Global cortical activity predicts shape of hand during grasping

Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via el...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 9; p. 121
Main Authors Agashe, Harshavardhan A., Paek, Andrew Y., Zhang, Yuhang, Contreras-Vidal, José L.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 09.04.2015
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2015.00121

Cover

Loading…
Abstract Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural "symphony" as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs.
AbstractList Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural "symphony" as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs.
Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 plus or minus 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 plus or minus 0.04, 0.47 plus or minus 0.06, and 0.32 plus or minus 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural "symphony" as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs.
Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across fifteen hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06 and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural ‘symphony’ as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs.
Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural “symphony” as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs.
Author Zhang, Yuhang
Agashe, Harshavardhan A.
Paek, Andrew Y.
Contreras-Vidal, José L.
AuthorAffiliation 2 Hyperspectral Image Analysis Lab, Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA
1 Noninvasive Brain-Machine Interface Systems Lab, Electrical and Computer Engineering, University of Houston Houston, TX, USA
AuthorAffiliation_xml – name: 1 Noninvasive Brain-Machine Interface Systems Lab, Electrical and Computer Engineering, University of Houston Houston, TX, USA
– name: 2 Hyperspectral Image Analysis Lab, Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA
Author_xml – sequence: 1
  givenname: Harshavardhan A.
  surname: Agashe
  fullname: Agashe, Harshavardhan A.
– sequence: 2
  givenname: Andrew Y.
  surname: Paek
  fullname: Paek, Andrew Y.
– sequence: 3
  givenname: Yuhang
  surname: Zhang
  fullname: Zhang, Yuhang
– sequence: 4
  givenname: José L.
  surname: Contreras-Vidal
  fullname: Contreras-Vidal, José L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25914616$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1r3DAQFSWl-WjvPRVDL73sdjSSZfnSEkKbBgK9tNCbkGR5V4tXciU7kH9f7W4akkAg6KDH6M3TfLxTchRicIS8p7BkTLaf--BDXiLQeglAkb4iJ1QIXPCa_Tl6gI_Jac4bAIGS4xtyjHVLuaDihHy9HKLRQ2VjmrwtQNvJ3_jpthqT67ydcpXXenRV7Ku1Dl3VzcmHVbVKOo8FvCWvez1k9-7uPiO_v3_7dfFjcf3z8uri_Hpha9lOC4F1A6C7xjKojWio1EgtgjEdMuEaw1HUAm1X4tr0AhgyalswLbJGYs_OyNVBt4t6o8bktzrdqqi92gdiWim962BwqkfeGy3RaIbclP9dp03XgOHStII1RevLQWuczdZ11oUp6eGR6OOX4NdqFW8UZy0FVheBT3cCKf6dXZ7U1mfrhkEHF-esqJDAuSznBdRGlFVSSQv14xPqJs4plKkqLFOjgAKgsD48LP6-6v8rLQQ4EGyKOSfX31MoqJ1r1N41aucatXdNSRFPUqyf9OTjrn0_PJ_4D-cexnc
CitedBy_id crossref_primary_10_1088_1741_2552_ac0488
crossref_primary_10_1109_RBME_2019_2950897
crossref_primary_10_1111_ejn_14629
crossref_primary_10_1007_s41315_018_0049_7
crossref_primary_10_1088_1741_2552_ab882e
crossref_primary_10_3390_app13095728
crossref_primary_10_1109_TBME_2019_2942974
crossref_primary_10_1109_MSMC_2016_2576638
crossref_primary_10_1088_1741_2552_aa8911
crossref_primary_10_1007_s11517_018_1833_0
crossref_primary_10_1299_jbse_17_00596
crossref_primary_10_3389_fnins_2020_00849
crossref_primary_10_1016_j_bea_2025_100152
crossref_primary_10_1371_journal_pone_0270366
crossref_primary_10_1016_j_jobe_2022_104540
crossref_primary_10_1038_s41598_017_13482_1
crossref_primary_10_1109_MCE_2016_2614423
crossref_primary_10_3390_s21134515
crossref_primary_10_1038_srep38565
crossref_primary_10_1038_sdata_2018_74
crossref_primary_10_1089_brain_2024_0031
crossref_primary_10_3389_fneur_2017_00007
crossref_primary_10_1016_j_neuron_2021_10_002
crossref_primary_10_1016_j_neuroscience_2016_05_015
crossref_primary_10_1371_journal_pone_0131547
crossref_primary_10_1109_TCYB_2021_3122969
crossref_primary_10_1088_1741_2552_ab4063
crossref_primary_10_3389_fnins_2019_00480
crossref_primary_10_1371_journal_pone_0182578
crossref_primary_10_1016_j_brainres_2016_05_039
crossref_primary_10_1109_ACCESS_2019_2895566
crossref_primary_10_3390_bioengineering11070695
crossref_primary_10_1523_JNEUROSCI_0914_19_2019
crossref_primary_10_1371_journal_pone_0142679
crossref_primary_10_1038_s41598_018_26609_9
crossref_primary_10_3389_fnhum_2015_00626
crossref_primary_10_1016_j_compbiomed_2020_103822
crossref_primary_10_3390_s22145349
crossref_primary_10_1186_s12984_017_0219_0
crossref_primary_10_1016_j_bbr_2020_112663
crossref_primary_10_1109_TNSRE_2016_2612001
crossref_primary_10_1109_TNSRE_2019_2938295
crossref_primary_10_1016_j_neuroimage_2018_07_055
crossref_primary_10_3389_fnins_2021_684547
crossref_primary_10_1016_j_plrev_2016_02_001
crossref_primary_10_3389_fnhum_2025_1532783
crossref_primary_10_1080_17588928_2018_1426564
crossref_primary_10_1109_JERM_2023_3241769
crossref_primary_10_1016_j_bspc_2021_102783
crossref_primary_10_3389_fncom_2018_00003
crossref_primary_10_3389_fnhum_2023_1302647
crossref_primary_10_1016_j_ins_2019_06_008
crossref_primary_10_1080_07370024_2023_2170801
crossref_primary_10_1038_s41598_018_35018_x
Cites_doi 10.1523/JNEUROSCI.2451-11.2011
10.1016/S0140-6736(12)61816-9
10.1038/sj.sc.3101638
10.1007/BF00248742
10.1109/TBME.2004.827072
10.1523/JNEUROSCI.5443-09.2010
10.1109/TBME.2009.2032532
10.1109/TBME.2010.2047015
10.1016/j.jphysparis.2009.08.007
10.1371/journal.pone.0061976
10.1523/JNEUROSCI.22-04-01426.2002
10.1016/S1388-2457(03)00093-2
10.1007/BF00227301
10.1152/jn.00760.2006
10.1111/j.1469-8986.2006.00456.x
10.1038/nature04970
10.1371/journal.pone.0006791
10.1073/pnas.0403504101
10.1152/jn.00532.2010
10.1016/j.pmrj.2010.06.016
10.1523/JNEUROSCI.18-23-10105.1998
10.1088/1741-2560/7/3/036007
10.1523/JNEUROSCI.6107-09.2010
10.1088/1741-2560/10/3/036014
10.1088/1741-2560/12/1/016011
10.1109/TNSRE.2011.2108667
10.1038/nrn2578
10.1109/NER.2013.6695856
10.1088/1741-2560/8/3/036010
10.1088/1741-2560/7/4/046002
10.1523/JNEUROSCI.2999-11.2011
10.1109/TNSRE.2007.916289
10.1016/0167-2789(92)90102-S
10.1088/1741-2560/6/6/066001
10.1038/nrn1744
10.1109/IEMBS.2011.6091389
10.1088/1741-2560/7/2/026001
10.1080/00222895.1984.10735319
10.1016/j.neuroimage.2011.06.084
10.1016/j.tins.2006.07.004
10.1038/nature11076
10.1523/JNEUROSCI.2558-10.2010
10.1016/j.neuroimage.2009.06.023
10.1152/jn.1997.78.4.2226
10.1001/jama.2009.116
10.1109/TNSRE.2014.2301234
10.1097/00001756-199602290-00017
10.1016/j.neuron.2014.07.022
10.1016/j.jneumeth.2003.10.009
10.3389/fneng.2014.00003
10.1109/IEMBS.2008.4650412
10.1016/j.neuroimage.2008.02.032
ContentType Journal Article
Copyright 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2015 Agashe, Paek, Zhang and Contreras-Vidal. 2015
Copyright_xml – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2015 Agashe, Paek, Zhang and Contreras-Vidal. 2015
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7TK
5PM
DOA
DOI 10.3389/fnins.2015.00121
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database (Proquest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList PubMed
Neurosciences Abstracts
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
EndPage 121
ExternalDocumentID oai_doaj_org_article_f24fba82ba324bc58edabd70b48b9637
PMC4391035
25914616
10_3389_fnins_2015_00121
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
7TK
5PM
ID FETCH-LOGICAL-c589t-625700ad7c305b6718a21c20bbd236e7b426562cd8a2abf603231c90b923782f3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:31:24 EDT 2025
Thu Aug 21 14:09:13 EDT 2025
Thu Sep 04 16:39:30 EDT 2025
Thu Sep 04 19:52:14 EDT 2025
Fri Jul 25 11:58:39 EDT 2025
Thu Apr 03 06:58:22 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Tue Jul 01 01:01:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords electroencephalography
grasping
brain-machine interfaces
decoding
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c589t-625700ad7c305b6718a21c20bbd236e7b426562cd8a2abf603231c90b923782f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Dennis J. McFarland, Wadsworth Center for Laboratories and Research, USA; Eric W. Sellers, East Tennessee State University, USA
This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience
Edited by: Emanuel Donchin, University of South Florida, USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2015.00121
PMID 25914616
PQID 2305102600
PQPubID 4424402
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_f24fba82ba324bc58edabd70b48b9637
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4391035
proquest_miscellaneous_1680448484
proquest_miscellaneous_1676338181
proquest_journals_2305102600
pubmed_primary_25914616
crossref_primary_10_3389_fnins_2015_00121
crossref_citationtrail_10_3389_fnins_2015_00121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-09
PublicationDateYYYYMMDD 2015-04-09
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-09
  day: 09
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2015
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Garipelli (B19) 2013; 10
Schalk (B44) 2004; 51
Paek (B35) 2014; 7
Pistohl (B36) 2012; 59
McFarland (B32) 2010; 7
Santello (B43) 2002; 22
Vargas-Irwin (B50) 2010; 30
Collinger (B17) 2012; 6736
Goncharova (B20) 2003; 114
Hamed (B23) 2007; 98
Yuan (B55) 2010; 7
Agashe (B3) 2013
Bradberry (B10) 2008; 2008
Antelis (B5) 2013; 8
Hochberg (B24) 2012; 485
Rakotomamonjy (B38) 2008; 9
Quian Quiroga (B37) 2009; 10
Cipriani (B15) 2011; 19
Saleh (B41) 2010; 30
Lebedev (B29) 2006; 29
Shawe-Taylor (B46) 2002; 14
Birbaumer (B9) 2006; 43
Kubánek (B27) 2009; 6
Theiler (B48) 1992; 58
Agashe (B2) 2011
Linderman (B30) 2009; 4
Delorme (B18) 2004; 134
Jeannerod (B26) 1984; 16
Rizzolatti (B39) 1988; 71
Kuiken (B28) 2009; 301
Snoek (B47) 2004; 42
Rizzolatti (B40) 1996; 111
Artemiadis (B6) 2007
Matsumura (B31) 1996; 7
Bansal (B8) 2011; 105
Zhuang (B56) 2010; 57
Bradberry (B13) 2009; 47
Hall (B22) 2014; 83
Cipriani (B16) 2014; 22
Wodlinger (B53) 2015; 12
Wolpaw (B54) 2004; 101
Bradberry (B12) 2011; 8
Gönen (B21) 2011; 12
Murata (B34) 1997; 78
Santello (B42) 1998; 18
Aggarwal (B4) 2008; 16
Schultz (B45) 2011; 3
Hochberg (B25) 2006; 442
Vinjamuri (B51) 2010; 57
Waldert (B52) 2009; 103
Townsend (B49) 2011; 31
Castiello (B14) 2005; 6
Acharya (B1) 2010; 7
Mollazadeh (B33) 2011; 31
Bradberry (B11) 2010; 30
Ball (B7) 2008; 41
15151851 - J Mot Behav. 1984 Sep;16(3):235-54
23611808 - J Neural Eng. 2013 Jun;10(3):036014
20168002 - J Neural Eng. 2010 Apr;7(2):26001
22255569 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5444-7
23613992 - PLoS One. 2013 Apr 17;8(4):e61976
8733737 - Neuroreport. 1996 Feb 29;7(3):749-52
16838014 - Nature. 2006 Jul 13;442(7099):164-71
21763434 - Neuroimage. 2012 Jan 2;59(1):248-60
21292599 - IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):260-70
21159978 - J Neurosci. 2010 Dec 15;30(50):17079-90
20403782 - IEEE Trans Biomed Eng. 2010 Jul;57(7):1774-84
15224087 - Spinal Cord. 2004 Sep;42(9):526-32
16859758 - Trends Neurosci. 2006 Sep;29(9):536-46
15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43
24659964 - Front Neuroeng. 2014 Mar 13;7:3
16100518 - Nat Rev Neurosci. 2005 Sep;6(9):726-36
22596161 - Nature. 2012 May 16;485(7398):372-5
21257135 - PM R. 2011 Jan;3(1):55-67
21273313 - J Neurophysiol. 2011 Apr;105(4):1603-19
19794237 - J Neural Eng. 2009 Dec;6(6):066001
25132467 - Neuron. 2014 Sep 3;83(5):1185-99
20660249 - J Neurosci. 2010 Jul 21;30(29):9659-69
25514320 - J Neural Eng. 2015 Feb;12(1):016011
8891654 - Exp Brain Res. 1996 Sep;111(2):246-52
19211469 - JAMA. 2009 Feb 11;301(6):619-28
18424182 - Neuroimage. 2008 Jun;41(2):302-10
19229240 - Nat Rev Neurosci. 2009 Mar;10(3):173-85
17076808 - Psychophysiology. 2006 Nov;43(6):517-32
11850469 - J Neurosci. 2002 Feb 15;22(4):1426-35
12948787 - Clin Neurophysiol. 2003 Sep;114(9):1580-93
24760929 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):828-36
17428905 - J Neurophysiol. 2007 Jul;98(1):327-33
15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54
22031899 - J Neurosci. 2011 Oct 26;31(43):15531-43
19707562 - PLoS One. 2009 Aug 26;4(8):e6791
19163915 - Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5306-9
21493978 - J Neural Eng. 2011 Jun;8(3):036010
20489239 - J Neural Eng. 2010 Aug;7(4):046002
20203202 - J Neurosci. 2010 Mar 3;30(9):3432-7
18303800 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14
21976524 - J Neurosci. 2011 Oct 5;31(40):14386-98
23253623 - Lancet. 2013 Feb 16;381(9866):557-64
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
20460690 - J Neural Eng. 2010 Jun;7(3):036007
19789098 - IEEE Trans Biomed Eng. 2010 Feb;57(2):284-95
19665554 - J Physiol Paris. 2009 Sep-Dec;103(3-5):244-54
9325390 - J Neurophysiol. 1997 Oct;78(4):2226-30
9822764 - J Neurosci. 1998 Dec 1;18(23):10105-15
19539036 - Neuroimage. 2009 Oct 1;47(4):1691-700
3416965 - Exp Brain Res. 1988;71(3):491-507
References_xml – volume: 31
  start-page: 14386
  year: 2011
  ident: B49
  article-title: Grasp movement decoding from premotor and parietal cortex
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.2451-11.2011
– volume: 6736
  start-page: 1
  year: 2012
  ident: B17
  article-title: High-performance neuroprosthetic control by an individual with tetraplegia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61816-9
– volume: 42
  start-page: 526
  year: 2004
  ident: B47
  article-title: Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics
  publication-title: Spinal Cord
  doi: 10.1038/sj.sc.3101638
– volume: 71
  start-page: 491
  year: 1988
  ident: B39
  article-title: Functional organization of inferior area 6 in the macaque monkey
  publication-title: Exp. Brain Res
  doi: 10.1007/BF00248742
– volume: 51
  start-page: 1034
  year: 2004
  ident: B44
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2004.827072
– volume: 30
  start-page: 9659
  year: 2010
  ident: B50
  article-title: Decoding complete reach and grasp actions from local primary motor cortex populations
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.5443-09.2010
– volume: 57
  start-page: 284
  year: 2010
  ident: B51
  article-title: Dimensionality reduction in control and coordination of the human hand
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2009.2032532
– volume: 57
  start-page: 1774
  year: 2010
  ident: B56
  article-title: Decoding 3-D reach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2010.2047015
– volume: 103
  start-page: 244
  year: 2009
  ident: B52
  article-title: A review on directional information in neural signals for brain-machine interfaces
  publication-title: J. Physiol. Paris
  doi: 10.1016/j.jphysparis.2009.08.007
– volume: 8
  start-page: e61976
  year: 2013
  ident: B5
  article-title: On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0061976
– volume: 22
  start-page: 1426
  year: 2002
  ident: B43
  article-title: Patterns of hand motion during grasping and the influence of sensory guidance
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.22-04-01426.2002
– volume: 114
  start-page: 1580
  year: 2003
  ident: B20
  article-title: EMG contamination of EEG: spectral and topographical characteristics
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(03)00093-2
– volume: 111
  start-page: 246
  year: 1996
  ident: B40
  article-title: Localization of grasp representations in humans by PET: 1. Observation versus execution
  publication-title: Exp. Brain Res
  doi: 10.1007/BF00227301
– volume: 98
  start-page: 327
  year: 2007
  ident: B23
  article-title: Decoding M1 neurons during multiple finger movements
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.00760.2006
– volume: 43
  start-page: 517
  year: 2006
  ident: B9
  article-title: Breaking the silence: brain–computer interfaces (BCI) for communication and motor control
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2006.00456.x
– volume: 442
  start-page: 164
  year: 2006
  ident: B25
  article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia
  publication-title: Nature
  doi: 10.1038/nature04970
– volume: 4
  start-page: e6791
  year: 2009
  ident: B30
  article-title: Recognition of handwriting from electromyography
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006791
– volume: 101
  start-page: 17849
  year: 2004
  ident: B54
  article-title: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0403504101
– volume: 105
  start-page: 1603
  year: 2011
  ident: B8
  article-title: Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.00532.2010
– volume: 3
  start-page: 55
  year: 2011
  ident: B45
  article-title: Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities
  publication-title: PM R
  doi: 10.1016/j.pmrj.2010.06.016
– volume: 18
  start-page: 10105
  year: 1998
  ident: B42
  article-title: Postural hand synergies for tool use
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.18-23-10105.1998
– volume: 7
  start-page: 36007
  year: 2010
  ident: B32
  article-title: Electroencephalographic (EEG) control of three-dimensional movement
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/7/3/036007
– volume: 30
  start-page: 3432
  year: 2010
  ident: B11
  article-title: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.6107-09.2010
– volume: 10
  start-page: 036014
  year: 2013
  ident: B19
  article-title: Single trial analysis of slow cortical potentials: a study on anticipation related potentials
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/10/3/036014
– volume: 12
  start-page: 016011
  year: 2015
  ident: B53
  article-title: Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/12/1/016011
– start-page: 518
  volume-title: Conference Proceedings: IEEE/EMBS Conference on Neural Engineering
  year: 2007
  ident: B6
  article-title: Decoding grasp aperture from motor-cortical population activity
– volume: 14
  start-page: 367
  year: 2002
  ident: B46
  article-title: On kernel target alignment
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 19
  start-page: 260
  year: 2011
  ident: B15
  article-title: Online myoelectric control of a dexterous hand prosthesis by transradial amputees
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2011.2108667
– volume: 10
  start-page: 173
  year: 2009
  ident: B37
  article-title: Extracting information from neuronal populations: information theory and decoding approaches
  publication-title: Nat. Rev. Neurosci
  doi: 10.1038/nrn2578
– volume: 9
  start-page: 2491
  year: 2008
  ident: B38
  article-title: SimpleMKL
  publication-title: J. Mach. Learn. Res
– start-page: 1
  volume-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)
  year: 2013
  ident: B3
  article-title: Observation-based calibration of brain-machine interfaces for graspingm
  doi: 10.1109/NER.2013.6695856
– volume: 8
  start-page: 036010
  year: 2011
  ident: B12
  article-title: Fast attainment of computer cursor control with noninvasively acquired brain signals
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/8/3/036010
– volume: 7
  start-page: 046002
  year: 2010
  ident: B1
  article-title: Electrocorticographic amplitude predicts finger positions during slow grasping motions of the hand
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/7/4/046002
– volume: 31
  start-page: 15531
  year: 2011
  ident: B33
  article-title: Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.2999-11.2011
– volume: 16
  start-page: 3
  year: 2008
  ident: B4
  article-title: Asynchronous decoding of dexterous finger movements using M1 neurons
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2007.916289
– volume: 58
  start-page: 77
  year: 1992
  ident: B48
  article-title: Testing for nonlinearity in time series: the method of surrogate data
  publication-title: Phys. D Nonlin. Phenom
  doi: 10.1016/0167-2789(92)90102-S
– volume: 6
  start-page: 066001
  year: 2009
  ident: B27
  article-title: Decoding flexion of individual fingers using electrocorticographic signals in humans
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/6/6/066001
– volume: 6
  start-page: 726
  year: 2005
  ident: B14
  article-title: The neuroscience of grasping
  publication-title: Nat. Rev. Neurosci
  doi: 10.1038/nrn1744
– start-page: 5444
  volume-title: 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2011
  ident: B2
  article-title: Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals
  doi: 10.1109/IEMBS.2011.6091389
– volume: 7
  start-page: 26001
  year: 2010
  ident: B55
  article-title: Relationship between speed and EEG activity during imagined and executed hand movements
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/7/2/026001
– volume: 16
  start-page: 235
  year: 1984
  ident: B26
  article-title: The timing of natural prehension movements
  publication-title: J. Mot. Behav
  doi: 10.1080/00222895.1984.10735319
– volume: 59
  start-page: 248
  year: 2012
  ident: B36
  article-title: Decoding natural grasp types from human ECoG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.084
– volume: 29
  start-page: 536
  year: 2006
  ident: B29
  article-title: Brain-machine interfaces: past, present and future
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2006.07.004
– volume: 485
  start-page: 372
  year: 2012
  ident: B24
  article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm
  publication-title: Nature
  doi: 10.1038/nature11076
– volume: 30
  start-page: 17079
  year: 2010
  ident: B41
  article-title: Encoding of coordinated grasp trajectories in primary motor cortex
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.2558-10.2010
– volume: 47
  start-page: 1691
  year: 2009
  ident: B13
  article-title: Decoding center-out hand velocity from MEG signals during visuomotor adaptation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.023
– volume: 78
  start-page: 2226
  year: 1997
  ident: B34
  article-title: Object representation in the ventral premotor cortex (area F5) of the monkey
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.1997.78.4.2226
– volume: 301
  start-page: 619
  year: 2009
  ident: B28
  article-title: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms
  publication-title: J. Am. Med. Assoc
  doi: 10.1001/jama.2009.116
– volume: 22
  start-page: 828
  year: 2014
  ident: B16
  article-title: Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2014.2301234
– volume: 7
  start-page: 749
  year: 1996
  ident: B31
  article-title: Changes in rCBF during grasping in humans examined by PET
  publication-title: Neuroreport
  doi: 10.1097/00001756-199602290-00017
– volume: 83
  start-page: 1185
  year: 2014
  ident: B22
  article-title: A common structure underlies low-frequency cortical dynamics in movement, sleep, and sedation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.07.022
– volume: 134
  start-page: 9
  year: 2004
  ident: B18
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 12
  start-page: 2211
  year: 2011
  ident: B21
  article-title: Multiple kernel learning algorithms
  publication-title: J. Mach. Learn. Res
– volume: 7
  issue: 3
  year: 2014
  ident: B35
  article-title: Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography
  publication-title: Front. Neuroeng
  doi: 10.3389/fneng.2014.00003
– volume: 2008
  start-page: 5306
  year: 2008
  ident: B10
  article-title: Decoding hand and cursor kinematics from magnetoencephalographic signals during tool use
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc
  doi: 10.1109/IEMBS.2008.4650412
– volume: 41
  start-page: 302
  year: 2008
  ident: B7
  article-title: Movement related activity in the high gamma range of the human EEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.032
– reference: 8891654 - Exp Brain Res. 1996 Sep;111(2):246-52
– reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
– reference: 11850469 - J Neurosci. 2002 Feb 15;22(4):1426-35
– reference: 20168002 - J Neural Eng. 2010 Apr;7(2):26001
– reference: 19211469 - JAMA. 2009 Feb 11;301(6):619-28
– reference: 23611808 - J Neural Eng. 2013 Jun;10(3):036014
– reference: 21292599 - IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):260-70
– reference: 17076808 - Psychophysiology. 2006 Nov;43(6):517-32
– reference: 21493978 - J Neural Eng. 2011 Jun;8(3):036010
– reference: 22255569 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5444-7
– reference: 20203202 - J Neurosci. 2010 Mar 3;30(9):3432-7
– reference: 19163915 - Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5306-9
– reference: 20660249 - J Neurosci. 2010 Jul 21;30(29):9659-69
– reference: 23613992 - PLoS One. 2013 Apr 17;8(4):e61976
– reference: 21763434 - Neuroimage. 2012 Jan 2;59(1):248-60
– reference: 20460690 - J Neural Eng. 2010 Jun;7(3):036007
– reference: 17428905 - J Neurophysiol. 2007 Jul;98(1):327-33
– reference: 25514320 - J Neural Eng. 2015 Feb;12(1):016011
– reference: 12948787 - Clin Neurophysiol. 2003 Sep;114(9):1580-93
– reference: 18424182 - Neuroimage. 2008 Jun;41(2):302-10
– reference: 25132467 - Neuron. 2014 Sep 3;83(5):1185-99
– reference: 19229240 - Nat Rev Neurosci. 2009 Mar;10(3):173-85
– reference: 19794237 - J Neural Eng. 2009 Dec;6(6):066001
– reference: 22596161 - Nature. 2012 May 16;485(7398):372-5
– reference: 23253623 - Lancet. 2013 Feb 16;381(9866):557-64
– reference: 15151851 - J Mot Behav. 1984 Sep;16(3):235-54
– reference: 21257135 - PM R. 2011 Jan;3(1):55-67
– reference: 20403782 - IEEE Trans Biomed Eng. 2010 Jul;57(7):1774-84
– reference: 24760929 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):828-36
– reference: 19707562 - PLoS One. 2009 Aug 26;4(8):e6791
– reference: 20489239 - J Neural Eng. 2010 Aug;7(4):046002
– reference: 19789098 - IEEE Trans Biomed Eng. 2010 Feb;57(2):284-95
– reference: 21273313 - J Neurophysiol. 2011 Apr;105(4):1603-19
– reference: 8733737 - Neuroreport. 1996 Feb 29;7(3):749-52
– reference: 16859758 - Trends Neurosci. 2006 Sep;29(9):536-46
– reference: 16100518 - Nat Rev Neurosci. 2005 Sep;6(9):726-36
– reference: 21976524 - J Neurosci. 2011 Oct 5;31(40):14386-98
– reference: 9325390 - J Neurophysiol. 1997 Oct;78(4):2226-30
– reference: 3416965 - Exp Brain Res. 1988;71(3):491-507
– reference: 19665554 - J Physiol Paris. 2009 Sep-Dec;103(3-5):244-54
– reference: 9822764 - J Neurosci. 1998 Dec 1;18(23):10105-15
– reference: 18303800 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14
– reference: 19539036 - Neuroimage. 2009 Oct 1;47(4):1691-700
– reference: 24659964 - Front Neuroeng. 2014 Mar 13;7:3
– reference: 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43
– reference: 15224087 - Spinal Cord. 2004 Sep;42(9):526-32
– reference: 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54
– reference: 21159978 - J Neurosci. 2010 Dec 15;30(50):17079-90
– reference: 16838014 - Nature. 2006 Jul 13;442(7099):164-71
– reference: 22031899 - J Neurosci. 2011 Oct 26;31(43):15531-43
SSID ssj0062842
Score 2.3805103
Snippet Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 121
SubjectTerms Anthropomorphism
Computer engineering
Cortex
Decoding
Delta band
EEG
Electrodes
Electroencephalography
Electroencephalography (EEG)
Grasping
Hand
Interfaces
Kinematics
Neuroscience
Neurosciences
Sensorimotor system
Spinal cord injuries
synergies of grasping
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7EkxfxbX0RQQQPZdNX2p5ERVkEPSl4C0maqKDdZXc9-O-dSbrLrohepLc0Je3XSeabSWYG4CShgEUjcmRuRR3nVaFiXao6tqjKnXPGmIZcA3f3ov-Y3z4VT3OlvuhMWEgPHIDruTR3WlWpVqj6tSkq2yjdlFznlUbh8XHkqPOmxlRYgwUuumnYlEQTrO659rWl3NwJOVCSNFlQQj5X_08E8_s5yTnFc7MGqx1jZBfhTddhybYbsHnRorX8_slOmT_D6Z3jm3AeUvgzNCm9j5pR2AJVh2DDEe3ITMZs_KKGlg0cI5c5C1GK7HmkxhQ4tQWPN9cPV_24K5EQIxL1JBZUhI6rpjQ4b7VARaPSxKRc6ybNhC01KmBkOKbBdqWd4BnyOVNzjbwOuYHLtmG5HbR2F5jipUts3vCiQfBsoXAAXZUpd1bVdV5E0JtiJk2XP5zKWLxJtCMIZelRloSy9ChHcDZ7YhhyZ_zS95J-w6wfZb32DSgLspMF-ZcsRHAw_Ymym4o4RkbrDuXhj-B4dhsnEe2MqNYOPsYyEbjMEndJfutTcbRl8YpgJ8jF7G3RhqT66CKCckFiFj5n8U77-uKTeVPkM8-Kvf_4_n1YIUT9waL6AJYnow97iJxpoo_89PgCi9cWQQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_0-uKLqPUjWmUFEXwIt8llN8lTaaWlCBYRC31b9rMt1OS8XB_633dmsxc8kePekj2S_HZ35jczOzMAnwpKWLSyQuYm2rxqhM5NrdvcoyoPIVhrHbkGvp_Ls4vq26W4TA63IR2r3MjEKKhdb8lHPkeqjMuHyqkfLv_k1DWKoquphcZj2EMR3IgZ7B2fnP_4uZHFEoVvjHdKyg1Ccj4GKtEsa-ehu-moXndBTpWiLLYUU6zf_z_S-e_Zyb-U0ekzeJpYJDsap_05PPLdC9g_6tCC_n3PPrN4rjM6zPfhcCzrz9DMjH5rRqkM1DGCLVcUpVkPbLjWS8_6wMiNzsbMRXa10gMlU72Ei9OTX1_P8tQ2Ibeiade5pMZ0XLvaImRGovLRZWFLbowrF9LXBpUysh7r8Lo2QfIFcjzbcoNcD_lCWLyCWdd3_g0wzetQ-Mpx4RBILzQ-wDR1yYPXbVuJDOYbzJRNNcWptcWtQtuCUFYRZUUoq4hyBl-mfyzHeho7xh7TNEzjqBJ2vNCvrlTaWCqUVTC6KY1GamgQAe-0cTU3VWNQuNQZHGwmUaXtic-YFlMGH6fbuLEoWqI7398NqpAoeonPFLvGNBztW_xl8HpcF9Pbol1JPdNlBvXWitn6nO073c11LPBN2dB8Id7ufvV38ISwiseI2gOYrVd3_j0ypLX5kLbBA7m8D6g
  priority: 102
  providerName: ProQuest
Title Global cortical activity predicts shape of hand during grasping
URI https://www.ncbi.nlm.nih.gov/pubmed/25914616
https://www.proquest.com/docview/2305102600
https://www.proquest.com/docview/1676338181
https://www.proquest.com/docview/1680448484
https://pubmed.ncbi.nlm.nih.gov/PMC4391035
https://doaj.org/article/f24fba82ba324bc58edabd70b48b9637
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-KvvhStNoatccKpdCH1E0u2SQPRbQoUlBEeuDbsrvZ1QPNnckJ-t93ZpOLXjlE8pZsvmZndn4zszMD8C2ihEUjEkRuaREmeapCnakitKjKnXPGmJJcA-cX4myU_LlOr1_SozsCNktNO-onNarvfj49PB-iwP8iixP17YGrxhVV3o7IPRJRVvkq6iVBPH6e9DEFgQuxj30KyhNCoN4GLZc-YUFJ-Vr-ywDo__soXymm03X42CFKdtSywAZ8sNUn2Dyq0Jq-f2bfmd_j6Z3nm3DYlvhnaHJ6HzajtAbqHsGmNUVsZg1rbtXUsolj5FJnbRYju6lVQ4lVWzA6Pfn7-yzsWiiEJs2LWSioSR1XZWZQrrVARaTiyMRc6zIeCptpVNCIgEyJ55V2gg8R75mCa8R9iB3c8DOsVJPKbgNTPHORTUqelkhImyp8gc6zmDuriiJJAziY00yarr44tbm4k2hnEJWlp7IkKktP5QB-9HdM29oab4w9pmnox1FVbH9iUt_ITsikixOnVR5rhTBRIwVsqXSZcZ3kGheaLIC9-STKOadJtMFwXaI6_QHs95dRyChyoio7eWxkJHAZJmwTvTUm52jr4hHAl5Yv-q9FG5P6p4sAsgWOWfidxSvV-NYX-6bMaD5Md97x3l1YI4L5fUXFHqzM6kf7FSHTTA9g9fjk4vJq4F0OAy8X_wDc-Ba3
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfG9gAvCBiwwoAgARIP1aW9Nm0f0LTBphvbTght0t5CkibbJGiP601o_xR_I3b6IQ6he5v61qZfju38bMc2wJuIEhaNSBC5pUWY5KkKdaaK0OJS7pwzxpTkGjiZislZ8vk8PV-D330uDG2r7HWiV9RlbchHPkKojOxD5dR3Zj9D6hpF0dW-hUbLFkf25heabM2Hw084v2_j-GD_9OMk7LoKhCbNi0UoqG8bV2Vm8IlaoG5WcWRirnUZj4XNNK5ZCApMieeVdoKPEQKZgmuEQricujE-9w5sIMwoUIo29vanX772ul-gsvfxVUG5SGgMtIFRNAOLkauuKqoPHpETJ4qjpYXQ9wv4H8j9d6_mX4vfwQO436FWttuy2UNYs9Uj2Nyt0GL_ccPeMb-P1DvoN2GnbSPA0Kz1fnJGqRPUoYLN5hQVWjSsuVQzy2rHyG3P2kxJdjFXDSVvPYazWyHoE1iv6spuAVM8c5FNSp6WSEibKnyBzrOYO6uKIkkDGPU0k6arYU6tNL5LtGWIytJTWRKVpadyAO-HO2Zt_Y4VY_doGoZxVHnbn6jnF7ITZOnixGmVx1ohFNVIAVsqXWZcJ7lGZZYFsN1PouzUAb5jYN4AXg-XUZApOqMqW183MhKo6gk_RavG5BztaTwCeNryxfC1aMdSj3YRQLbEMUu_s3ylurr0BcUp-5qP02erP_0V3J2cnhzL48Pp0XO4R3TzW5iKbVhfzK_tC0RnC_2yEwkG325bCv8AEzJKrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRA9FC3IL6IWi_RqiOo4EPYSTaZJA9SWtultboUsdC3cWYy0xY0WTdbpL_m13nO5IIrsm8lb8nkdubcrwCvIypYNCJBzS0twiRPVagzVYQWRblzzhhTkmvg80wcniYfz9KzDfjd18JQWmXPEz2jLmtDPvIxqsqIPtROfey6tIiT_enO_GdIE6Qo0tqP02hR5Nhe_0LzrXl_tI97_SaOpwdfPxyG3YSB0KR5sQwFzXDjqswMPl0L5NMqjkzMtS7jibCZRvmFCoIp8bzSTvAJqkOm4BrVIhStboLPvQWbGUrFfASbewezky-9HBDI-H2sVVBdEhoGbZAUTcJi7KrLinqFR-TQieJoRSj62QH_U3j_zdv8SxBO78HdToNluy3K3YcNWz2Ard0Krfcf1-wt8zml3lm_BTvtSAGGJq73mTMqo6BpFWy-oAjRsmHNhZpbVjtGLnzWVk2y84VqqJDrIZzeCEAfwaiqK_sEmOKZi2xS8rREQNpU4Qt0nsXcWVUUSRrAuIeZNF0_cxqr8V2iXUNQlh7KkqAsPZQDeDfcMW97eaxZu0fbMKyjLtz-RL04lx1RSxcnTqs81grVUo0QsKXSZcZ1kmtkbFkA2_0myo414DsGRA7g1XAZiZoiNaqy9VUjI4Fsn3SpaN2anKNtjUcAj1u8GL4WbVqa1y4CyFYwZuV3Vq9Ulxe-uThVYvNJ-nT9p7-E20h98tPR7PgZ3CGw-WymYhtGy8WVfY6K2lK_6CiCwbebJsI_bixO2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+cortical+activity+predicts+shape+of+hand+during+grasping&rft.jtitle=Frontiers+in+neuroscience&rft.au=Agashe%2C+Harshavardhan+A&rft.au=Paek%2C+Andrew+Y&rft.au=Zhang%2C+Yuhang&rft.au=Contreras-Vidal%2C+Jose+L&rft.date=2015-04-09&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=9&rft_id=info:doi/10.3389%2Ffnins.2015.00121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon