Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling

Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance o...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 38; pp. 14436 - 14441
Main Authors Srivastava, J, Barreiro, G, Groscurth, S, Gingras, A.R, Goult, B.T, Critchley, D.R, Kelly, M.J.S, Jacobson, M.P, Barber, D.L
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.09.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pHi) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin-actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pKa values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pHi decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin.
AbstractList Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pH...) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin-actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pK... values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pH... decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin. (ProQuest: ... denotes formulae/symbols omitted.)
Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pH(i)) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin-actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pK(a) values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pH(i) decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin.
Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro , with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pH i ) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin–actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pK a values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pH i decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin.
Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pHi) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin-actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pKa values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pHi decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin.
Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH $({\rm pH}_{{\rm i}})$ promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin-actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pKₐ values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing ${\rm pH}_{{\rm i}}$ decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin.
Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro , with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pH i ) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin–actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pK a values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pH i decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin. intracellular pH NHE1 migration
Author Groscurth, S
Barber, D.L
Critchley, D.R
Kelly, M.J.S
Barreiro, G
Srivastava, J
Gingras, A.R
Goult, B.T
Jacobson, M.P
Author_xml – sequence: 1
  fullname: Srivastava, J
– sequence: 2
  fullname: Barreiro, G
– sequence: 3
  fullname: Groscurth, S
– sequence: 4
  fullname: Gingras, A.R
– sequence: 5
  fullname: Goult, B.T
– sequence: 6
  fullname: Critchley, D.R
– sequence: 7
  fullname: Kelly, M.J.S
– sequence: 8
  fullname: Jacobson, M.P
– sequence: 9
  fullname: Barber, D.L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18780792$$D View this record in MEDLINE/PubMed
