosci.
  doi: 10.31887/DCNS.2014.16.1/rduman
– volume: 67
  start-page: 793
  year: 2010
  ident: 10.1016/j.jad.2014.09.015_bib4
  article-title: A randomized add-on trial of an N-methyl-d-aspartate antagonist in treatment-resistant bipolar depression
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2010.90
– volume: 96
  start-page: 8235
  year: 1999
  ident: 10.1016/j.jad.2014.09.015_bib19
  article-title: Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.14.8235
– volume: 2
  start-page: 49
  year: 2012
  ident: 10.1016/j.jad.2014.09.015_bib17
  article-title: Neuroplasticity and major depression, the role of modern antidepressant drugs
  publication-title: World J. Psychiatry
  doi: 10.5498/wjp.v2.i3.49
SSID ssj0006970
Score 2.280056
Snippet Shank3, a post-synaptic density protein involved in N-methyl-d-aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is implicated in the...
Abstract Background Shank3, a post-synaptic density protein involved in N-methyl- d -aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is...
Background: Shank3, a post-synaptic density protein involved in N-methyl-d-aspartate (NMDA) receptor tethering and dendritic spine rearrangement, is implicated...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 307
SubjectTerms Adult
Aged
Amygdala - metabolism
Antidepressive Agents - therapeutic use
Biomarkers - blood
Bipolar depression
Bipolar Disorder - blood
Bipolar Disorder - drug therapy
Double-Blind Method
Female
Humans
Ketamine
Ketamine - therapeutic use
Male
MRI
N-Methylaspartate - therapeutic use
PET
Psychiatry
Receptors, N-Methyl-D-Aspartate - blood
Shank3
Treatment Outcome
Title Shank3 as a potential biomarker of antidepressant response to ketamine and its neural correlates in bipolar depression
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0165032714005692
https://www.clinicalkey.es/playcontent/1-s2.0-S0165032714005692
https://dx.doi.org/10.1016/j.jad.2014.09.015
https://www.ncbi.nlm.nih.gov/pubmed/25451430
https://www.proquest.com/docview/1660389758
https://www.proquest.com/docview/1777075849
https://pubmed.ncbi.nlm.nih.gov/PMC4400209
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69LLLsKF7ZI9CA3Ya4MV6WLaORbEiXbAe1hXrTZBlGXUfdhC7O-63j4xlo2mLDNgpTkzasURRJPzxIyGfGCww61wRQfBqI6nzPNLaIcQqY146JUuGhcLfT9T8TH47T853yOFQC4OwyuD7e5--9tbhl1kYzdmyqmanWIgTC46Mc7CLa_DDu1xolUzI7sHxYn4yOmSl1z3jUD5CheHl5hrmdWmRL5T1bKfYHPfx7elh-HkfRXlnWzp6Tp6FeJIe9H_5Bdnx9R75fXph6ytBbUstXTYdIoJACEvtEY2zok1JYUSrAIOFQ7rqsbKedg298p29gegTZApadS1F0kvQd9jJ4xqDU1rVcLUlpsV0xNLWL8nZ0defh_MoNFiIXJLpLtKphcRaqUTbHFufy6xQFlck5BlWaldA9Fby1MVlUmQ2z7Qtk5wn3DJRYGdN8YpM6qb2bwgVhVBF5pjIUo4cbpq7ImelAH_gvI7FlMTDuBoX2MexCca1GWBmlwamwuBUmFgbmIop-TyqLHvqjW3CfJgsM9SUghc0sDFsU0ofU_JtWMetYablJjYPbG1K5Ki5Ya7_uuHHwY4MLGN8N2Nr39zCjZRCqkPI3rbIpGkKEV4m9ZS87m1vHBjI8zH0jeGRNqxyFEAa8c0zdXWxphOXEnMG_fb_HukdeQrfkh7I_p5MutWt_wBxWpfvkydf_rD9sBrxc_Hj1-Ivt_w-yw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOBStSrQhZYaiRNS2CR2nPhYIdCW1wWQuFmO7YjwSFab0GN_e2fyggW0lbitNjObjT0znlG--YaQvQAcTBtjPUhetcdlmnpSGoRYJYHjRvAswEbh8wsxueYnN9HNEjnse2EQVtnF_jamN9G6-2bcreZ4mufjS2zE8VmIjHNwikuIwys8YjHi-g7-PuM8hGwmxqG0h-L9q80G5HWnkS00aLlOcTTu-4fT2-TzNYbyxaF0_Jl86rJJ-qv9w1_Ikiu-kj-Xt7q4Z1RXVNNpWSMeCISw0R6xODNaZhTWM-9AsPCRzlqkrKN1Se9drR8h9wQZS_O6okh5CfoG53g8YGpK8wJ-bYpFMR2QtMU6uT4-ujqceN14Bc9Eiaw9GWsoq4WIpE5x8DlPrNDoj1BlaC6NhdwtC2PjZ5FNdJpInUVpGIU6YBbnarINslyUhftGKLNM2MQELIlDZHCTobFpkDGIBsZJn42I36-rMh33OI7AeFA9yOxOwVYo3ArlSwVbMSL7g8q0Jd5YJBz2m6X6jlKIgQqOhUVK8XtKruq8uFKBqkLlqzeWNiJ80Jwz1v_dcLe3IwVOjG9mdOHKJ7iREEh0CLXbApk4jiG_S7gckc3W9oaFgSofE18fHmnOKgcBJBGfv1Lktw2ZOOdYMcitjz3ST7I6uTo_U2e_L063yRpciVpI-3eyXM-e3A_I2Op0p_HIf4K6PfM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shank3+as+a+potential+biomarker+of+antidepressant+response+to+ketamine+and+its+neural+correlates+in+bipolar+depression&rft.jtitle=Journal+of+affective+disorders&rft.au=Ortiz%2C+Robin&rft.au=Niciu%2C+Mark+J.&rft.au=Lukkahati%2C+Nada&rft.au=Saligan%2C+Leorey+N.&rft.date=2015-02-01&rft.pub=Elsevier+B.V&rft.issn=0165-0327&rft.eissn=1573-2517&rft.volume=172&rft.spage=307&rft.epage=311&rft_id=info:doi/10.1016%2Fj.jad.2014.09.015&rft.externalDocID=S0165032714005692
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01650327%2FS0165032714X00182%2Fcov150h.gif