Control of transposon activity by a histone H3K4 demethylase in rice
Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wi...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 5; pp. 1953 - 1958 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.01.2013
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways. |
---|---|
AbstractList | Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways.Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways. Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways. Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17 ) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways. Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ~1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways. [PUBLICATION ABSTRACT] Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR-and ~1 % non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the m is regulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways. |
Author | Xue, Yongming Song, Xianwei Lu, Zhike Cui, Xia Luo, Ming Cao, Xiaofeng An, Gynheung Gu, Lianfeng Wei, Liya Jin, Ping Qi, Jianfei Cui, Xiekui |
Author_xml | – sequence: 1 givenname: Xiekui surname: Cui fullname: Cui, Xiekui – sequence: 2 givenname: Ping surname: Jin fullname: Jin, Ping – sequence: 3 givenname: Xia surname: Cui fullname: Cui, Xia – sequence: 4 givenname: Lianfeng surname: Gu fullname: Gu, Lianfeng – sequence: 5 givenname: Zhike surname: Lu fullname: Lu, Zhike – sequence: 6 givenname: Yongming surname: Xue fullname: Xue, Yongming – sequence: 7 givenname: Liya surname: Wei fullname: Wei, Liya – sequence: 8 givenname: Jianfei surname: Qi fullname: Qi, Jianfei – sequence: 9 givenname: Xianwei surname: Song fullname: Song, Xianwei – sequence: 10 givenname: Ming surname: Luo fullname: Luo, Ming – sequence: 11 givenname: Gynheung surname: An fullname: An, Gynheung – sequence: 12 givenname: Xiaofeng surname: Cao fullname: Cao, Xiaofeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23319643$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEURi1URNPCmhVgqRs2014_x94gofAoohIL6NryOJ7G0WQcbKdS_j2epg3QBWLlxT3387G_E3Q0xtEj9JLAOYGWXWxGm88JJS1QIASeoBkBTRrJNRyhGQBtG8UpP0YnOa8AQAsFz9AxZYxoydkMfZjHsaQ44NjjkuyYNzHHEVtXwm0oO9ztsMXLkEu9F1-yrxwv_NqX5W6w2eMw4hScf46e9nbI_sX9eYquP338Mb9srr59_jJ_f9U4oXRpeO8UkGpqeac87yjVwCRlnfbQiUWrFCVOeUFb7pTrelhopXoivJMWuJbsFL3b52623dovnK_qdjCbFNY27Uy0wfw9GcPS3MRbw4Skioka8PY-IMWfW5-LWYfs_DDY0cdtNkQBI1QC_w-0BlLZapi0zh6hq7hNY_2JO4ozKTWp1Os_5Q_WD11U4GIPuBRzTr4_IATM1LaZ2ja_264b4tGGC8WWMFVqw_CPvQeVaXC4peLCEC0mlVd7YFWLTweCE60p4dOL3-znvY3G3qSQzfX3mi0BCKdMAPsF-djI7g |
CitedBy_id | crossref_primary_10_1007_s11427_016_5086_6 crossref_primary_10_1093_jxb_eru120 crossref_primary_10_3389_fpls_2016_00425 crossref_primary_10_1016_j_copbio_2015_01_003 crossref_primary_10_1073_pnas_1318131111 crossref_primary_10_1111_nph_14596 crossref_primary_10_1111_tpj_16600 crossref_primary_10_1016_j_isci_2024_109748 crossref_primary_10_1038_s41598_023_42420_7 crossref_primary_10_1101_lm_047464_118 crossref_primary_10_1093_plcell_koab041 crossref_primary_10_1007_s11032_019_1078_0 crossref_primary_10_1007_s11033_021_06922_9 crossref_primary_10_3390_horticulturae7120592 crossref_primary_10_1016_j_pbi_2013_03_004 crossref_primary_10_1007_s10722_024_02223_9 crossref_primary_10_1007_s00299_014_1587_6 crossref_primary_10_1016_j_scienta_2019_01_009 crossref_primary_10_1016_j_coviro_2013_08_009 crossref_primary_10_1038_srep05287 crossref_primary_10_1093_nar_gkad1214 crossref_primary_10_1186_s12870_015_0674_3 