Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling
Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance o...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 38; pp. 14436 - 14441 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.09.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pHi) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin-actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pKa values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pHi decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin. |
---|---|
AbstractList | Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pH...) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin-actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pK... values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pH... decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin. (ProQuest: ... denotes formulae/symbols omitted.) Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pH(i)) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin-actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pK(a) values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pH(i) decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin. Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro , with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pH i ) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin–actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pK a values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pH i decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin. Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pHi) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin-actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pKa values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pHi decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin. Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro, with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH $({\rm pH}_{{\rm i}})$ promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin-actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pKₐ values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing ${\rm pH}_{{\rm i}}$ decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin. Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell migration. Although F-actin binding by talin is known to be pH-sensitive in vitro , with lower affinity at higher pH, the functional significance of this pH dependence is unknown. Because increased intracellular pH (pH i ) promotes cell migration and is a hallmark of metastatic carcinomas, we asked whether it increases FA remodeling through lower-affinity talin–actin binding. Talin contains several actin binding sites, but we found that only the COOH-terminal USH-I/LWEQ module showed pH-dependent actin binding, with lower affinity and decreased maximal binding at higher pH. Molecular dynamics simulations and NMR of this module revealed a structural mechanism for pH-dependent actin binding. A cluster of titratable amino acids with upshifted pK a values, including His-2418, was identified at one end of the five-helix bundle distal from