Global cortical activity predicts shape of hand during grasping
Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via el...
Saved in:
Published in | Frontiers in neuroscience Vol. 9; p. 121 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
09.04.2015
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2015.00121 |
Cover
Loading…
Abstract | Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural "symphony" as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. |
---|---|
AbstractList | Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural "symphony" as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 plus or minus 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 plus or minus 0.04, 0.47 plus or minus 0.06, and 0.32 plus or minus 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural "symphony" as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across fifteen hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06 and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural ‘symphony’ as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural “symphony” as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. |
Author | Zhang, Yuhang Agashe, Harshavardhan A. Paek, Andrew Y. Contreras-Vidal, José L. |
AuthorAffiliation | 2 Hyperspectral Image Analysis Lab, Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA 1 Noninvasive Brain-Machine Interface Systems Lab, Electrical and Computer Engineering, University of Houston Houston, TX, USA |
AuthorAffiliation_xml | – name: 1 Noninvasive Brain-Machine Interface Systems Lab, Electrical and Computer Engineering, University of Houston Houston, TX, USA – name: 2 Hyperspectral Image Analysis Lab, Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA |
Author_xml | – sequence: 1 givenname: Harshavardhan A. surname: Agashe fullname: Agashe, Harshavardhan A. – sequence: 2 givenname: Andrew Y. surname: Paek fullname: Paek, Andrew Y. – sequence: 3 givenname: Yuhang surname: Zhang fullname: Zhang, Yuhang – sequence: 4 givenname: José L. surname: Contreras-Vidal fullname: Contreras-Vidal, José L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25914616$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1r3DAQFSWl-WjvPRVDL73sdjSSZfnSEkKbBgK9tNCbkGR5V4tXciU7kH9f7W4akkAg6KDH6M3TfLxTchRicIS8p7BkTLaf--BDXiLQeglAkb4iJ1QIXPCa_Tl6gI_Jac4bAIGS4xtyjHVLuaDihHy9HKLRQ2VjmrwtQNvJ3_jpthqT67ydcpXXenRV7Ku1Dl3VzcmHVbVKOo8FvCWvez1k9-7uPiO_v3_7dfFjcf3z8uri_Hpha9lOC4F1A6C7xjKojWio1EgtgjEdMuEaw1HUAm1X4tr0AhgyalswLbJGYs_OyNVBt4t6o8bktzrdqqi92gdiWim962BwqkfeGy3RaIbclP9dp03XgOHStII1RevLQWuczdZ11oUp6eGR6OOX4NdqFW8UZy0FVheBT3cCKf6dXZ7U1mfrhkEHF-esqJDAuSznBdRGlFVSSQv14xPqJs4plKkqLFOjgAKgsD48LP6-6v8rLQQ4EGyKOSfX31MoqJ1r1N41aucatXdNSRFPUqyf9OTjrn0_PJ_4D-cexnc |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac0488 crossref_primary_10_1109_RBME_2019_2950897 crossref_primary_10_1111_ejn_14629 crossref_primary_10_1007_s41315_018_0049_7 crossref_primary_10_1088_1741_2552_ab882e crossref_primary_10_3390_app13095728 crossref_primary_10_1109_TBME_2019_2942974 crossref_primary_10_1109_MSMC_2016_2576638 crossref_primary_10_1088_1741_2552_aa8911 crossref_primary_10_1007_s11517_018_1833_0 crossref_primary_10_1299_jbse_17_00596 crossref_primary_10_3389_fnins_2020_00849 crossref_primary_10_1016_j_bea_2025_100152 crossref_primary_10_1371_journal_pone_0270366 crossref_primary_10_1016_j_jobe_2022_104540 crossref_primary_10_1038_s41598_017_13482_1 crossref_primary_10_1109_MCE_2016_2614423 crossref_primary_10_3390_s21134515 crossref_primary_10_1038_srep38565 crossref_primary_10_1038_sdata_2018_74 crossref_primary_10_1089_brain_2024_0031 crossref_primary_10_3389_fneur_2017_00007 crossref_primary_10_1016_j_neuron_2021_10_002 crossref_primary_10_1016_j_neuroscience_2016_05_015 crossref_primary_10_1371_journal_pone_0131547 crossref_primary_10_1109_TCYB_2021_3122969 crossref_primary_10_1088_1741_2552_ab4063 crossref_primary_10_3389_fnins_2019_00480 