crossref_primary_10_1016_j_ecoenv_2024_116352 crossref_primary_10_3390_ijms24119349 crossref_primary_10_5423_PPJ_OA_12_2022_0161 crossref_primary_10_1007_s00299_017_2192_2 crossref_primary_10_1093_plcell_koae124 crossref_primary_10_1093_plphys_kiac095 crossref_primary_10_3389_fpls_2021_745526 crossref_primary_10_1016_j_gde_2018_02_012 crossref_primary_10_3389_fpls_2014_00290 crossref_primary_10_1016_j_jgg_2021_06_005 crossref_primary_10_1038_s41477_020_0697_0 crossref_primary_10_1111_nph_20425 crossref_primary_10_1016_j_jplph_2020_153167 crossref_primary_10_1093_nsr_nwt004 crossref_primary_10_1111_tpj_15527 crossref_primary_10_3390_ijms24054849 crossref_primary_10_1016_j_plaphy_2014_11_012 crossref_primary_10_1038_srep13251 crossref_primary_10_1016_j_indcrop_2024_118718 crossref_primary_10_1038_nature15365 crossref_primary_10_1038_s41598_021_93170_3 crossref_primary_10_1371_journal_pgen_1009326 crossref_primary_10_1007_s11427_016_5016_7 crossref_primary_10_1016_j_yexcr_2020_112314 crossref_primary_10_1016_j_plaphy_2018_09_007 crossref_primary_10_1111_pbi_12198 crossref_primary_10_3389_fpls_2021_629314 crossref_primary_10_3389_fpls_2014_00803 crossref_primary_10_1007_s11427_015_4993_2 crossref_primary_10_1016_S2095_3119_14_60873_X crossref_primary_10_1093_nsr_nww042 crossref_primary_10_7717_peerj_11137 crossref_primary_10_1590_0103_8478cr20220241 crossref_primary_10_1073_pnas_2419464122 crossref_primary_10_1007_s00122_020_03549_5 crossref_primary_10_1093_bfgp_elv025 crossref_primary_10_1111_jipb_12060 crossref_primary_10_3389_fpls_2022_814620 crossref_primary_10_1146_annurev_arplant_050213_035811 crossref_primary_10_1016_j_plaphy_2020_11_029 crossref_primary_10_1007_s00122_019_03518_7 crossref_primary_10_1016_j_jgg_2018_09_004 crossref_primary_10_1016_j_sajb_2023_04_002 crossref_primary_10_1073_pnas_1716459114 crossref_primary_10_3389_fpls_2024_1381753 crossref_primary_10_3390_ijms222111387 crossref_primary_10_1007_s11105_013_0673_1 crossref_primary_10_1139_gen_2017_0105 crossref_primary_10_1007_s12374_017_0034_y crossref_primary_10_1093_plphys_kiab020 crossref_primary_10_1093_molbev_msab323 crossref_primary_10_1371_journal_pone_0096064 crossref_primary_10_1016_j_pbi_2014_07_001 crossref_primary_10_1016_j_bbagrm_2016_07_012 crossref_primary_10_1051_jbio_2017004 crossref_primary_10_1038_s41477_018_0320_9 crossref_primary_10_1007_s11248_021_00252_z crossref_primary_10_1007_s11427_017_9236_x crossref_primary_10_3389_fgene_2022_819941 crossref_primary_10_1111_tpj_14531 crossref_primary_10_1111_jipb_12850 crossref_primary_10_3390_ijms23031065 crossref_primary_10_1101_gr_277353_122 crossref_primary_10_1093_plphys_kiad568 crossref_primary_10_3389_fpls_2020_01229 |
Cites_doi | 10.1007/BF00587581 10.1016/j.cell.2006.08.003 10.1038/emboj.2011.103 10.1111/j.1744-7909.2008.00692.x 10.1186/gb-2009-10-6-r62 10.1146/annurev.genet.33.1.479 10.1016/j.pbi.2011.01.003 10.1016/0092-8674(88)90159-6 10.1038/embor.2010.158 10.1105/tpc.109.072041 10.1038/cr.2010.27 10.1038/nature04433 10.1038/nrg3030 10.1007/s10577-006-1104-z 10.1016/j.gde.2012.02.006 10.1007/s00438-006-0141-9 10.1073/pnas.162371599 10.1146/annurev.arplant.59.032607.092744 10.1046/j.1365-313x.2001.00945.x 10.1093/mp/ssn037 10.1016/j.cell.2012.04.019 10.1016/S0960-9822(03)00106-4 10.1016/j.cell.2007.07.007 10.1073/pnas.93.15.7783 10.1038/nature08328 10.1073/pnas.96.12.6824 10.1371/journal.pone.0003156 10.1038/emboj.2009.59 10.1073/pnas.1112704108 10.1038/35075612 10.1038/nature09861 10.1007/s004380050943 