the actin binding site. Protonation of His-2418 induces changes in the conformation and dynamics of the remote actin binding site. Structural analyses of a mutant talin-H2418F at pH 6.0 and 8.0 suggested changes different from the WT protein, and we confirmed that actin binding by talin-H2418F was relatively pH-insensitive. In motile fibroblasts, increasing pH i decreased FA lifetime and increased the migratory rate. However, expression of talin-H2418F increased lifetime 2-fold and decreased the migratory rate. These data identify a molecular mechanism for pH-sensitive actin binding by talin and suggest that FA turnover is pH-dependent and in part mediated by pH-dependent affinity of talin for binding actin. intracellular pH NHE1 migration |
Author | Groscurth, S Barber, D.L Critchley, D.R Kelly, M.J.S Barreiro, G Srivastava, J Gingras, A.R Goult, B.T Jacobson, M.P |
Author_xml | – sequence: 1 fullname: Srivastava, J – sequence: 2 fullname: Barreiro, G – sequence: 3 fullname: Groscurth, S – sequence: 4 fullname: Gingras, A.R – sequence: 5 fullname: Goult, B.T – sequence: 6 fullname: Critchley, D.R – sequence: 7 fullname: Kelly, M.J.S – sequence: 8 fullname: Jacobson, M.P – sequence: 9 fullname: Barber, D.L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18780792$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFvFCEUxompsdvq2ZNKPJh4mPYBwwxcTEyj1qSJh9ozYRjYspmFERij_72su-mqFw-EhO_3vrz3Ps7QSYjBIvScwAWBnl3OQecLEMBJxwjwR2hFQJKmayWcoBUA7RvR0vYUneW8AQDJBTxBp0T0AnpJVyjclrSYsiQ94W0c7YR1GLFbgik-hvqY_Tp4540OxuLo8HzdjHa2YbSh4KInHxpd2YAHH0Yf1tjFVI-ppXq8t7m64GR_W1f1KXrs9JTts8N9ju4-fvh6dd3cfPn0-er9TWO4kKWhIKRxnFkqNLUdMMlBDJ2VRveDkUYQp43hw8DHVgjWkZF1HdVsILIl1AE7R-_2vvMybO1oarN1QjUnv9Xpp4raq7-V4O_VOn5XlDMqe1YN3hwMUvy22FzU1mdjp0kHG5esurpJCb2o4Ot_wE1cUt1cVhQI7Rlhu3Yu95BJMedk3UMnBNQuSLULUh2DrBUv_xzgyB-SqwA-ALvKox1XTCjStqyryNv_IMot01Tsj1LZF3t2k0tMDzDlbVf_T1_1V3vd6aj0Ovms7m7rgAwIbykTkv0C7G_Ivg |
CitedBy_id | crossref_primary_10_1083_jcb_201308034 crossref_primary_10_1002_prot_22931 crossref_primary_10_1007_s00424_009_0677_8 crossref_primary_10_3390_cancers12102760 crossref_primary_10_1021_jp507971v crossref_primary_10_1111_j_1748_1716_2008_01910_x crossref_primary_10_1152_physrev_00028_2018 crossref_primary_10_1016_j_bbamem_2018_02_026 crossref_primary_10_1146_annurev_biophys_050708_133744 crossref_primary_10_1152_ajpcell_00280_2010 crossref_primary_10_1002_glia_24240 crossref_primary_10_1152_ajpcell_00079_2024 crossref_primary_10_1016_j_bpr_2021_100006 crossref_primary_10_1083_jcb_201302131 crossref_primary_10_15252_embr_201744816 crossref_primary_10_3390_metabo8010019 crossref_primary_10_1002_1873_3468_13081 crossref_primary_10_1016_j_ydbio_2019_04_018 crossref_primary_10_4081_nr_2011_e5 crossref_primary_10_1016_j_yexcr_2012_11_006 crossref_primary_10_1016_j_sbi_2009_02_007 crossref_primary_10_1016_j_canlet_2013_01_042 crossref_primary_10_1016_j_chembiol_2012_04_016 crossref_primary_10_1007_s00018_015_1848_8 crossref_primary_10_1002_prot_22786 crossref_primary_10_1038_nrc3110 crossref_primary_10_1016_j_bpj_2022_02_003 crossref_primary_10_1016_j_bbamem_2014_11_012 crossref_primary_10_1021_acs_analchem_8b03193 crossref_primary_10_1093_cvr_cvw079 