Distinct immune cell dynamics correlate with the immunogenicity and reactogenicity of SARS-CoV-2 mRNA vaccine

Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics t...

Full description

Saved in:
Bibliographic Details
Published inCell reports. Medicine Vol. 3; no. 5; p. 100631
Main Authors Takano, Tomohiro, Morikawa, Miwa, Adachi, Yu, Kabasawa, Kiyomi, Sax, Nicolas, Moriyama, Saya, Sun, Lin, Isogawa, Masanori, Nishiyama, Ayae, Onodera, Taishi, Terahara, Kazutaka, Tonouchi, Keisuke, Nishimura, Masashi, Tomii, Kentaro, Yamashita, Kazuo, Matsumura, Takayuki, Shinkai, Masaharu, Takahashi, Yoshimasa
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.05.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c− Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity. [Display omitted] •Immune profiling of mRNA vaccinees reveals dramatic immunological changes•The dynamics of NK/monocyte subsets correlate with neutralizing-antibody response•The dynamics of dendritic cell subsets correlate with severity of adverse events•IFN-γ-inducible chemokines, but not the receptors, are related to these correlates Takano et al. identify cellular correlates for neutralizing-antibody titers and systemic adverse events following SARS-CoV-2 mRNA vaccination. The involvement of IFN-γ-mediated pathways is proposed. The findings give insights into balancing the immunogenicity and reactogenicity of mRNA vaccine.
AbstractList Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16 NK cells, CD56 NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c Axl Siglec-6 [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity.
Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16 + NK cells, CD56 high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c − Axl + Siglec-6 + [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity. • Immune profiling of mRNA vaccinees reveals dramatic immunological changes • The dynamics of NK/monocyte subsets correlate with neutralizing-antibody response • The dynamics of dendritic cell subsets correlate with severity of adverse events • IFN-γ-inducible chemokines, but not the receptors, are related to these correlates Takano et al. identify cellular correlates for neutralizing-antibody titers and systemic adverse events following SARS-CoV-2 mRNA vaccination. The involvement of IFN-γ-mediated pathways is proposed. The findings give insights into balancing the immunogenicity and reactogenicity of mRNA vaccine.
SummaryTwo doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16 + NK cells, CD56 high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c − Axl + Siglec-6 + [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity.
Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c- Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity.Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c- Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity.
Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c− Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity. [Display omitted] •Immune profiling of mRNA vaccinees reveals dramatic immunological changes•The dynamics of NK/monocyte subsets correlate with neutralizing-antibody response•The dynamics of dendritic cell subsets correlate with severity of adverse events•IFN-γ-inducible chemokines, but not the receptors, are related to these correlates Takano et al. identify cellular correlates for neutralizing-antibody titers and systemic adverse events following SARS-CoV-2 mRNA vaccination. The involvement of IFN-γ-mediated pathways is proposed. The findings give insights into balancing the immunogenicity and reactogenicity of mRNA vaccine.
ArticleNumber 100631
Author Morikawa, Miwa
Shinkai, Masaharu
Onodera, Taishi
Terahara, Kazutaka
Adachi, Yu
Tomii, Kentaro
Sax, Nicolas
Moriyama, Saya
Tonouchi, Keisuke
Takahashi, Yoshimasa
Isogawa, Masanori
Yamashita, Kazuo
Kabasawa, Kiyomi
Nishimura, Masashi
Matsumura, Takayuki
Sun, Lin
Nishiyama, Ayae
Takano, Tomohiro
Author_xml – sequence: 1
  givenname: Tomohiro
  surname: Takano
  fullname: Takano, Tomohiro
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 2
  givenname: Miwa
  surname: Morikawa
  fullname: Morikawa, Miwa
  organization: Tokyo Shinagawa Hospital, Tokyo 140-8522, Japan
– sequence: 3
  givenname: Yu
  surname: Adachi
  fullname: Adachi, Yu
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 4
  givenname: Kiyomi
  surname: Kabasawa
  fullname: Kabasawa, Kiyomi
  organization: Tokyo Shinagawa Hospital, Tokyo 140-8522, Japan
– sequence: 5
  givenname: Nicolas
  surname: Sax
  fullname: Sax, Nicolas
  organization: KOTAI Biotechnologies, Inc., Osaka 565-0871, Japan
– sequence: 6
  givenname: Saya
  surname: Moriyama
  fullname: Moriyama, Saya
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 7
  givenname: Lin
  surname: Sun
  fullname: Sun, Lin