10.1146/annurev.biochem.78.070907.103946 10.1101/gad.579910 10.1073/pnas.97.13.7376 10.1016/j.cell.2008.03.029 10.1093/nar/gkl976 10.1126/science.1068275 10.1105/tpc.011809 10.1104/pp.014357 10.1038/nrg1601 10.1038/emboj.2010.227 10.1038/ng1138 10.1016/j.cell.2008.09.022 10.1126/science.1153996 10.1038/nature02651 10.1038/nature08351 10.1038/nrg793 10.1101/gr.194601 10.1111/j.1365-313X.2010.04182.x 10.1104/pp.103.030478 10.1105/tpc.106.048124 10.1016/S0960-9822(02)00976-4 10.1038/nature03895 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jan 29, 2013 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jan 29, 2013 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1217020110 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | H3K4 demethylase controls transposon activity |
EISSN | 1091-6490 |
EndPage | 1958 |
ExternalDocumentID | PMC3562835 2880904961 23319643 10_1073_pnas_1217020110 110_5_1953 41992146 US201600142350 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c589t-4fc801020a4b8e4b22903623b9e0b5d78821c8e5274c8cbf0d988f15ec6a04963 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:09:27 EDT 2025 Fri Jul 11 06:15:55 EDT 2025 Fri Jul 11 08:45:17 EDT 2025 Mon Jun 30 08:37:32 EDT 2025 Mon Jul 21 05:43:38 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Tue Jul 01 03:39:35 EDT 2025 Wed Nov 11 00:30:05 EST 2020 Thu May 29 08:40:43 EDT 2025 Thu Apr 03 09:43:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c589t-4fc801020a4b8e4b22903623b9e0b5d78821c8e5274c8cbf0d988f15ec6a04963 |
Notes | http://dx.doi.org/10.1073/pnas.1217020110 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: X.K. Cui, G.A., and X. Cao designed research; X.K. Cui, P.J., X. Cui, Y.X., L.W., and J.Q. performed research; X.K. Cui, X. Cui, L.G., Z.L., X.S., M.L., and X. Cao analyzed data; and X.K. Cui, G.A., and X. Cao wrote the paper. Edited by David C. Baulcombe, University of Cambridge, Cambridge, United Kingdom, and approved December 19, 2012 (received for review September 30, 2012) 1Xiekui Cui and P.J. contributed equally to this work. |
OpenAccessLink | https://www.pnas.org/content/pnas/110/5/1953.full.pdf |
PMID | 23319643 |
PQID | 1283436691 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | fao_agris_US201600142350 crossref_primary_10_1073_pnas_1217020110 proquest_miscellaneous_1283267906 pubmed_primary_23319643 pnas_primary_110_5_1953 proquest_journals_1283436691 crossref_citationtrail_10_1073_pnas_1217020110 proquest_miscellaneous_1803126045 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3562835 jstor_primary_41992146 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-29 |
PublicationDateYYYYMMDD | 2013-01-29 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Tsukada Y (e_1_3_4_18_2) 2006; 439 Feschotte C (e_1_3_4_1_2) 2002; 3 Burns KH (e_1_3_4_6_2) 2012; 149 Lu F (e_1_3_4_35_2) 2008; 50 Hirochika H (e_1_3_4_32_2) 1996; 93 Ouyang S (e_1_3_4_39_2) 2007; 35 He G (e_1_3_4_38_2) 2010; 22 La H (e_1_3_4_9_2) 2011; 108 Hirochika H (e_1_3_4_26_2) 1992; 233 Ding Y (e_1_3_4_8_2) 2007; 19 Yan H (e_1_3_4_50_2) 2007; 15 Deleris A (e_1_3_4_21_2) 2010; 11 Jeong DH (e_1_3_4_37_2) 2002; 130 Mirouze M (e_1_3_4_11_2) 2009; 461 Le QH (e_1_3_4_29_2) 2000; 97 Ito H (e_1_3_4_48_2) 2011; 472 Lippman Z (e_1_3_4_10_2) 2004; 430 Zhang X (e_1_3_4_16_2) 2008; 320 Cao X (e_1_3_4_54_2) 2002; 99 Bernatavichute YV (e_1_3_4_41_2) 2008; 3 Kumar A (e_1_3_4_2_2) 1999; 33 Lisch D (e_1_3_4_4_2) 2009; 60 Levin HL (e_1_3_4_7_2) 2011; 12 Miura A (e_1_3_4_12_2) 2001; 411 e_1_3_4_53_2 Tsukahara S (e_1_3_4_13_2) 2009; 461 Goodier JL (e_1_3_4_3_2) 2008; 135 International Rice Genome Sequencing Project (e_1_3_4_28_2) 2005; 436 Lister R (e_1_3_4_45_2) 2008; 133 Korenberg JR (e_1_3_4_51_2) 1988; 53 Lu F (e_1_3_4_22_2) 2010; 20 Searle IR (e_1_3_4_24_2) 2010; 24 Goff SA (e_1_3_4_25_2) 2002; 296 Noma K (e_1_3_4_30_2) 1999; 261 Zhang X (e_1_3_4_40_2) 2009; 10 Yang W (e_1_3_4_23_2) 2010; 62 Roudier F (e_1_3_4_15_2) 2011; 30 Cheng C (e_1_3_4_34_2) 2006; 276 Komatsu M (e_1_3_4_33_2) 2003; 15 An S (e_1_3_4_36_2) 2003; 133 Zhang X (e_1_3_4_47_2) 2006; 126 Turcotte K (e_1_3_4_31_2) 2001; 25 Mosammaparast N (e_1_3_4_17_2) 2010; 79 Saze H (e_1_3_4_46_2) 2003; 34 Lisch D (e_1_3_4_5_2) 2011; 14 Inagaki S (e_1_3_4_19_2) 2010; 29 Cheng Z (e_1_3_4_49_2) 2001; 11 Hancks DC (e_1_3_4_52_2) 2012; 22 Miura A (e_1_3_4_20_2) 2009; 28 Johnson L (e_1_3_4_42_2) 2002; 12 Mathieu O (e_1_3_4_14_2) 2007; 130 Chan SW (e_1_3_4_43_2) 2005; 6 Wang S (e_1_3_4_27_2) 1999; 96 Kato M (e_1_3_4_44_2) 2003; 13 |
References_xml | – volume: 233 start-page: 209 year: 1992 ident: e_1_3_4_26_2 article-title: Retrotransposon families in rice publication-title: Mol Gen Genet doi: 10.1007/BF00587581 – volume: 126 start-page: 1189 year: 2006 ident: e_1_3_4_47_2 article-title: Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis publication-title: Cell doi: 10.1016/j.cell.2006.08.003 – volume: 30 start-page: 1928 year: 2011 ident: e_1_3_4_15_2 article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis publication-title: EMBO J doi: 10.1038/emboj.2011.103 – volume: 50 start-page: 886 year: 2008 ident: e_1_3_4_35_2 article-title: Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice publication-title: J Integr Plant Biol doi: 10.1111/j.1744-7909.2008.00692.x – volume: 10 start-page: R62 year: 2009 ident: e_1_3_4_40_2 article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana publication-title: Genome Biol doi: 10.1186/gb-2009-10-6-r62 – volume: 33 start-page: 479 year: 1999 ident: e_1_3_4_2_2 article-title: Plant retrotransposons publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.33.1.479 – volume: 14 start-page: 156 year: 2011 ident: e_1_3_4_5_2 article-title: Transposable element origins of epigenetic gene regulation publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2011.01.003 – volume: 53 start-page: 391 year: 1988 ident: e_1_3_4_51_2 article-title: Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands publication-title: Cell doi: 10.1016/0092-8674(88)90159-6 – volume: 11 start-page: 950 year: 2010 ident: e_1_3_4_21_2 article-title: Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation publication-title: EMBO Rep doi: 10.1038/embor.2010.158 – volume: 22 start-page: 17 year: 2010 ident: e_1_3_4_38_2 article-title: Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids publication-title: Plant Cell doi: 10.1105/tpc.109.072041 – volume: 20 start-page: 387 year: 2010 ident: e_1_3_4_22_2 article-title: JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis publication-title: Cell Res doi: 10.1038/cr.2010.27 – volume: 439 start-page: 811 year: 2006 ident: e_1_3_4_18_2 article-title: Histone demethylation by a family of JmjC domain-containing proteins publication-title: Nature doi: 10.1038/nature04433 – volume: 12 start-page: 615 year: 2011 ident: e_1_3_4_7_2 article-title: Dynamic interactions between transposable elements and their hosts publication-title: Nat Rev Genet doi: 10.1038/nrg3030 – volume: 15 start-page: 77 year: 2007 ident: e_1_3_4_50_2 article-title: Rice as a