crossref_primary_10_1146_annurev_cellbio_100913_013357 crossref_primary_10_1242_jcs_195297 crossref_primary_10_3389_fphar_2020_00848 crossref_primary_10_1021_acsbiomaterials_7b00117 crossref_primary_10_1371_journal_pone_0302240 crossref_primary_10_1021_acs_jpclett_0c02885 crossref_primary_10_1210_me_2015_1299 crossref_primary_10_1007_s10555_014_9506_4 crossref_primary_10_1074_jbc_RA118_007004 crossref_primary_10_1098_rstb_2013_0102 crossref_primary_10_1042_BCJ20160747 crossref_primary_10_1152_ajpcell_00070_2014 crossref_primary_10_1021_jacs_1c02156 crossref_primary_10_1007_s12307_014_0158_2 crossref_primary_10_1016_j_bbadis_2018_04_019 crossref_primary_10_1021_acs_analchem_7b05015 crossref_primary_10_1002_cm_21047 crossref_primary_10_7554_eLife_72588 crossref_primary_10_1007_s10555_019_09791_8 crossref_primary_10_3389_fonc_2020_01401 crossref_primary_10_3390_ijms232112907 crossref_primary_10_1371_journal_pone_0076048 crossref_primary_10_1093_cvr_cvw164 crossref_primary_10_3390_cancers11071026 crossref_primary_10_1039_D3RA01006F crossref_primary_10_3390_cells13020188 crossref_primary_10_1007_s10555_018_09777_y crossref_primary_10_7554_eLife_29002 crossref_primary_10_1074_jbc_M109_019448 crossref_primary_10_1016_j_neulet_2023_137278 crossref_primary_10_1016_j_ejcb_2012_04_004 crossref_primary_10_1073_pnas_2319055121 crossref_primary_10_1111_boc_201900099 crossref_primary_10_1007_s00424_024_02918_z crossref_primary_10_1016_j_cmet_2010_11_003 crossref_primary_10_1111_iwj_13248 crossref_primary_10_1016_j_semcancer_2016_12_001 crossref_primary_10_3389_fmolb_2019_00144 crossref_primary_10_1083_jcb_200804161 crossref_primary_10_1021_ct300008d crossref_primary_10_1074_jbc_M116_736215 crossref_primary_10_1002_jcp_22612 crossref_primary_10_1074_jbc_M113_456327 crossref_primary_10_1038_s41580_022_00531_5 crossref_primary_10_1083_jcb_201606042 crossref_primary_10_1152_ajpcell_00430_2008 crossref_primary_10_1152_physrev_00018_2011 crossref_primary_10_1073_pnas_2109329119 crossref_primary_10_3390_cancers12092484 crossref_primary_10_1002_jcp_24293 crossref_primary_10_1021_acs_jpcb_0c07136 crossref_primary_10_1146_annurev_biophys_050511_102349 crossref_primary_10_1371_journal_pone_0019647 crossref_primary_10_37349_etat_2020_00005 crossref_primary_10_1242_jcs_095653 crossref_primary_10_1083_jcb_201808061 crossref_primary_10_1007_s00424_024_02907_2 crossref_primary_10_1083_jcb_201510012 crossref_primary_10_1091_mbc_e08_08_0842 crossref_primary_10_1016_j_canlet_2011_11_023 crossref_primary_10_1038_srep45230 crossref_primary_10_1083_jcb_201312046 crossref_primary_10_1002_jcc_27318 crossref_primary_10_1101_sqb_2016_81_030817 crossref_primary_10_4236_jbm_2021_98006 |
Cites_doi | 10.1038/ncb1175 10.1016/j.ceb.2003.11.007 10.1016/S0006-3495(02)73940-4 10.1016/j.jmb.2005.11.001 10.1002/1097-4695(200008)44:2<114::AID-NEU3>3.0.CO;2-8 10.1038/nsmb1043 10.1074/jbc.M111996200 10.1083/jcb.200704169 10.1074/jbc.M310148200 10.1016/j.jmb.2004.08.069 10.1016/S0092-8674(00)81674-8 10.1083/jcb.200208050 10.1113/jphysiol.2005.088344 10.1038/ncb1094 10.1002/cm.20145 10.1016/S0079-6565(98)00025-9 10.1083/jcb.200412145 10.1002/jcc.20139 10.1242/jcs.03321 10.1038/sj.emboj.7601965 