crossref_primary_10_1371_journal_pone_0182578 crossref_primary_10_1016_j_brainres_2016_05_039 crossref_primary_10_1109_ACCESS_2019_2895566 crossref_primary_10_3390_bioengineering11070695 crossref_primary_10_1523_JNEUROSCI_0914_19_2019 crossref_primary_10_1371_journal_pone_0142679 crossref_primary_10_1038_s41598_018_26609_9 crossref_primary_10_3389_fnhum_2015_00626 crossref_primary_10_1016_j_compbiomed_2020_103822 crossref_primary_10_3390_s22145349 crossref_primary_10_1186_s12984_017_0219_0 crossref_primary_10_1016_j_bbr_2020_112663 crossref_primary_10_1109_TNSRE_2016_2612001 crossref_primary_10_1109_TNSRE_2019_2938295 crossref_primary_10_1016_j_neuroimage_2018_07_055 crossref_primary_10_3389_fnins_2021_684547 crossref_primary_10_1016_j_plrev_2016_02_001 crossref_primary_10_3389_fnhum_2025_1532783 crossref_primary_10_1080_17588928_2018_1426564 crossref_primary_10_1109_JERM_2023_3241769 crossref_primary_10_1016_j_bspc_2021_102783 crossref_primary_10_3389_fncom_2018_00003 crossref_primary_10_3389_fnhum_2023_1302647 crossref_primary_10_1016_j_ins_2019_06_008 crossref_primary_10_1080_07370024_2023_2170801 crossref_primary_10_1038_s41598_018_35018_x |
Cites_doi | 10.1523/JNEUROSCI.2451-11.2011 10.1016/S0140-6736(12)61816-9 10.1038/sj.sc.3101638 10.1007/BF00248742 10.1109/TBME.2004.827072 10.1523/JNEUROSCI.5443-09.2010 10.1109/TBME.2009.2032532 10.1109/TBME.2010.2047015 10.1016/j.jphysparis.2009.08.007 10.1371/journal.pone.0061976 10.1523/JNEUROSCI.22-04-01426.2002 10.1016/S1388-2457(03)00093-2 10.1007/BF00227301 10.1152/jn.00760.2006 10.1111/j.1469-8986.2006.00456.x 10.1038/nature04970 10.1371/journal.pone.0006791 10.1073/pnas.0403504101 10.1152/jn.00532.2010 10.1016/j.pmrj.2010.06.016 10.1523/JNEUROSCI.18-23-10105.1998 10.1088/1741-2560/7/3/036007 10.1523/JNEUROSCI.6107-09.2010 10.1088/1741-2560/10/3/036014 10.1088/1741-2560/12/1/016011 10.1109/TNSRE.2011.2108667 10.1038/nrn2578 10.1109/NER.2013.6695856 10.1088/1741-2560/8/3/036010 10.1088/1741-2560/7/4/046002 10.1523/JNEUROSCI.2999-11.2011 10.1109/TNSRE.2007.916289 10.1016/0167-2789(92)90102-S 10.1088/1741-2560/6/6/066001 10.1038/nrn1744 10.1109/IEMBS.2011.6091389 10.1088/1741-2560/7/2/026001 10.1080/00222895.1984.10735319 10.1016/j.neuroimage.2011.06.084 10.1016/j.tins.2006.07.004 10.1038/nature11076 10.1523/JNEUROSCI.2558-10.2010 10.1016/j.neuroimage.2009.06.023 10.1152/jn.1997.78.4.2226 10.1001/jama.2009.116 10.1109/TNSRE.2014.2301234 10.1097/00001756-199602290-00017 10.1016/j.neuron.2014.07.022 10.1016/j.jneumeth.2003.10.009 10.3389/fneng.2014.00003 10.1109/IEMBS.2008.4650412 10.1016/j.neuroimage.2008.02.032 |
ContentType | Journal Article |
Copyright | 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2015 Agashe, Paek, Zhang and Contreras-Vidal. 2015 |
Copyright_xml | – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2015 Agashe, Paek, Zhang and Contreras-Vidal. 2015 |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7TK 5PM DOA |
DOI | 10.3389/fnins.2015.00121 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database (Proquest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | PubMed Neurosciences Abstracts Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
EndPage | 121 |
ExternalDocumentID | oai_doaj_org_article_f24fba82ba324bc58edabd70b48b9637 PMC4391035 25914616 10_3389_fnins_2015_00121 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 7TK 5PM |
ID | FETCH-LOGICAL-c589t-625700ad7c305b6718a21c20bbd236e7b426562cd8a2abf603231c90b923782f3 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:31:24 EDT 2025 Thu Aug 21 14:09:13 EDT 2025 Thu Sep 04 16:39:30 EDT 2025 Thu Sep 04 19:52:14 EDT 2025 Fri Jul 25 11:58:39 EDT 2025 Thu Apr 03 06:58:22 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 Tue Jul 01 01:01:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | electroencephalography grasping brain-machine interfaces decoding |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c589t-625700ad7c305b6718a21c20bbd236e7b426562cd8a2abf603231c90b923782f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Dennis J. McFarland, Wadsworth Center for Laboratories and Research, USA; Eric W. Sellers, East Tennessee State University, USA This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience Edited by: Emanuel Donchin, University of South Florida, USA |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2015.00121 |
