Distinct immune cell dynamics correlate with the immunogenicity and reactogenicity of SARS-CoV-2 mRNA vaccine
Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics t...
Saved in:
Published in | Cell reports. Medicine Vol. 3; no. 5; p. 100631 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.05.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c− Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity.
[Display omitted]
•Immune profiling of mRNA vaccinees reveals dramatic immunological changes•The dynamics of NK/monocyte subsets correlate with neutralizing-antibody response•The dynamics of dendritic cell subsets correlate with severity of adverse events•IFN-γ-inducible chemokines, but not the receptors, are related to these correlates
Takano et al. identify cellular correlates for neutralizing-antibody titers and systemic adverse events following SARS-CoV-2 mRNA vaccination. The involvement of IFN-γ-mediated pathways is proposed. The findings give insights into balancing the immunogenicity and reactogenicity of mRNA vaccine. |
---|---|
AbstractList | Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16
NK cells, CD56
NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c
Axl
Siglec-6
[AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity. Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16 + NK cells, CD56 high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c − Axl + Siglec-6 + [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity. • Immune profiling of mRNA vaccinees reveals dramatic immunological changes • The dynamics of NK/monocyte subsets correlate with neutralizing-antibody response • The dynamics of dendritic cell subsets correlate with severity of adverse events • IFN-γ-inducible chemokines, but not the receptors, are related to these correlates Takano et al. identify cellular correlates for neutralizing-antibody titers and systemic adverse events following SARS-CoV-2 mRNA vaccination. The involvement of IFN-γ-mediated pathways is proposed. The findings give insights into balancing the immunogenicity and reactogenicity of mRNA vaccine. SummaryTwo doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16 + NK cells, CD56 high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c − Axl + Siglec-6 + [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity. Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c- Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity.Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c- Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity. Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c− Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity. [Display omitted] •Immune profiling of mRNA vaccinees reveals dramatic immunological changes•The dynamics of NK/monocyte subsets correlate with neutralizing-antibody response•The dynamics of dendritic cell subsets correlate with severity of adverse events•IFN-γ-inducible chemokines, but not the receptors, are related to these correlates Takano et al. identify cellular correlates for neutralizing-antibody titers and systemic adverse events following SARS-CoV-2 mRNA vaccination. The involvement of IFN-γ-mediated pathways is proposed. The findings give insights into balancing the immunogenicity and reactogenicity of mRNA vaccine. |
ArticleNumber | 100631 |
Author | Morikawa, Miwa Shinkai, Masaharu Onodera, Taishi Terahara, Kazutaka Adachi, Yu Tomii, Kentaro Sax, Nicolas Moriyama, Saya Tonouchi, Keisuke Takahashi, Yoshimasa Isogawa, Masanori Yamashita, Kazuo Kabasawa, Kiyomi Nishimura, Masashi Matsumura, Takayuki Sun, Lin Nishiyama, Ayae Takano, Tomohiro |
Author_xml | – sequence: 1 givenname: Tomohiro surname: Takano fullname: Takano, Tomohiro organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 2 givenname: Miwa surname: Morikawa fullname: Morikawa, Miwa organization: Tokyo Shinagawa Hospital, Tokyo 140-8522, Japan – sequence: 3 givenname: Yu surname: Adachi fullname: Adachi, Yu organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 4 givenname: Kiyomi surname: Kabasawa fullname: Kabasawa, Kiyomi organization: Tokyo Shinagawa Hospital, Tokyo 140-8522, Japan – sequence: 5 givenname: Nicolas surname: Sax fullname: Sax, Nicolas organization: KOTAI Biotechnologies, Inc., Osaka 565-0871, Japan – sequence: 6 givenname: Saya surname: Moriyama fullname: Moriyama, Saya organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 7 givenname: Lin surname: Sun fullname: Sun, Lin organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 8 givenname: Masanori orcidid: 0000-0001-8730-4303 surname: Isogawa fullname: Isogawa, Masanori organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 9 givenname: Ayae surname: Nishiyama fullname: Nishiyama, Ayae organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 10 givenname: Taishi surname: Onodera fullname: Onodera, Taishi organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 11 givenname: Kazutaka surname: Terahara fullname: Terahara, Kazutaka organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 12 givenname: Keisuke surname: Tonouchi fullname: Tonouchi, Keisuke organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 13 givenname: Masashi orcidid: 0000-0002-0654-7176 surname: Nishimura fullname: Nishimura, Masashi organization: Tokyo Shinagawa