BookMark eNqFksFvFCEUxompsdvq2ZNKPJh4mPYBwwxcTEyj1qSJh9ozYRjYspmFERij_72su-mqFw-EhO_3vrz3Ps7QSYjBIvScwAWBnl3OQecLEMBJxwjwR2hFQJKmayWcoBUA7RvR0vYUneW8AQDJBTxBp0T0AnpJVyjclrSYsiQ94W0c7YR1GLFbgik-hvqY_Tp4540OxuLo8HzdjHa2YbSh4KInHxpd2YAHH0Yf1tjFVI-ppXq8t7m64GR_W1f1KXrs9JTts8N9ju4-fvh6dd3cfPn0-er9TWO4kKWhIKRxnFkqNLUdMMlBDJ2VRveDkUYQp43hw8DHVgjWkZF1HdVsILIl1AE7R-_2vvMybO1oarN1QjUnv9Xpp4raq7-V4O_VOn5XlDMqe1YN3hwMUvy22FzU1mdjp0kHG5esurpJCb2o4Ot_wE1cUt1cVhQI7Rlhu3Yu95BJMedk3UMnBNQuSLULUh2DrBUv_xzgyB-SqwA-ALvKox1XTCjStqyryNv_IMot01Tsj1LZF3t2k0tMDzDlbVf_T1_1V3vd6aj0Ovms7m7rgAwIbykTkv0C7G_Ivg
CitedBy_id crossref_primary_10_1083_jcb_201308034
crossref_primary_10_1002_prot_22931
crossref_primary_10_1007_s00424_009_0677_8
crossref_primary_10_3390_cancers12102760
crossref_primary_10_1021_jp507971v
crossref_primary_10_1111_j_1748_1716_2008_01910_x
crossref_primary_10_1152_physrev_00028_2018
crossref_primary_10_1016_j_bbamem_2018_02_026
crossref_primary_10_1146_annurev_biophys_050708_133744
crossref_primary_10_1152_ajpcell_00280_2010
crossref_primary_10_1002_glia_24240
crossref_primary_10_1152_ajpcell_00079_2024
crossref_primary_10_1016_j_bpr_2021_100006
crossref_primary_10_1083_jcb_201302131
crossref_primary_10_15252_embr_201744816
crossref_primary_10_3390_metabo8010019
crossref_primary_10_1002_1873_3468_13081
crossref_primary_10_1016_j_ydbio_2019_04_018
crossref_primary_10_4081_nr_2011_e5
crossref_primary_10_1016_j_yexcr_2012_11_006
crossref_primary_10_1016_j_sbi_2009_02_007
crossref_primary_10_1016_j_canlet_2013_01_042
crossref_primary_10_1016_j_chembiol_2012_04_016
crossref_primary_10_1007_s00018_015_1848_8
crossref_primary_10_1002_prot_22786
crossref_primary_10_1038_nrc3110
crossref_primary_10_1016_j_bpj_2022_02_003
crossref_primary_10_1016_j_bbamem_2014_11_012
crossref_primary_10_1021_acs_analchem_8b03193
crossref_primary_10_1093_cvr_cvw079
crossref_primary_10_1146_annurev_cellbio_100913_013357
crossref_primary_10_1242_jcs_195297
crossref_primary_10_3389_fphar_2020_00848
crossref_primary_10_1021_acsbiomaterials_7b00117
crossref_primary_10_1371_journal_pone_0302240
crossref_primary_10_1021_acs_jpclett_0c02885
crossref_primary_10_1210_me_2015_1299
crossref_primary_10_1007_s10555_014_9506_4
crossref_primary_10_1074_jbc_RA118_007004
crossref_primary_10_1098_rstb_2013_0102
crossref_primary_10_1042_BCJ20160747
crossref_primary_10_1152_ajpcell_00070_2014
crossref_primary_10_1021_jacs_1c02156
crossref_primary_10_1007_s12307_014_0158_2
crossref_primary_10_1016_j_bbadis_2018_04_019
crossref_primary_10_1021_acs_analchem_7b05015
crossref_primary_10_1002_cm_21047
crossref_primary_10_7554_eLife_72588
crossref_primary_10_1007_s10555_019_09791_8
crossref_primary_10_3389_fonc_2020_01401
crossref_primary_10_3390_ijms232112907
crossref_primary_10_1371_journal_pone_0076048
crossref_primary_10_1093_cvr_cvw164
crossref_primary_10_3390_cancers11071026
crossref_primary_10_1039_D3RA01006F
crossref_primary_10_3390_cells13020188
crossref_primary_10_1007_s10555_018_09777_y
crossref_primary_10_7554_eLife_29002
crossref_primary_10_1074_jbc_M109_019448
crossref_primary_10_1016_j_neulet_2023_137278
crossref_primary_10_1016_j_ejcb_2012_04_004
crossref_primary_10_1073_pnas_2319055121
crossref_primary_10_1111_boc_201900099
crossref_primary_10_1007_s00424_024_02918_z
crossref_primary_10_1016_j_cmet_2010_11_003
crossref_primary_10_1111_iwj_13248
crossref_primary_10_1016_j_semcancer_2016_12_001
crossref_primary_10_3389_fmolb_2019_00144
crossref_primary_10_1083_jcb_200804161
crossref_primary_10_1021_ct300008d
crossref_primary_10_1074_jbc_M116_736215
crossref_primary_10_1002_jcp_22612
crossref_primary_10_1074_jbc_M113_456327
crossref_primary_10_1038_s41580_022_00531_5
crossref_primary_10_1083_jcb_201606042
crossref_primary_10_1152_ajpcell_00430_2008
crossref_primary_10_1152_physrev_00018_2011
crossref_primary_10_1073_pnas_2109329119