PMID | 25914616 |
PQID | 2305102600 |
PQPubID | 4424402 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f24fba82ba324bc58edabd70b48b9637 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4391035 proquest_miscellaneous_1680448484 proquest_miscellaneous_1676338181 proquest_journals_2305102600 pubmed_primary_25914616 crossref_primary_10_3389_fnins_2015_00121 crossref_citationtrail_10_3389_fnins_2015_00121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-09 |
PublicationDateYYYYMMDD | 2015-04-09 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2015 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Garipelli (B19) 2013; 10 Schalk (B44) 2004; 51 Paek (B35) 2014; 7 Pistohl (B36) 2012; 59 McFarland (B32) 2010; 7 Santello (B43) 2002; 22 Vargas-Irwin (B50) 2010; 30 Collinger (B17) 2012; 6736 Goncharova (B20) 2003; 114 Hamed (B23) 2007; 98 Yuan (B55) 2010; 7 Agashe (B3) 2013 Bradberry (B10) 2008; 2008 Antelis (B5) 2013; 8 Hochberg (B24) 2012; 485 Rakotomamonjy (B38) 2008; 9 Quian Quiroga (B37) 2009; 10 Cipriani (B15) 2011; 19 Saleh (B41) 2010; 30 Lebedev (B29) 2006; 29 Shawe-Taylor (B46) 2002; 14 Birbaumer (B9) 2006; 43 Kubánek (B27) 2009; 6 Theiler (B48) 1992; 58 Agashe (B2) 2011 Linderman (B30) 2009; 4 Delorme (B18) 2004; 134 Jeannerod (B26) 1984; 16 Rizzolatti (B39) 1988; 71 Kuiken (B28) 2009; 301 Snoek (B47) 2004; 42 Rizzolatti (B40) 1996; 111 Artemiadis (B6) 2007 Matsumura (B31) 1996; 7 Bansal (B8) 2011; 105 Zhuang (B56) 2010; 57 Bradberry (B13) 2009; 47 Hall (B22) 2014; 83 Cipriani (B16) 2014; 22 Wodlinger (B53) 2015; 12 Wolpaw (B54) 2004; 101 Bradberry (B12) 2011; 8 Gönen (B21) 2011; 12 Murata (B34) 1997; 78 Santello (B42) 1998; 18 Aggarwal (B4) 2008; 16 Schultz (B45) 2011; 3 Hochberg (B25) 2006; 442 Vinjamuri (B51) 2010; 57 Waldert (B52) 2009; 103 Townsend (B49) 2011; 31 Castiello (B14) 2005; 6 Acharya (B1) 2010; 7 Mollazadeh (B33) 2011; 31 Bradberry (B11) 2010; 30 Ball (B7) 2008; 41 15151851 - J Mot Behav. 1984 Sep;16(3):235-54 23611808 - J Neural Eng. 2013 Jun;10(3):036014 20168002 - J Neural Eng. 2010 Apr;7(2):26001 22255569 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5444-7 23613992 - PLoS One. 2013 Apr 17;8(4):e61976 8733737 - Neuroreport. 1996 Feb 29;7(3):749-52 16838014 - Nature. 2006 Jul 13;442(7099):164-71 21763434 - Neuroimage. 2012 Jan 2;59(1):248-60 21292599 - IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):260-70 21159978 - J Neurosci. 2010 Dec 15;30(50):17079-90 20403782 - IEEE Trans Biomed Eng. 2010 Jul;57(7):1774-84 15224087 - Spinal Cord. 2004 Sep;42(9):526-32 16859758 - Trends Neurosci. 2006 Sep;29(9):536-46 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 24659964 - Front Neuroeng. 2014 Mar 13;7:3 16100518 - Nat Rev Neurosci. 2005 Sep;6(9):726-36 22596161 - Nature. 2012 May 16;485(7398):372-5 21257135 - PM R. 2011 Jan;3(1):55-67 21273313 - J Neurophysiol. 2011 Apr;105(4):1603-19 19794237 - J Neural Eng. 2009 Dec;6(6):066001 25132467 - Neuron. 2014 Sep 3;83(5):1185-99 20660249 - J Neurosci. 2010 Jul 21;30(29):9659-69 25514320 - J Neural Eng. 2015 Feb;12(1):016011 8891654 - Exp Brain Res. 1996 Sep;111(2):246-52 19211469 - JAMA. 2009 Feb 11;301(6):619-28 18424182 - Neuroimage. 2008 Jun;41(2):302-10 19229240 - Nat Rev Neurosci. 2009 Mar;10(3):173-85 17076808 - Psychophysiology. 2006 Nov;43(6):517-32 11850469 - J Neurosci. 2002 Feb 15;22(4):1426-35 12948787 - Clin Neurophysiol. 2003 Sep;114(9):1580-93 24760929 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):828-36 17428905 - J Neurophysiol. 