Insect capa neuropeptides impact desiccation and cold tolerance
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability ( capa ) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dip...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 9; pp. 2882 - 2887 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.03.2015
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability ( capa ) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.
Significance Insects are among the most robust organisms on the planet, surviving in virtually all environments and capable of surmounting a range of environmental stresses including desiccation and cold. Although desiccation and cold tolerance share many common traits, potential mechanisms for such linked responses remain unclear. Here we show that an insect neuropeptide gene is associated with tolerance of both desiccation and cold in Drosophila melanogaster , suggesting a novel mechanism in renal tubule epithelia that enhances survival of both desiccation and cold. Also, we can reverse RNAi-induced stress tolerance phenotypes in intact flies using rationally designed peptide mimetic analogs. We thus demonstrate the power of intervention in physiological processes controlled by neuropeptides, with potential for insect pest control. |
---|---|
AbstractList | Insects are among the most robust organisms on the planet, surviving in virtually all environments and capable of surmounting a range of environmental stresses including desiccation and cold. Although desiccation and cold tolerance share many common traits, potential mechanisms for such linked responses remain unclear. Here we show that an insect neuropeptide gene is associated with tolerance of both desiccation and cold in
Drosophila melanogaster
, suggesting a novel mechanism in renal tubule epithelia that enhances survival of both desiccation and cold. Also, we can reverse RNAi-induced stress tolerance phenotypes in intact flies using rationally designed peptide mimetic analogs. We thus demonstrate the power of intervention in physiological processes controlled by neuropeptides, with potential for insect pest control.
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the
capability
(
capa
) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the
Drosophila melanogaster capa
neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the
capa
gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses aremediated by the neuroendocrine system. Here we show that thecapability(capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that theDrosophila melanogaster capaneuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of thecapagene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability ( capa ) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. Significance Insects are among the most robust organisms on the planet, surviving in virtually all environments and capable of surmounting a range of environmental stresses including desiccation and cold. Although desiccation and cold tolerance share many common traits, potential mechanisms for such linked responses remain unclear. Here we show that an insect neuropeptide gene is associated with tolerance of both desiccation and cold in Drosophila melanogaster , suggesting a novel mechanism in renal tubule epithelia that enhances survival of both desiccation and cold. Also, we can reverse RNAi-induced stress tolerance phenotypes in intact flies using rationally designed peptide mimetic analogs. We thus demonstrate the power of intervention in physiological processes controlled by neuropeptides, with potential for insect pest control. |