Hospital, Tokyo 140-8522, Japan – sequence: 14 givenname: Kentaro orcidid: 0000-0002-4567-4768 surname: Tomii fullname: Tomii, Kentaro organization: Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan – sequence: 15 givenname: Kazuo surname: Yamashita fullname: Yamashita, Kazuo organization: KOTAI Biotechnologies, Inc., Osaka 565-0871, Japan – sequence: 16 givenname: Takayuki orcidid: 0000-0003-1760-3484 surname: Matsumura fullname: Matsumura, Takayuki email: matt@niid.go.jp organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan – sequence: 17 givenname: Masaharu surname: Shinkai fullname: Shinkai, Masaharu email: shinkai050169@gmail.com organization: Tokyo Shinagawa Hospital, Tokyo 140-8522, Japan – sequence: 18 givenname: Yoshimasa orcidid: 0000-0001-6342-4087 surname: Takahashi fullname: Takahashi, Yoshimasa email: ytakahas@niid.go.jp organization: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35545084$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1DAUjVARfdAfYIG8ZJPBjzgPhCqNhvKQKpA6FVvLsW86HhK72M7A_D2OUkqpRFnZuj7nXN9z7nF2YJ2FLHtB8IJgUr7eLn4qPywopjQVcMnIk-yIlmWZs6ohB_fuh9lpCFuMMeWE1Aw_yw4Z5wXHdXGUDe9MiMaqiMwwjBaQgr5Hem_lYFRAynkPvYyAfpi4QXEDM85dgzXKxD2SViMPUsU_Jdeh9fJyna_c15yi4fLzEu2kUsbC8-xpJ_sAp7fnSXb1_vxq9TG_-PLh02p5kSteNzEnHeEdr1irG66qQrVtS1TVEk21ZozVRDUcmqJIwxR11-qWVS1Lo5WkBqYrdpKdzbI3YzuAVmCjl7248WaQfi-cNOLvF2s24trtRINp0udJ4NWtgHffRwhRDCZMzkgLbgwieVtUdVEQlqAv7_e6a_Lb4gSgM0B5F4KH7g5CsJiiFFsxRSmmKMUcZSLVD0jJWRmNm_5r-sepb2cqJIN3BrwIyoBVoI0HFYV25nH62QO66k0KVvbfYA9h60ZvU3SCiEAFFutpzaYtoxRjwkuaBN78W-B_3X8B5wfitw |
CitedBy_id | crossref_primary_10_3390_vaccines10111815 crossref_primary_10_1038_s41467_023_43420_x crossref_primary_10_1038_s41525_023_00387_4 crossref_primary_10_3389_fimmu_2023_1285203 crossref_primary_10_3390_vaccines11061047 crossref_primary_10_1093_intimm_dxac064 crossref_primary_10_3389_fimmu_2023_1292568 crossref_primary_10_3389_fimmu_2023_1277831 crossref_primary_10_1038_s41541_023_00702_1 crossref_primary_10_1038_s41467_023_37128_1 crossref_primary_10_3390_vaccines12040388 crossref_primary_10_3390_vaccines12080873 crossref_primary_10_1002_eji_202451236 crossref_primary_10_3390_v15061276 crossref_primary_10_20965_jdr_2023_p0021 crossref_primary_10_1038_s41598_024_73004_8 crossref_primary_10_1038_s12276_023_00999_x crossref_primary_10_3389_fimmu_2023_1225025 crossref_primary_10_1016_j_xcrm_2023_100971 crossref_primary_10_1007_s12185_023_03550_w crossref_primary_10_1002_eji_202451303 crossref_primary_10_1136_bmjonc_2023_000054 crossref_primary_10_3390_cancers15143625 |
Cites_doi | 10.1016/j.celrep.2019.01.104 10.1038/ni1254 10.1126/science.8097338 10.1056/NEJMoa2034577 10.1038/ni1138 10.1016/j.it.2015.07.004 10.1016/j.immuni.2021.08.001 10.3389/fimmu.2015.00255 10.1016/j.cell.2017.11.036 10.1016/j.immuni.2019.08.008 10.1128/JVI.02499-09 10.1093/intimm/dxl046 10.1038/s41467-019-11821-6 10.1016/j.tips.2021.06.004 10.1016/j.celrep.2021.109504 10.1002/eji.200425318 10.1126/science.aag3009 10.1038/366076a0 10.1016/j.immuni.2021.06.015 10.1016/j.ymthe.2017.08.006 10.3390/vaccines9060652 10.1038/s41586-021-03653-6 10.1078/0171-2985-00219 10.1126/sciimmunol.abi6950 10.1126/science.abm0829 10.1126/science.abf4063 10.1084/jem.177.4.1199 10.1038/s41586-021-03791-x 10.1016/j.vaccine.2021.07.067 10.1038/ni.1688 10.1016/j.celrep.2019.11.042 10.1186/s12985-021-01490-7 10.1126/science.aah4573 10.1016/j.celrep.2018.02.044 10.1016/j.immuni.2015.11.012 10.1093/ofid/ofab575 10.3390/vaccines9070742 10.1016/j.immuni.2017.11.001 10.1016/S1473-3099(21)00224-3 10.1016/j.clim.2020.108630 10.3390/vaccines9010061 10.1016/j.vaccine.2022.02.052 10.1016/j.cell.2021.05.039 10.1002/eji.1830250739 10.1016/j.immuni.2020.06.002 10.1016/j.lanepe.2021.100208 10.3390/vaccines8010004 10.1016/j.jim.2007.09.017 10.1016/j.immuni.2020.07.003 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) The Author(s) Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. 2022 The Author(s) 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2022 The Author(s) 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.xcrm.2022.100631 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2666-3791 |
EndPage | 100631 |
ExternalDocumentID | PMC9023335 35545084 10_1016_j_xcrm_2022_100631 S2666379122001562 1_s2_0_S2666379122001562 |
Genre | Journal Article |
GroupedDBID | .1- .FO 0R~ 53G AAEDW AALRI AAMRU AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM Z5R AAHOK NCXOZ 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c589t-1f15f573bd95c74cbbb1c7b1d2dd33381c95e94483048fbdb37b3183618e3d73 |
ISSN | 2666-3791 |
IngestDate | Thu Aug 21 18:16:13 EDT 2025 Fri Jul 11 09:05:26 EDT 2025 Mon Jul 21 06:04:41 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 Tue Jul 01 01:25:23 EDT 2025 Sun Apr 06 06:54:13 EDT 2025 Tue Feb 25 19:56:00 EST 2025 Tue Aug 26 19:32:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | SARS-CoV-2 immune correlates innate immunity neutralizing antibodies adverse events mRNA vaccine cell dynamics |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c589t-1f15f573bd95c74cbbb1c7b1d2dd33381c95e94483048fbdb37b3183618e3d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
ORCID | 0000-0002-4567-4768 0000-0003-1760-3484 0000-0001-8730-4303 0000-0001-6342-4087 0000-0002-0654-7176 |
OpenAccessLink | http://dx.doi.org/10.1016/j.xcrm.2022.100631 |