2007 Jul;98(1):327-33 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54 22031899 - J Neurosci. 2011 Oct 26;31(43):15531-43 19707562 - PLoS One. 2009 Aug 26;4(8):e6791 19163915 - Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5306-9 21493978 - J Neural Eng. 2011 Jun;8(3):036010 20489239 - J Neural Eng. 2010 Aug;7(4):046002 20203202 - J Neurosci. 2010 Mar 3;30(9):3432-7 18303800 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14 21976524 - J Neurosci. 2011 Oct 5;31(40):14386-98 23253623 - Lancet. 2013 Feb 16;381(9866):557-64 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 20460690 - J Neural Eng. 2010 Jun;7(3):036007 19789098 - IEEE Trans Biomed Eng. 2010 Feb;57(2):284-95 19665554 - J Physiol Paris. 2009 Sep-Dec;103(3-5):244-54 9325390 - J Neurophysiol. 1997 Oct;78(4):2226-30 9822764 - J Neurosci. 1998 Dec 1;18(23):10105-15 19539036 - Neuroimage. 2009 Oct 1;47(4):1691-700 3416965 - Exp Brain Res. 1988;71(3):491-507 |
References_xml | – volume: 31 start-page: 14386 year: 2011 ident: B49 article-title: Grasp movement decoding from premotor and parietal cortex publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.2451-11.2011 – volume: 6736 start-page: 1 year: 2012 ident: B17 article-title: High-performance neuroprosthetic control by an individual with tetraplegia publication-title: Lancet doi: 10.1016/S0140-6736(12)61816-9 – volume: 42 start-page: 526 year: 2004 ident: B47 article-title: Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics publication-title: Spinal Cord doi: 10.1038/sj.sc.3101638 – volume: 71 start-page: 491 year: 1988 ident: B39 article-title: Functional organization of inferior area 6 in the macaque monkey publication-title: Exp. Brain Res doi: 10.1007/BF00248742 – volume: 51 start-page: 1034 year: 2004 ident: B44 article-title: BCI2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2004.827072 – volume: 30 start-page: 9659 year: 2010 ident: B50 article-title: Decoding complete reach and grasp actions from local primary motor cortex populations publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.5443-09.2010 – volume: 57 start-page: 284 year: 2010 ident: B51 article-title: Dimensionality reduction in control and coordination of the human hand publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2009.2032532 – volume: 57 start-page: 1774 year: 2010 ident: B56 article-title: Decoding 3-D reach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2010.2047015 – volume: 103 start-page: 244 year: 2009 ident: B52 article-title: A review on directional information in neural signals for brain-machine interfaces publication-title: J. Physiol. Paris doi: 10.1016/j.jphysparis.2009.08.007 – volume: 8 start-page: e61976 year: 2013 ident: B5 article-title: On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals publication-title: PLoS ONE doi: 10.1371/journal.pone.0061976 – volume: 22 start-page: 1426 year: 2002 ident: B43 article-title: Patterns of hand motion during grasping and the influence of sensory guidance publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.22-04-01426.2002 – volume: 114 start-page: 1580 year: 2003 ident: B20 article-title: EMG contamination of EEG: spectral and topographical characteristics publication-title: Clin. Neurophysiol doi: 10.1016/S1388-2457(03)00093-2 – volume: 111 start-page: 246 year: 1996 ident: B40 article-title: Localization of grasp representations in humans by PET: 1. Observation versus execution publication-title: Exp. Brain Res doi: 10.1007/BF00227301 – volume: 98 start-page: 327 year: 2007 ident: B23 article-title: Decoding M1 neurons during multiple finger movements publication-title: J. Neurophysiol doi: 10.1152/jn.00760.2006 – volume: 43 start-page: 517 year: 2006 ident: B9 article-title: Breaking the silence: brain–computer interfaces (BCI) for communication and motor control publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2006.00456.x – volume: 442 start-page: 164 year: 2006 