Control of transposon activity by a histone H3K4 demethylase in rice

Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 5; pp. 1953 - 1958
Main Authors Cui, Xiekui, Jin, Ping, Cui, Xia, Gu, Lianfeng, Lu, Zhike, Xue, Yongming, Wei, Liya, Qi, Jianfei, Song, Xianwei, Luo, Ming, An, Gynheung, Cao, Xiaofeng
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.01.2013
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways.
AbstractList Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways.Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways.
Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways.
Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17 ) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways.
Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ~1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways. [PUBLICATION ABSTRACT]
Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR-and ~1 % non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the m is regulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways.
Author Xue, Yongming
Song, Xianwei
Lu, Zhike
Cui, Xia
Luo, Ming
Cao, Xiaofeng
An, Gynheung
Gu, Lianfeng
Wei, Liya
Jin, Ping
Qi, Jianfei
Cui, Xiekui
Author_xml – sequence: 1
  givenname: Xiekui
  surname: Cui
  fullname: Cui, Xiekui
– sequence: 2
  givenname: Ping
  surname: Jin
  fullname: Jin, Ping
– sequence: 3
  givenname: Xia
  surname: Cui
  fullname: Cui, Xia
– sequence: 4
  givenname: Lianfeng
  surname: Gu
  fullname: Gu, Lianfeng
– sequence: 5
  givenname: Zhike
  surname: Lu
  fullname: Lu, Zhike
– sequence: 6
  givenname: Yongming
  surname: Xue
  fullname: Xue, Yongming
– sequence: 7
  givenname: Liya
  surname: Wei
  fullname: Wei, Liya
– sequence: 8
  givenname: Jianfei
  surname: Qi
  fullname: Qi, Jianfei
– sequence: 9
  givenname: Xianwei
  surname: Song
  fullname: Song, Xianwei
– sequence: 10
  givenname: Ming
  surname: Luo
  fullname: Luo, Ming
– sequence: 11
  givenname: Gynheung
  surname: An
  fullname: An, Gynheung
– sequence: 12
  givenname: Xiaofeng
  surname: Cao
  fullname: Cao, Xiaofeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23319643$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEURi1URNPCmhVgqRs2014_x94gofAoohIL6NryOJ7G0WQcbKdS_j2epg3QBWLlxT3387G_E3Q0xtEj9JLAOYGWXWxGm88JJS1QIASeoBkBTRrJNRyhGQBtG8UpP0YnOa8AQAsFz9AxZYxoydkMfZjHsaQ44NjjkuyYNzHHEVtXwm0oO9ztsMXLkEu9F1-yrxwv_NqX5W6w2eMw4hScf46e9nbI_sX9eYquP338Mb9srr59_jJ_f9U4oXRpeO8UkGpqeac87yjVwCRlnfbQiUWrFCVOeUFb7pTrelhopXoivJMWuJbsFL3b52623dovnK_qdjCbFNY27Uy0wfw9GcPS3MRbw4Skioka8PY-IMWfW5-LWYfs_DDY0cdtNkQBI1QC_w-0BlLZapi0zh6hq7hNY_2JO4ozKTWp1Os_5Q_WD11U4GIPuBRzTr4_IATM1LaZ2ja_264b4tGGC8WWMFVqw_CPvQeVaXC4peLCEC0mlVd7YFWLTweCE60p4dOL3-znvY3G3qSQzfX3mi0BCKdMAPsF-djI7g
CitedBy_id crossref_primary_10_1007_s11427_016_5086_6
crossref_primary_10_1093_jxb_eru120
crossref_primary_10_3389_fpls_2016_00425
crossref_primary_10_1016_j_copbio_2015_01_003
crossref_primary_10_1073_pnas_1318131111
crossref_primary_10_1111_nph_14596
crossref_primary_10_1111_tpj_16600