crossref_primary_10_3390_cancers12092484
crossref_primary_10_1002_jcp_24293
crossref_primary_10_1021_acs_jpcb_0c07136
crossref_primary_10_1146_annurev_biophys_050511_102349
crossref_primary_10_1371_journal_pone_0019647
crossref_primary_10_37349_etat_2020_00005
crossref_primary_10_1242_jcs_095653
crossref_primary_10_1083_jcb_201808061
crossref_primary_10_1007_s00424_024_02907_2
crossref_primary_10_1083_jcb_201510012
crossref_primary_10_1091_mbc_e08_08_0842
crossref_primary_10_1016_j_canlet_2011_11_023
crossref_primary_10_1038_srep45230
crossref_primary_10_1083_jcb_201312046
crossref_primary_10_1002_jcc_27318
crossref_primary_10_1101_sqb_2016_81_030817
crossref_primary_10_4236_jbm_2021_98006
Cites_doi 10.1038/ncb1175
10.1016/j.ceb.2003.11.007
10.1016/S0006-3495(02)73940-4
10.1016/j.jmb.2005.11.001
10.1002/1097-4695(200008)44:2<114::AID-NEU3>3.0.CO;2-8
10.1038/nsmb1043
10.1074/jbc.M111996200
10.1083/jcb.200704169
10.1074/jbc.M310148200
10.1016/j.jmb.2004.08.069
10.1016/S0092-8674(00)81674-8
10.1083/jcb.200208050
10.1113/jphysiol.2005.088344
10.1038/ncb1094
10.1002/cm.20145
10.1016/S0079-6565(98)00025-9
10.1083/jcb.200412145
10.1002/jcc.20139
10.1242/jcs.03321
10.1038/sj.emboj.7601965
10.1002/cm.970270302
10.1021/bi700637a
10.1016/0167-4838(83)90276-5
10.1016/0014-4827(91)90407-L
10.1042/BST0320831
10.1038/nature01805
10.1021/bi0487239
10.1021/jm9703404
10.1126/science.1135085
10.1016/S1097-2765(00)00139-8
10.1074/jbc.M102679200
10.1046/j.1432-1327.1999.00177.x
10.1002/prot.20033
10.1242/jcs.109.11.2715
10.1016/0263-7855(96)00018-5
10.1006/abbi.1999.1204
10.1091/mbc.9.8.2287
10.1073/pnas.94.11.5679
10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Sep 23, 2008
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Sep 23, 2008
– notice: 2008 by The National Academy of Sciences of the USA
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0805163105
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE

MEDLINE - Academic

CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 14441
ExternalDocumentID 1562575331
10_1073_pnas_0805163105
18780792
105_38_14436
25464247
US201301542389
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Cancer Research UK
– fundername: NCRR NIH HHS
  grantid: C06 RR016490
– fundername: NCRR NIH HHS
  grantid: C06 RR16490
– fundername: NIGMS NIH HHS
  grantid: R01 GM058642
– fundername: NIGMS NIH HHS
  grantid: GM58642
– fundername: NIGMS NIH HHS
  grantid: U54 GM064346
– fundername: NIGMS NIH HHS
  grantid: GM064346
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c589t-2089cf53e28a2e6039508b6e9ca7bc9c81facc5bb5d488361d3662a3b19412f03
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:18:41 EDT 2024
Fri Oct 25 08:11:40 EDT 2024
Thu Oct 10 19:55:22 EDT 2024
Fri Aug 23 00:41:02 EDT 2024
Sat Nov 02 12:28:06 EDT 2024
Wed Nov 11 00:29:05 EST 2020
Thu May 30 08:51:26 EDT 2019
Fri Feb 02 07:05:45 EST 2024
Wed Dec 27 19:42:18 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c589t-2089cf53e28a2e6039508b6e9ca7bc9c81facc5bb5d488361d3662a3b19412f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.S., G.B., D.R.C., M.J.S.K., M.P.J., and D.L.B. designed research; J.S., G.B., S.G., A.R.G., B.T.G., and M.J.S.K. performed research; J.S. and M.P.J. contributed new reagents/analytic tools; J.S., G.B., S.G., A.R.G., D.R.C., M.J.S.K., M.P.J., and D.L.B. analyzed data; and J.S., M.J.S.K., M.P.J., and D.L.B. wrote the paper.
Edited by Thomas D. Pollard, Yale University, New Haven, CT, and approved July 10, 2008
OpenAccessLink https://europepmc.org/articles/pmc2532973?pdf=render
PMID 18780792
PQID 201273130