ident: B25 article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia publication-title: Nature doi: 10.1038/nature04970 – volume: 4 start-page: e6791 year: 2009 ident: B30 article-title: Recognition of handwriting from electromyography publication-title: PLoS ONE doi: 10.1371/journal.pone.0006791 – volume: 101 start-page: 17849 year: 2004 ident: B54 article-title: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0403504101 – volume: 105 start-page: 1603 year: 2011 ident: B8 article-title: Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices publication-title: J. Neurophysiol doi: 10.1152/jn.00532.2010 – volume: 3 start-page: 55 year: 2011 ident: B45 article-title: Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities publication-title: PM R doi: 10.1016/j.pmrj.2010.06.016 – volume: 18 start-page: 10105 year: 1998 ident: B42 article-title: Postural hand synergies for tool use publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.18-23-10105.1998 – volume: 7 start-page: 36007 year: 2010 ident: B32 article-title: Electroencephalographic (EEG) control of three-dimensional movement publication-title: J. Neural Eng doi: 10.1088/1741-2560/7/3/036007 – volume: 30 start-page: 3432 year: 2010 ident: B11 article-title: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.6107-09.2010 – volume: 10 start-page: 036014 year: 2013 ident: B19 article-title: Single trial analysis of slow cortical potentials: a study on anticipation related potentials publication-title: J. Neural Eng doi: 10.1088/1741-2560/10/3/036014 – volume: 12 start-page: 016011 year: 2015 ident: B53 article-title: Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations publication-title: J. Neural Eng doi: 10.1088/1741-2560/12/1/016011 – start-page: 518 volume-title: Conference Proceedings: IEEE/EMBS Conference on Neural Engineering year: 2007 ident: B6 article-title: Decoding grasp aperture from motor-cortical population activity – volume: 14 start-page: 367 year: 2002 ident: B46 article-title: On kernel target alignment publication-title: Adv. Neural Inf. Process. Syst – volume: 19 start-page: 260 year: 2011 ident: B15 article-title: Online myoelectric control of a dexterous hand prosthesis by transradial amputees publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2011.2108667 – volume: 10 start-page: 173 year: 2009 ident: B37 article-title: Extracting information from neuronal populations: information theory and decoding approaches publication-title: Nat. Rev. Neurosci doi: 10.1038/nrn2578 – volume: 9 start-page: 2491 year: 2008 ident: B38 article-title: SimpleMKL publication-title: J. Mach. Learn. Res – start-page: 1 volume-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) year: 2013 ident: B3 article-title: Observation-based calibration of brain-machine interfaces for graspingm doi: 10.1109/NER.2013.6695856 – volume: 8 start-page: 036010 year: 2011 ident: B12 article-title: Fast attainment of computer cursor control with noninvasively acquired brain signals publication-title: J. Neural Eng doi: 10.1088/1741-2560/8/3/036010 – volume: 7 start-page: 046002 year: 2010 ident: B1 article-title: Electrocorticographic amplitude predicts finger positions during slow grasping motions of the hand publication-title: J. Neural Eng doi: 10.1088/1741-2560/7/4/046002 – volume: 31 start-page: 15531 year: 2011 ident: B33 article-title: Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.2999-11.2011 – volume: 16 start-page: 3 year: 2008 ident: B4 article-title: Asynchronous decoding of dexterous finger movements using M1 neurons publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2007.916289 – volume: 58 start-page: 77 year: 1992 ident: B48 article-title: Testing for nonlinearity in time series: the method of surrogate data publication-title: Phys. D Nonlin. Phenom doi: 10.1016/0167-2789(92)90102-S – volume: 6 start-page: 066001 year: 2009 ident: B27 article-title: Decoding flexion of individual