Author | Denlinger, David L. Davies, Shireen-A. Ritchie, Michael G. Nachman, Ronald J. Terhzaz, Selim Henderson, Louise Teets, Nicholas M. Cabrero, Pablo Dow, Julian A. T. |
Author_xml | – sequence: 1 givenname: Selim surname: Terhzaz fullname: Terhzaz, Selim organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom – sequence: 2 givenname: Nicholas M. surname: Teets fullname: Teets, Nicholas M. organization: Departments of Entomology and Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210 – sequence: 3 givenname: Pablo surname: Cabrero fullname: Cabrero, Pablo organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom – sequence: 4 givenname: Louise surname: Henderson fullname: Henderson, Louise organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom – sequence: 5 givenname: Michael G. surname: Ritchie fullname: Ritchie, Michael G. organization: Centre for Biological Diversity, School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TS, Scotland, United Kingdom – sequence: 6 givenname: Ronald J. surname: Nachman fullname: Nachman, Ronald J. organization: Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX 77845 – sequence: 7 givenname: Julian A. T. surname: Dow fullname: Dow, Julian A. T. organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom – sequence: 8 givenname: David L. surname: Denlinger fullname: Denlinger, David L. organization: Departments of Entomology and Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210 – sequence: 9 givenname: Shireen-A. surname: Davies fullname: Davies, Shireen-A. organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25730885$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQRi1URLeFMycgUi9c0s5MYse5gFBVoFIlDtCz5dhOySprBztB4t_jaMu2cOJkS_PmacafT9iRD94x9hLhHKGpLiav0zlyQI4SkZ6wDUKLpahbOGIbAGpKWVN9zE5S2gJAyyU8Y8fEmwqk5Bv2_tonZ-bC6EkX3i0xTG6aB-tSMewmnSv5Ohij5yH4QntbmDDaYg6ji9ob95w97fWY3Iv785Tdfrz6dvm5vPny6fryw01puGznsrbG2JZkT0YIdKbvWnRacGEBkIgk9GStQ6hNT6i7hncceMXJtW1nRVedsnd777R0O2eN83PUo5risNPxlwp6UH9X_PBd3YWfqs6SphFZ8PZeEMOPxaVZ7YZk3Dhq78KSFAohqUEg_B8U2iylJqNn_6DbsESfX2KlsKFaImXqYk-ZGFKKrj_MjaDWHNWao3rIMXe8frzugf8T3CNg7TzokFSrSMrV8GoPbNMc4oNA1HksWCd_s6_3Oih9F4ekbr8SoMiB1CJ_nOo3PJK3ZA |
CitedBy_id | crossref_primary_10_1016_j_aspen_2022_101940 crossref_primary_10_1016_j_ecolmodel_2020_109127 crossref_primary_10_1038_srep28999 crossref_primary_10_1093_molbev_msy160 crossref_primary_10_1242_jeb_160176 crossref_primary_10_1111_1755_0998_13561 crossref_primary_10_1186_s12864_017_3711_9 crossref_primary_10_1016_j_ibmb_2018_08_003 crossref_primary_10_1111_jen_12941 crossref_primary_10_1111_1744_7917_12951 crossref_primary_10_1111_1744_7917_12751 crossref_primary_10_21638_spbu03_2022_305 crossref_primary_10_3389_fphys_2021_671463 crossref_primary_10_1016_j_cois_2021_02_015 crossref_primary_10_1021_acs_jproteome_6b00427 crossref_primary_10_1002_ps_4663 crossref_primary_10_1016_j_pestbp_2022_105079 crossref_primary_10_1093_jee_toz316 crossref_primary_10_1146_annurev_ento_040323_021222 crossref_primary_10_1242_jeb_174904 crossref_primary_10_1007_s00360_016_0997_x crossref_primary_10_1146_annurev_ento_120120_095233 crossref_primary_10_1073_pnas_1915943117 crossref_primary_10_1093_jee_toad063 crossref_primary_10_3389_fphys_2020_00376 crossref_primary_10_1002_arch_21500 crossref_primary_10_1016_j_isci_2021_102657 crossref_primary_10_1007_s00018_017_2682_y crossref_primary_10_1016_j_pestbp_2021_104808 crossref_primary_10_1016_j_pestbp_2024_105840 crossref_primary_10_1242_jeb_213934 crossref_primary_10_1016_j_cbd_2022_101018 crossref_primary_10_1016_j_ibmb_2020_103495 crossref_primary_10_1016_j_jinsphys_2016_09_006 crossref_primary_10_1016_j_jinsphys_2015_03_015 crossref_primary_10_1242_jeb_173930 crossref_primary_10_1016_j_bbagrm_2017_08_001 crossref_primary_10_1016_j_cois_2017_07_001 crossref_primary_10_1016_j_jinsphys_2015_05_003 crossref_primary_10_1038_s41598_022_25235_w crossref_primary_10_3390_insects11120844 crossref_primary_10_1002_ps_5372 crossref_primary_10_1186_s13071_022_05457_7 crossref_primary_10_3389_fphys_2019_00767 crossref_primary_10_1111_mec_14769 crossref_primary_10_1146_annurev_ento_031616_035500 crossref_primary_10_1016_j_ibmb_2018_04_007 crossref_primary_10_1016_j_pneurobio_2019_02_003 crossref_primary_10_1111_imb_12535 crossref_primary_10_1002_ps_7192 crossref_primary_10_1016_j_cbpb_2017_11_003 crossref_primary_10_1016_j_jia_2024_04_003 crossref_primary_10_3389_fphys_2018_01843 crossref_primary_10_1016_j_cois_2015_08_002 crossref_primary_10_1242_jeb_168518 crossref_primary_10_1093_gbe_evy147 crossref_primary_10_1016_j_cbpa_2017_11_005 crossref_primary_10_1111_jeb_13244 crossref_primary_10_1093_molbev_msv349 crossref_primary_10_1242_jeb_185884 crossref_primary_10_1111_imb_12859 crossref_primary_10_1038_srep18607 crossref_primary_10_1002_ps_5971 crossref_primary_10_1371_journal_pgen_1007618 crossref_primary_10_1007_s10340_019_01100_0 crossref_primary_10_1038_s41467_021_25445_2 crossref_primary_10_1186_s12864_018_4668_z crossref_primary_10_1242_dev_178087 crossref_primary_10_1534_genetics_119_302289 crossref_primary_10_1016_j_ibmb_2019_103223 crossref_primary_10_1016_j_cbpa_2020_110699 crossref_primary_10_1002_bies_202300011 crossref_primary_10_1038_s41598_020_58731_y crossref_primary_10_1093_jisesa_ieac004 crossref_primary_10_1007_s00441_020_03264_z crossref_primary_10_1016_j_peptides_2016_02_004 crossref_primary_10_1016_j_jtherbio_2016_04_004 crossref_primary_10_1016_j_mce_2024_112238 crossref_primary_10_3389_fphys_2020_00424 crossref_primary_10_1007_s10592_022_01488_w crossref_primary_10_1371_journal_pgen_1009425 crossref_primary_10_1111_mec_15361 crossref_primary_10_1016_j_cois_2016_07_001 crossref_primary_10_1016_j_ibmb_2017_05_001 |
Cites_doi | 10.1242/jeb.00498 10.1371/journal.pone.0029897 10.1111/j.1365-2583.2011.01119.x 10.1016/j.bbrc.2005.07.038 10.1242/jeb.00923 10.1016/j.jinsphys.2010.10.004 10.1196/annals.1327.001 10.1146/annurev-ento-112408-085512 10.1242/jcs.033084 10.1007/s00018-011-0789-0 10.1093/molbev/msr294 10.1242/jeb.098442 10.1152/ajpregu.1995.269.6.R1321 10.1073/pnas.0403087101 10.1242/jeb.089490 10.1017/CBO9780511675997 10.1111/mec.12289 10.1242/jeb.204.13.2331 10.1242/jeb.02714 10.1016/S0022-1910(02)00225-1 10.1038/ng2049 10.1073/pnas.0405775102 10.1111/j.1749-6632.2008.03633.x 10.1152/physiolgenomics.00233.2004 10.1016/j.ygcen.2013.03.012 10.1073/pnas.162276199 10.1016/0014-5793(95)00929-4 10.1152/ajpregu.00584.2001 10.1016/j.peptides.2006.09.020 10.1242/jeb.051003 10.1111/j.1365-3032.2007.00585.x 10.1242/jeb.182.1.283 10.1007/s00018-006-6187-3 10.1016/j.peptides.2012.09.026 10.1074/jbc.M603002200 10.1086/662642 10.1371/journal.pone.0010925 10.1073/pnas.1212788109 10.1016/j.jinsphys.2005.10.005 10.1007/978-94-007-7347-9_12 10.1016/B978-0-12-384749-2.10009-3 10.1242/jeb.00233 10.1126/science.238.4832.1415 10.1111/j.1365-2583.2007.00739.x 10.1016/j.jinsphys.2011.05.004 10.1093/icb/ict004 10.1016/S0300-9629(97)00030-3 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Mar 3, 2015 |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Mar 3, 2015 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1501518112 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts Entomology Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Capa neuropeptides and insect environmental stress |
EISSN | 1091-6490 |
EndPage | 2887 |
ExternalDocumentID | 3619024791 10_1073_pnas_1501518112 25730885 112_9_2882 26461707 US201600146027 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G020620 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L002647/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G020620/1 – fundername: US-Israel Binational Agricultural Research and Development Fund grantid: IS-4205-09C – fundername: USDA/DOD DWFP Iniative grantid: 6202-22000-029-00D – fundername: Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/G020620 – fundername: National Science Foundation (NSF) grantid: IOS-0840772 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ADACV AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c589t-4dccd928f2c661ecfb91ea656d00122280f2dde104cf21ab75b505352e99bd6b3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:20:28 EDT 2024 Fri Oct 25 01:41:19 EDT 2024 Sat Aug 17 02:02:50 EDT 2024 Thu Oct 10 16:19:58 EDT 2024 Fri Dec 06 02:52:20 EST 2024 Sat Sep 28 08:05:09 EDT 2024 Wed Nov 11 00:29:49 EST 2020 Wed Dec 11 00:51:59 EST 2024 Wed Dec 27 19:05:22 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | desiccation and cold tolerance capa neuropeptides environmental stress insects |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c589t-4dccd928f2c661ecfb91ea656d00122280f2dde104cf21ab75b505352e99bd6b3 |
Notes | http://dx.doi.org/10.1073/pnas.1501518112 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed by David L. Denlinger, January 30, 2015 (sent for review August 1, 2014; reviewed by Angela Lange, Dick R. Nässel, and Brent J. Sinclair) 2Present address: Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611. Author contributions: S.T., N.M.T., P.C., J.A.T.D., D.L.D., and S.-A.D. designed research; S.T., N.M.T., P.C., and L.H. performed research; S.T., M.G.R., and R.J.N. contributed new reagents/analytic tools; S.T., N.M.T., and P.C. analyzed data; S.T., N.M.T., M.G.R., R.J.N., J.A.T.D., D.L.D., and S.-A.D. wrote the paper; and J.A.T.D. provided initial model diagrams. Reviewers: A.L., University of Toronto Mississauga; D.R.N., Stockholm University; and B.J.S., University of Western Ontario. |
OpenAccessLink | https://www.pnas.org/content/pnas/112/9/2882.full.pdf |
PMID | 25730885 |
PQID | 1661724812 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | fao_agris_US201600146027 crossref_primary_10_1073_pnas_1501518112 proquest_miscellaneous_1668271021 pubmed_primary_25730885 proquest_miscellaneous_1660927727 proquest_journals_1661724812 pnas_primary_112_9_2882 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4352776 jstor_primary_26461707 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2015-03-03 |
PublicationDateYYYYMMDD | 2015-03-03 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences – name: National Acad Sciences |
References | 23348947 - J Exp Biol. 2013 May 1;216(Pt 9):1630-7 16054112 - Biochem Biophys Res Commun. 2005 Sep 16;335(1):14-9 17161506 - Peptides. 2007 Jan;28(1):57-61 15855386 - Physiol Genomics. 2005 Jul 14;22(2):128-38 22253819 - PLoS One. 2012;7(1):e29897 17534367 - Nat Genet. 2007 Jun;39(6):715-20 19456346 - Ann N Y Acad Sci. 2009 Apr;1163:251-61 19961332 - Annu Rev Entomol. 2010;55:351-74 24277303 - Adv Exp Med Biol. 2014;781:233-47 22130970 - Mol Biol Evol. 2012 May;29(5):1335-51 22122733 - Insect Mol Biol. 2012 Feb;21(1):107-18 7556618 - FEBS Lett. 1995 Sep 11;371(3):311-4 11507115 - J Exp Biol. 2001 Jul;204(Pt 13):2331-8 16952053 - Cell Mol Life Sci. 2006 Nov;63(21):2477-90 24744424 - J Exp Biol. 2014 Apr 15;217(Pt 8):1297-306 22899523 - J Exp Biol. 2012 Nov 1;215(Pt 21):3768-73 15891001 - Ann N Y Acad Sci. 2005 Apr;1040:1-8 9505434 - Comp Biochem Physiol A Physiol. 1997 Dec;118(4):1301-7 24353207 - J Exp Biol. 2014 Jan 1;217(Pt 1):84-93 15347816 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13689-93 17297143 - J Exp Biol. 2007 Mar;210(Pt 5):836-44 15037645 - J Exp Biol. 2004 Apr;207(Pt 9):1509-21 21640726 - J Insect Physiol. 2011 Aug;57(8):1070-84 12604578 - J Exp Biol. 2003 Apr;206(Pt 7):1183-92 23557645 - Gen Comp Endocrinol. 2013 Jul 1;188:60-6 11959669 - Am J Physiol Regul Integr Comp Physiol. 2002 May;282(5):R1297-307 16670086 - J Biol Chem. 2006 Jul 7;281(27):18849-58 23520401 - Integr Comp Biol. 2013 Oct;53(4):545-56 23505972 - Mol Ecol. 2013 May;22(10):2698-715 21818550 - Cell Mol Life Sci. 2012 Feb;69(3):471-84 25524989 - J Exp Biol. 2015 Feb 1;218(Pt 3):423-32 23036324 - Peptides. 2013 Mar;41:101-6 20969872 - J Insect Physiol. 2011 Jan;57(1):12-20 17506850 - Insect Mol Biol. 2007 Aug;16(4):435-43 18628302 - J Cell Sci. 2008 Aug 1;121(Pt 15):2612-9 12770015 - J Insect Physiol. 2003 Jan;49(1):45-52 16290823 - J Insect Physiol. 2006 Feb;52(2):202-14 23184963 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20750-5 20532197 - PLoS One. 2010;5(6):e10925 21112994 - J Exp Biol. 2010 Dec 15;213(Pt 24):4146-50 22030848 - Physiol Biochem Zool. 2011 Nov-Dec;84(6):553-9 17800568 - Science. 1987 Dec 4;238(4832):1415-7 15708981 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3105-10 12847123 - J Exp Biol. 2003 Aug;206(Pt 16):2779-86 8594932 - Am J Physiol. 1995 Dec;269(6 Pt 2):R1321-6 12177421 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11423-8 e_1_3_3_50_2 Dow JAT (e_1_3_3_14_2) 2013 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Findsen A (e_1_3_3_13_2) 2013; 216 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_27_2 Levis NA (e_1_3_3_9_2) 2012; 215 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 MacMillan HA (e_1_3_3_46_2) 2015; 218 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_32_2 doi: 10.1242/jeb.00498 – ident: e_1_3_3_25_2 doi: 10.1371/journal.pone.0029897 – volume: 215 start-page: 3768 year: 2012 ident: e_1_3_3_9_2 article-title: Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: Evidence for drought-induced rapid cold-hardening publication-title: J Exp Biol contributor: fullname: Levis NA – ident: e_1_3_3_28_2 doi: 10.1111/j.1365-2583.2011.01119.x – ident: e_1_3_3_41_2 doi: 10.1016/j.bbrc.2005.07.038 – ident: e_1_3_3_11_2 doi: 10.1242/jeb.00923 – ident: e_1_3_3_16_2 doi: 10.1016/j.jinsphys.2010.10.004 – ident: e_1_3_3_51_2 doi: 10.1196/annals.1327.001 – ident: e_1_3_3_15_2 doi: 10.1146/annurev-ento-112408-085512 – ident: e_1_3_3_39_2 doi: 10.1242/jcs.033084 – ident: e_1_3_3_43_2 doi: 10.1007/s00018-011-0789-0 – ident: e_1_3_3_19_2 doi: 10.1093/molbev/msr294 – ident: e_1_3_3_44_2 doi: 10.1242/jeb.098442 – volume: 216 start-page: 1630 year: 2013 ident: e_1_3_3_13_2 article-title: Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria publication-title: J Exp Biol contributor: fullname: Findsen A – ident: e_1_3_3_33_2 doi: 10.1152/ajpregu.1995.269.6.R1321 – ident: e_1_3_3_47_2 doi: 10.1073/pnas.0403087101 – ident: e_1_3_3_5_2 doi: 10.1242/jeb.089490 – ident: e_1_3_3_3_2 doi: 10.1017/CBO9780511675997 – ident: e_1_3_3_18_2 doi: 10.1111/mec.12289 – ident: e_1_3_3_1_2 doi: 10.1242/jeb.204.13.2331 – ident: e_1_3_3_8_2 doi: 10.1242/jeb.02714 – ident: e_1_3_3_7_2 doi: 10.1016/S0022-1910(02)00225-1 – ident: e_1_3_3_37_2 doi: 10.1038/ng2049 – ident: e_1_3_3_42_2 doi: 10.1073/pnas.0405775102 – ident: e_1_3_3_27_2 doi: 10.1111/j.1749-6632.2008.03633.x – ident: e_1_3_3_40_2 doi: 10.1152/physiolgenomics.00233.2004 – volume-title: The Insects, Structure and Function year: 2013 ident: e_1_3_3_14_2 contributor: fullname: Dow JAT – ident: e_1_3_3_24_2 doi: 10.1016/j.ygcen.2013.03.012 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.162276199 – ident: e_1_3_3_30_2 doi: 10.1016/0014-5793(95)00929-4 – ident: e_1_3_3_22_2 doi: 10.1152/ajpregu.00584.2001 – ident: e_1_3_3_34_2 doi: 10.1016/j.peptides.2006.09.020 – ident: e_1_3_3_49_2 doi: 10.1242/jeb.051003 – ident: e_1_3_3_10_2 doi: 10.1111/j.1365-3032.2007.00585.x – ident: e_1_3_3_4_2 doi: 10.1242/jeb.182.1.283 – ident: e_1_3_3_23_2 doi: 10.1007/s00018-006-6187-3 – ident: e_1_3_3_26_2 doi: 10.1016/j.peptides.2012.09.026 – ident: e_1_3_3_38_2 doi: 10.1074/jbc.M603002200 – ident: e_1_3_3_36_2 doi: 10.1086/662642 – ident: e_1_3_3_50_2 doi: 10.1371/journal.pone.0010925 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.1212788109 – ident: e_1_3_3_20_2 doi: 10.1016/j.jinsphys.2005.10.005 – ident: e_1_3_3_29_2 doi: 10.1007/978-94-007-7347-9_12 – ident: e_1_3_3_21_2 doi: 10.1016/B978-0-12-384749-2.10009-3 – volume: 218 start-page: 423 year: 2015 ident: e_1_3_3_46_2 article-title: Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance publication-title: J Exp Biol contributor: fullname: MacMillan HA – ident: e_1_3_3_17_2 doi: 10.1242/jeb.00233 – ident: e_1_3_3_35_2 doi: 10.1126/science.238.4832.1415 – ident: e_1_3_3_48_2 doi: 10.1111/j.1365-2583.2007.00739.x – ident: e_1_3_3_2_2 doi: 10.1016/j.jinsphys.2011.05.004 – ident: e_1_3_3_6_2 doi: 10.1093/icb/ict004 – ident: e_1_3_3_45_2 doi: 10.1016/S0300-9629(97)00030-3 |
SSID | ssj0009580 |
Score | 2.5113149 |
Snippet | The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the... The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses aremediated by the... Insects are among the most robust organisms on the planet, surviving in virtually all environments and capable of surmounting a range of environmental stresses... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2882 |
SubjectTerms | Abiotic stress Animals Biological Sciences Cold Temperature Cold-Shock Response Dehydration - genetics Dehydration - metabolism Dehydration - pathology Drosophila melanogaster Drosophila Proteins - biosynthesis Drosophila Proteins - genetics Gene Expression Regulation Genes Genotype & phenotype Homeostasis Immunohistochemistry Insects Malpighian Tubules - metabolism Malpighian Tubules - pathology Neurons - metabolism Neurons - pathology Neuropeptides - biosynthesis Neuropeptides - genetics Peptides Signal Transduction - genetics |