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_201273130
pnas_primary_105_38_14436
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2532973
fao_agris_US201301542389
pnas_primary_105_38_14436_fulltext
pubmed_primary_18780792
crossref_primary_10_1073_pnas_0805163105
jstor_primary_25464247
proquest_miscellaneous_69589078
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2008-09-23
PublicationDateYYYYMMDD 2008-09-23
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-23
  day: 23
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
DeLano W (e_1_3_3_38_2) 2002
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
Harguindey S (e_1_3_3_34_2) 2005; 1756
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_4_2
  doi: 10.1038/ncb1175
– ident: e_1_3_3_3_2
  doi: 10.1016/j.ceb.2003.11.007
– ident: e_1_3_3_19_2
  doi: 10.1016/S0006-3495(02)73940-4
– ident: e_1_3_3_33_2
  doi: 10.1016/j.jmb.2005.11.001
– ident: e_1_3_3_5_2
  doi: 10.1002/1097-4695(200008)44:2<114::AID-NEU3>3.0.CO;2-8
– ident: e_1_3_3_20_2
  doi: 10.1038/nsmb1043
– ident: e_1_3_3_28_2
  doi: 10.1074/jbc.M111996200
– ident: e_1_3_3_25_2
  doi: 10.1083/jcb.200704169
– ident: e_1_3_3_32_2
  doi: 10.1074/jbc.M310148200
– ident: e_1_3_3_10_2
  doi: 10.1016/j.jmb.2004.08.069
– ident: e_1_3_3_26_2
  doi: 10.1016/S0092-8674(00)81674-8
– ident: e_1_3_3_12_2
  doi: 10.1083/jcb.200208050
– ident: e_1_3_3_13_2
  doi: 10.1113/jphysiol.2005.088344
– ident: e_1_3_3_1_2
  doi: 10.1038/ncb1094
– volume: 1756
  start-page: 1
  year: 2005
  ident: e_1_3_3_34_2
  article-title: The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin—one single nature
  publication-title: Biochim Biophys Acta
  contributor:
    fullname: Harguindey S
– ident: e_1_3_3_22_2
  doi: 10.1002/cm.20145
– ident: e_1_3_3_40_2
  doi: 10.1016/S0079-6565(98)00025-9
– ident: e_1_3_3_14_2
  doi: 10.1083/jcb.200412145
– ident: e_1_3_3_35_2
  doi: 10.1002/jcc.20139
– ident: e_1_3_3_6_2
  doi: 10.1242/jcs.03321
– ident: e_1_3_3_18_2
  doi: 10.1038/sj.emboj.7601965
– ident: e_1_3_3_31_2
  doi: 10.1002/cm.970270302
– ident: e_1_3_3_21_2
  doi: 10.1021/bi700637a
– ident: e_1_3_3_23_2
  doi: 10.1016/0167-4838(83)90276-5
– ident: e_1_3_3_29_2
  doi: 10.1016/0014-4827(91)90407-L
– ident: e_1_3_3_2_2
  doi: 10.1042/BST0320831
– ident: e_1_3_3_27_2
  doi: 10.1038/nature01805
– ident: e_1_3_3_17_2
  doi: 10.1021/bi0487239
– ident: e_1_3_3_41_2
  doi: 10.1021/jm9703404
– ident: e_1_3_3_7_2
  doi: 10.1126/science.1135085
– ident: e_1_3_3_24_2
  doi: 10.1016/S1097-2765(00)00139-8
– ident: e_1_3_3_30_2
  doi: 10.1074/jbc.M102679200
– ident: e_1_3_3_9_2
  doi: 10.1046/j.1432-1327.1999.00177.x
– ident: e_1_3_3_37_2
  doi: 10.1002/prot.20033
– ident: e_1_3_3_15_2
  doi: 10.1242/jcs.109.11.2715
– ident: e_1_3_3_39_2
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_3_3_8_2
  doi: 10.1006/abbi.1999.1204
– volume-title: The PyMOL Molecular Graphics System
  year: 2002
  ident: e_1_3_3_38_2
  contributor:
    fullname: DeLano W
– ident: e_1_3_3_11_2
  doi: 10.1091/mbc.9.8.2287
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.94.11.5679
– ident: e_1_3_3_36_2
  doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
SSID ssj0009580
Score 2.3319461
Snippet Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14436
SubjectTerms Actins
Actins - chemistry
Actins - metabolism
Amino acids
Animals
Binding sites
Biological Sciences
Cell adhesion & migration
Cell Line
Cell motility
Chemical equilibrium
Computer Simulation
Focal adhesions
Focal Adhesions - metabolism
Hydrogen-Ion Concentration
Mice
Microfilaments
Models, Molecular
Molecular structure
Mutation
NMR
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Physiological regulation
Protein Binding
Protein Structure, Tertiary
Proteins
Renovations
Sensors
Talin - chemistry
Talin - genetics
Talin - metabolism
Title Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling
URI https://www.jstor.org/stable/25464247
http://www.pnas.org/content/105/38/14436.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18780792
https://www.proquest.com/docview/201273130
https://search.proquest.com/docview/69589078
https://pubmed.ncbi.nlm.nih.gov/PMC2532973
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11e-KCKFAaWoqFOJRDdhM7_jqiimoBFSGVlXqzbCemK7XZiF3u_If-Q34JY2-yyyK4cMjJX1Fmxn6On98AvA5WUCtckRde-rwqrc-d5TqvvedB1kqoxCa8_CSms-rDNb_eAz7chUmkfe_m4_b2btzObxK3srvzk4EnNvl8eU45iymXJiMYoYMOW_SN0q5a3zuhOP1WtBr0fLB-19rlGCESRxCCuCIKhiqpCqnpzqo0CnYx0BOj5im2-hv-_JNG-du6dPEIHvaAkrxdv_gB7DXtYzjoQ3ZJznpd6TdPoLtKWrFRZ4OkBDjEtjWJC9v6fyCJXI7IHIqOQBaBdNN8yJG7IlEpsf354z5ehGiJm6fbMAQhLz5oZ2Lrmyb-eSPfmtQ5lj6F2cW7L-fTvE-4kHuu9AojRmkfOGuosrQRBYspYp1otLfSee1VGSza0DleY9wzUdZMoKmZK3VV0lCwQ9hvF21zBCTI0hcWJ1KtfSVxAeTCY_VQeslqoVUGZ8MHN91aV8Ok83DJTPzgZmumDI7QIMZ-xVnPzK5oPGtF4IdYQ2dwmKy06SKq-6PNZQZZ6mXbNTdM4T6nYiKDV_8sM6Gn3GRwPBjc9FG9NDSe0zMcPoOXm1IMx3jGYttm8X1pBLqfRtiVwbO1c2yH6V0tA7njNpsKUeh7twT9Pwl-9_7-_L9bHsODgedC2Qnso7s1LxBMrdwpbiPefzxNIfQLVAodhA
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215QAXoEBpKFALcSiH7CZ2_HVEFdUC3QqpLerNsp2ErqDZFbu9cOI_8A_5JYydZJet4ACHnCZ2FPl5_BI_vwF4WVtBrXBZmnnp0yK3PnWW67T0nteyVEJFNeH4RIzOi3cX_GIDeH8WJor2vZsMmi9Xg2ZyGbWVsys_7HViww_jQ8pZKLk03IRbOF-zov9IX3rtqvbkCcUEXNCid_TBFrPGzgdIkjjSEGQWwTJUSZVJTdfWpc3aTnuBYnA9xVZ_YqA3hZS_rUxH9-Bj_06tIOXz4HrhBv7bDbvHf37p-3C346rkdRveho2qeQDbXTaYk4POsvrVQ5idRhvaYOFBYm0dYpuShDWz_dVIgkwkiJICxsi0JrNR2pffXZBgwtj8_P4jnLFoiJvEgzYE2TReCCFiy8sq_NQjX6vYOUYfwfnRm7PDUdrVckg9V3qBk1FpX3NWUWVpJTIWqs86UWlvpfPaq7y2CA_neIkphYm8ZAJRxFyui5zWGduBrWbaVLtAapn7zGKO1toXEtdWLjzeXudeslJolcBBP5Jm1lp2mLjVLpkJI2lW45_ALo60sZ8woZrzUxq2cZFTIo3RCezE4V92EQoHIJhkAknsZdU1N0zhJ1TBRAIv_hozdafmSWCvR5LpEsbc0CABYPj4BPaXUZzpYfvGNtX0em4E4lojo0vgcYu61WM6DCcg1_C4vCF4iK9HEGXRS7xD1ZP_brkPt0dn42Nz_Pbk_R7c6eU0lD2FLYRe9Qw528I9jzP0F_OqPoA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2iRUJsgAKloUAtxKIsMpPYiR9LVBgNj1aVSqWKjWU7MR1BMyNmumHFP_CHfAnXTjLTqWDTRVZ-KfLx9Ul8fC7AK284NdxmaeaES4vcuNSaUqWVc6UXleQyqgkPj_j4tPhwVp5dSfUVRfvOTgbN94tBMzmP2srZhRv2OrHh8eEBLVlIuTScVX64AbdxzWa8_1Bf-u3K9vYJxSBc0KJ39QmtGjMfIFEqkYoguwi2oVLITCi6tjdteDPtRYrB-RRb_YuFXhdTXtmdRvfhS_9erSjl2-ByYQfu5zXLxxu9-AO413FW8qatsgW36uYhbHVRYU72O-vq149gdhLtaIOVB4k5dohpKhL2zvaXIwlykSBOClgjU09m47RPw7sgwYyx-fPrd7hr0RA7iRduCLJqfBBKxFTndfi5R37UsXMsfQyno3efD8Zpl9MhdaVUC1yUUjlfsppKQ2uesZCF1vJaOSOsU07m3iBMrC0rDC2M5xXjiCZmc1Xk1GdsGzabaVPvAPEid5nBWK2UKwTusSV3WN3nTrCKK5nAfj-betZad-h45C6YDrOpVxhIYAdnW5uvGFj16QkNx7nILZHOqAS2IwSWXYQEAggokUASe1l1XWom8VOqYDyBl_8t075T9SSw26NJd4FjrmmQAjAcPoG9ZSmu-HCMY5p6ejnXHLGtkNkl8KRF3mqYDscJiDVMLisEL_H1EkRa9BTvkPX0xi334M7x25H-9P7o4y7c7VU1lD2DTURe_Ryp28K-iIv0L-uaQQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+model+and+functional+significance+of+pH-dependent+talin%E2%80%93actin+binding+for+focal+adhesion+remodeling&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=J.+Srivastava&rft.au=G.+Barreiro&rft.au=S.+Groscurth&rft.au=A.+R.+Gingras&rft.date=2008-09-23&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=38&rft.spage=14436&rft_id=info:doi/10.1073%2Fpnas.0805163105&rft_id=info%3Apmid%2F18780792&rft.externalDBID=n%2Fa&rft.externalDocID=105_38_14436
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F38.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F38.cover.gif