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 8
  givenname: Masanori
  orcidid: 0000-0001-8730-4303
  surname: Isogawa
  fullname: Isogawa, Masanori
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 9
  givenname: Ayae
  surname: Nishiyama
  fullname: Nishiyama, Ayae
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 10
  givenname: Taishi
  surname: Onodera
  fullname: Onodera, Taishi
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 11
  givenname: Kazutaka
  surname: Terahara
  fullname: Terahara, Kazutaka
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 12
  givenname: Keisuke
  surname: Tonouchi
  fullname: Tonouchi, Keisuke
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 13
  givenname: Masashi
  orcidid: 0000-0002-0654-7176
  surname: Nishimura
  fullname: Nishimura, Masashi
  organization: Tokyo Shinagawa Hospital, Tokyo 140-8522, Japan
– sequence: 14
  givenname: Kentaro
  orcidid: 0000-0002-4567-4768
  surname: Tomii
  fullname: Tomii, Kentaro
  organization: Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
– sequence: 15
  givenname: Kazuo
  surname: Yamashita
  fullname: Yamashita, Kazuo
  organization: KOTAI Biotechnologies, Inc., Osaka 565-0871, Japan
– sequence: 16
  givenname: Takayuki
  orcidid: 0000-0003-1760-3484
  surname: Matsumura
  fullname: Matsumura, Takayuki
  email: matt@niid.go.jp
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 17
  givenname: Masaharu
  surname: Shinkai
  fullname: Shinkai, Masaharu
  email: shinkai050169@gmail.com
  organization: Tokyo Shinagawa Hospital, Tokyo 140-8522, Japan
– sequence: 18
  givenname: Yoshimasa
  orcidid: 0000-0001-6342-4087
  surname: Takahashi
  fullname: Takahashi, Yoshimasa
  email: ytakahas@niid.go.jp
  organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35545084$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1DAUjVARfdAfYIG8ZJPBjzgPhCqNhvKQKpA6FVvLsW86HhK72M7A_D2OUkqpRFnZuj7nXN9z7nF2YJ2FLHtB8IJgUr7eLn4qPywopjQVcMnIk-yIlmWZs6ohB_fuh9lpCFuMMeWE1Aw_yw4Z5wXHdXGUDe9MiMaqiMwwjBaQgr5Hem_lYFRAynkPvYyAfpi4QXEDM85dgzXKxD2SViMPUsU_Jdeh9fJyna_c15yi4fLzEu2kUsbC8-xpJ_sAp7fnSXb1_vxq9TG_-PLh02p5kSteNzEnHeEdr1irG66qQrVtS1TVEk21ZozVRDUcmqJIwxR11-qWVS1Lo5WkBqYrdpKdzbI3YzuAVmCjl7248WaQfi-cNOLvF2s24trtRINp0udJ4NWtgHffRwhRDCZMzkgLbgwieVtUdVEQlqAv7_e6a_Lb4gSgM0B5F4KH7g5CsJiiFFsxRSmmKMUcZSLVD0jJWRmNm_5r-sepb2cqJIN3BrwIyoBVoI0HFYV25nH62QO66k0KVvbfYA9h60ZvU3SCiEAFFutpzaYtoxRjwkuaBN78W-B_3X8B5wfitw
CitedBy_id crossref_primary_10_3390_vaccines10111815
crossref_primary_10_1038_s41467_023_43420_x
crossref_primary_10_1038_s41525_023_00387_4
crossref_primary_10_3389_fimmu_2023_1285203
crossref_primary_10_3390_vaccines11061047
crossref_primary_10_1093_intimm_dxac064
crossref_primary_10_3389_fimmu_2023_1292568
crossref_primary_10_3389_fimmu_2023_1277831
crossref_primary_10_1038_s41541_023_00702_1
crossref_primary_10_1038_s41467_023_37128_1
crossref_primary_10_3390_vaccines12040388
crossref_primary_10_3390_vaccines12080873
crossref_primary_10_1002_eji_202451236
crossref_primary_10_3390_v15061276
crossref_primary_10_20965_jdr_2023_p0021
crossref_primary_10_1038_s41598_024_73004_8
crossref_primary_10_1038_s12276_023_00999_x
crossref_primary_10_3389_fimmu_2023_1225025
crossref_primary_10_1016_j_xcrm_2023_100971
crossref_primary_10_1007_s12185_023_03550_w
crossref_primary_10_1002_eji_202451303
crossref_primary_10_1136_bmjonc_2023_000054
crossref_primary_10_3390_cancers15143625
Cites_doi 10.1016/j.celrep.2019.01.104
10.1038/ni1254
10.1126/science.8097338
10.1056/NEJMoa2034577
10.1038/ni1138
10.1016/j.it.2015.07.004
10.1016/j.immuni.2021.08.001
10.3389/fimmu.2015.00255
10.1016/j.cell.2017.11.036
10.1016/j.immuni.2019.08.008
10.1128/JVI.02499-09
10.1093/intimm/dxl046
10.1038/s41467-019-11821-6
10.1016/j.tips.2021.06.004
10.1016/j.celrep.2021.109504
10.1002/eji.200425318
10.1126/science.aag3009
10.1038/366076a0
10.1016/j.immuni.2021.06.015
10.1016/j.ymthe.2017.08.006
10.3390/vaccines9060652
10.1038/s41586-021-03653-6
10.1078/0171-2985-00219
10.1126/sciimmunol.abi6950
10.1126/science.abm0829
10.1126/science.abf4063
10.1084/jem.177.4.1199
10.1038/s41586-021-03791-x
10.1016/j.vaccine.2021.07.067
10.1038/ni.1688
10.1016/j.celrep.2019.11.042
10.1186/s12985-021-01490-7
10.1126/science.aah4573
10.1016/j.celrep.2018.02.044
10.1016/j.immuni.2015.11.012
10.1093/ofid/ofab575
10.3390/vaccines9070742
10.1016/j.immuni.2017.11.001
10.1016/S1473-3099(21)00224-3
10.1016/j.clim.2020.108630
10.3390/vaccines9010061
10.1016/j.vaccine.2022.02.052
10.1016/j.cell.2021.05.039
10.1002/eji.1830250739
10.1016/j.immuni.2020.06.002
10.1016/j.lanepe.2021.100208
10.3390/vaccines8010004
10.1016/j.jim.2007.09.017
10.1016/j.immuni.2020.07.003
ContentType Journal Article
Copyright 2022 The Author(s)
The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.xcrm.2022.100631
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-3791