PMID | 35545084 |
PQID | 2664784413 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9023335 proquest_miscellaneous_2664784413 pubmed_primary_35545084 crossref_primary_10_1016_j_xcrm_2022_100631 crossref_citationtrail_10_1016_j_xcrm_2022_100631 elsevier_sciencedirect_doi_10_1016_j_xcrm_2022_100631 elsevier_clinicalkeyesjournals_1_s2_0_S2666379122001562 elsevier_clinicalkey_doi_10_1016_j_xcrm_2022_100631 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-17 |
PublicationDateYYYYMMDD | 2022-05-17 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports. Medicine |
PublicationTitleAlternate | Cell Rep Med |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Yamamoto, Fukunaga, Tanaka, Takeuchi, Inoue, Kimura, Maeda, Ueda, Mizoue, Ujiie (bib24) 2022; 40 Moriyama, Adachi, Sato, Tonouchi, Sun, Fukushi, Yamada, Kinoshita, Nojima, Kanno (bib7) 2021; 54 Goel, Painter, Apostolidis, Mathew, Meng, Rosenfeld, Lundgreen, Reynaldi, Khoury, Pattekar (bib15) 2021; 374 (bib47) 2020 Tiller, Meffre, Yurasov, Tsuiji, Nussenzweig, Wardemann (bib49) 2008; 329 Farsakoglu, Palomino-Segura, Latino, Zanaga, Chatziandreou, Pizzagalli, Rinaldi, Bolis, Sallusto, Stein, Gonzalez (bib32) 2019; 26 Naaber, Tserel, Kangro, Sepp, Jurjenson, Adamson, Haljasmagi, Rumm, Maruste, Karner (bib12) 2021; 10 See, Dutertre, Chen, Gunther, McGovern, Irac, Gunawan, Beyer, Handler, Duan (bib40) 2017; 356 Arunachalam, Scott, Hagan, Li, Feng, Wimmers, Grigoryan, Trisal, Edara, Lai (bib6) 2021; 596 Painter, Mathew, Goel, Apostolidis, Pattekar, Kuthuru, Baxter, Herati, Oldridge, Gouma (bib16) 2021; 54 Cytlak, Resteu, Pagan, Green, Milne, Maisuria, McDonald, Hulme, Filby, Carpenter (bib36) 2020; 53 Querec, Akondy, Lee, Cao, Nakaya, Teuwen, Pirani, Gernert, Deng, Marzolf (bib4) 2009; 10 Nakaya, Hagan, Duraisingham, Lee, Kwissa, Rouphael, Frasca, Gersten, Mehta, Gaujoux (bib2) 2015; 43 Coggins, Laing, Olsen, Goguet, Moser, Jackson-Thompson, Samuels, Pollett, Tribble, Davies (bib10) 2021; 9 McLellan, Starling, Williams, Hock, Hart (bib26) 1995; 25 Rydyznski, Waggoner (bib34) 2015; 36 Chen, Vistica, Takase, Ham, Fariss, Wawrousek, Chan, DeMartino, Farber, Gery (bib29) 2004; 34 Tani, Kimura, Tan, Yoshida, Ozawa, Kishi, Fukushi, Saijo, Sano, Suzuki (bib50) 2021; 18 Gorski, Waller, Bjornton-Severson, Hanten, Riter, Kieper, Gorden, Miller, Vasilakos, Tomai, Alkan (bib28) 2006; 18 Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart, Perez, Perez Marc, Moreira, Zerbini (bib1) 2020; 383 Martin-Fontecha, Thomsen, Brett, Gerard, Lipp, Lanzavecchia, Sallusto (bib33) 2004; 5 Cox, Cevik, Feldman, Canaday, Lakes, Waggoner (bib22) 2021; 42 Morales-Nunez, Munoz-Valle, Meza-Lopez, Wang, Machado Sulbaran, Torres-Hernandez, Bedolla-Barajas, De la, Balcazar-Felix, Hernandez-Bello (bib46) 2021; 9 Harrington, Hatton, Mangan, Turner, Murphy, Murphy, Weaver (bib44) 2005; 6 Revu, Wu, Henkel, Rittenhouse, Menk, Delgoffe, Poholek, McGeachy (bib45) 2018; 22 Dutertre, Becht, Irac, Khalilnezhad, Narang, Khalilnezhad, Ng, van den Hoogen, Leong, Lee (bib37) 2019; 51 Menni, Klaser, May, Polidori, Capdevila, Louca, Sudre, Nguyen, Drew, Merino (bib13) 2021; 21 Villani, Satija, Reynolds, Sarkizova, Shekhar, Fletcher, Griesbeck, Butler, Zheng, Lazo (bib41) 2017; 356 Tani, Shiokawa, Kaname, Kambara, Mori, Abe, Moriishi, Matsuura (bib51) 2010; 84 Manetti, Parronchi, Giudizi, Piccinni, Maggi, Trinchieri, Romagnani (bib42) 1993; 177 Bourdely, Anselmi, Vaivode, Ramos, Missolo-Koussou, Hidalgo, Tosselo, Nunez, Richer, Vincent-Salomon (bib35) 2020; 53 Dan, Mateus, Kato, Hastie, Yu, Faliti, Grifoni, Ramirez, Haupt, Frazier (bib18) 2021; 371 Bergamaschi, Terpos, Rosati, Angel, Bear, Stellas, Karaliota, Apostolakou, Bagratuni, Patseas (bib23) 2021; 36 Cagigi, Lore (bib30) 2021; 9 Liang, Lindgren, Lin, Thompson, Ols, Rohss, John, Hassett, Yuzhakov, Bahl (bib31) 2017; 25 Goel, Apostolidis, Painter, Mathew, Pattekar, Kuthuru, Gouma, Hicks, Meng, Rosenfeld (bib14) 2021; 6 Sahin, Muik, Vogler, Derhovanessian, Kranz, Vormehr, Quandt, Bidmon, Ulges, Baum (bib17) 2021; 595 Gaya, Barral, Burbage, Aggarwal, Montaner, Warren Navia, Aid, Tsui, Maldonado, Nair (bib20) 2018; 172 Modenese, Paduano, Bargellini, Bellucci, Marchetti, Bruno, Grazioli, Vivoli, Gobba (bib8) 2021; 9 Wimmers, Donato, Kuo, Ashuach, Gupta, Li, Dvorak, Foecke, Chang, Hagan (bib3) 2021; 184 Michos, Tatsi, Filippatos, Dellis, Koukou, Efthymiou, Kastrinelli, Mantzou, Syriopoulou (bib9) 2021; 39 Clausen, Vergeiner, Enk, Petzer, Gastl, Gunsilius (bib27) 2003; 207 Alcantara-Hernandez, Leylek, Wagar, Engleman, Keler, Marinkovich, Davis, Nolan, Idoyaga (bib38) 2017; 47 Natrajan, Rouphael, Lai, Kazmin, Jensen, Weiss, Ibegbu, Sztein, Hooper, Hill (bib5) 2019; 8 Azuma, Ito, Yagita, Okumura, Phillips, Lanier, Somoza (bib25) 1993; 366 Leylek, Alcantara-Hernandez, Lanzar, Ludtke, Perez, Reizis, Idoyaga (bib39) 2019; 29 Adachi, Tonouchi, Nithichanon, Kuraoka, Watanabe, Shinnakasu, Asanuma, Ainai, Ohmi, Yamamoto (bib48) 2019; 10 Slauenwhite, Johnston (bib19) 2015; 6 Hsieh, Macatonia, Tripp, Wolf, O'Garra, Murphy (bib43) 1993; 260 Maeda, Amano, Uemura, Tsuchiya, Matsushima, Noda, Shimizu, Fujiwara, Takamatsu, Ichikawa (bib11) 2021 Zingaropoli, Perri, Pasculli, Cogliati Dezza, Nijhawan, Savelloni, La Torre, D'Agostino, Mengoni, Lichtner (bib21) 2021; 222 Gaya (10.1016/j.xcrm.2022.100631_bib20) 2018; 172 Goel (10.1016/j.xcrm.2022.100631_bib14) 2021; 6 Painter (10.1016/j.xcrm.2022.100631_bib16) 2021; 54 Morales-Nunez (10.1016/j.xcrm.2022.100631_bib46) 2021; 9 Polack (10.1016/j.xcrm.2022.100631_bib1) 2020; 383 Leylek (10.1016/j.xcrm.2022.100631_bib39) 2019; 29 Tani (10.1016/j.xcrm.2022.100631_bib50) 2021; 18 Gorski (10.1016/j.xcrm.2022.100631_bib28) 2006; 18 Arunachalam (10.1016/j.xcrm.2022.100631_bib6) 2021; 596 Manetti (10.1016/j.xcrm.2022.100631_bib42) 1993; 177 Clausen (10.1016/j.xcrm.2022.100631_bib27) 2003; 207 Harrington (10.1016/j.xcrm.2022.100631_bib44) 2005; 6 Revu (10.1016/j.xcrm.2022.100631_bib45) 2018; 22 Goel (10.1016/j.xcrm.2022.100631_bib15) 2021; 374 Dutertre (10.1016/j.xcrm.2022.100631_bib37) 2019; 51 Modenese (10.1016/j.xcrm.2022.100631_bib8) 2021; 9 Cox (10.1016/j.xcrm.2022.100631_bib22) 2021; 42 Azuma (10.1016/j.xcrm.2022.100631_bib25) 1993; 366 Martin-Fontecha (10.1016/j.xcrm.2022.100631_bib33) 2004; 5 Dan (10.1016/j.xcrm.2022.100631_bib18) 2021; 371 Adachi (10.1016/j.xcrm.2022.100631_bib48) 2019; 10 Maeda (10.1016/j.xcrm.2022.100631_bib11) 2021 Michos (10.1016/j.xcrm.2022.100631_bib9) 2021; 39 Sahin (10.1016/j.xcrm.2022.100631_bib17) 2021; 595 McLellan (10.1016/j.xcrm.2022.100631_bib26) 1995; 25 Villani (10.1016/j.xcrm.2022.100631_bib41) 2017; 356 Liang (10.1016/j.xcrm.2022.100631_bib31) 2017; 25 Querec (10.1016/j.xcrm.2022.100631_bib4) 2009; 10 Rydyznski (10.1016/j.xcrm.2022.100631_bib34) 2015; 36 Naaber (10.1016/j.xcrm.2022.100631_bib12) 2021; 10 Hsieh (10.1016/j.xcrm.2022.100631_bib43) 1993; 260 Bergamaschi (10.1016/j.xcrm.2022.100631_bib23) 2021; 36 Nakaya (10.1016/j.xcrm.2022.100631_bib2) 2015; 43 Menni (10.1016/j.xcrm.2022.100631_bib13) 2021; 21 Coggins (10.1016/j.xcrm.2022.100631_bib10) 2021; 9 Tiller (10.1016/j.xcrm.2022.100631_bib49) 2008; 329 Bourdely (10.1016/j.xcrm.2022.100631_bib35) 2020; 53 Zingaropoli (10.1016/j.xcrm.2022.100631_bib21) 2021; 222 Moriyama (10.1016/j.xcrm.2022.100631_bib7) 2021; 54 Alcantara-Hernandez (10.1016/j.xcrm.2022.100631_bib38) 2017; 47 Wimmers (10.1016/j.xcrm.2022.100631_bib3) 2021; 184 Yamamoto (10.1016/j.xcrm.2022.100631_bib24) 2022; 40 Cagigi (10.1016/j.xcrm.2022.100631_bib30) 2021; 9 Cytlak (10.1016/j.xcrm.2022.100631_bib36) 2020; 53 Natrajan (10.1016/j.xcrm.2022.100631_bib5) 2019; 8 Slauenwhite (10.1016/j.xcrm.2022.100631_bib19) 2015; 6 See (10.1016/j.xcrm.2022.100631_bib40) 2017; 356 Farsakoglu (10.1016/j.xcrm.2022.100631_bib32) 2019; 26 Chen (10.1016/j.xcrm.2022.100631_bib29) 2004; 34 Tani (10.1016/j.xcrm.2022.100631_bib51) 2010; 84 |
References_xml | – volume: 8 start-page: 4 year: 2019 ident: bib5 article-title: Systems vaccinology for a live attenuated tularemia vaccine reveals unique transcriptional signatures that predict humoral and cellular immune responses publication-title: Vaccines (Basel) – volume: 54 start-page: 2133 year: 2021 end-page: 2142.e3 ident: bib16 article-title: Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination publication-title: Immunity – volume: 25 start-page: 2064 year: 1995 end-page: 2068 ident: bib26 article-title: Activation of human peripheral blood dendritic cells induces the CD86 co-stimulatory molecule publication-title: Eur. J. Immunol. – volume: 172 start-page: 517 year: 2018 end-page: 533.e20 ident: bib20 article-title: Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells publication-title: Cell – volume: 184 start-page: 3915 year: 2021 end-page: 3935.e21 ident: bib3 article-title: The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination publication-title: Cell – volume: 222 start-page: 108630 year: 2021 ident: bib21 article-title: Major reduction of NKT cells in patients with severe COVID-19 pneumonia publication-title: Clin. Immunol. – volume: 42 start-page: 789 year: 2021 end-page: 801 ident: bib22 article-title: Targeting natural killer cells to enhance vaccine responses publication-title: Trends Pharmacol. Sci. – volume: 54 start-page: 1841 year: 2021 end-page: 1852.e4 ident: bib7 article-title: Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants publication-title: Immunity – volume: 596 start-page: 410 year: 2021 end-page: 416 ident: bib6 article-title: Systems vaccinology of the BNT162b2 mRNA vaccine in humans publication-title: Nature – volume: 595 start-page: 572 year: 2021 end-page: 577 ident: bib17 article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans publication-title: Nature – year: 2020 ident: bib47 article-title: Evaluation of sensitivity and specificity of four commercially available SARS-CoV-2 antibody immunoassays – volume: 26 start-page: 2307 year: 2019 end-page: 2315.e5 ident: bib32 article-title: Influenza vaccination induces NK-Cell-Mediated type-II IFN response that regulates humoral immunity in an IL-6-dependent manner publication-title: Cell Rep. – volume: 84 start-page: 2798 year: 2010 end-page: 2807 ident: bib51 article-title: Involvement of ceramide in the propagation of Japanese encephalitis virus publication-title: J. Virol. – volume: 9 start-page: 742 year: 2021 ident: bib46 article-title: Neutralizing antibodies titers and side effects in response to BNT162b2 vaccine in healthcare workers with and without prior SARS-CoV-2 Infection publication-title: Vaccines (Basel) – volume: 9 