model for centromere and heterochromatin research publication-title: Chromosome Res doi: 10.1007/s10577-006-1104-z – volume: 22 start-page: 191 year: 2012 ident: e_1_3_4_52_2 article-title: Active human retrotransposons: Variation and disease publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2012.02.006 – volume: 276 start-page: 378 year: 2006 ident: e_1_3_4_34_2 article-title: Epigenetic regulation of the rice retrotransposon Tos17 publication-title: Mol Genet Genomics doi: 10.1007/s00438-006-0141-9 – volume: 99 start-page: 16491 year: 2002 ident: e_1_3_4_54_2 article-title: Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.162371599 – volume: 60 start-page: 43 year: 2009 ident: e_1_3_4_4_2 article-title: Epigenetic regulation of transposable elements in plants publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092744 – volume: 25 start-page: 169 year: 2001 ident: e_1_3_4_31_2 article-title: Survey of transposable elements from rice genomic sequences publication-title: Plant J doi: 10.1046/j.1365-313x.2001.00945.x – ident: e_1_3_4_53_2 doi: 10.1093/mp/ssn037 – volume: 149 start-page: 740 year: 2012 ident: e_1_3_4_6_2 article-title: Human transposon tectonics publication-title: Cell doi: 10.1016/j.cell.2012.04.019 – volume: 13 start-page: 421 year: 2003 ident: e_1_3_4_44_2 article-title: Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis publication-title: Curr Biol doi: 10.1016/S0960-9822(03)00106-4 – volume: 130 start-page: 851 year: 2007 ident: e_1_3_4_14_2 article-title: Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation publication-title: Cell doi: 10.1016/j.cell.2007.07.007 – volume: 93 start-page: 7783 year: 1996 ident: e_1_3_4_32_2 article-title: Retrotransposons of rice involved in mutations induced by tissue culture publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.15.7783 – volume: 461 start-page: 427 year: 2009 ident: e_1_3_4_11_2 article-title: Selective epigenetic control of retrotransposition in Arabidopsis publication-title: Nature doi: 10.1038/nature08328 – volume: 96 start-page: 6824 year: 1999 ident: e_1_3_4_27_2 article-title: The distribution and copy number of copia-like retrotransposons in rice (Oryza sativa L.) and their implications in the organization and evolution of the rice genome publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.12.6824 – volume: 3 start-page: e3156 year: 2008 ident: e_1_3_4_41_2 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana publication-title: PLoS ONE doi: 10.1371/journal.pone.0003156 – volume: 28 start-page: 1078 year: 2009 ident: e_1_3_4_20_2 article-title: An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites publication-title: EMBO J doi: 10.1038/emboj.2009.59 – volume: 108 start-page: 15498 year: 2011 ident: e_1_3_4_9_2 article-title: A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1112704108 – volume: 411 start-page: 212 year: 2001 ident: e_1_3_4_12_2 article-title: Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis publication-title: Nature doi: 10.1038/35075612 – volume: 472 start-page: 115 year: 2011 ident: e_1_3_4_48_2 article-title: An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress publication-title: Nature doi: 10.1038/nature09861 – volume: 261 start-page: 71 year: 1999 ident: e_1_3_4_30_2 article-title: Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes publication-title: Mol Gen Genet doi: 10.1007/s004380050943 – volume: 79 start-page: 155 year: 2010 ident: e_1_3_4_17_2 article-title: Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.78.070907.103946 – volume: 24 start-page: 986 year: 2010 ident: e_1_3_4_24_2 article-title: JMJ14, a JmjC domain protein, is required for RNA silencing and cell-to-cell movement of an RNA silencing signal in Arabidopsis publication-title: Genes Dev doi: 10.1101/gad.579910 – volume: 97 start-page: 7376 year: 2000 ident: e_1_3_4_29_2 article-title: Transposon diversity in Arabidopsis thaliana publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.13.7376 – volume: 133 start-page: 523 year: 2008 ident: e_1_3_4_45_2 article-title: Highly integrated single-base resolution maps of the epigenome in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2008.03.029 – volume: 35 start-page: D883 year: 2007 ident: e_1_3_4_39_2 article-title: The TIGR Rice Genome Annotation Resource: improvements and new features publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl976 – volume: 296 start-page: 92 year: 2002 ident: e_1_3_4_25_2 article-title: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) publication-title: Science doi: 10.1126/science.1068275 – volume: 15 start-page: 1934 year: 2003 ident: e_1_3_4_33_2 article-title: Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma publication-title: Plant Cell doi: 10.1105/tpc.011809 – volume: 130 start-page: 1636 year: 2002 ident: e_1_3_4_37_2 article-title: T-DNA insertional mutagenesis for activation tagging in rice publication-title: Plant Physiol doi: 10.1104/pp.014357 – volume: 6 start-page: 351 year: 2005 ident: e_1_3_4_43_2 article-title: Gardening the genome: DNA methylation in Arabidopsis thaliana publication-title: Nat Rev Genet doi: 10.1038/nrg1601 – volume: 29 start-page: 3496 year: 2010 ident: e_1_3_4_19_2 article-title: Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome publication-title: EMBO J doi: 10.1038/emboj.2010.227 – volume: 34 start-page: 65 year: 2003 ident: e_1_3_4_46_2 article-title: Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis publication-title: Nat Genet doi: 10.1038/ng1138 – volume: 135 start-page: 23 year: 2008 ident: e_1_3_4_3_2 article-title: Retrotransposons revisited: The restraint and rehabilitation of parasites publication-title: Cell doi: 10.1016/j.cell.2008.09.022 – volume: 320 start-page: 489 year: 2008 ident: e_1_3_4_16_2 article-title: The epigenetic landscape of plants publication-title: Science doi: 10.1126/science.1153996 – volume: 430 start-page: 471 year: 2004 ident: e_1_3_4_10_2 article-title: Role of transposable elements in heterochromatin and epigenetic control publication-title: Nature doi: 10.1038/nature02651 – volume: 461 start-page: 423 year: 2009 ident: e_1_3_4_13_2 article-title: Bursts of retrotransposition reproduced in Arabidopsis publication-title: Nature doi: 10.1038/nature08351 – volume: 3 start-page: 329 year: 2002 ident: e_1_3_4_1_2 article-title: Plant transposable elements: Where genetics meets genomics publication-title: Nat Rev Genet doi: 10.1038/nrg793 – volume: 11 start-page: 2133 year: 2001 ident: e_1_3_4_49_2 article-title: Toward a cytological characterization of the rice genome publication-title: Genome Res doi: 10.1101/gr.194601 – volume: 62 start-page: 663 year: 2010 ident: e_1_3_4_23_2 article-title: A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04182.x – volume: 133 start-page: 2040 year: 2003 ident: e_1_3_4_36_2 article-title: Generation and analysis of end sequence database for T-DNA tagging lines in rice publication-title: Plant Physiol doi: 10.1104/pp.103.030478 – volume: 19 start-page: 9 