fingers using electrocorticographic signals in humans publication-title: J. Neural Eng doi: 10.1088/1741-2560/6/6/066001 – volume: 6 start-page: 726 year: 2005 ident: B14 article-title: The neuroscience of grasping publication-title: Nat. Rev. Neurosci doi: 10.1038/nrn1744 – start-page: 5444 volume-title: 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2011 ident: B2 article-title: Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals doi: 10.1109/IEMBS.2011.6091389 – volume: 7 start-page: 26001 year: 2010 ident: B55 article-title: Relationship between speed and EEG activity during imagined and executed hand movements publication-title: J. Neural Eng doi: 10.1088/1741-2560/7/2/026001 – volume: 16 start-page: 235 year: 1984 ident: B26 article-title: The timing of natural prehension movements publication-title: J. Mot. Behav doi: 10.1080/00222895.1984.10735319 – volume: 59 start-page: 248 year: 2012 ident: B36 article-title: Decoding natural grasp types from human ECoG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.084 – volume: 29 start-page: 536 year: 2006 ident: B29 article-title: Brain-machine interfaces: past, present and future publication-title: Trends Neurosci doi: 10.1016/j.tins.2006.07.004 – volume: 485 start-page: 372 year: 2012 ident: B24 article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm publication-title: Nature doi: 10.1038/nature11076 – volume: 30 start-page: 17079 year: 2010 ident: B41 article-title: Encoding of coordinated grasp trajectories in primary motor cortex publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.2558-10.2010 – volume: 47 start-page: 1691 year: 2009 ident: B13 article-title: Decoding center-out hand velocity from MEG signals during visuomotor adaptation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.023 – volume: 78 start-page: 2226 year: 1997 ident: B34 article-title: Object representation in the ventral premotor cortex (area F5) of the monkey publication-title: J. Neurophysiol doi: 10.1152/jn.1997.78.4.2226 – volume: 301 start-page: 619 year: 2009 ident: B28 article-title: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms publication-title: J. Am. Med. Assoc doi: 10.1001/jama.2009.116 – volume: 22 start-page: 828 year: 2014 ident: B16 article-title: Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2014.2301234 – volume: 7 start-page: 749 year: 1996 ident: B31 article-title: Changes in rCBF during grasping in humans examined by PET publication-title: Neuroreport doi: 10.1097/00001756-199602290-00017 – volume: 83 start-page: 1185 year: 2014 ident: B22 article-title: A common structure underlies low-frequency cortical dynamics in movement, sleep, and sedation publication-title: Neuron doi: 10.1016/j.neuron.2014.07.022 – volume: 134 start-page: 9 year: 2004 ident: B18 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 12 start-page: 2211 year: 2011 ident: B21 article-title: Multiple kernel learning algorithms publication-title: J. Mach. Learn. Res – volume: 7 issue: 3 year: 2014 ident: B35 article-title: Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography publication-title: Front. Neuroeng doi: 10.3389/fneng.2014.00003 – volume: 2008 start-page: 5306 year: 2008 ident: B10 article-title: Decoding hand and cursor kinematics from magnetoencephalographic signals during tool use publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc doi: 10.1109/IEMBS.2008.4650412 – volume: 41 start-page: 302 year: 2008 ident: B7 article-title: Movement related activity in the high gamma range of the human EEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.032 – reference: 8891654 - Exp Brain Res. 1996 Sep;111(2):246-52 – reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 – reference: 11850469 - J Neurosci. 2002 Feb 15;22(4):1426-35 – reference: 20168002 - J Neural Eng. 2010 Apr;7(2):26001 – reference: 19211469 - JAMA. 2009 Feb 11;301(6):619-28 – reference: 23611808 - J Neural Eng. 2013 Jun;10(3):036014 – reference: 21292599 - IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):260-70 – reference: 17076808 - Psychophysiology. 