EndPage 100631
ExternalDocumentID PMC9023335
35545084
10_1016_j_xcrm_2022_100631
S2666379122001562
1_s2_0_S2666379122001562
Genre Journal Article
GroupedDBID .1-
.FO
0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
Z5R
AAHOK
NCXOZ
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c589t-1f15f573bd95c74cbbb1c7b1d2dd33381c95e94483048fbdb37b3183618e3d73
ISSN 2666-3791
IngestDate Thu Aug 21 18:16:13 EDT 2025
Fri Jul 11 09:05:26 EDT 2025
Mon Jul 21 06:04:41 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Tue Jul 01 01:25:23 EDT 2025
Sun Apr 06 06:54:13 EDT 2025
Tue Feb 25 19:56:00 EST 2025
Tue Aug 26 19:32:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords SARS-CoV-2
immune correlates
innate immunity
neutralizing antibodies
adverse events
mRNA vaccine
cell dynamics
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c589t-1f15f573bd95c74cbbb1c7b1d2dd33381c95e94483048fbdb37b3183618e3d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
ORCID 0000-0002-4567-4768
0000-0003-1760-3484
0000-0001-8730-4303
0000-0001-6342-4087
0000-0002-0654-7176
OpenAccessLink http://dx.doi.org/10.1016/j.xcrm.2022.100631
PMID 35545084
PQID 2664784413
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9023335
proquest_miscellaneous_2664784413
pubmed_primary_35545084
crossref_primary_10_1016_j_xcrm_2022_100631
crossref_citationtrail_10_1016_j_xcrm_2022_100631
elsevier_sciencedirect_doi_10_1016_j_xcrm_2022_100631
elsevier_clinicalkeyesjournals_1_s2_0_S2666379122001562
elsevier_clinicalkey_doi_10_1016_j_xcrm_2022_100631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-17
PublicationDateYYYYMMDD 2022-05-17
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports. Medicine
PublicationTitleAlternate Cell Rep Med
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Yamamoto, Fukunaga, Tanaka, Takeuchi, Inoue, Kimura, Maeda, Ueda, Mizoue, Ujiie (bib24) 2022; 40
Moriyama, Adachi, Sato, Tonouchi, Sun, Fukushi, Yamada, Kinoshita, Nojima, Kanno (bib7) 2021; 54
Goel, Painter, Apostolidis, Mathew, Meng, Rosenfeld, Lundgreen, Reynaldi, Khoury, Pattekar (bib15) 2021; 374
(bib47) 2020
Tiller, Meffre, Yurasov, Tsuiji, Nussenzweig, Wardemann (bib49) 2008; 329
Farsakoglu, Palomino-Segura, Latino, Zanaga, Chatziandreou, Pizzagalli, Rinaldi, Bolis, Sallusto, Stein, Gonzalez (bib32) 2019; 26
Naaber, Tserel, Kangro, Sepp, Jurjenson, Adamson, Haljasmagi, Rumm, Maruste, Karner (bib12) 2021; 10
See, Dutertre, Chen, Gunther, McGovern, Irac, Gunawan, Beyer, Handler, Duan (bib40) 2017; 356
Arunachalam, Scott, Hagan, Li, Feng, Wimmers, Grigoryan, Trisal, Edara, Lai (bib6) 2021; 596
Painter, Mathew, Goel, Apostolidis, Pattekar, Kuthuru, Baxter, Herati, Oldridge, Gouma (bib16) 2021; 54
Cytlak, Resteu, Pagan, Green, Milne, Maisuria, McDonald, Hulme, Filby, Carpenter (bib36) 2020; 53
Querec, Akondy, Lee, Cao, Nakaya, Teuwen, Pirani, Gernert, Deng, Marzolf (bib4) 2009; 10
Nakaya, Hagan, Duraisingham, Lee, Kwissa, Rouphael, Frasca, Gersten, Mehta, Gaujoux (bib2) 2015; 43
Coggins, Laing, Olsen, Goguet, Moser, Jackson-Thompson, Samuels, Pollett, Tribble, Davies (bib10) 2021; 9
McLellan, Starling, Williams, Hock, Hart (bib26) 1995; 25
Rydyznski, Waggoner (bib34) 2015; 36
Chen, Vistica, Takase, Ham, Fariss, Wawrousek, Chan, DeMartino, Farber, Gery (bib29) 2004; 34
Tani, Kimura, Tan, Yoshida, Ozawa, Kishi, Fukushi, Saijo, Sano, Suzuki (bib50) 2021; 18
Gorski, Waller, Bjornton-Severson, Hanten, Riter, Kieper, Gorden, Miller, Vasilakos, Tomai, Alkan (bib28) 2006; 18
Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart, Perez, Perez Marc, Moreira, Zerbini (bib1) 2020; 383
Martin-Fontecha, Thomsen, Brett, Gerard, Lipp, Lanzavecchia, Sallusto (bib33) 2004; 5
Cox, Cevik, Feldman, Canaday, Lakes, Waggoner (bib22) 2021; 42
Morales-Nunez, Munoz-Valle, Meza-Lopez, Wang, Machado Sulbaran, Torres-Hernandez, Bedolla-Barajas, De la, Balcazar-Felix, Hernandez-Bello (bib46) 2021; 9
Harrington, Hatton, Mangan, Turner, Murphy, Murphy, Weaver (bib44) 2005; 6
Revu, Wu, Henkel, Rittenhouse, Menk, Delgoffe, Poholek, McGeachy (bib45) 2018; 22
Dutertre, Becht, Irac, Khalilnezhad, Narang, Khalilnezhad, Ng, van den Hoogen, Leong, Lee (bib37) 2019; 51
Menni, Klaser, May, Polidori, Capdevila, Louca, Sudre, Nguyen, Drew, Merino (bib13) 2021; 21
Villani, Satija, Reynolds, Sarkizova, Shekhar, Fletcher, Griesbeck, Butler, Zheng, Lazo (bib41) 2017; 356
Tani, Shiokawa, Kaname, Kambara, Mori, Abe, Moriishi, Matsuura (bib51) 2010; 84
Manetti, Parronchi, Giudizi, Piccinni, Maggi, Trinchieri, Romagnani (bib42) 1993; 177
Bourdely, Anselmi, Vaivode, Ramos, Missolo-Koussou, Hidalgo, Tosselo, Nunez, Richer, Vincent-Salomon (bib35) 2020; 53
Dan, Mateus, Kato, Hastie, Yu, Faliti, Grifoni, Ramirez, Haupt, Frazier (bib18) 2021; 371
Bergamaschi, Terpos, Rosati, Angel, Bear, Stellas, Karaliota, Apostolakou, Bagratuni, Patseas (bib23) 2021; 36