crossref_primary_10_1016_j_isci_2024_109748
crossref_primary_10_1038_s41598_023_42420_7
crossref_primary_10_1101_lm_047464_118
crossref_primary_10_1093_plcell_koab041
crossref_primary_10_1007_s11032_019_1078_0
crossref_primary_10_1007_s11033_021_06922_9
crossref_primary_10_3390_horticulturae7120592
crossref_primary_10_1016_j_pbi_2013_03_004
crossref_primary_10_1007_s10722_024_02223_9
crossref_primary_10_1007_s00299_014_1587_6
crossref_primary_10_1016_j_scienta_2019_01_009
crossref_primary_10_1016_j_coviro_2013_08_009
crossref_primary_10_1038_srep05287
crossref_primary_10_1093_nar_gkad1214
crossref_primary_10_1186_s12870_015_0674_3
crossref_primary_10_1016_j_ecoenv_2024_116352
crossref_primary_10_3390_ijms24119349
crossref_primary_10_5423_PPJ_OA_12_2022_0161
crossref_primary_10_1007_s00299_017_2192_2
crossref_primary_10_1093_plcell_koae124
crossref_primary_10_1093_plphys_kiac095
crossref_primary_10_3389_fpls_2021_745526
crossref_primary_10_1016_j_gde_2018_02_012
crossref_primary_10_3389_fpls_2014_00290
crossref_primary_10_1016_j_jgg_2021_06_005
crossref_primary_10_1038_s41477_020_0697_0
crossref_primary_10_1111_nph_20425
crossref_primary_10_1016_j_jplph_2020_153167
crossref_primary_10_1093_nsr_nwt004
crossref_primary_10_1111_tpj_15527
crossref_primary_10_3390_ijms24054849
crossref_primary_10_1016_j_plaphy_2014_11_012
crossref_primary_10_1038_srep13251
crossref_primary_10_1016_j_indcrop_2024_118718
crossref_primary_10_1038_nature15365
crossref_primary_10_1038_s41598_021_93170_3
crossref_primary_10_1371_journal_pgen_1009326
crossref_primary_10_1007_s11427_016_5016_7
crossref_primary_10_1016_j_yexcr_2020_112314
crossref_primary_10_1016_j_plaphy_2018_09_007
crossref_primary_10_1111_pbi_12198
crossref_primary_10_3389_fpls_2021_629314
crossref_primary_10_3389_fpls_2014_00803
crossref_primary_10_1007_s11427_015_4993_2
crossref_primary_10_1016_S2095_3119_14_60873_X
crossref_primary_10_1093_nsr_nww042
crossref_primary_10_7717_peerj_11137
crossref_primary_10_1590_0103_8478cr20220241
crossref_primary_10_1073_pnas_2419464122
crossref_primary_10_1007_s00122_020_03549_5
crossref_primary_10_1093_bfgp_elv025
crossref_primary_10_1111_jipb_12060
crossref_primary_10_3389_fpls_2022_814620
crossref_primary_10_1146_annurev_arplant_050213_035811
crossref_primary_10_1016_j_plaphy_2020_11_029
crossref_primary_10_1007_s00122_019_03518_7
crossref_primary_10_1016_j_jgg_2018_09_004
crossref_primary_10_1016_j_sajb_2023_04_002
crossref_primary_10_1073_pnas_1716459114
crossref_primary_10_3389_fpls_2024_1381753
crossref_primary_10_3390_ijms222111387
crossref_primary_10_1007_s11105_013_0673_1
crossref_primary_10_1139_gen_2017_0105
crossref_primary_10_1007_s12374_017_0034_y
crossref_primary_10_1093_plphys_kiab020
crossref_primary_10_1093_molbev_msab323
crossref_primary_10_1371_journal_pone_0096064
crossref_primary_10_1016_j_pbi_2014_07_001
crossref_primary_10_1016_j_bbagrm_2016_07_012
crossref_primary_10_1051_jbio_2017004
crossref_primary_10_1038_s41477_018_0320_9
crossref_primary_10_1007_s11248_021_00252_z
crossref_primary_10_1007_s11427_017_9236_x
crossref_primary_10_3389_fgene_2022_819941
crossref_primary_10_1111_tpj_14531
crossref_primary_10_1111_jipb_12850
crossref_primary_10_3390_ijms23031065
crossref_primary_10_1101_gr_277353_122
crossref_primary_10_1093_plphys_kiad568
crossref_primary_10_3389_fpls_2020_01229
Cites_doi 10.1007/BF00587581
10.1016/j.cell.2006.08.003
10.1038/emboj.2011.103
10.1111/j.1744-7909.2008.00692.x
10.1186/gb-2009-10-6-r62
10.1146/annurev.genet.33.1.479
10.1016/j.pbi.2011.01.003
10.1016/0092-8674(88)90159-6
10.1038/embor.2010.158
10.1105/tpc.109.072041
10.1038/cr.2010.27
10.1038/nature04433
10.1038/nrg3030
10.1007/s10577-006-1104-z
10.1016/j.gde.2012.02.006
10.1007/s00438-006-0141-9
10.1073/pnas.162371599
10.1146/annurev.arplant.59.032607.092744
10.1046/j.1365-313x.2001.00945.x
10.1093/mp/ssn037
10.1016/j.cell.2012.04.019
10.1016/S0960-9822(03)00106-4
10.1016/j.cell.2007.07.007
10.1073/pnas.93.15.7783
10.1038/nature08328
10.1073/pnas.96.12.6824
10.1371/journal.pone.0003156
10.1038/emboj.2009.59
10.1073/pnas.1112704108
10.1038/35075612
10.1038/nature09861
10.1007/s004380050943
10.1146/annurev.biochem.78.070907.103946
10.1101/gad.579910
10.1073/pnas.97.13.7376
10.1016/j.cell.2008.03.029
10.1093/nar/gkl976
10.1126/science.1068275
10.1105/tpc.011809
10.1104/pp.014357
10.1038/nrg1601
10.1038/emboj.2010.227
10.1038/ng1138
10.1016/j.cell.2008.09.022
10.1126/science.1153996
10.1038/nature02651
10.1038/nature08351
10.1038/nrg793
10.1101/gr.194601
10.1111/j.1365-313X.2010.04182.x
10.1104/pp.103.030478
10.1105/tpc.106.048124
10.1016/S0960-9822(02)00976-4
10.1038/nature03895
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 29, 2013
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 29, 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1217020110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
AGRICOLA
Virology and AIDS Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate H3K4 demethylase controls transposon activity
EISSN 1091-6490
EndPage 1958
ExternalDocumentID PMC3562835
2880904961
23319643
10_1073_pnas_1217020110
110_5_1953
41992146
US201600142350
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c589t-4fc801020a4b8e4b22903623b9e0b5d78821c8e5274c8cbf0d988f15ec6a04963
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:09:27 EDT 2025
Fri Jul 11 06:15:55 EDT 2025
Fri Jul 11 08:45:17 EDT 2025
Mon Jun 30 08:37:32 EDT 2025
Mon Jul 21 05:43:38 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Tue Jul 01 03:39:35 EDT 2025
Wed Nov 11 00:30:05 EST 2020
Thu May 29 08:40:43 EDT 2025
Thu Apr 03 09:43:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c589t-4fc801020a4b8e4b22903623b9e0b5d78821c8e5274c8cbf0d988f15ec6a04963
Notes http://dx.doi.org/10.1073/pnas.1217020110
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: X.K. Cui, G.A., and X. Cao designed research; X.K. Cui, P.J., X. Cui, Y.X., L.W., and J.Q. performed research; X.K. Cui, X. Cui, L.G., Z.L., X.S., M.L., and X. Cao analyzed data; and X.K. Cui, G.A., and X. Cao wrote the paper.
Edited by David C. Baulcombe, University of Cambridge, Cambridge, United Kingdom, and approved December 19, 2012 (received for review September 30, 2012)
1Xiekui Cui and P.J. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/110/5/1953.full.pdf
PMID 23319643
PQID 1283436691
PQPubID 42026
PageCount 6
ParticipantIDs fao_agris_US201600142350
crossref_primary_10_1073_pnas_1217020110
proquest_miscellaneous_1283267906
pubmed_primary_23319643
pnas_primary_110_5_1953
proquest_journals_1283436691
crossref_citationtrail_10_1073_pnas_1217020110
proquest_miscellaneous_1803126045
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3562835
jstor_primary_41992146
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-29
PublicationDateYYYYMMDD 2013-01-29
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Tsukada Y (e_1_3_4_18_2) 2006; 439
Feschotte C (e_1_3_4_1_2) 2002; 3
Burns KH (e_1_3_4_6_2) 2012; 149
Lu F (e_1_3_4_35_2) 2008; 50
Hirochika H (e_1_3_4_32_2) 1996; 93
Ouyang S (e_1_3_4_39_2) 2007; 35
He G (e_1_3_4_38_2) 2010; 22
La H (e_1_3_4_9_2) 2011; 108
Hirochika H (e_1_3_4_26_2) 1992; 233
Ding Y (e_1_3_4_8_2) 2007; 19
Yan H (e_1_3_4_50_2) 2007; 15
Deleris A (e_1_3_4_21_2) 2010; 11
Jeong DH (e_1_3_4_37_2) 2002; 130
Mirouze M (e_1_3_4_11_2) 2009; 461
Le QH (e_1_3_4_29_2) 2000; 97
Ito H (e_1_3_4_48_2) 2011; 472
Lippman Z (e_1_3_4_10_2) 2004; 430
Zhang X (e_1_3_4_16_2) 2008; 320
Cao X (e_1_3_4_54_2) 2002; 99
Bernatavichute YV (e_1_3_4_41_2) 2008; 3
Kumar A (e_1_3_4_2_2) 1999; 33
Lisch D (e_1_3_4_4_2) 2009; 60
Levin HL (e_1_3_4_7_2) 2011; 12
Miura A (e_1_3_4_12_2) 2001; 411
e_1_3_4_53_2
Tsukahara S (e_1_3_4_13_2) 2009; 461
Goodier JL (e_1_3_4_3_2) 2008; 135
International Rice Genome Sequencing Project (e_1_3_4_28_2) 2005; 436
Lister R (e_1_3_4_45_2) 2008; 133
Korenberg JR (e_1_3_4_51_2) 1988; 53
Lu F (e_1_3_4_22_2) 2010; 20
Searle IR (e_1_3_4_24_2) 2010; 24
Goff SA (e_1_3_4_25_2) 2002; 296
Noma K (e_1_3_4_30_2) 1999; 261
Zhang X (e_1_3_4_40_2) 2009; 10
Yang W (e_1_3_4_23_2) 2010; 62
Roudier F (e_1_3_4_15_2) 2011; 30
Cheng C (e_1_3_4_34_2) 2006; 276
Komatsu M (e_1_3_4_33_2) 2003; 15
An S (e_1_3_4_36_2) 2003; 133
Zhang X (e_1_3_4_47_2) 2006; 126
Turcotte K (e_1_3_4_31_2) 2001; 25
Mosammaparast N (e_1_3_4_17_2) 2010; 79
Saze H (e_1_3_4_46_2) 2003; 34
Lisch D (e_1_3_4_5_2) 2011; 14
Inagaki S (e_1_3_4_19_2) 2010; 29
Cheng Z (e_1_3_4_49_2) 2001; 11
Hancks DC (e_1_3_4_52_2) 2012; 22
Miura A (e_1_3_4_20_2) 2009; 28
Johnson L (e_1_3_4_42_2) 2002; 12
Mathieu O (e_1_3_4_14_2) 2007; 130
Chan SW (e_1_3_4_43_2) 2005; 6
Wang S (e_1_3_4_27_2) 1999; 96
Kato M (e_1_3_4_44_2) 2003; 13
References_xml – volume: 233
  start-page: 209
  year: 1992
  ident: e_1_3_4_26_2
  article-title: Retrotransposon families in rice
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00587581
– volume: 126
  start-page: 1189
  year: 2006
  ident: e_1_3_4_47_2
  article-title: Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2006.08.003
– volume: 30
  start-page: 1928
  year: 2011
  ident: e_1_3_4_15_2
  article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.103
– volume: 50
  start-page: 886
  year: 2008
  ident: e_1_3_4_35_2
  article-title: Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1744-7909.2008.00692.x
– volume: 10
  start-page: R62
  year: 2009
  ident: e_1_3_4_40_2
  article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-6-r62
– volume: 33
  start-page: 479
  year: 1999
  ident: e_1_3_4_2_2
  article-title: Plant retrotransposons
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.33.1.479
– volume: 14
  start-page: 156
  year: 2011
  ident: e_1_3_4_5_2
  article-title: Transposable element origins of epigenetic gene regulation
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2011.01.003
– volume: 53
  start-page: 391
  year: 1988
  ident: e_1_3_4_51_2
  article-title: Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90159-6
– volume: 11
  start-page: 950
  year: 2010
  ident: e_1_3_4_21_2
  article-title: Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation
  publication-title: EMBO Rep
  doi: 10.1038/embor.2010.158
– volume: 22
  start-page: 17
  year: 2010
  ident: e_1_3_4_38_2
  article-title: Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.072041
– volume: 20
  start-page: 387
  year: 2010
  ident: e_1_3_4_22_2
  article-title: JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis
  publication-title: Cell Res
  doi: 10.1038/cr.2010.27
– volume: 439
  start-page: 811
  year: 2006
  ident: e_1_3_4_18_2
  article-title: Histone demethylation by a family of JmjC domain-containing proteins
  publication-title: Nature
  doi: 10.1038/nature04433
– volume: 12
  start-page: 615
  year: 2011
  ident: e_1_3_4_7_2
  article-title: Dynamic interactions between transposable elements and their hosts
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3030
– volume: 15
  start-page: 77
  year: 2007
  ident: e_1_3_4_50_2
  article-title: Rice as a model for centromere and heterochromatin research
  publication-title: Chromosome Res
  doi: 10.1007/s10577-006-1104-z
– volume: 22
  start-page: 191
  year: 2012
  ident: e_1_3_4_52_2
  article-title: Active human retrotransposons: Variation and disease
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2012.02.006
– volume: 276
  start-page: 378
  year: 2006
  ident: e_1_3_4_34_2
  article-title: Epigenetic regulation of the rice retrotransposon Tos17
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-006-0141-9
– volume: 99
  start-page: 16491
  year: 2002
  ident: e_1_3_4_54_2
  article-title: Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.162371599
– volume: 60
  start-page: 43
  year: 2009
  ident: e_1_3_4_4_2
  article-title: Epigenetic regulation of transposable elements in plants
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092744
– volume: 25
  start-page: 169
  year: 2001
  ident: e_1_3_4_31_2
  article-title: Survey of transposable elements from rice genomic sequences
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2001.00945.x
– ident: e_1_3_4_53_2
  doi: 10.1093/mp/ssn037
– volume: 149
  start-page: 740
  year: 2012
  ident: e_1_3_4_6_2
  article-title: Human transposon tectonics
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.019
– volume: 13
  start-page: 421
  year: 2003
  ident: e_1_3_4_44_2
  article-title: Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(03)00106-4
– volume: 130
  start-page: 851
  year: 2007
  ident: e_1_3_4_14_2
  article-title: Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2007.07.007
– volume: 93
  start-page: 7783
  year: 1996
  ident: e_1_3_4_32_2
  article-title: Retrotransposons of rice involved in mutations induced by tissue culture
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.15.7783
– volume: 461
  start-page: 427
  year: 2009
  ident: e_1_3_4_11_2
  article-title: Selective epigenetic control of retrotransposition in Arabidopsis
  publication-title: Nature
  doi: 10.1038/nature08328
– volume: 96
  start-page: 6824
  year: 1999
  ident: e_1_3_4_27_2
  article-title: The distribution and copy number of copia-like retrotransposons in rice (Oryza sativa L.) and their implications in the organization and evolution of the rice genome
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.12.6824
– volume: 3
  start-page: e3156
  year: 2008
  ident: e_1_3_4_41_2
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003156
– volume: 28
  start-page: 1078
  year: 2009
  ident: e_1_3_4_20_2
  article-title: An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.59
– volume: 108
  start-page: 15498
  year: 2011
  ident: e_1_3_4_9_2
  article-title: A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1112704108
– volume: 411
  start-page: 212
  year: 2001
  ident: e_1_3_4_12_2