10.1002/cm.970270302 10.1021/bi700637a 10.1016/0167-4838(83)90276-5 10.1016/0014-4827(91)90407-L 10.1042/BST0320831 10.1038/nature01805 10.1021/bi0487239 10.1021/jm9703404 10.1126/science.1135085 10.1016/S1097-2765(00)00139-8 10.1074/jbc.M102679200 10.1046/j.1432-1327.1999.00177.x 10.1002/prot.20033 10.1242/jcs.109.11.2715 10.1016/0263-7855(96)00018-5 10.1006/abbi.1999.1204 10.1091/mbc.9.8.2287 10.1073/pnas.94.11.5679 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Sep 23, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Sep 23, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0805163105 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 14441 |
ExternalDocumentID | 1562575331 10_1073_pnas_0805163105 18780792 105_38_14436 25464247 US201301542389 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Cancer Research UK – fundername: NCRR NIH HHS grantid: C06 RR016490 – fundername: NCRR NIH HHS grantid: C06 RR16490 – fundername: NIGMS NIH HHS grantid: R01 GM058642 – fundername: NIGMS NIH HHS grantid: GM58642 – fundername: NIGMS NIH HHS grantid: U54 GM064346 – fundername: NIGMS NIH HHS grantid: GM064346 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c589t-2089cf53e28a2e6039508b6e9ca7bc9c81facc5bb5d488361d3662a3b19412f03 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:18:41 EDT 2024 Fri Oct 25 08:11:40 EDT 2024 Thu Oct 10 19:55:22 EDT 2024 Fri Aug 23 00:41:02 EDT 2024 Sat Nov 02 12:28:06 EDT 2024 Wed Nov 11 00:29:05 EST 2020 Thu May 30 08:51:26 EDT 2019 Fri Feb 02 07:05:45 EST 2024 Wed Dec 27 19:42:18 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c589t-2089cf53e28a2e6039508b6e9ca7bc9c81facc5bb5d488361d3662a3b19412f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: J.S., G.B., D.R.C., M.J.S.K., M.P.J., and D.L.B. designed research; J.S., G.B., S.G., A.R.G., B.T.G., and M.J.S.K. performed research; J.S. and M.P.J. contributed new reagents/analytic tools; J.S., G.B., S.G., A.R.G., D.R.C., M.J.S.K., M.P.J., and D.L.B. analyzed data; and J.S., M.J.S.K., M.P.J., and D.L.B. wrote the paper. Edited by Thomas D. Pollard, Yale University, New Haven, CT, and approved July 10, 2008 |
OpenAccessLink | https://europepmc.org/articles/pmc2532973?pdf=render |
PMID | 18780792 |
PQID | 201273130 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_201273130 pnas_primary_105_38_14436 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2532973 fao_agris_US201301542389 pnas_primary_105_38_14436_fulltext pubmed_primary_18780792 crossref_primary_10_1073_pnas_0805163105 jstor_primary_25464247 proquest_miscellaneous_69589078 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2008-09-23 |
PublicationDateYYYYMMDD | 2008-09-23 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-23 day: 23 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 DeLano W (e_1_3_3_38_2) 2002 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 Harguindey S (e_1_3_3_34_2) 2005; 1756 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_4_2 doi: 10.1038/ncb1175 – ident: e_1_3_3_3_2 doi: 10.1016/j.ceb.2003.11.007 – ident: e_1_3_3_19_2 doi: 10.1016/S0006-3495(02)73940-4 – ident: e_1_3_3_33_2 doi: 10.1016/j.jmb.2005.11.001 – ident: e_1_3_3_5_2 