2006 Nov;43(6):517-32 – reference: 21493978 - J Neural Eng. 2011 Jun;8(3):036010 – reference: 22255569 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5444-7 – reference: 20203202 - J Neurosci. 2010 Mar 3;30(9):3432-7 – reference: 19163915 - Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5306-9 – reference: 20660249 - J Neurosci. 2010 Jul 21;30(29):9659-69 – reference: 23613992 - PLoS One. 2013 Apr 17;8(4):e61976 – reference: 21763434 - Neuroimage. 2012 Jan 2;59(1):248-60 – reference: 20460690 - J Neural Eng. 2010 Jun;7(3):036007 – reference: 17428905 - J Neurophysiol. 2007 Jul;98(1):327-33 – reference: 25514320 - J Neural Eng. 2015 Feb;12(1):016011 – reference: 12948787 - Clin Neurophysiol. 2003 Sep;114(9):1580-93 – reference: 18424182 - Neuroimage. 2008 Jun;41(2):302-10 – reference: 25132467 - Neuron. 2014 Sep 3;83(5):1185-99 – reference: 19229240 - Nat Rev Neurosci. 2009 Mar;10(3):173-85 – reference: 19794237 - J Neural Eng. 2009 Dec;6(6):066001 – reference: 22596161 - Nature. 2012 May 16;485(7398):372-5 – reference: 23253623 - Lancet. 2013 Feb 16;381(9866):557-64 – reference: 15151851 - J Mot Behav. 1984 Sep;16(3):235-54 – reference: 21257135 - PM R. 2011 Jan;3(1):55-67 – reference: 20403782 - IEEE Trans Biomed Eng. 2010 Jul;57(7):1774-84 – reference: 24760929 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):828-36 – reference: 19707562 - PLoS One. 2009 Aug 26;4(8):e6791 – reference: 20489239 - J Neural Eng. 2010 Aug;7(4):046002 – reference: 19789098 - IEEE Trans Biomed Eng. 2010 Feb;57(2):284-95 – reference: 21273313 - J Neurophysiol. 2011 Apr;105(4):1603-19 – reference: 8733737 - Neuroreport. 1996 Feb 29;7(3):749-52 – reference: 16859758 - Trends Neurosci. 2006 Sep;29(9):536-46 – reference: 16100518 - Nat Rev Neurosci. 2005 Sep;6(9):726-36 – reference: 21976524 - J Neurosci. 2011 Oct 5;31(40):14386-98 – reference: 9325390 - J Neurophysiol. 1997 Oct;78(4):2226-30 – reference: 3416965 - Exp Brain Res. 1988;71(3):491-507 – reference: 19665554 - J Physiol Paris. 2009 Sep-Dec;103(3-5):244-54 – reference: 9822764 - J Neurosci. 1998 Dec 1;18(23):10105-15 – reference: 18303800 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14 – reference: 19539036 - Neuroimage. 2009 Oct 1;47(4):1691-700 – reference: 24659964 - Front Neuroeng. 2014 Mar 13;7:3 – reference: 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 – reference: 15224087 - Spinal Cord. 2004 Sep;42(9):526-32 – reference: 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54 – reference: 21159978 - J Neurosci. 2010 Dec 15;30(50):17079-90 – reference: 16838014 - Nature. 2006 Jul 13;442(7099):164-71 – reference: 22031899 - J Neurosci. 2011 Oct 26;31(43):15531-43 |
SSID | ssj0062842 |
Score | 2.3805103 |
Snippet | Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 121 |
SubjectTerms | Anthropomorphism Computer engineering Cortex Decoding Delta band EEG Electrodes Electroencephalography Electroencephalography (EEG) Grasping Hand Interfaces Kinematics Neuroscience Neurosciences Sensorimotor system Spinal cord injuries synergies of grasping |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7EkxfxbX0RQQQPZdNX2p5ERVkEPSl4C0maqKDdZXc9-O-dSbrLrohepLc0Je3XSeabSWYG4CShgEUjcmRuRR3nVaFiXao6tqjKnXPGmIZcA3f3ov-Y3z4VT3OlvuhMWEgPHIDruTR3WlWpVqj6tSkq2yjdlFznlUbh8XHkqPOmxlRYgwUuumnYlEQTrO659rWl3NwJOVCSNFlQQj5X_08E8_s5yTnFc7MGqx1jZBfhTddhybYbsHnRorX8_slOmT_D6Z3jm3AeUvgzNCm9j5pR2AJVh2DDEe3ITMZs_KKGlg0cI5c5C1GK7HmkxhQ4tQWPN9cPV_24K5EQIxL1JBZUhI6rpjQ4b7VARaPSxKRc6ybNhC01KmBkOKbBdqWd4BnyOVNzjbwOuYHLtmG5HbR2F5jipUts3vCiQfBsoXAAXZUpd1bVdV5E0JtiJk2XP5zKWLxJtCMIZelRloSy9ChHcDZ7YhhyZ_zS95J-w6wfZb32DSgLspMF-ZcsRHAw_Ymym4o4RkbrDuXhj-B4dhsnEe2MqNYOPsYyEbjMEndJfutTcbRl8YpgJ8jF7G3RhqT66CKCckFiFj5n8U77-uKTeVPkM8-Kvf_4_n1YIUT9waL6AJYnow97iJxpoo_89PgCi9cWQQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