start-page: ofab575 year: 2021 ident: bib10 article-title: Adverse effects and antibody titers in response to the BNT162b2 mRNA COVID-19 vaccine in a prospective study of healthcare workers publication-title: Open Forum Infect. Dis. – volume: 383 start-page: 2603 year: 2020 end-page: 2615 ident: bib1 article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine publication-title: N. Engl. J. Med. – volume: 371 start-page: eabf4063 year: 2021 ident: bib18 article-title: Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection publication-title: Science – volume: 18 start-page: 1115 year: 2006 end-page: 1126 ident: bib28 article-title: Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists publication-title: Int. Immunol. – volume: 25 start-page: 2635 year: 2017 end-page: 2647 ident: bib31 article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques publication-title: Mol. Ther. – volume: 356 start-page: eaah4573 year: 2017 ident: bib41 article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors publication-title: Science – volume: 43 start-page: 1186 year: 2015 end-page: 1198 ident: bib2 article-title: Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures publication-title: Immunity – volume: 36 start-page: 536 year: 2015 end-page: 546 ident: bib34 article-title: Boosting vaccine efficacy the natural (killer) way publication-title: Trends Immunol. – volume: 10 start-page: 116 year: 2009 end-page: 125 ident: bib4 article-title: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans publication-title: Nat. Immunol. – volume: 39 start-page: 5963 year: 2021 end-page: 5967 ident: bib9 article-title: Association of total and neutralizing SARS-CoV-2 spike -receptor binding domain antibodies with epidemiological and clinical characteristics after immunization with the 1(st) and 2(nd) doses of the BNT162b2 vaccine publication-title: Vaccine – volume: 29 start-page: 3736 year: 2019 end-page: 3750.e8 ident: bib39 article-title: Integrated cross-species analysis identifies a conserved transitional dendritic cell population publication-title: Cell Rep. – volume: 366 start-page: 76 year: 1993 end-page: 79 ident: bib25 article-title: B70 antigen is a second ligand for CTLA-4 and CD28 publication-title: Nature – volume: 36 start-page: 109504 year: 2021 ident: bib23 article-title: Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients publication-title: Cell Rep. – volume: 207 start-page: 85 year: 2003 end-page: 93 ident: bib27 article-title: Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells publication-title: Immunobiology – volume: 374 start-page: abm0829 year: 2021 ident: bib15 article-title: mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern publication-title: Science – volume: 10 start-page: 100208 year: 2021 ident: bib12 article-title: Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study publication-title: Lancet Reg. Health Eur. – volume: 356 start-page: eaag3009 year: 2017 ident: bib40 article-title: Mapping the human DC lineage through the integration of high-dimensional techniques publication-title: Science – year: 2021 ident: bib11 article-title: Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals publication-title: medRxiv – volume: 10 start-page: 3883 year: 2019 ident: bib48 article-title: Exposure of an occluded hemagglutinin epitope drives selection of a class of cross-protective influenza antibodies publication-title: Nat. Commun. – volume: 18 start-page: 16 year: 2021 ident: bib50 article-title: Evaluation of SARS-CoV-2 neutralizing antibodies using a vesicular stomatitis virus possessing SARS-CoV-2 spike protein publication-title: Virol. J. – volume: 53 start-page: 353 year: 2020 end-page: 370.e8 ident: bib36 article-title: Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans publication-title: Immunity – volume: 51 start-page: 573 year: 2019 end-page: 589.e8 ident: bib37 article-title: Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells publication-title: Immunity – volume: 9 start-page: 652 year: 2021 ident: bib8 article-title: Neutralizing anti-SARS-CoV-2 antibody titer and reported adverse effects, in a sample of Italian nursing home personnel after two doses of the BNT162b2 vaccine administered four weeks apart publication-title: Vaccines (Basel). – volume: 21 start-page: 939 year: 2021 end-page: 949 ident: bib13 article-title: Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study publication-title: Lancet Infect. Dis. – volume: 6 start-page: eabi6950 year: 2021 ident: bib14 article-title: Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals following mRNA vaccination publication-title: Sci. Immunol. – volume: 34 start-page: 2885 year: 2004 end-page: 2894 ident: bib29 article-title: A unique pattern of up- and down-regulation of chemokine receptor CXCR3 on inflammation-inducing Th1 cells publication-title: Eur. J. Immunol. – volume: 260 start-page: 547 year: 1993 end-page: 549 ident: bib43 article-title: Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages publication-title: Science – volume: 53 start-page: 335 year: 2020 end-page: 352.e8 ident: bib35 article-title: Transcriptional and functional analysis of CD1c(+) human dendritic cells identifies a CD163(+) subset priming CD8(+)CD103(+) T cells publication-title: Immunity – volume: 47 start-page: 1037 year: 2017 end-page: 1050.e6 ident: bib38 article-title: High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization publication-title: Immunity – volume: 5 start-page: 1260 year: 2004 end-page: 1265 ident: bib33 article-title: Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming publication-title: Nat. Immunol. – volume: 6 start-page: 255 year: 2015 ident: bib19 article-title: Regulation of NKT cell localization in homeostasis and infection publication-title: Front. Immunol. – volume: 177 start-page: 1199 year: 1993 end-page: 1204 ident: bib42 article-title: Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells publication-title: J. Exp. Med. – volume: 40 start-page: 1924 year: 2022 end-page: 1927 ident: bib24 article-title: Association between reactogenicity and SARS-CoV-2 antibodies after the second dose of the BNT162b2 COVID-19 vaccine publication-title: Vaccine – volume: 22 start-page: 2642 year: 2018 end-page: 2653 ident: bib45 article-title: IL-23 and IL-1β drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation publication-title: Cell Rep. – volume: 9 start-page: 61 year: 2021 ident: bib30 article-title: Immune responses induced by mRNA vaccination in mice, monkeys and humans publication-title: Vaccines (Basel). – volume: 329 start-page: 112 year: 2008 end-page: 124 ident: bib49 article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning publication-title: J. Immunol. Methods – volume: 6 start-page: 1123 year: 2005 end-page: 1132 ident: bib44 article-title: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages publication-title: Nat. Immunol. – volume: 26 start-page: 2307 year: 2019 ident: 10.1016/j.xcrm.2022.100631_bib32 article-title: Influenza vaccination induces NK-Cell-Mediated type-II IFN response that regulates humoral immunity in an IL-6-dependent manner publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.01.104 – volume: 6 start-page: 1123 year: 2005 ident: 10.1016/j.xcrm.2022.100631_bib44 article-title: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages publication-title: Nat. Immunol. doi: 10.1038/ni1254 – volume: 260 start-page: 547 year: 1993 ident: 10.1016/j.xcrm.2022.100631_bib43 article-title: Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages publication-title: Science doi: 10.1126/science.8097338 – volume: 383 start-page: 2603 year: 2020 ident: 10.1016/j.xcrm.2022.100631_bib1 article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 5 start-page: 1260 year: 2004 ident: 10.1016/j.xcrm.2022.100631_bib33 article-title: Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming publication-title: Nat. Immunol. doi: 10.1038/ni1138 – volume: 36 start-page: 536 year: 2015 ident: 10.1016/j.xcrm.2022.100631_bib34 article-title: Boosting vaccine efficacy the natural (killer) way publication-title: Trends Immunol. doi: 10.1016/j.it.2015.07.004 – volume: 54 start-page: 2133 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib16 article-title: Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination publication-title: Immunity doi: 10.1016/j.immuni.2021.08.001 – volume: 6 start-page: 255 year: 2015 ident: 10.1016/j.xcrm.2022.100631_bib19 article-title: Regulation of NKT cell localization in homeostasis and infection publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00255 – volume: 172 start-page: 517 year: 2018 ident: 10.1016/j.xcrm.2022.100631_bib20 article-title: Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells publication-title: Cell doi: 10.1016/j.cell.2017.11.036 – volume: 51 start-page: 573 year: 2019 ident: 10.1016/j.xcrm.2022.100631_bib37 article-title: Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells publication-title: Immunity doi: 10.1016/j.immuni.2019.08.008 – volume: 84 start-page: 2798 year: 2010 ident: 10.1016/j.xcrm.2022.100631_bib51 article-title: Involvement of ceramide in the propagation of Japanese encephalitis virus publication-title: J. Virol. doi: 10.1128/JVI.02499-09 – volume: 18 start-page: 1115 year: 2006 ident: 10.1016/j.xcrm.2022.100631_bib28 article-title: Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists publication-title: Int. Immunol. doi: 10.1093/intimm/dxl046 – volume: 10 start-page: 3883 year: 2019 ident: 10.1016/j.xcrm.2022.100631_bib48 article-title: Exposure of an occluded hemagglutinin epitope drives selection of a class of cross-protective influenza antibodies publication-title: Nat. Commun. doi: 10.1038/s41467-019-11821-6 – volume: 42 start-page: 789 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib22 article-title: Targeting natural killer cells to enhance vaccine responses publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2021.06.004 – volume: 36 start-page: 109504 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib23 article-title: Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109504 – volume: 34 start-page: 2885 year: 2004 ident: 10.1016/j.xcrm.2022.100631_bib29 article-title: A unique pattern of up- and down-regulation of chemokine receptor CXCR3 on inflammation-inducing Th1 cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.200425318 – volume: 356 start-page: eaag3009 year: 2017 ident: 10.1016/j.xcrm.2022.100631_bib40 article-title: Mapping the human DC lineage through the integration of high-dimensional techniques publication-title: Science doi: 10.1126/science.aag3009 – volume: 366 start-page: 76 year: 1993 ident: 10.1016/j.xcrm.2022.100631_bib25 article-title: B70 antigen is a second ligand for CTLA-4 and CD28 publication-title: Nature doi: 10.1038/366076a0 – volume: 54 start-page: 1841 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib7 article-title: Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants publication-title: Immunity doi: 10.1016/j.immuni.2021.06.015 – volume: 25 start-page: 2635 year: 2017 ident: 10.1016/j.xcrm.2022.100631_bib31 article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.08.006 – volume: 9 start-page: 652 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib8 article-title: Neutralizing anti-SARS-CoV-2 antibody titer and reported adverse effects, in a sample of Italian nursing home personnel after two doses of the BNT162b2 vaccine administered four weeks apart publication-title: Vaccines (Basel). doi: 10.3390/vaccines9060652 – volume: 595 start-page: 572 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib17 article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans publication-title: Nature doi: 10.1038/s41586-021-03653-6 – volume: 207 start-page: 85 year: 2003 ident: 10.1016/j.xcrm.2022.100631_bib27 article-title: Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells publication-title: Immunobiology doi: 10.1078/0171-2985-00219 – volume: 6 start-page: eabi6950 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib14 article-title: Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals following mRNA vaccination publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abi6950 – volume: 374 start-page: abm0829 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib15 article-title: mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern publication-title: Science doi: 10.1126/science.abm0829 – volume: 371 start-page: eabf4063 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib18 article-title: Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection publication-title: Science doi: 10.1126/science.abf4063 – volume: 177 start-page: 1199 year: 1993 ident: 10.1016/j.xcrm.2022.100631_bib42 article-title: Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells publication-title: J. Exp. Med. doi: 10.1084/jem.177.4.1199 – volume: 596 start-page: 410 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib6 article-title: Systems vaccinology of the BNT162b2 mRNA vaccine in humans publication-title: Nature doi: 10.1038/s41586-021-03791-x – volume: 39 start-page: 5963 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib9 article-title: Association of total and neutralizing SARS-CoV-2 spike -receptor binding domain antibodies with epidemiological and clinical characteristics after immunization with the 1(st) and 2(nd) doses of the BNT162b2 vaccine publication-title: Vaccine doi: 10.1016/j.vaccine.2021.07.067 – volume: 10 start-page: 116 year: 2009 ident: 10.1016/j.xcrm.2022.100631_bib4 article-title: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans publication-title: Nat. Immunol. doi: 10.1038/ni.1688 – volume: 29 start-page: 3736 year: 2019 ident: 10.1016/j.xcrm.2022.100631_bib39 article-title: Integrated cross-species analysis identifies a conserved transitional dendritic cell population publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.11.042 – volume: 18 start-page: 16 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib50 article-title: Evaluation of SARS-CoV-2 neutralizing antibodies using a vesicular stomatitis virus possessing SARS-CoV-2 spike protein publication-title: Virol. J. doi: 10.1186/s12985-021-01490-7 – volume: 356 start-page: eaah4573 year: 2017 ident: 10.1016/j.xcrm.2022.100631_bib41 article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors publication-title: Science doi: 10.1126/science.aah4573 – volume: 22 start-page: 2642 year: 2018 ident: 10.1016/j.xcrm.2022.100631_bib45 article-title: IL-23 and IL-1β drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.044 – volume: 43 start-page: 1186 year: 2015 ident: 10.1016/j.xcrm.2022.100631_bib2 article-title: Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures publication-title: Immunity doi: 10.1016/j.immuni.2015.11.012 – volume: 9 start-page: ofab575 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib10 article-title: Adverse effects and antibody titers in response to the BNT162b2 mRNA COVID-19 vaccine in a prospective study of healthcare workers publication-title: Open Forum Infect. Dis. doi: 10.1093/ofid/ofab575 – volume: 9 start-page: 742 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib46 article-title: Neutralizing antibodies titers and side effects in response to BNT162b2 vaccine in healthcare workers with and without prior SARS-CoV-2 Infection publication-title: Vaccines (Basel) doi: 10.3390/vaccines9070742 – volume: 47 start-page: 1037 year: 2017 ident: 10.1016/j.xcrm.2022.100631_bib38 article-title: High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization publication-title: Immunity doi: 10.1016/j.immuni.2017.11.001 – volume: 21 start-page: 939 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib13 article-title: Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(21)00224-3 – volume: 222 start-page: 108630 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib21 article-title: Major reduction of NKT cells in patients with severe COVID-19 pneumonia publication-title: Clin. Immunol. doi: 10.1016/j.clim.2020.108630 – volume: 9 start-page: 61 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib30 article-title: Immune responses induced by mRNA vaccination in mice, monkeys and humans publication-title: Vaccines (Basel). doi: 10.3390/vaccines9010061 – volume: 40 start-page: 1924 year: 2022 ident: 10.1016/j.xcrm.2022.100631_bib24 article-title: Association between reactogenicity and SARS-CoV-2 antibodies after the second dose of the BNT162b2 COVID-19 vaccine publication-title: Vaccine doi: 10.1016/j.vaccine.2022.02.052 – volume: 184 start-page: 3915 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib3 article-title: The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination publication-title: Cell doi: 10.1016/j.cell.2021.05.039 – volume: 25 start-page: 2064 year: 1995 ident: 10.1016/j.xcrm.2022.100631_bib26 article-title: Activation of human peripheral blood dendritic cells induces the CD86 co-stimulatory molecule publication-title: Eur. J. Immunol. doi: 10.1002/eji.1830250739 – volume: 53 start-page: 335 year: 2020 ident: 10.1016/j.xcrm.2022.100631_bib35 article-title: Transcriptional and functional analysis of CD1c(+) human dendritic cells identifies a CD163(+) subset priming CD8(+)CD103(+) T cells publication-title: Immunity doi: 10.1016/j.immuni.2020.06.002 – volume: 10 start-page: 100208 year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib12 article-title: Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study publication-title: Lancet Reg. Health Eur. doi: 10.1016/j.lanepe.2021.100208 – volume: 8 start-page: 4 year: 2019 ident: 10.1016/j.xcrm.2022.100631_bib5 article-title: Systems vaccinology for a live attenuated tularemia vaccine reveals unique transcriptional signatures that predict humoral and cellular immune responses publication-title: Vaccines (Basel) doi: 10.3390/vaccines8010004 – year: 2021 ident: 10.1016/j.xcrm.2022.100631_bib11 article-title: Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals publication-title: medRxiv – volume: 329 start-page: 112 year: 2008 ident: 10.1016/j.xcrm.2022.100631_bib49 article-title: Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2007.09.017 – volume: 53 start-page: 353 year: 2020 ident: 10.1016/j.xcrm.2022.100631_bib36 article-title: Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans publication-title: Immunity doi: 10.1016/j.immuni.2020.07.003 |
SSID | ssj0002511830 |
Score | 2.3889024 |
Snippet | Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with... SummaryTwo doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100631 |
SubjectTerms | Advanced Basic Science adverse events Antibodies, Neutralizing - immunology Antibodies, Viral - immunology BNT162 Vaccine - adverse effects BNT162 Vaccine - immunology BNT162 Vaccine - therapeutic use cell dynamics COVID-19 - immunology COVID-19 - prevention & control COVID-19 Vaccines - adverse effects COVID-19 Vaccines - immunology COVID-19 Vaccines - therapeutic use Humans immune correlates innate immunity mRNA vaccine mRNA Vaccines - adverse effects mRNA Vaccines - immunology mRNA Vaccines - therapeutic use neutralizing antibodies SARS-CoV-2 SARS-CoV-2 - genetics Vaccines, Synthetic - adverse effects Vaccines, Synthetic - immunology Vaccines, Synthetic - therapeutic use |
Title | Distinct immune cell dynamics correlate with the immunogenicity and reactogenicity of SARS-CoV-2 mRNA vaccine |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2666379122001562 https://www.clinicalkey.es/playcontent/1-s2.0-S2666379122001562 https://dx.doi.org/10.1016/j.xcrm.2022.100631 https://www.ncbi.nlm.nih.gov/pubmed/35545084 https://www.proquest.com/docview/2664784413 https://pubmed.ncbi.nlm.nih.gov/PMC9023335 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqISFeEHfKZTISb1GqJY6b5LEaoAmkPWwF7c2yHVfLtiaoFzb49ZwTO26ylQF7iSrX7klzvvhcfC6EvJeoRmfoqMr3eIgtCkNp8MAxM0pncWKMaaItDscHX5PPJ_xkMLjqRC2tV2qkf23NK7kLV2EM-IpZsv_BWf-jMACfgb9wBQ7D9Z94_AFf0EqvghKzPEyAXvigsD3ml4HGxhsXoEs6ZysAoplXw--VGrXvJrbcYMcdP4Q5LJOj43C__hbGwfzocBL8kNqfvrc1DZCQO24Y2cOezvn8VJ7LpqN3MK3n9Wm5qD1b60V5Li-lDdi_9CJhUmBMZyMO1l4ESJCwbu6X8mc9L7seCjBusbhpunGbtakzvchOUAzGsLvZVl0js2XMbc-sg0K-ddO3_oez0ZVeYG2BOMbQj7ETLv1i2sdIAinEcZNEDsL7XgwGBuv4eVCGN4ZX06jG35PLuLLBgddJ_UmruWm1XA--7Wgz00fkoTND6MRi6jEZmOoJud8y8imZt9CiFloUoUVbaFEPLYrQogAt2ocWBWjRPrRoPaMbaFGEFnXQekamnz5O9w9C15kj1DzLV2E0i_iMp0wVOddpopVSkU5VVMRFwRgogTrnJgfLn4GAmKlCsVSh8BhHmWFFyp6TnaquzEtCs8TEeTFLM16wxORc6tgkCTO5VjopZDQkUftghXZV67F5yoVowxPPBDJDIDOEZcaQBH7Nd1uz5dbZrOWXaLORQX4KQNetq9Jtq8zSbQ9LEYllLPbEDcQNCfcrnZZrtde_UnzXgkmACEC2y8rU66UACkmagV3DhuSFBZf_32hOgA2WwP32YOcnYHn5_jdVedqUmc9BnWeMv7rT83lNHmy2gjdkZ7VYm7egvq_UbuP22m3et9-D4fJN |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+immune+cell+dynamics+correlate+with+the+immunogenicity+and+reactogenicity+of+SARS-CoV-2+mRNA+vaccine&rft.jtitle=Cell+reports.+Medicine&rft.au=Takano%2C+Tomohiro&rft.au=Morikawa%2C+Miwa&rft.au=Adachi%2C+Yu&rft.au=Kabasawa%2C+Kiyomi&rft.date=2022-05-17&rft.pub=Elsevier+Inc&rft.issn=2666-3791&rft.eissn=2666-3791&rft.volume=3&rft.issue=5&rft_id=info:doi/10.1016%2Fj.xcrm.2022.100631&rft.externalDocID=S2666379122001562 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3791&client=summon |