doi: 10.1002/1097-4695(200008)44:2<114::AID-NEU3>3.0.CO;2-8 – ident: e_1_3_3_20_2 doi: 10.1038/nsmb1043 – ident: e_1_3_3_28_2 doi: 10.1074/jbc.M111996200 – ident: e_1_3_3_25_2 doi: 10.1083/jcb.200704169 – ident: e_1_3_3_32_2 doi: 10.1074/jbc.M310148200 – ident: e_1_3_3_10_2 doi: 10.1016/j.jmb.2004.08.069 – ident: e_1_3_3_26_2 doi: 10.1016/S0092-8674(00)81674-8 – ident: e_1_3_3_12_2 doi: 10.1083/jcb.200208050 – ident: e_1_3_3_13_2 doi: 10.1113/jphysiol.2005.088344 – ident: e_1_3_3_1_2 doi: 10.1038/ncb1094 – volume: 1756 start-page: 1 year: 2005 ident: e_1_3_3_34_2 article-title: The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin—one single nature publication-title: Biochim Biophys Acta contributor: fullname: Harguindey S – ident: e_1_3_3_22_2 doi: 10.1002/cm.20145 – ident: e_1_3_3_40_2 doi: 10.1016/S0079-6565(98)00025-9 – ident: e_1_3_3_14_2 doi: 10.1083/jcb.200412145 – ident: e_1_3_3_35_2 doi: 10.1002/jcc.20139 – ident: e_1_3_3_6_2 doi: 10.1242/jcs.03321 – ident: e_1_3_3_18_2 doi: 10.1038/sj.emboj.7601965 – ident: e_1_3_3_31_2 doi: 10.1002/cm.970270302 – ident: e_1_3_3_21_2 doi: 10.1021/bi700637a – ident: e_1_3_3_23_2 doi: 10.1016/0167-4838(83)90276-5 – ident: e_1_3_3_29_2 doi: 10.1016/0014-4827(91)90407-L – ident: e_1_3_3_2_2 doi: 10.1042/BST0320831 – ident: e_1_3_3_27_2 doi: 10.1038/nature01805 – ident: e_1_3_3_17_2 doi: 10.1021/bi0487239 – ident: e_1_3_3_41_2 doi: 10.1021/jm9703404 – ident: e_1_3_3_7_2 doi: 10.1126/science.1135085 – ident: e_1_3_3_24_2 doi: 10.1016/S1097-2765(00)00139-8 – ident: e_1_3_3_30_2 doi: 10.1074/jbc.M102679200 – ident: e_1_3_3_9_2 doi: 10.1046/j.1432-1327.1999.00177.x – ident: e_1_3_3_37_2 doi: 10.1002/prot.20033 – ident: e_1_3_3_15_2 doi: 10.1242/jcs.109.11.2715 – ident: e_1_3_3_39_2 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_3_3_8_2 doi: 10.1006/abbi.1999.1204 – volume-title: The PyMOL Molecular Graphics System year: 2002 ident: e_1_3_3_38_2 contributor: fullname: DeLano W – ident: e_1_3_3_11_2 doi: 10.1091/mbc.9.8.2287 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.94.11.5679 – ident: e_1_3_3_36_2 doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F |
SSID | ssj0009580 |
Score | 2.3319461 |
Snippet | Actin filament binding by the focal adhesion (FA)-associated protein talin stabilizes cell-substrate adhesions and is thought to be rate-limiting in cell... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14436 |
SubjectTerms | Actins Actins - chemistry Actins - metabolism Amino acids Animals Binding sites Biological Sciences Cell adhesion & migration Cell Line Cell motility Chemical equilibrium Computer Simulation Focal adhesions Focal Adhesions - metabolism Hydrogen-Ion Concentration Mice Microfilaments Models, Molecular Molecular structure Mutation NMR Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular Physiological regulation Protein Binding Protein Structure, Tertiary Proteins Renovations Sensors Talin - chemistry Talin - genetics Talin - metabolism |
Title | Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling |
URI | https://www.jstor.org/stable/25464247 http://www.pnas.org/content/105/38/14436.abstract https://www.ncbi.nlm.nih.gov/pubmed/18780792 https://www.proquest.com/docview/201273130 https://search.proquest.com/docview/69589078 https://pubmed.ncbi.nlm.nih.gov/PMC2532973 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11e-KCKFAaWoqFOJRDdhM7_jqiimoBFSGVlXqzbCemK7XZiF3u_If-Q34JY2-yyyK4cMjJX1Fmxn6On98AvA5WUCtckRde-rwqrc-d5TqvvedB1kqoxCa8_CSms-rDNb_eAz7chUmkfe_m4_b2btzObxK3srvzk4EnNvl8eU45iymXJiMYoYMOW_SN0q5a3zuhOP1WtBr0fLB-19rlGCESRxCCuCIKhiqpCqnpzqo0CnYx0BOj5im2-hv-_JNG-du6dPEIHvaAkrxdv_gB7DXtYzjoQ3ZJznpd6TdPoLtKWrFRZ4OkBDjEtjWJC9v6fyCJXI7IHIqOQBaBdNN8yJG7IlEpsf354z5ehGiJm6fbMAQhLz5oZ2Lrmyb-eSPfmtQ5lj6F2cW7L-fTvE-4kHuu9AojRmkfOGuosrQRBYspYp1otLfSee1VGSza0DleY9wzUdZMoKmZK3VV0lCwQ9hvF21zBCTI0hcWJ1KtfSVxAeTCY_VQeslqoVUGZ8MHN91aV8Ok83DJTPzgZmumDI7QIMZ-xVnPzK5oPGtF4IdYQ2dwmKy06SKq-6PNZQZZ6mXbNTdM4T6nYiKDV_8sM6Gn3GRwPBjc9FG9NDSe0zMcPoOXm1IMx3jGYttm8X1pBLqfRtiVwbO1c2yH6V0tA7njNpsKUeh7twT9Pwl-9_7-_L9bHsODgedC2Qnso7s1LxBMrdwpbiPefzxNIfQLVAodhA |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215QAXoEBpKFALcSiH7CZ2_HVEFdUC3QqpLerNsp2ErqDZFbu9cOI_8A_5JYydZJet4ACHnCZ2FPl5_BI_vwF4WVtBrXBZmnnp0yK3PnWW67T0nteyVEJFNeH4RIzOi3cX_GIDeH8WJor2vZsMmi9Xg2ZyGbWVsys_7HViww_jQ8pZKLk03IRbOF-zov9IX3rtqvbkCcUEXNCid_TBFrPGzgdIkjjSEGQWwTJUSZVJTdfWpc3aTnuBYnA9xVZ_YqA3hZS_rUxH9-Bj_06tIOXz4HrhBv7bDbvHf37p-3C346rkdRveho2qeQDbXTaYk4POsvrVQ5idRhvaYOFBYm0dYpuShDWz_dVIgkwkiJICxsi0JrNR2pffXZBgwtj8_P4jnLFoiJvEgzYE2TReCCFiy8sq_NQjX6vYOUYfwfnRm7PDUdrVckg9V3qBk1FpX3NWUWVpJTIWqs86UWlvpfPaq7y2CA_neIkphYm8ZAJRxFyui5zWGduBrWbaVLtAapn7zGKO1toXEtdWLjzeXudeslJolcBBP5Jm1lp2mLjVLpkJI2lW45_ALo60sZ8woZrzUxq2cZFTIo3RCezE4V92EQoHIJhkAknsZdU1N0zhJ1TBRAIv_hozdafmSWCvR5LpEsbc0CABYPj4BPaXUZzpYfvGNtX0em4E4lojo0vgcYu61WM6DCcg1_C4vCF4iK9HEGXRS7xD1ZP_brkPt0dn42Nz_Pbk_R7c6eU0lD2FLYRe9Qw528I9jzP0F_OqPoA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2iRUJsgAKloUAtxKIsMpPYiR9LVBgNj1aVSqWKjWU7MR1BMyNmumHFP_CHfAnXTjLTqWDTRVZ-KfLx9Ul8fC7AK284NdxmaeaES4vcuNSaUqWVc6UXleQyqgkPj_j4tPhwVp5dSfUVRfvOTgbN94tBMzmP2srZhRv2OrHh8eEBLVlIuTScVX64AbdxzWa8_1Bf-u3K9vYJxSBc0KJ39QmtGjMfIFEqkYoguwi2oVLITCi6tjdteDPtRYrB-RRb_YuFXhdTXtmdRvfhS_9erSjl2-ByYQfu5zXLxxu9-AO413FW8qatsgW36uYhbHVRYU72O-vq149gdhLtaIOVB4k5dohpKhL2zvaXIwlykSBOClgjU09m47RPw7sgwYyx-fPrd7hr0RA7iRduCLJqfBBKxFTndfi5R37UsXMsfQyno3efD8Zpl9MhdaVUC1yUUjlfsppKQ2uesZCF1vJaOSOsU07m3iBMrC0rDC2M5xXjiCZmc1Xk1GdsGzabaVPvAPEid5nBWK2UKwTusSV3WN3nTrCKK5nAfj-betZad-h45C6YDrOpVxhIYAdnW5uvGFj16QkNx7nILZHOqAS2IwSWXYQEAggokUASe1l1XWom8VOqYDyBl_8t075T9SSw26NJd4FjrmmQAjAcPoG9ZSmu-HCMY5p6ejnXHLGtkNkl8KRF3mqYDscJiDVMLisEL_H1EkRa9BTvkPX0xi334M7x25H-9P7o4y7c7VU1lD2DTURe_Ryp28K-iIv0L-uaQQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+model+and+functional+significance+of+pH-dependent+talin%E2%80%93actin+binding+for+focal+adhesion+remodeling&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=J.+Srivastava&rft.au=G.+Barreiro&rft.au=S.+Groscurth&rft.au=A.+R.+Gingras&rft.date=2008-09-23&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=38&rft.spage=14436&rft_id=info:doi/10.1073%2Fpnas.0805163105&rft_id=info%3Apmid%2F18780792&rft.externalDBID=n%2Fa&rft.externalDocID=105_38_14436 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F38.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F38.cover.gif |