  article-title: Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis
  publication-title: Nature
  doi: 10.1038/35075612
– volume: 472
  start-page: 115
  year: 2011
  ident: e_1_3_4_48_2
  article-title: An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress
  publication-title: Nature
  doi: 10.1038/nature09861
– volume: 261
  start-page: 71
  year: 1999
  ident: e_1_3_4_30_2
  article-title: Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes
  publication-title: Mol Gen Genet
  doi: 10.1007/s004380050943
– volume: 79
  start-page: 155
  year: 2010
  ident: e_1_3_4_17_2
  article-title: Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.78.070907.103946
– volume: 24
  start-page: 986
  year: 2010
  ident: e_1_3_4_24_2
  article-title: JMJ14, a JmjC domain protein, is required for RNA silencing and cell-to-cell movement of an RNA silencing signal in Arabidopsis
  publication-title: Genes Dev
  doi: 10.1101/gad.579910
– volume: 97
  start-page: 7376
  year: 2000
  ident: e_1_3_4_29_2
  article-title: Transposon diversity in Arabidopsis thaliana
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.13.7376
– volume: 133
  start-page: 523
  year: 2008
  ident: e_1_3_4_45_2
  article-title: Highly integrated single-base resolution maps of the epigenome in Arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.029
– volume: 35
  start-page: D883
  year: 2007
  ident: e_1_3_4_39_2
  article-title: The TIGR Rice Genome Annotation Resource: improvements and new features
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl976
– volume: 296
  start-page: 92
  year: 2002
  ident: e_1_3_4_25_2
  article-title: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)
  publication-title: Science
  doi: 10.1126/science.1068275
– volume: 15
  start-page: 1934
  year: 2003
  ident: e_1_3_4_33_2
  article-title: Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma
  publication-title: Plant Cell
  doi: 10.1105/tpc.011809
– volume: 130
  start-page: 1636
  year: 2002
  ident: e_1_3_4_37_2
  article-title: T-DNA insertional mutagenesis for activation tagging in rice
  publication-title: Plant Physiol
  doi: 10.1104/pp.014357
– volume: 6
  start-page: 351
  year: 2005
  ident: e_1_3_4_43_2
  article-title: Gardening the genome: DNA methylation in Arabidopsis thaliana
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1601
– volume: 29
  start-page: 3496
  year: 2010
  ident: e_1_3_4_19_2
  article-title: Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome
  publication-title: EMBO J
  doi: 10.1038/emboj.2010.227
– volume: 34
  start-page: 65
  year: 2003
  ident: e_1_3_4_46_2
  article-title: Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis
  publication-title: Nat Genet
  doi: 10.1038/ng1138
– volume: 135
  start-page: 23
  year: 2008
  ident: e_1_3_4_3_2
  article-title: Retrotransposons revisited: The restraint and rehabilitation of parasites
  publication-title: Cell
  doi: 10.1016/j.cell.2008.09.022
– volume: 320
  start-page: 489
  year: 2008
  ident: e_1_3_4_16_2
  article-title: The epigenetic landscape of plants
  publication-title: Science
  doi: 10.1126/science.1153996
– volume: 430
  start-page: 471
  year: 2004
  ident: e_1_3_4_10_2
  article-title: Role of transposable elements in heterochromatin and epigenetic control
  publication-title: Nature
  doi: 10.1038/nature02651
– volume: 461
  start-page: 423
  year: 2009
  ident: e_1_3_4_13_2
  article-title: Bursts of retrotransposition reproduced in Arabidopsis
  publication-title: Nature
  doi: 10.1038/nature08351
– volume: 3
  start-page: 329
  year: 2002
  ident: e_1_3_4_1_2
  article-title: Plant transposable elements: Where genetics meets genomics
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg793
– volume: 11
  start-page: 2133
  year: 2001
  ident: e_1_3_4_49_2
  article-title: Toward a cytological characterization of the rice genome
  publication-title: Genome Res
  doi: 10.1101/gr.194601
– volume: 62
  start-page: 663
  year: 2010
  ident: e_1_3_4_23_2
  article-title: A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04182.x
– volume: 133
  start-page: 2040
  year: 2003
  ident: e_1_3_4_36_2
  article-title: Generation and analysis of end sequence database for T-DNA tagging lines in rice
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.030478
– volume: 19
  start-page: 9
  year: 2007
  ident: e_1_3_4_8_2
  article-title: SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.048124
– volume: 12
  start-page: 1360
  year: 2002
  ident: e_1_3_4_42_2
  article-title: Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(02)00976-4
– volume: 436
  start-page: 793
  year: 2005
  ident: e_1_3_4_28_2
  article-title: The map-based sequence of the rice genome
  publication-title: Nature
  doi: 10.1038/nature03895
SSID ssj0009580
Score 2.419153
Snippet Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40%...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1953
SubjectTerms Biochemistry
Biological Sciences
Cells, Cultured
Deoxyribonucleic acid
DNA
DNA Methylation
DNA Transposable Elements - genetics
Epigenetics
Fluorescent Antibody Technique
Gene Expression Profiling
genes
Genetic transposition
Genomes
Genomics
Histone Demethylases - genetics
Histone Demethylases - metabolism
Histones
Histones - metabolism
Karma
Long Interspersed Nucleotide Elements - genetics
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Lysine - metabolism
Methylation
Models, Genetic
mutagenicity
Mutation
Nicotiana - cytology
Nicotiana - genetics
Nicotiana - metabolism
nuclear genome
Oryza - enzymology
Oryza - genetics
Oryza - metabolism
Phenotype
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified
Proteins
Retrotransposons
Reverse Transcriptase Polymerase Chain Reaction
Rice
rice protein
RNA Interference
transcription (genetics)
transposition (genetics)
Transposons
Title Control of transposon activity by a histone H3K4 demethylase in rice
URI https://www.jstor.org/stable/41992146
http://www.pnas.org/content/110/5/1953.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23319643
https://www.proquest.com/docview/1283436691
https://www.proquest.com/docview/1283267906
https://www.proquest.com/docview/1803126045
https://pubmed.ncbi.nlm.nih.gov/PMC3562835
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeOEFMWAsMJCReBiqMpLYSZzHqXxMIKpKrFLfIttxRgVK0do-jL-eO8dx0qmbgJeqSq6O67vch333O0Le1EoUOmFVKKMaAhQudSikkCH44lUBWjOWdh_y6yQ7n_HP83Tepw7Z6pK1OtW_d9aV_A9X4RrwFatk_4GzflC4AN-Bv_AJHIbPv-Lx2OWZ4zl_C1KO_QSxVMF2hADPUraAwuBJnrMvfFQZ7Bh9DR6zxQq5colvnXc69dZs1eUOTLrNwrO-9MTpg9UoHE0nfSPj8cZmBswX5sdm4TNzWoyCaWchh3TeInzatNsDsqmNo3MbEdgUIg6TXt3dNZ-hBk7AKvK2btprYJfZuhgeclt9iod8A9uMyDg79T4oKmxW3MgVwmXkkXVrehPnEw85ZtuCcdgj9xOIK2x1-DweoDSLtmbJTbLDgsrZuxtjb7kxe7VcdvmsCJILpLsClpt5twNH5uIReegiEHrWitMBuWeax-SgW0N64oDI3z4h75180WVNe_minXxRdU0ldfJFUb7oQL7ooqEoX0_J7OOHi_F56LpuhDoVxTrktRYINBhJroThChsCgJfDVGEilVY5hGSxFiZNcq6FVnVUFULUcWp0Bu816PNDst_Ac48ITRjnRihZqBwzD5jSVRKbrFBaShllOiCn3SKW2kHSY2eUn6VNjchZiUtZ9qsekBP_g18tGsvtpEfAlVJegq0sZ98SRFKMYggeUrh1aFnlh-ikIiDP7Ch-aBg7LVEGA3LcsbN0CgAfJhhnWVbEAXntb4N6xjM32ZjlpqVJsryIsjtoBFjWJIPgCidgJcRPIWEtZF5A8i3Z8QQID799p1l8tzDxDEIbiK-e3_ZvX5AH_Wt8TPbXVxvzEjzstXpl34o_AbPLuQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+transposon+activity+by+a+histone+H3K4+demethylase+in+rice&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cui%2C+Xiekui&rft.au=Jin%2C+Ping&rft.au=Cui%2C+Xia&rft.au=Gu%2C+Lianfeng&rft.date=2013-01-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=110&rft.issue=5&rft.spage=1953&rft.epage=1958&rft_id=info:doi/10.1073%2Fpnas.1217020110&rft.externalDocID=41992146
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F5.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F5.cover.gif