year: 2007 ident: e_1_3_4_8_2 article-title: SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice publication-title: Plant Cell doi: 10.1105/tpc.106.048124 – volume: 12 start-page: 1360 year: 2002 ident: e_1_3_4_42_2 article-title: Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation publication-title: Curr Biol doi: 10.1016/S0960-9822(02)00976-4 – volume: 436 start-page: 793 year: 2005 ident: e_1_3_4_28_2 article-title: The map-based sequence of the rice genome publication-title: Nature doi: 10.1038/nature03895 |
SSID | ssj0009580 |
Score | 2.419153 |
Snippet | Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40%... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1953 |
SubjectTerms | Biochemistry Biological Sciences Cells, Cultured Deoxyribonucleic acid DNA DNA Methylation DNA Transposable Elements - genetics Epigenetics Fluorescent Antibody Technique Gene Expression Profiling genes Genetic transposition Genomes Genomics Histone Demethylases - genetics Histone Demethylases - metabolism Histones Histones - metabolism Karma Long Interspersed Nucleotide Elements - genetics Luminescent Proteins - genetics Luminescent Proteins - metabolism Lysine - metabolism Methylation Models, Genetic mutagenicity Mutation Nicotiana - cytology Nicotiana - genetics Nicotiana - metabolism nuclear genome Oryza - enzymology Oryza - genetics Oryza - metabolism Phenotype Plant Proteins - genetics Plant Proteins - metabolism Plants, Genetically Modified Proteins Retrotransposons Reverse Transcriptase Polymerase Chain Reaction Rice rice protein RNA Interference transcription (genetics) transposition (genetics) Transposons |
Title | Control of transposon activity by a histone H3K4 demethylase in rice |
URI | https://www.jstor.org/stable/41992146 http://www.pnas.org/content/110/5/1953.abstract https://www.ncbi.nlm.nih.gov/pubmed/23319643 https://www.proquest.com/docview/1283436691 https://www.proquest.com/docview/1283267906 https://www.proquest.com/docview/1803126045 https://pubmed.ncbi.nlm.nih.gov/PMC3562835 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeOEFMWAsMJCReBiqMpLYSZzHqXxMIKpKrFLfIttxRgVK0do-jL-eO8dx0qmbgJeqSq6O67vch333O0Le1EoUOmFVKKMaAhQudSikkCH44lUBWjOWdh_y6yQ7n_HP83Tepw7Z6pK1OtW_d9aV_A9X4RrwFatk_4GzflC4AN-Bv_AJHIbPv-Lx2OWZ4zl_C1KO_QSxVMF2hADPUraAwuBJnrMvfFQZ7Bh9DR6zxQq5colvnXc69dZs1eUOTLrNwrO-9MTpg9UoHE0nfSPj8cZmBswX5sdm4TNzWoyCaWchh3TeInzatNsDsqmNo3MbEdgUIg6TXt3dNZ-hBk7AKvK2btprYJfZuhgeclt9iod8A9uMyDg79T4oKmxW3MgVwmXkkXVrehPnEw85ZtuCcdgj9xOIK2x1-DweoDSLtmbJTbLDgsrZuxtjb7kxe7VcdvmsCJILpLsClpt5twNH5uIReegiEHrWitMBuWeax-SgW0N64oDI3z4h75180WVNe_minXxRdU0ldfJFUb7oQL7ooqEoX0_J7OOHi_F56LpuhDoVxTrktRYINBhJroThChsCgJfDVGEilVY5hGSxFiZNcq6FVnVUFULUcWp0Bu816PNDst_Ac48ITRjnRihZqBwzD5jSVRKbrFBaShllOiCn3SKW2kHSY2eUn6VNjchZiUtZ9qsekBP_g18tGsvtpEfAlVJegq0sZ98SRFKMYggeUrh1aFnlh-ikIiDP7Ch-aBg7LVEGA3LcsbN0CgAfJhhnWVbEAXntb4N6xjM32ZjlpqVJsryIsjtoBFjWJIPgCidgJcRPIWEtZF5A8i3Z8QQID799p1l8tzDxDEIbiK-e3_ZvX5AH_Wt8TPbXVxvzEjzstXpl34o_AbPLuQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+transposon+activity+by+a+histone+H3K4+demethylase+in+rice&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cui%2C+Xiekui&rft.au=Jin%2C+Ping&rft.au=Cui%2C+Xia&rft.au=Gu%2C+Lianfeng&rft.date=2013-01-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=110&rft.issue=5&rft.spage=1953&rft.epage=1958&rft_id=info:doi/10.1073%2Fpnas.1217020110&rft.externalDocID=41992146 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F5.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F5.cover.gif |