_0-uKLqPUjWmUFEXwIt8llN8lTaaWlCBYRC31b9rMt1OS8XB_633dmsxc8kePekj2S_HZ35jczOzMAnwpKWLSyQuYm2rxqhM5NrdvcoyoPIVhrHbkGvp_Ls4vq26W4TA63IR2r3MjEKKhdb8lHPkeqjMuHyqkfLv_k1DWKoquphcZj2EMR3IgZ7B2fnP_4uZHFEoVvjHdKyg1Ccj4GKtEsa-ehu-moXndBTpWiLLYUU6zf_z_S-e_Zyb-U0ekzeJpYJDsap_05PPLdC9g_6tCC_n3PPrN4rjM6zPfhcCzrz9DMjH5rRqkM1DGCLVcUpVkPbLjWS8_6wMiNzsbMRXa10gMlU72Ei9OTX1_P8tQ2Ibeiade5pMZ0XLvaImRGovLRZWFLbowrF9LXBpUysh7r8Lo2QfIFcjzbcoNcD_lCWLyCWdd3_g0wzetQ-Mpx4RBILzQ-wDR1yYPXbVuJDOYbzJRNNcWptcWtQtuCUFYRZUUoq4hyBl-mfyzHeho7xh7TNEzjqBJ2vNCvrlTaWCqUVTC6KY1GamgQAe-0cTU3VWNQuNQZHGwmUaXtic-YFlMGH6fbuLEoWqI7398NqpAoeonPFLvGNBztW_xl8HpcF9Pbol1JPdNlBvXWitn6nO073c11LPBN2dB8Id7ufvV38ISwiseI2gOYrVd3_j0ypLX5kLbBA7m8D6g priority: 102 providerName: ProQuest |
Title | Global cortical activity predicts shape of hand during grasping |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25914616 https://www.proquest.com/docview/2305102600 https://www.proquest.com/docview/1676338181 https://www.proquest.com/docview/1680448484 https://pubmed.ncbi.nlm.nih.gov/PMC4391035 https://doaj.org/article/f24fba82ba324bc58edabd70b48b9637 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-KvvhStNoatccKpdCH1E0u2SQPRbQoUlBEeuDbsrvZ1QPNnckJ-t93ZpOLXjlE8pZsvmZndn4zszMD8C2ihEUjEkRuaREmeapCnakitKjKnXPGmJJcA-cX4myU_LlOr1_SozsCNktNO-onNarvfj49PB-iwP8iixP17YGrxhVV3o7IPRJRVvkq6iVBPH6e9DEFgQuxj30KyhNCoN4GLZc-YUFJ-Vr-ywDo__soXymm03X42CFKdtSywAZ8sNUn2Dyq0Jq-f2bfmd_j6Z3nm3DYlvhnaHJ6HzajtAbqHsGmNUVsZg1rbtXUsolj5FJnbRYju6lVQ4lVWzA6Pfn7-yzsWiiEJs2LWSioSR1XZWZQrrVARaTiyMRc6zIeCptpVNCIgEyJ55V2gg8R75mCa8R9iB3c8DOsVJPKbgNTPHORTUqelkhImyp8gc6zmDuriiJJAziY00yarr44tbm4k2hnEJWlp7IkKktP5QB-9HdM29oab4w9pmnox1FVbH9iUt_ITsikixOnVR5rhTBRIwVsqXSZcZ3kGheaLIC9-STKOadJtMFwXaI6_QHs95dRyChyoio7eWxkJHAZJmwTvTUm52jr4hHAl5Yv-q9FG5P6p4sAsgWOWfidxSvV-NYX-6bMaD5Md97x3l1YI4L5fUXFHqzM6kf7FSHTTA9g9fjk4vJq4F0OAy8X_wDc-Ba3 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfG9gAvCBiwwoAgARIP1aW9Nm0f0LTBphvbTght0t5CkibbJGiP601o_xR_I3b6IQ6he5v61qZfju38bMc2wJuIEhaNSBC5pUWY5KkKdaaK0OJS7pwzxpTkGjiZislZ8vk8PV-D330uDG2r7HWiV9RlbchHPkKojOxD5dR3Zj9D6hpF0dW-hUbLFkf25heabM2Hw084v2_j-GD_9OMk7LoKhCbNi0UoqG8bV2Vm8IlaoG5WcWRirnUZj4XNNK5ZCApMieeVdoKPEQKZgmuEQricujE-9w5sIMwoUIo29vanX772ul-gsvfxVUG5SGgMtIFRNAOLkauuKqoPHpETJ4qjpYXQ9wv4H8j9d6_mX4vfwQO436FWttuy2UNYs9Uj2Nyt0GL_ccPeMb-P1DvoN2GnbSPA0Kz1fnJGqRPUoYLN5hQVWjSsuVQzy2rHyG3P2kxJdjFXDSVvPYazWyHoE1iv6spuAVM8c5FNSp6WSEibKnyBzrOYO6uKIkkDGPU0k6arYU6tNL5LtGWIytJTWRKVpadyAO-HO2Zt_Y4VY_doGoZxVHnbn6jnF7ITZOnixGmVx1ohFNVIAVsqXWZcJ7lGZZYFsN1PouzUAb5jYN4AXg-XUZApOqMqW183MhKo6gk_RavG5BztaTwCeNryxfC1aMdSj3YRQLbEMUu_s3ylurr0BcUp-5qP02erP_0V3J2cnhzL48Pp0XO4R3TzW5iKbVhfzK_tC0RnC_2yEwkG325bCv8AEzJKrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRA9FC3IL6IWi_RqiOo4EPYSTaZJA9SWtultboUsdC3cWYy0xY0WTdbpL_m13nO5IIrsm8lb8nkdubcrwCvIypYNCJBzS0twiRPVagzVYQWRblzzhhTkmvg80wcniYfz9KzDfjd18JQWmXPEz2jLmtDPvIxqsqIPtROfey6tIiT_enO_GdIE6Qo0tqP02hR5Nhe_0LzrXl_tI97_SaOpwdfPxyG3YSB0KR5sQwFzXDjqswMPl0L5NMqjkzMtS7jibCZRvmFCoIp8bzSTvAJqkOm4BrVIhStboLPvQWbGUrFfASbewezky-9HBDI-H2sVVBdEhoGbZAUTcJi7KrLinqFR-TQieJoRSj62QH_U3j_zdv8SxBO78HdToNluy3K3YcNWz2Ard0Krfcf1-wt8zml3lm_BTvtSAGGJq73mTMqo6BpFWy-oAjRsmHNhZpbVjtGLnzWVk2y84VqqJDrIZzeCEAfwaiqK_sEmOKZi2xS8rREQNpU4Qt0nsXcWVUUSRrAuIeZNF0_cxqr8V2iXUNQlh7KkqAsPZQDeDfcMW97eaxZu0fbMKyjLtz-RL04lx1RSxcnTqs81grVUo0QsKXSZcZ1kmtkbFkA2_0myo414DsGRA7g1XAZiZoiNaqy9VUjI4Fsn3SpaN2anKNtjUcAj1u8GL4WbVqa1y4CyFYwZuV3Vq9Ulxe-uThVYvNJ-nT9p7-E20h98tPR7PgZ3CGw-WymYhtGy8WVfY6K2lK_6CiCwbebJsI_bixO2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+cortical+activity+predicts+shape+of+hand+during+grasping&rft.jtitle=Frontiers+in+neuroscience&rft.au=Agashe%2C+Harshavardhan+A&rft.au=Paek%2C+Andrew+Y&rft.au=Zhang%2C+Yuhang&rft.au=Contreras-Vidal%2C+Jose+L&rft.date=2015-04-09&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=9&rft_id=info:doi/10.3389%2Ffnins.2015.00121&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |