Insect capa neuropeptides impact desiccation and cold tolerance

The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability ( capa ) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dip...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 9; pp. 2882 - 2887
Main Authors Terhzaz, Selim, Teets, Nicholas M., Cabrero, Pablo, Henderson, Louise, Ritchie, Michael G., Nachman, Ronald J., Dow, Julian A. T., Denlinger, David L., Davies, Shireen-A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.03.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability ( capa ) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. Significance Insects are among the most robust organisms on the planet, surviving in virtually all environments and capable of surmounting a range of environmental stresses including desiccation and cold. Although desiccation and cold tolerance share many common traits, potential mechanisms for such linked responses remain unclear. Here we show that an insect neuropeptide gene is associated with tolerance of both desiccation and cold in Drosophila melanogaster , suggesting a novel mechanism in renal tubule epithelia that enhances survival of both desiccation and cold. Also, we can reverse RNAi-induced stress tolerance phenotypes in intact flies using rationally designed peptide mimetic analogs. We thus demonstrate the power of intervention in physiological processes controlled by neuropeptides, with potential for insect pest control.
AbstractList Insects are among the most robust organisms on the planet, surviving in virtually all environments and capable of surmounting a range of environmental stresses including desiccation and cold. Although desiccation and cold tolerance share many common traits, potential mechanisms for such linked responses remain unclear. Here we show that an insect neuropeptide gene is associated with tolerance of both desiccation and cold in Drosophila melanogaster , suggesting a novel mechanism in renal tubule epithelia that enhances survival of both desiccation and cold. Also, we can reverse RNAi-induced stress tolerance phenotypes in intact flies using rationally designed peptide mimetic analogs. We thus demonstrate the power of intervention in physiological processes controlled by neuropeptides, with potential for insect pest control. The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability ( capa ) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses aremediated by the neuroendocrine system. Here we show that thecapability(capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that theDrosophila melanogaster capaneuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of thecapagene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability ( capa ) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. Significance Insects are among the most robust organisms on the planet, surviving in virtually all environments and capable of surmounting a range of environmental stresses including desiccation and cold. Although desiccation and cold tolerance share many common traits, potential mechanisms for such linked responses remain unclear. Here we show that an insect neuropeptide gene is associated with tolerance of both desiccation and cold in Drosophila melanogaster , suggesting a novel mechanism in renal tubule epithelia that enhances survival of both desiccation and cold. Also, we can reverse RNAi-induced stress tolerance phenotypes in intact flies using rationally designed peptide mimetic analogs. We thus demonstrate the power of intervention in physiological processes controlled by neuropeptides, with potential for insect pest control.
Author Denlinger, David L.
Davies, Shireen-A.
Ritchie, Michael G.
Nachman, Ronald J.
Terhzaz, Selim
Henderson, Louise
Teets, Nicholas M.
Cabrero, Pablo
Dow, Julian A. T.
Author_xml – sequence: 1
  givenname: Selim
  surname: Terhzaz
  fullname: Terhzaz, Selim
  organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom
– sequence: 2
  givenname: Nicholas M.
  surname: Teets
  fullname: Teets, Nicholas M.
  organization: Departments of Entomology and Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210
– sequence: 3
  givenname: Pablo
  surname: Cabrero
  fullname: Cabrero, Pablo
  organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom
– sequence: 4
  givenname: Louise
  surname: Henderson
  fullname: Henderson, Louise
  organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom
– sequence: 5
  givenname: Michael G.
  surname: Ritchie
  fullname: Ritchie, Michael G.
  organization: Centre for Biological Diversity, School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TS, Scotland, United Kingdom
– sequence: 6
  givenname: Ronald J.
  surname: Nachman
  fullname: Nachman, Ronald J.
  organization: Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX 77845
– sequence: 7
  givenname: Julian A. T.
  surname: Dow
  fullname: Dow, Julian A. T.
  organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom
– sequence: 8
  givenname: David L.
  surname: Denlinger
  fullname: Denlinger, David L.
  organization: Departments of Entomology and Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210
– sequence: 9
  givenname: Shireen-A.
  surname: Davies
  fullname: Davies, Shireen-A.
  organization: Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25730885$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQRi1URLeFMycgUi9c0s5MYse5gFBVoFIlDtCz5dhOySprBztB4t_jaMu2cOJkS_PmacafT9iRD94x9hLhHKGpLiav0zlyQI4SkZ6wDUKLpahbOGIbAGpKWVN9zE5S2gJAyyU8Y8fEmwqk5Bv2_tonZ-bC6EkX3i0xTG6aB-tSMewmnSv5Ohij5yH4QntbmDDaYg6ji9ob95w97fWY3Iv785Tdfrz6dvm5vPny6fryw01puGznsrbG2JZkT0YIdKbvWnRacGEBkIgk9GStQ6hNT6i7hncceMXJtW1nRVedsnd777R0O2eN83PUo5risNPxlwp6UH9X_PBd3YWfqs6SphFZ8PZeEMOPxaVZ7YZk3Dhq78KSFAohqUEg_B8U2iylJqNn_6DbsESfX2KlsKFaImXqYk-ZGFKKrj_MjaDWHNWao3rIMXe8frzugf8T3CNg7TzokFSrSMrV8GoPbNMc4oNA1HksWCd_s6_3Oih9F4ekbr8SoMiB1CJ_nOo3PJK3ZA
CitedBy_id crossref_primary_10_1016_j_aspen_2022_101940
crossref_primary_10_1016_j_ecolmodel_2020_109127
crossref_primary_10_1038_srep28999
crossref_primary_10_1093_molbev_msy160
crossref_primary_10_1242_jeb_160176
crossref_primary_10_1111_1755_0998_13561
crossref_primary_10_1186_s12864_017_3711_9
crossref_primary_10_1016_j_ibmb_2018_08_003
crossref_primary_10_1111_jen_12941
crossref_primary_10_1111_1744_7917_12951
crossref_primary_10_1111_1744_7917_12751
crossref_primary_10_21638_spbu03_2022_305
crossref_primary_10_3389_fphys_2021_671463
crossref_primary_10_1016_j_cois_2021_02_015
crossref_primary_10_1021_acs_jproteome_6b00427
crossref_primary_10_1002_ps_4663
crossref_primary_10_1016_j_pestbp_2022_105079
crossref_primary_10_1093_jee_toz316
crossref_primary_10_1146_annurev_ento_040323_021222
crossref_primary_10_1242_jeb_174904
crossref_primary_10_1007_s00360_016_0997_x
crossref_primary_10_1146_annurev_ento_120120_095233
crossref_primary_10_1073_pnas_1915943117
crossref_primary_10_1093_jee_toad063
crossref_primary_10_3389_fphys_2020_00376
crossref_primary_10_1002_arch_21500
crossref_primary_10_1016_j_isci_2021_102657
crossref_primary_10_1007_s00018_017_2682_y
crossref_primary_10_1016_j_pestbp_2021_104808
crossref_primary_10_1016_j_pestbp_2024_105840
crossref_primary_10_1242_jeb_213934
crossref_primary_10_1016_j_cbd_2022_101018
crossref_primary_10_1016_j_ibmb_2020_103495
crossref_primary_10_1016_j_jinsphys_2016_09_006
crossref_primary_10_1016_j_jinsphys_2015_03_015
crossref_primary_10_1242_jeb_173930
crossref_primary_10_1016_j_bbagrm_2017_08_001
crossref_primary_10_1016_j_cois_2017_07_001
crossref_primary_10_1016_j_jinsphys_2015_05_003
crossref_primary_10_1038_s41598_022_25235_w
crossref_primary_10_3390_insects11120844
crossref_primary_10_1002_ps_5372
crossref_primary_10_1186_s13071_022_05457_7
crossref_primary_10_3389_fphys_2019_00767
crossref_primary_10_1111_mec_14769
crossref_primary_10_1146_annurev_ento_031616_035500
crossref_primary_10_1016_j_ibmb_2018_04_007
crossref_primary_10_1016_j_pneurobio_2019_02_003
crossref_primary_10_1111_imb_12535
crossref_primary_10_1002_ps_7192
crossref_primary_10_1016_j_cbpb_2017_11_003
crossref_primary_10_1016_j_jia_2024_04_003
crossref_primary_10_3389_fphys_2018_01843
crossref_primary_10_1016_j_cois_2015_08_002
crossref_primary_10_1242_jeb_168518
crossref_primary_10_1093_gbe_evy147
crossref_primary_10_1016_j_cbpa_2017_11_005
crossref_primary_10_1111_jeb_13244
crossref_primary_10_1093_molbev_msv349
crossref_primary_10_1242_jeb_185884
crossref_primary_10_1111_imb_12859
crossref_primary_10_1038_srep18607
crossref_primary_10_1002_ps_5971
crossref_primary_10_1371_journal_pgen_1007618
crossref_primary_10_1007_s10340_019_01100_0
crossref_primary_10_1038_s41467_021_25445_2
crossref_primary_10_1186_s12864_018_4668_z
crossref_primary_10_1242_dev_178087
crossref_primary_10_1534_genetics_119_302289
crossref_primary_10_1016_j_ibmb_2019_103223
crossref_primary_10_1016_j_cbpa_2020_110699
crossref_primary_10_1002_bies_202300011
crossref_primary_10_1038_s41598_020_58731_y
crossref_primary_10_1093_jisesa_ieac004
crossref_primary_10_1007_s00441_020_03264_z
crossref_primary_10_1016_j_peptides_2016_02_004
crossref_primary_10_1016_j_jtherbio_2016_04_004
crossref_primary_10_1016_j_mce_2024_112238
crossref_primary_10_3389_fphys_2020_00424
crossref_primary_10_1007_s10592_022_01488_w
crossref_primary_10_1371_journal_pgen_1009425
crossref_primary_10_1111_mec_15361
crossref_primary_10_1016_j_cois_2016_07_001
crossref_primary_10_1016_j_ibmb_2017_05_001
Cites_doi 10.1242/jeb.00498
10.1371/journal.pone.0029897
10.1111/j.1365-2583.2011.01119.x
10.1016/j.bbrc.2005.07.038
10.1242/jeb.00923
10.1016/j.jinsphys.2010.10.004
10.1196/annals.1327.001
10.1146/annurev-ento-112408-085512
10.1242/jcs.033084
10.1007/s00018-011-0789-0
10.1093/molbev/msr294
10.1242/jeb.098442
10.1152/ajpregu.1995.269.6.R1321
10.1073/pnas.0403087101
10.1242/jeb.089490
10.1017/CBO9780511675997
10.1111/mec.12289
10.1242/jeb.204.13.2331
10.1242/jeb.02714
10.1016/S0022-1910(02)00225-1
10.1038/ng2049
10.1073/pnas.0405775102
10.1111/j.1749-6632.2008.03633.x
10.1152/physiolgenomics.00233.2004
10.1016/j.ygcen.2013.03.012
10.1073/pnas.162276199
10.1016/0014-5793(95)00929-4
10.1152/ajpregu.00584.2001
10.1016/j.peptides.2006.09.020
10.1242/jeb.051003
10.1111/j.1365-3032.2007.00585.x
10.1242/jeb.182.1.283
10.1007/s00018-006-6187-3
10.1016/j.peptides.2012.09.026
10.1074/jbc.M603002200
10.1086/662642
10.1371/journal.pone.0010925
10.1073/pnas.1212788109
10.1016/j.jinsphys.2005.10.005
10.1007/978-94-007-7347-9_12
10.1016/B978-0-12-384749-2.10009-3
10.1242/jeb.00233
10.1126/science.238.4832.1415
10.1111/j.1365-2583.2007.00739.x
10.1016/j.jinsphys.2011.05.004
10.1093/icb/ict004
10.1016/S0300-9629(97)00030-3
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Mar 3, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Mar 3, 2015
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1501518112
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
Virology and AIDS Abstracts
Entomology Abstracts

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Capa neuropeptides and insect environmental stress
EISSN 1091-6490
EndPage 2887
ExternalDocumentID 3619024791
10_1073_pnas_1501518112
25730885
112_9_2882
26461707
US201600146027
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G020620
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L002647/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G020620/1
– fundername: US-Israel Binational Agricultural Research and Development Fund
  grantid: IS-4205-09C
– fundername: USDA/DOD DWFP Iniative
  grantid: 6202-22000-029-00D
– fundername: Biotechnology and Biological Sciences Research Council (BBSRC)
  grantid: BB/G020620
– fundername: National Science Foundation (NSF)
  grantid: IOS-0840772
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ADACV
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c589t-4dccd928f2c661ecfb91ea656d00122280f2dde104cf21ab75b505352e99bd6b3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:20:28 EDT 2024
Fri Oct 25 01:41:19 EDT 2024
Sat Aug 17 02:02:50 EDT 2024
Thu Oct 10 16:19:58 EDT 2024
Fri Dec 06 02:52:20 EST 2024
Sat Sep 28 08:05:09 EDT 2024
Wed Nov 11 00:29:49 EST 2020
Wed Dec 11 00:51:59 EST 2024
Wed Dec 27 19:05:22 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords desiccation and cold tolerance
capa
neuropeptides
environmental stress
insects
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c589t-4dccd928f2c661ecfb91ea656d00122280f2dde104cf21ab75b505352e99bd6b3
Notes http://dx.doi.org/10.1073/pnas.1501518112
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed by David L. Denlinger, January 30, 2015 (sent for review August 1, 2014; reviewed by Angela Lange, Dick R. Nässel, and Brent J. Sinclair)
2Present address: Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611.
Author contributions: S.T., N.M.T., P.C., J.A.T.D., D.L.D., and S.-A.D. designed research; S.T., N.M.T., P.C., and L.H. performed research; S.T., M.G.R., and R.J.N. contributed new reagents/analytic tools; S.T., N.M.T., and P.C. analyzed data; S.T., N.M.T., M.G.R., R.J.N., J.A.T.D., D.L.D., and S.-A.D. wrote the paper; and J.A.T.D. provided initial model diagrams.
Reviewers: A.L., University of Toronto Mississauga; D.R.N., Stockholm University; and B.J.S., University of Western Ontario.
OpenAccessLink https://www.pnas.org/content/pnas/112/9/2882.full.pdf
PMID 25730885
PQID 1661724812
PQPubID 42026
PageCount 6
ParticipantIDs fao_agris_US201600146027
crossref_primary_10_1073_pnas_1501518112
proquest_miscellaneous_1668271021
pubmed_primary_25730885
proquest_miscellaneous_1660927727
proquest_journals_1661724812
pnas_primary_112_9_2882
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4352776
jstor_primary_26461707
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2015-03-03
PublicationDateYYYYMMDD 2015-03-03
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Academy of Sciences
– name: National Acad Sciences
References 23348947 - J Exp Biol. 2013 May 1;216(Pt 9):1630-7
16054112 - Biochem Biophys Res Commun. 2005 Sep 16;335(1):14-9
17161506 - Peptides. 2007 Jan;28(1):57-61
15855386 - Physiol Genomics. 2005 Jul 14;22(2):128-38
22253819 - PLoS One. 2012;7(1):e29897
17534367 - Nat Genet. 2007 Jun;39(6):715-20
19456346 - Ann N Y Acad Sci. 2009 Apr;1163:251-61
19961332 - Annu Rev Entomol. 2010;55:351-74
24277303 - Adv Exp Med Biol. 2014;781:233-47
22130970 - Mol Biol Evol. 2012 May;29(5):1335-51
22122733 - Insect Mol Biol. 2012 Feb;21(1):107-18
7556618 - FEBS Lett. 1995 Sep 11;371(3):311-4
11507115 - J Exp Biol. 2001 Jul;204(Pt 13):2331-8
16952053 - Cell Mol Life Sci. 2006 Nov;63(21):2477-90
24744424 - J Exp Biol. 2014 Apr 15;217(Pt 8):1297-306
22899523 - J Exp Biol. 2012 Nov 1;215(Pt 21):3768-73
15891001 - Ann N Y Acad Sci. 2005 Apr;1040:1-8
9505434 - Comp Biochem Physiol A Physiol. 1997 Dec;118(4):1301-7
24353207 - J Exp Biol. 2014 Jan 1;217(Pt 1):84-93
15347816 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13689-93
17297143 - J Exp Biol. 2007 Mar;210(Pt 5):836-44
15037645 - J Exp Biol. 2004 Apr;207(Pt 9):1509-21
21640726 - J Insect Physiol. 2011 Aug;57(8):1070-84
12604578 - J Exp Biol. 2003 Apr;206(Pt 7):1183-92
23557645 - Gen Comp Endocrinol. 2013 Jul 1;188:60-6
11959669 - Am J Physiol Regul Integr Comp Physiol. 2002 May;282(5):R1297-307
16670086 - J Biol Chem. 2006 Jul 7;281(27):18849-58
23520401 - Integr Comp Biol. 2013 Oct;53(4):545-56
23505972 - Mol Ecol. 2013 May;22(10):2698-715
21818550 - Cell Mol Life Sci. 2012 Feb;69(3):471-84
25524989 - J Exp Biol. 2015 Feb 1;218(Pt 3):423-32
23036324 - Peptides. 2013 Mar;41:101-6
20969872 - J Insect Physiol. 2011 Jan;57(1):12-20
17506850 - Insect Mol Biol. 2007 Aug;16(4):435-43
18628302 - J Cell Sci. 2008 Aug 1;121(Pt 15):2612-9
12770015 - J Insect Physiol. 2003 Jan;49(1):45-52
16290823 - J Insect Physiol. 2006 Feb;52(2):202-14
23184963 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20750-5
20532197 - PLoS One. 2010;5(6):e10925
21112994 - J Exp Biol. 2010 Dec 15;213(Pt 24):4146-50
22030848 - Physiol Biochem Zool. 2011 Nov-Dec;84(6):553-9
17800568 - Science. 1987 Dec 4;238(4832):1415-7
15708981 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3105-10
12847123 - J Exp Biol. 2003 Aug;206(Pt 16):2779-86
8594932 - Am J Physiol. 1995 Dec;269(6 Pt 2):R1321-6
12177421 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11423-8
e_1_3_3_50_2
Dow JAT (e_1_3_3_14_2) 2013
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Findsen A (e_1_3_3_13_2) 2013; 216
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_27_2
Levis NA (e_1_3_3_9_2) 2012; 215
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
MacMillan HA (e_1_3_3_46_2) 2015; 218
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_32_2
  doi: 10.1242/jeb.00498
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.pone.0029897
– volume: 215
  start-page: 3768
  year: 2012
  ident: e_1_3_3_9_2
  article-title: Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: Evidence for drought-induced rapid cold-hardening
  publication-title: J Exp Biol
  contributor:
    fullname: Levis NA
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1365-2583.2011.01119.x
– ident: e_1_3_3_41_2
  doi: 10.1016/j.bbrc.2005.07.038
– ident: e_1_3_3_11_2
  doi: 10.1242/jeb.00923
– ident: e_1_3_3_16_2
  doi: 10.1016/j.jinsphys.2010.10.004
– ident: e_1_3_3_51_2
  doi: 10.1196/annals.1327.001
– ident: e_1_3_3_15_2
  doi: 10.1146/annurev-ento-112408-085512
– ident: e_1_3_3_39_2
  doi: 10.1242/jcs.033084
– ident: e_1_3_3_43_2
  doi: 10.1007/s00018-011-0789-0
– ident: e_1_3_3_19_2
  doi: 10.1093/molbev/msr294
– ident: e_1_3_3_44_2
  doi: 10.1242/jeb.098442
– volume: 216
  start-page: 1630
  year: 2013
  ident: e_1_3_3_13_2
  article-title: Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria
  publication-title: J Exp Biol
  contributor:
    fullname: Findsen A
– ident: e_1_3_3_33_2
  doi: 10.1152/ajpregu.1995.269.6.R1321
– ident: e_1_3_3_47_2
  doi: 10.1073/pnas.0403087101
– ident: e_1_3_3_5_2
  doi: 10.1242/jeb.089490
– ident: e_1_3_3_3_2
  doi: 10.1017/CBO9780511675997
– ident: e_1_3_3_18_2
  doi: 10.1111/mec.12289
– ident: e_1_3_3_1_2
  doi: 10.1242/jeb.204.13.2331
– ident: e_1_3_3_8_2
  doi: 10.1242/jeb.02714
– ident: e_1_3_3_7_2
  doi: 10.1016/S0022-1910(02)00225-1
– ident: e_1_3_3_37_2
  doi: 10.1038/ng2049
– ident: e_1_3_3_42_2
  doi: 10.1073/pnas.0405775102
– ident: e_1_3_3_27_2
  doi: 10.1111/j.1749-6632.2008.03633.x
– ident: e_1_3_3_40_2
  doi: 10.1152/physiolgenomics.00233.2004
– volume-title: The Insects, Structure and Function
  year: 2013
  ident: e_1_3_3_14_2
  contributor:
    fullname: Dow JAT
– ident: e_1_3_3_24_2
  doi: 10.1016/j.ygcen.2013.03.012
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.162276199
– ident: e_1_3_3_30_2
  doi: 10.1016/0014-5793(95)00929-4
– ident: e_1_3_3_22_2
  doi: 10.1152/ajpregu.00584.2001
– ident: e_1_3_3_34_2
  doi: 10.1016/j.peptides.2006.09.020
– ident: e_1_3_3_49_2
  doi: 10.1242/jeb.051003
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1365-3032.2007.00585.x
– ident: e_1_3_3_4_2
  doi: 10.1242/jeb.182.1.283
– ident: e_1_3_3_23_2
  doi: 10.1007/s00018-006-6187-3
– ident: e_1_3_3_26_2
  doi: 10.1016/j.peptides.2012.09.026
– ident: e_1_3_3_38_2
  doi: 10.1074/jbc.M603002200
– ident: e_1_3_3_36_2
  doi: 10.1086/662642
– ident: e_1_3_3_50_2
  doi: 10.1371/journal.pone.0010925
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.1212788109
– ident: e_1_3_3_20_2
  doi: 10.1016/j.jinsphys.2005.10.005
– ident: e_1_3_3_29_2
  doi: 10.1007/978-94-007-7347-9_12
– ident: e_1_3_3_21_2
  doi: 10.1016/B978-0-12-384749-2.10009-3
– volume: 218
  start-page: 423
  year: 2015
  ident: e_1_3_3_46_2
  article-title: Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance
  publication-title: J Exp Biol
  contributor:
    fullname: MacMillan HA
– ident: e_1_3_3_17_2
  doi: 10.1242/jeb.00233
– ident: e_1_3_3_35_2
  doi: 10.1126/science.238.4832.1415
– ident: e_1_3_3_48_2
  doi: 10.1111/j.1365-2583.2007.00739.x
– ident: e_1_3_3_2_2
  doi: 10.1016/j.jinsphys.2011.05.004
– ident: e_1_3_3_6_2
  doi: 10.1093/icb/ict004
– ident: e_1_3_3_45_2
  doi: 10.1016/S0300-9629(97)00030-3
SSID ssj0009580
Score 2.5113149
Snippet The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the...
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses aremediated by the...
Insects are among the most robust organisms on the planet, surviving in virtually all environments and capable of surmounting a range of environmental stresses...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2882
SubjectTerms Abiotic stress
Animals
Biological Sciences
Cold Temperature
Cold-Shock Response
Dehydration - genetics
Dehydration - metabolism
Dehydration - pathology
Drosophila melanogaster
Drosophila Proteins - biosynthesis
Drosophila Proteins - genetics
Gene Expression Regulation
Genes
Genotype & phenotype
Homeostasis
Immunohistochemistry
Insects
Malpighian Tubules - metabolism
Malpighian Tubules - pathology
Neurons - metabolism
Neurons - pathology
Neuropeptides - biosynthesis
Neuropeptides - genetics
Peptides
Signal Transduction - genetics
Title Insect capa neuropeptides impact desiccation and cold tolerance
URI https://www.jstor.org/stable/26461707
http://www.pnas.org/content/112/9/2882.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25730885
https://www.proquest.com/docview/1661724812
https://search.proquest.com/docview/1660927727
https://search.proquest.com/docview/1668271021
https://pubmed.ncbi.nlm.nih.gov/PMC4352776
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na1QxEB-6PXkRW619WksED_WwHy_78l5yklJaqlARdKG3kE9daLOLu_3_ncn7aCvSg7eF5CVhMpP5zWbmF4APvI7RBIxUPQbL48rXaHO8iuNoHYKJuipnuY776mt9uai-XIvrHRB9LUxO2nd2OUk3t5O0_JVzK9e3btrniU2_XZ2hi-dNU09HMEL324foA9OubOtOOB6_Fa96Pp9mPl0ns5kgAkIvJxFnEBGwQA2X9JDyA680imbVpycS5yl-9S_8-Xca5QO_dPECnneAkp22C9-DnZD2Ya8z2Q076XilP76ET5_TBo835tA_ssxjuaaUFo-92lpJhj-Xrv0Pj5nkGSqJZ9vVTaDXN8IrWFyc_zi7HHfvJ4ydkGqLknfOKy4jd-iFg4tWlcEggPP5Qo3LWeR4umFA5iIvjW2EFZnuJShlfW3nB7CbVikcAuOqjGXtgozOVo4qrkNZ-2C9USKEaAo46eWn1y1Nhs7X281ck_z0vdQLOET5avMTDzG9-M6J4o4YbHC_CjjIQh-GQLRGhPHY8DqPMgxdcq00x-iggKN-Y3RnfThZTbiskjTZ-6EZ7YYuQ0wKq7vcZ6ZQi2jWJ_pIThCspAXkvb5fWqc5BTSPtGDoQLzdj1tQnTN_d6e-b_77y7fwDMUmcirc_Ah2t7_vwjvERlt7TJ5JHGeL-AP8MgrV
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8APugLERVZRKyJD_hwH-3udtsnYwjkUI6YyCW8Nf3US2Dvwh3_P9PuB2CMD75d0m7bTGc6v7nO_ArwifEQtMdI1WGwPCgcR5tjRRgEYxFM8IKOUx339IJPZsW3q_JqA8quFiYl7VszH9bXN8N6_jvlVi5v7KjLExv9mB6ji2dVxUeb8KzMK0m7IL3n2hVN5QnDA7hgRcfoU-WjZa1XQ8RA6OcEIo1IBVyijov4lPIjv7QZ9KJLUIysp_jV3xDon4mUjzzT6UvYbiEl-dosfQc2fP0KdlqjXZGjlln682v4clav8IAjFj0kSUyWy5jU4rBXUy1J8OfcNv_iEV07gmriyHpx7eP7G_4NzE5PLo8ng_YFhYEthVyj7K11konALPphb4OR1GuEcC5dqTExDgzPNwzJbGBUm6o0ZSJ88VIax02-C1v1ovZ7QJikgXLrRbCmsLHm2lPuvHFalt4HncFRJz-1bIgyVLrgrnIV5acepJ7BHspX6V94jKnZTxZJ7iKHDe5XBrtJ6P0QiNciZTw2vE2j9ENTpqRiGB9kcNBtjGrtDyfjEZkVIk72sW9Gy4nXIbr2i7vUZyxRj-Ks_-gjWARhNC4g7fXD0lrNyaB6ogV9h8jc_bQFFToxeLcKvP_fX36A55PL6bk6P7v4_g5eoAjLlBiXH8DW-vbOv0ektDaHyS7uAeKEDUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8IJsYXIiqyiFITH_Dhbm-7u93ukzHIBVQIiV7CW9NPuAR6G-74_512PziM8cG3TfqZ6UznN9vprwAfKXNOWoxUDQbLo8IwtDlauJFTGsEEK7JJvMd9ds5OZsW3y_Jy7amvmLSv1Xzsb27Hfn4dcyubW532eWLpxdkRunhaVSxtjEs34GmZo5L1gfrAt8vb2ycUN-GCFj2rT5WnjZfLMeIg9HUc0UagAy5Rz3l4TnnNN204ueiTFAPzKbb6Gwr9M5lyzTtNX8BWByvJl3b62_DE-pew3Rnukhx27NKfXsHnU7_ETY5o9JIkslk2IbHFYK32xiTBz7lu_-QR6Q1BVTFktbix4Q0O-xpm0-NfRyej7hWFkS55vUL5a21qyh3V6IutdqrOrEQYZ-KxGuUTR3GPw7BMO5pJVZWqjKQvtq6VYSrfgU2_8HYXCK0zlzFtudOq0OHetc2YscrIurTWyQQOe_mJpiXLEPGQu8pFkJ94kHoCuyhfIa9wKxOznzQQ3QUeG1yvBHai0IcuELMF2ngseBN7GbrOqKgFxRghgf1-YURngzgYC-is4GGwD0MxWk84EpHeLu5jnUmNuhRG_UcdTgMQy8IE4lo_TK3TnASqR1owVAjs3Y9LUKkji3enxHv_3fIAnl18nYofp-ff38JzlGAZc-Pyfdhc3d3bdwiWVup9NIvfz9kOVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insect+capa+neuropeptides+impact+desiccation+and+cold+tolerance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Terhzaz%2C+Selim&rft.au=Teets%2C+Nicholas+M&rft.au=Cabrero%2C+Pablo&rft.au=Henderson%2C+Louise&rft.date=2015-03-03&rft.eissn=1091-6490&rft.volume=112&rft.issue=9&rft.spage=2882&rft.epage=2887&rft_id=info:doi/10.1073%2Fpnas.1501518112&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F9.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F9.cover.gif