Cagigi, Lore (bib30) 2021; 9
Liang, Lindgren, Lin, Thompson, Ols, Rohss, John, Hassett, Yuzhakov, Bahl (bib31) 2017; 25
Goel, Apostolidis, Painter, Mathew, Pattekar, Kuthuru, Gouma, Hicks, Meng, Rosenfeld (bib14) 2021; 6
Sahin, Muik, Vogler, Derhovanessian, Kranz, Vormehr, Quandt, Bidmon, Ulges, Baum (bib17) 2021; 595
Gaya, Barral, Burbage, Aggarwal, Montaner, Warren Navia, Aid, Tsui, Maldonado, Nair (bib20) 2018; 172
Modenese, Paduano, Bargellini, Bellucci, Marchetti, Bruno, Grazioli, Vivoli, Gobba (bib8) 2021; 9
Wimmers, Donato, Kuo, Ashuach, Gupta, Li, Dvorak, Foecke, Chang, Hagan (bib3) 2021; 184
Michos, Tatsi, Filippatos, Dellis, Koukou, Efthymiou, Kastrinelli, Mantzou, Syriopoulou (bib9) 2021; 39
Clausen, Vergeiner, Enk, Petzer, Gastl, Gunsilius (bib27) 2003; 207
Alcantara-Hernandez, Leylek, Wagar, Engleman, Keler, Marinkovich, Davis, Nolan, Idoyaga (bib38) 2017; 47
Natrajan, Rouphael, Lai, Kazmin, Jensen, Weiss, Ibegbu, Sztein, Hooper, Hill (bib5) 2019; 8
Azuma, Ito, Yagita, Okumura, Phillips, Lanier, Somoza (bib25) 1993; 366
Leylek, Alcantara-Hernandez, Lanzar, Ludtke, Perez, Reizis, Idoyaga (bib39) 2019; 29
Adachi, Tonouchi, Nithichanon, Kuraoka, Watanabe, Shinnakasu, Asanuma, Ainai, Ohmi, Yamamoto (bib48) 2019; 10
Slauenwhite, Johnston (bib19) 2015; 6
Hsieh, Macatonia, Tripp, Wolf, O'Garra, Murphy (bib43) 1993; 260
Maeda, Amano, Uemura, Tsuchiya, Matsushima, Noda, Shimizu, Fujiwara, Takamatsu, Ichikawa (bib11) 2021
Zingaropoli, Perri, Pasculli, Cogliati Dezza, Nijhawan, Savelloni, La Torre, D'Agostino, Mengoni, Lichtner (bib21) 2021; 222
Gaya (10.1016/j.xcrm.2022.100631_bib20) 2018; 172
Goel (10.1016/j.xcrm.2022.100631_bib14) 2021; 6
Painter (10.1016/j.xcrm.2022.100631_bib16) 2021; 54
Morales-Nunez (10.1016/j.xcrm.2022.100631_bib46) 2021; 9
Polack (10.1016/j.xcrm.2022.100631_bib1) 2020; 383
Leylek (10.1016/j.xcrm.2022.100631_bib39) 2019; 29
Tani (10.1016/j.xcrm.2022.100631_bib50) 2021; 18
Gorski (10.1016/j.xcrm.2022.100631_bib28) 2006; 18
Arunachalam (10.1016/j.xcrm.2022.100631_bib6) 2021; 596
Manetti (10.1016/j.xcrm.2022.100631_bib42) 1993; 177
Clausen (10.1016/j.xcrm.2022.100631_bib27) 2003; 207
Harrington (10.1016/j.xcrm.2022.100631_bib44) 2005; 6
Revu (10.1016/j.xcrm.2022.100631_bib45) 2018; 22
Goel (10.1016/j.xcrm.2022.100631_bib15) 2021; 374
Dutertre (10.1016/j.xcrm.2022.100631_bib37) 2019; 51
Modenese (10.1016/j.xcrm.2022.100631_bib8) 2021; 9
Cox (10.1016/j.xcrm.2022.100631_bib22) 2021; 42
Azuma (10.1016/j.xcrm.2022.100631_bib25) 1993; 366
Martin-Fontecha (10.1016/j.xcrm.2022.100631_bib33) 2004; 5
Dan (10.1016/j.xcrm.2022.100631_bib18) 2021; 371
Adachi (10.1016/j.xcrm.2022.100631_bib48) 2019; 10
Maeda (10.1016/j.xcrm.2022.100631_bib11) 2021
Michos (10.1016/j.xcrm.2022.100631_bib9) 2021; 39
Sahin (10.1016/j.xcrm.2022.100631_bib17) 2021; 595
McLellan (10.1016/j.xcrm.2022.100631_bib26) 1995; 25
Villani (10.1016/j.xcrm.2022.100631_bib41) 2017; 356
Liang (10.1016/j.xcrm.2022.100631_bib31) 2017; 25
Querec (10.1016/j.xcrm.2022.100631_bib4) 2009; 10
Rydyznski (10.1016/j.xcrm.2022.100631_bib34) 2015; 36
Naaber (10.1016/j.xcrm.2022.100631_bib12) 2021; 10
Hsieh (10.1016/j.xcrm.2022.100631_bib43) 1993; 260
Bergamaschi (10.1016/j.xcrm.2022.100631_bib23) 2021; 36
Nakaya (10.1016/j.xcrm.2022.100631_bib2) 2015; 43
Menni (10.1016/j.xcrm.2022.100631_bib13) 2021; 21
Coggins (10.1016/j.xcrm.2022.100631_bib10) 2021; 9
Tiller (10.1016/j.xcrm.2022.100631_bib49) 2008; 329
Bourdely (10.1016/j.xcrm.2022.100631_bib35) 2020; 53
Zingaropoli (10.1016/j.xcrm.2022.100631_bib21) 2021; 222
Moriyama (10.1016/j.xcrm.2022.100631_bib7) 2021; 54
Alcantara-Hernandez (10.1016/j.xcrm.2022.100631_bib38) 2017; 47
Wimmers (10.1016/j.xcrm.2022.100631_bib3) 2021; 184
Yamamoto (10.1016/j.xcrm.2022.100631_bib24) 2022; 40
Cagigi (10.1016/j.xcrm.2022.100631_bib30) 2021; 9
Cytlak (10.1016/j.xcrm.2022.100631_bib36) 2020; 53
Natrajan (10.1016/j.xcrm.2022.100631_bib5) 2019; 8
Slauenwhite (10.1016/j.xcrm.2022.100631_bib19) 2015; 6
See (10.1016/j.xcrm.2022.100631_bib40) 2017; 356
Farsakoglu (10.1016/j.xcrm.2022.100631_bib32) 2019; 26
Chen (10.1016/j.xcrm.2022.100631_bib29) 2004; 34
Tani (10.1016/j.xcrm.2022.100631_bib51) 2010; 84
References_xml – volume: 8
  start-page: 4
  year: 2019
  ident: bib5
  article-title: Systems vaccinology for a live attenuated tularemia vaccine reveals unique transcriptional signatures that predict humoral and cellular immune responses
  publication-title: Vaccines (Basel)
– volume: 54
  start-page: 2133
  year: 2021
  end-page: 2142.e3
  ident: bib16
  article-title: Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination
  publication-title: Immunity
– volume: 25
  start-page: 2064
  year: 1995
  end-page: 2068
  ident: bib26
  article-title: Activation of human peripheral blood dendritic cells induces the CD86 co-stimulatory molecule
  publication-title: Eur. J. Immunol.
– volume: 172
  start-page: 517
  year: 2018
  end-page: 533.e20
  ident: bib20
  article-title: Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells
  publication-title: Cell
– volume: 184
  start-page: 3915
  year: 2021
  end-page: 3935.e21
  ident: bib3
  article-title: The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination
  publication-title: Cell
– volume: 222
  start-page: 108630
  year: 2021
  ident: bib21
  article-title: Major reduction of NKT cells in patients with severe COVID-19 pneumonia
  publication-title: Clin. Immunol.
– volume: 42
  start-page: 789
  year: 2021
  end-page: 801
  ident: bib22
  article-title: Targeting natural killer cells to enhance vaccine responses
  publication-title: Trends Pharmacol. Sci.
– volume: 54
  start-page: 1841
  year: 2021
  end-page: 1852.e4
  ident: bib7
  article-title: Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants
  publication-title: Immunity
– volume: 596
  start-page: 410
  year: 2021
  end-page: 416
  ident: bib6
  article-title: Systems vaccinology of the BNT162b2 mRNA vaccine in humans
  publication-title: Nature
– volume: 595
  start-page: 572
  year: 2021
  end-page: 577
  ident: bib17
  article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans
  publication-title: Nature
– year: 2020
  ident: bib47
  article-title: Evaluation of sensitivity and specificity of four commercially available SARS-CoV-2 antibody immunoassays
– volume: 26
  start-page: 2307
  year: 2019
  end-page: 2315.e5
  ident: bib32
  article-title: Influenza vaccination induces NK-Cell-Mediated type-II IFN response that regulates humoral immunity in an IL-6-dependent manner
  publication-title: Cell Rep.
– volume: 84
  start-page: 2798
  year: 2010
  end-page: 2807
  ident: bib51
  article-title: Involvement of ceramide in the propagation of Japanese encephalitis virus
  publication-title: J. Virol.
– volume: 9
  start-page: 742
  year: 2021
  ident: bib46
  article-title: Neutralizing antibodies titers and side effects in response to BNT162b2 vaccine in healthcare workers with and without prior SARS-CoV-2 Infection
  publication-title: Vaccines (Basel)
– volume: 9
  start-page: ofab575
  year: 2021
  ident: bib10
  article-title: Adverse effects and antibody titers in response to the BNT162b2 mRNA COVID-19 vaccine in a prospective study of healthcare workers
  publication-title: Open Forum Infect. Dis.
– volume: 383
  start-page: 2603
  year: 2020
  end-page: 2615
  ident: bib1
  article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine
  publication-title: N. Engl. J. Med.
– volume: 371
  start-page: eabf4063
  year: 2021
  ident: bib18
  article-title: Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection
  publication-title: Science
– volume: 18
  start-page: 1115
  year: 2006
  end-page: 1126
  ident: bib28
  article-title: Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists
  publication-title: Int. Immunol.
– volume: 25
  start-page: 2635
  year: 2017
  end-page: 2647
  ident: bib31
  article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques
  publication-title: Mol. Ther.
– volume: 356
  start-page: eaah4573
  year: 2017
  ident: bib41
  article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
  publication-title: Science
– volume: 43
  start-page: 1186
  year: 2015
  end-page: 1198
  ident: bib2
  article-title: Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures
  publication-title: Immunity
– volume: 36
  start-page: 536
  year: 2015
  end-page: 546
  ident: bib34
  article-title: Boosting vaccine efficacy the natural (killer) way
  publication-title: Trends Immunol.
– volume: 10
  start-page: 116
  year: 2009
  end-page: 125
  ident: bib4
  article-title: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans
  publication-title: Nat. Immunol.
– volume: 39
  start-page: 5963
  year: 2021
  end-page: 5967
  ident: bib9
  article-title: Association of total and neutralizing SARS-CoV-2 spike -receptor binding domain antibodies with epidemiological and clinical characteristics after immunization with the 1(st) and 2(nd) doses of the BNT162b2 vaccine
  publication-title: Vaccine
– volume: 29
  start-page: 3736
  year: 2019
  end-page: 3750.e8
  ident: bib39
  article-title: Integrated cross-species analysis identifies a conserved transitional dendritic cell population
  publication-title: Cell Rep.
– volume: 366
  start-page: 76
  year: 1993
  end-page: 79
  ident: bib25
  article-title: B70 antigen is a second ligand for CTLA-4 and CD28
  publication-title: Nature
– volume: 36
  start-page: 109504
  year: 2021
  ident: bib23
  article-title: Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients
  publication-title: Cell Rep.
– volume: 207
  start-page: 85
  year: 2003
  end-page: 93
  ident: bib27
  article-title: Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells
  publication-title: Immunobiology
– volume: 374
  start-page: abm0829
  year: 2021
  ident: bib15
  article-title: mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern
  publication-title: Science
– volume: 10
  start-page: 100208
  year: 2021
  ident: bib12
  article-title: Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study
  publication-title: Lancet Reg. Health Eur.
– volume: 356
  start-page: eaag3009
  year: 2017
  ident: bib40
  article-title: Mapping the human DC lineage through the integration of high-dimensional techniques
  publication-title: Science
– year: 2021
  ident: bib11
  article-title: Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals
  publication-title: medRxiv
– volume: 10
  start-page: 3883
  year: 2019
  ident: bib48
  article-title: Exposure of an occluded hemagglutinin epitope drives selection of a class of cross-protective influenza antibodies
  publication-title: Nat. Commun.
– volume: 18
  start-page: 16
  year: 2021
  ident: bib50
  article-title: Evaluation of SARS-CoV-2 neutralizing antibodies using a vesicular stomatitis virus possessing SARS-CoV-2 spike protein
  publication-title: Virol. J.
– volume: 53
  start-page: 353
  year: 2020
  end-page: 370.e8
  ident: bib36
  article-title: Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans
  publication-title: Immunity
– volume: 51
  start-page: 573
  year: 2019
  end-page: 589.e8
  ident: bib37
  article-title: Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells
  publication-title: Immunity
– volume: 9
  start-page: 652
  year: 2021
  ident: bib8
  article-title: Neutralizing anti-SARS-CoV-2 antibody titer and reported adverse effects, in a sample of Italian nursing home personnel after two doses of the BNT162b2 vaccine administered four weeks apart
  publication-title: Vaccines (Basel).
– volume: 21
  start-page: 939
  year: 2021
  end-page: 949
  ident: bib13
  article-title: Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study
  publication-title: Lancet Infect. Dis.
– volume: 6
  start-page: eabi6950
  year: 2021
  ident: bib14
  article-title: Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals following mRNA vaccination
  publication-title: Sci. Immunol.
– volume: 34
  start-page: 2885
  year: 2004
  end-page: 2894
  ident: bib29
  article-title: A unique pattern of up- and down-regulation of chemokine receptor CXCR3 on inflammation-inducing Th1 cells
  publication-title: Eur. J. Immunol.
– volume: 260
  start-page: 547
  year: 1993
  end-page: 549
  ident: bib43
  article-title: Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages
  publication-title: Science
– volume: 53
  start-page: 335
  year: 2020
  end-page: 352.e8
  ident: bib35
  article-title: Transcriptional and functional analysis of CD1c(+) human dendritic cells identifies a CD163(+) subset priming CD8(+)CD103(+) T cells
  publication-title: Immunity
– volume: 47
  start-page: 1037
  year: 2017
  end-page: 1050.e6
  ident: bib38
  article-title: High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization
  publication-title: Immunity
– volume: 5
  start-page: 1260
  year: 2004
  end-page: 1265
  ident: bib33
  article-title: Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming
  publication-title: Nat. Immunol.
– volume: 6
  start-page: 255
  year: 2015
  ident: bib19
  article-title: Regulation of NKT cell localization in homeostasis and infection
  publication-title: Front. Immunol.
– volume: 177
  start-page: 1199
  year: 1993
  end-page: 1204
  ident: bib42
  article-title: Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells
  publication-title: J. Exp. Med.
– volume: 40
  start-page: 1924
  year: 2022
  end-page: 1927
  ident: bib24
  article-title: Association between reactogenicity and SARS-CoV-2 antibodies after the second dose of the BNT162b2 COVID-19 vaccine
  publication-title: Vaccine
– volume: 22
  start-page: 2642
  year: 2018
  end-page: 2653
  ident: bib45
  article-title: IL-23 and IL-1β drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation
  publication-title: Cell Rep.
– volume: 9
  start-page: 61
  year: 2021
  ident: bib30
  article-title: Immune responses induced by mRNA vaccination in mice, monkeys and humans
  publication-title: Vaccines (Basel).
– volume: 329
  start-page: 112
  year: 2008
  end-page: 124
  ident: bib49
  article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning
  publication-title: J. Immunol. Methods
– volume: 6
  start-page: 1123
  year: 2005
  end-page: 1132
  ident: bib44
  article-title: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages
  publication-title: Nat. Immunol.
– volume: 26
  start-page: 2307
  year: 2019
  ident: 10.1016/j.xcrm.2022.100631_bib32
  article-title: Influenza vaccination induces NK-Cell-Mediated type-II IFN response that regulates humoral immunity in an IL-6-dependent manner
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.01.104
– volume: 6
  start-page: 1123
  year: 2005
  ident: 10.1016/j.xcrm.2022.100631_bib44
  article-title: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1254
– volume: 260
  start-page: 547
  year: 1993
  ident: 10.1016/j.xcrm.2022.100631_bib43
  article-title: Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages
  publication-title: Science
  doi: 10.1126/science.8097338
– volume: 383
  start-page: 2603
  year: 2020
  ident: 10.1016/j.xcrm.2022.100631_bib1
  article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 5
  start-page: 1260
  year: 2004
  ident: 10.1016/j.xcrm.2022.100631_bib33
  article-title: Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1138
– volume: 36
  start-page: 536
  year: 2015
  ident: 10.1016/j.xcrm.2022.100631_bib34
  article-title: Boosting vaccine efficacy the natural (killer) way
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.07.004
– volume: 54
  start-page: 2133
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib16
  article-title: Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.08.001
– volume: 6
  start-page: 255
  year: 2015
  ident: 10.1016/j.xcrm.2022.100631_bib19
  article-title: Regulation of NKT cell localization in homeostasis and infection
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2015.00255
– volume: 172
  start-page: 517
  year: 2018
  ident: 10.1016/j.xcrm.2022.100631_bib20
  article-title: Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells
  publication-title: Cell
  doi: 10.1016/j.cell.2017.11.036
– volume: 51
  start-page: 573
  year: 2019
  ident: 10.1016/j.xcrm.2022.100631_bib37
  article-title: Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.08.008
– volume: 84
  start-page: 2798
  year: 2010
  ident: 10.1016/j.xcrm.2022.100631_bib51
  article-title: Involvement of ceramide in the propagation of Japanese encephalitis virus
  publication-title: J. Virol.
  doi: 10.1128/JVI.02499-09
– volume: 18
  start-page: 1115
  year: 2006
  ident: 10.1016/j.xcrm.2022.100631_bib28
  article-title: Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxl046
– volume: 10
  start-page: 3883
  year: 2019
  ident: 10.1016/j.xcrm.2022.100631_bib48
  article-title: Exposure of an occluded hemagglutinin epitope drives selection of a class of cross-protective influenza antibodies
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11821-6
– volume: 42
  start-page: 789
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib22
  article-title: Targeting natural killer cells to enhance vaccine responses
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2021.06.004
– volume: 36
  start-page: 109504
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib23
  article-title: Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109504
– volume: 34
  start-page: 2885
  year: 2004
  ident: 10.1016/j.xcrm.2022.100631_bib29
  article-title: A unique pattern of up- and down-regulation of chemokine receptor CXCR3 on inflammation-inducing Th1 cells
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200425318
– volume: 356
  start-page: eaag3009
  year: 2017
  ident: 10.1016/j.xcrm.2022.100631_bib40
  article-title: Mapping the human DC lineage through the integration of high-dimensional techniques
  publication-title: Science
  doi: 10.1126/science.aag3009
– volume: 366
  start-page: 76
  year: 1993
  ident: 10.1016/j.xcrm.2022.100631_bib25
  article-title: B70 antigen is a second ligand for CTLA-4 and CD28
  publication-title: Nature
  doi: 10.1038/366076a0
– volume: 54
  start-page: 1841
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib7
  article-title: Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.06.015
– volume: 25
  start-page: 2635
  year: 2017
  ident: 10.1016/j.xcrm.2022.100631_bib31
  article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.08.006
– volume: 9
  start-page: 652
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib8
  article-title: Neutralizing anti-SARS-CoV-2 antibody titer and reported adverse effects, in a sample of Italian nursing home personnel after two doses of the BNT162b2 vaccine administered four weeks apart
  publication-title: Vaccines (Basel).
  doi: 10.3390/vaccines9060652
– volume: 595
  start-page: 572
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib17
  article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans
  publication-title: Nature
  doi: 10.1038/s41586-021-03653-6
– volume: 207
  start-page: 85
  year: 2003
  ident: 10.1016/j.xcrm.2022.100631_bib27
  article-title: Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells
  publication-title: Immunobiology
  doi: 10.1078/0171-2985-00219
– volume: 6
  start-page: eabi6950
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib14
  article-title: Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals following mRNA vaccination
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abi6950
– volume: 374
  start-page: abm0829
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib15
  article-title: mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern
  publication-title: Science
  doi: 10.1126/science.abm0829
– volume: 371
  start-page: eabf4063
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib18
  article-title: Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection
  publication-title: Science
  doi: 10.1126/science.abf4063
– volume: 177
  start-page: 1199
  year: 1993
  ident: 10.1016/j.xcrm.2022.100631_bib42
  article-title: Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.177.4.1199
– volume: 596
  start-page: 410
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib6
  article-title: Systems vaccinology of the BNT162b2 mRNA vaccine in humans
  publication-title: Nature
  doi: 10.1038/s41586-021-03791-x
– volume: 39
  start-page: 5963
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib9
  article-title: Association of total and neutralizing SARS-CoV-2 spike -receptor binding domain antibodies with epidemiological and clinical characteristics after immunization with the 1(st) and 2(nd) doses of the BNT162b2 vaccine
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.07.067
– volume: 10
  start-page: 116
  year: 2009
  ident: 10.1016/j.xcrm.2022.100631_bib4
  article-title: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1688
– volume: 29
  start-page: 3736
  year: 2019
  ident: 10.1016/j.xcrm.2022.100631_bib39
  article-title: Integrated cross-species analysis identifies a conserved transitional dendritic cell population
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.11.042
– volume: 18
  start-page: 16
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib50
  article-title: Evaluation of SARS-CoV-2 neutralizing antibodies using a vesicular stomatitis virus possessing SARS-CoV-2 spike protein
  publication-title: Virol. J.
  doi: 10.1186/s12985-021-01490-7
– volume: 356
  start-page: eaah4573
  year: 2017
  ident: 10.1016/j.xcrm.2022.100631_bib41
  article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
  publication-title: Science
  doi: 10.1126/science.aah4573
– volume: 22
  start-page: 2642
  year: 2018
  ident: 10.1016/j.xcrm.2022.100631_bib45
  article-title: IL-23 and IL-1β drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.02.044
– volume: 43
  start-page: 1186
  year: 2015
  ident: 10.1016/j.xcrm.2022.100631_bib2
  article-title: Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.11.012
– volume: 9
  start-page: ofab575
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib10
  article-title: Adverse effects and antibody titers in response to the BNT162b2 mRNA COVID-19 vaccine in a prospective study of healthcare workers
  publication-title: Open Forum Infect. Dis.
  doi: 10.1093/ofid/ofab575
– volume: 9
  start-page: 742
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib46
  article-title: Neutralizing antibodies titers and side effects in response to BNT162b2 vaccine in healthcare workers with and without prior SARS-CoV-2 Infection
  publication-title: Vaccines (Basel)
  doi: 10.3390/vaccines9070742
– volume: 47
  start-page: 1037
  year: 2017
  ident: 10.1016/j.xcrm.2022.100631_bib38
  article-title: High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.11.001
– volume: 21
  start-page: 939
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib13
  article-title: Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00224-3
– volume: 222
  start-page: 108630
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib21
  article-title: Major reduction of NKT cells in patients with severe COVID-19 pneumonia
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2020.108630
– volume: 9
  start-page: 61
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib30
  article-title: Immune responses induced by mRNA vaccination in mice, monkeys and humans
  publication-title: Vaccines (Basel).
  doi: 10.3390/vaccines9010061
– volume: 40
  start-page: 1924
  year: 2022
  ident: 10.1016/j.xcrm.2022.100631_bib24
  article-title: Association between reactogenicity and SARS-CoV-2 antibodies after the second dose of the BNT162b2 COVID-19 vaccine
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2022.02.052
– volume: 184
  start-page: 3915
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib3
  article-title: The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.039
– volume: 25
  start-page: 2064
  year: 1995
  ident: 10.1016/j.xcrm.2022.100631_bib26
  article-title: Activation of human peripheral blood dendritic cells induces the CD86 co-stimulatory molecule
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.1830250739
– volume: 53
  start-page: 335
  year: 2020
  ident: 10.1016/j.xcrm.2022.100631_bib35
  article-title: Transcriptional and functional analysis of CD1c(+) human dendritic cells identifies a CD163(+) subset priming CD8(+)CD103(+) T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.06.002
– volume: 10
  start-page: 100208
  year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib12
  article-title: Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study
  publication-title: Lancet Reg. Health Eur.
  doi: 10.1016/j.lanepe.2021.100208
– volume: 8
  start-page: 4
  year: 2019
  ident: 10.1016/j.xcrm.2022.100631_bib5
  article-title: Systems vaccinology for a live attenuated tularemia vaccine reveals unique transcriptional signatures that predict humoral and cellular immune responses
  publication-title: Vaccines (Basel)
  doi: 10.3390/vaccines8010004
– year: 2021
  ident: 10.1016/j.xcrm.2022.100631_bib11
  article-title: Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals
  publication-title: medRxiv
– volume: 329
  start-page: 112
  year: 2008
  ident: 10.1016/j.xcrm.2022.100631_bib49
  article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2007.09.017
– volume: 53
  start-page: 353
  year: 2020
  ident: 10.1016/j.xcrm.2022.100631_bib36
  article-title: Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.07.003
SSID ssj0002511830
Score 2.3889024
Snippet Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with...
SummaryTwo doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100631
SubjectTerms Advanced Basic Science
adverse events
Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
BNT162 Vaccine - adverse effects
BNT162 Vaccine - immunology
BNT162 Vaccine - therapeutic use
cell dynamics
COVID-19 - immunology
COVID-19 - prevention & control
COVID-19 Vaccines - adverse effects
COVID-19 Vaccines - immunology
COVID-19 Vaccines - therapeutic use
Humans
immune correlates
innate immunity
mRNA vaccine
mRNA Vaccines - adverse effects
mRNA Vaccines - immunology
mRNA Vaccines - therapeutic use
neutralizing antibodies
SARS-CoV-2
SARS-CoV-2 - genetics
Vaccines, Synthetic - adverse effects
Vaccines, Synthetic - immunology
Vaccines, Synthetic - therapeutic use
Title Distinct immune cell dynamics correlate with the immunogenicity and reactogenicity of SARS-CoV-2 mRNA vaccine
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2666379122001562
https://www.clinicalkey.es/playcontent/1-s2.0-S2666379122001562
https://dx.doi.org/10.1016/j.xcrm.2022.100631
https://www.ncbi.nlm.nih.gov/pubmed/35545084
https://www.proquest.com/docview/2664784413
https://pubmed.ncbi.nlm.nih.gov/PMC9023335
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqISFeEHfKZTISb1GqJY6b5LEaoAmkPWwF7c2yHVfLtiaoFzb49ZwTO26ylQF7iSrX7klzvvhcfC6EvJeoRmfoqMr3eIgtCkNp8MAxM0pncWKMaaItDscHX5PPJ_xkMLjqRC2tV2qkf23NK7kLV2EM-IpZsv_BWf-jMACfgb9wBQ7D9Z94_AFf0EqvghKzPEyAXvigsD3ml4HGxhsXoEs6ZysAoplXw--VGrXvJrbcYMcdP4Q5LJOj43C__hbGwfzocBL8kNqfvrc1DZCQO24Y2cOezvn8VJ7LpqN3MK3n9Wm5qD1b60V5Li-lDdi_9CJhUmBMZyMO1l4ESJCwbu6X8mc9L7seCjBusbhpunGbtakzvchOUAzGsLvZVl0js2XMbc-sg0K-ddO3_oez0ZVeYG2BOMbQj7ETLv1i2sdIAinEcZNEDsL7XgwGBuv4eVCGN4ZX06jG35PLuLLBgddJ_UmruWm1XA--7Wgz00fkoTND6MRi6jEZmOoJud8y8imZt9CiFloUoUVbaFEPLYrQogAt2ocWBWjRPrRoPaMbaFGEFnXQekamnz5O9w9C15kj1DzLV2E0i_iMp0wVOddpopVSkU5VVMRFwRgogTrnJgfLn4GAmKlCsVSh8BhHmWFFyp6TnaquzEtCs8TEeTFLM16wxORc6tgkCTO5VjopZDQkUftghXZV67F5yoVowxPPBDJDIDOEZcaQBH7Nd1uz5dbZrOWXaLORQX4KQNetq9Jtq8zSbQ9LEYllLPbEDcQNCfcrnZZrtde_UnzXgkmACEC2y8rU66UACkmagV3DhuSFBZf_32hOgA2WwP32YOcnYHn5_jdVedqUmc9BnWeMv7rT83lNHmy2gjdkZ7VYm7egvq_UbuP22m3et9-D4fJN
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+immune+cell+dynamics+correlate+with+the+immunogenicity+and+reactogenicity+of+SARS-CoV-2+mRNA+vaccine&rft.jtitle=Cell+reports.+Medicine&rft.au=Takano%2C+Tomohiro&rft.au=Morikawa%2C+Miwa&rft.au=Adachi%2C+Yu&rft.au=Kabasawa%2C+Kiyomi&rft.date=2022-05-17&rft.pub=Elsevier+Inc&rft.issn=2666-3791&rft.eissn=2666-3791&rft.volume=3&rft.issue=5&rft_id=info:doi/10.1016%2Fj.xcrm.2022.100631&rft.externalDocID=S2666379122001562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3791&client=summon