Title | Insect capa neuropeptides impact desiccation and cold tolerance |
URI | https://www.jstor.org/stable/26461707 http://www.pnas.org/content/112/9/2882.abstract https://www.ncbi.nlm.nih.gov/pubmed/25730885 https://www.proquest.com/docview/1661724812 https://search.proquest.com/docview/1660927727 https://search.proquest.com/docview/1668271021 https://pubmed.ncbi.nlm.nih.gov/PMC4352776 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na1QxEB-6PXkRW619WksED_WwHy_78l5yklJaqlARdKG3kE9daLOLu_3_ncn7aCvSg7eF5CVhMpP5zWbmF4APvI7RBIxUPQbL48rXaHO8iuNoHYKJuipnuY776mt9uai-XIvrHRB9LUxO2nd2OUk3t5O0_JVzK9e3btrniU2_XZ2hi-dNU09HMEL324foA9OubOtOOB6_Fa96Pp9mPl0ns5kgAkIvJxFnEBGwQA2X9JDyA680imbVpycS5yl-9S_8-Xca5QO_dPECnneAkp22C9-DnZD2Ya8z2Q076XilP76ET5_TBo835tA_ssxjuaaUFo-92lpJhj-Xrv0Pj5nkGSqJZ9vVTaDXN8IrWFyc_zi7HHfvJ4ydkGqLknfOKy4jd-iFg4tWlcEggPP5Qo3LWeR4umFA5iIvjW2EFZnuJShlfW3nB7CbVikcAuOqjGXtgozOVo4qrkNZ-2C9USKEaAo46eWn1y1Nhs7X281ck_z0vdQLOET5avMTDzG9-M6J4o4YbHC_CjjIQh-GQLRGhPHY8DqPMgxdcq00x-iggKN-Y3RnfThZTbiskjTZ-6EZ7YYuQ0wKq7vcZ6ZQi2jWJ_pIThCspAXkvb5fWqc5BTSPtGDoQLzdj1tQnTN_d6e-b_77y7fwDMUmcirc_Ah2t7_vwjvERlt7TJ5JHGeL-AP8MgrV |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8APugLERVZRKyJD_hwH-3udtsnYwjkUI6YyCW8Nf3US2Dvwh3_P9PuB2CMD75d0m7bTGc6v7nO_ArwifEQtMdI1WGwPCgcR5tjRRgEYxFM8IKOUx339IJPZsW3q_JqA8quFiYl7VszH9bXN8N6_jvlVi5v7KjLExv9mB6ji2dVxUeb8KzMK0m7IL3n2hVN5QnDA7hgRcfoU-WjZa1XQ8RA6OcEIo1IBVyijov4lPIjv7QZ9KJLUIysp_jV3xDon4mUjzzT6UvYbiEl-dosfQc2fP0KdlqjXZGjlln682v4clav8IAjFj0kSUyWy5jU4rBXUy1J8OfcNv_iEV07gmriyHpx7eP7G_4NzE5PLo8ng_YFhYEthVyj7K11konALPphb4OR1GuEcC5dqTExDgzPNwzJbGBUm6o0ZSJ88VIax02-C1v1ovZ7QJikgXLrRbCmsLHm2lPuvHFalt4HncFRJz-1bIgyVLrgrnIV5acepJ7BHspX6V94jKnZTxZJ7iKHDe5XBrtJ6P0QiNciZTw2vE2j9ENTpqRiGB9kcNBtjGrtDyfjEZkVIk72sW9Gy4nXIbr2i7vUZyxRj-Ks_-gjWARhNC4g7fXD0lrNyaB6ogV9h8jc_bQFFToxeLcKvP_fX36A55PL6bk6P7v4_g5eoAjLlBiXH8DW-vbOv0ektDaHyS7uAeKEDUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8IJsYXIiqyiFITH_Dhbm-7u93ukzHIBVQIiV7CW9NPuAR6G-74_512PziM8cG3TfqZ6UznN9vprwAfKXNOWoxUDQbLo8IwtDlauJFTGsEEK7JJvMd9ds5OZsW3y_Jy7amvmLSv1Xzsb27Hfn4dcyubW532eWLpxdkRunhaVSxtjEs34GmZo5L1gfrAt8vb2ycUN-GCFj2rT5WnjZfLMeIg9HUc0UagAy5Rz3l4TnnNN204ueiTFAPzKbb6Gwr9M5lyzTtNX8BWByvJl3b62_DE-pew3Rnukhx27NKfXsHnU7_ETY5o9JIkslk2IbHFYK32xiTBz7lu_-QR6Q1BVTFktbix4Q0O-xpm0-NfRyej7hWFkS55vUL5a21qyh3V6IutdqrOrEQYZ-KxGuUTR3GPw7BMO5pJVZWqjKQvtq6VYSrfgU2_8HYXCK0zlzFtudOq0OHetc2YscrIurTWyQQOe_mJpiXLEPGQu8pFkJ94kHoCuyhfIa9wKxOznzQQ3QUeG1yvBHai0IcuELMF2ngseBN7GbrOqKgFxRghgf1-YURngzgYC-is4GGwD0MxWk84EpHeLu5jnUmNuhRG_UcdTgMQy8IE4lo_TK3TnASqR1owVAjs3Y9LUKkji3enxHv_3fIAnl18nYofp-ff38JzlGAZc-Pyfdhc3d3bdwiWVup9NIvfz9kOVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insect+capa+neuropeptides+impact+desiccation+and+cold+tolerance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Terhzaz%2C+Selim&rft.au=Teets%2C+Nicholas+M&rft.au=Cabrero%2C+Pablo&rft.au=Henderson%2C+Louise&rft.date=2015-03-03&rft.eissn=1091-6490&rft.volume=112&rft.issue=9&rft.spage=2882&rft.epage=2887&rft_id=info:doi/10.1073%2Fpnas.1501518112&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F9.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F9.cover.gif |