Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses
Summary Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent...
Saved in:
Published in | Environmental microbiology Vol. 14; no. 9; pp. 2564 - 2576 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR‐virus analyses are likely to provide insight into the forces shaping the human microbiome. |
---|---|
AbstractList | Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome.Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome. Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome. Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13977 streptococcal CRISPR sequences and compared them with 2588172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome. Summary Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR‐virus analyses are likely to provide insight into the forces shaping the human microbiome. |
Author | Relman, David A. Pride, David T. Salzman, Julia |
Author_xml | – sequence: 1 givenname: David T. surname: Pride fullname: Pride, David T. email: dpride@ucsd.edu organization: Departments of Pathology and Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla, CA 92093-0612, USA – sequence: 2 givenname: Julia surname: Salzman fullname: Salzman, Julia organization: Departments of Biochemistry and Statistics – sequence: 3 givenname: David A. surname: Relman fullname: Relman, David A. organization: Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22583485$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1TAQhi1URC_wCshLNgm-xI6zAAlFbamUlk0REhvLcRzqg3PBTg7nPAjvi0NOz4JN641H4-__x5qZc3DSD70BAGKU4njeb1KccZKQgqCUIExSRPKcpbsX4Oz4cHKMMTkF5yFsEMI5zdErcEoIEzQT7Az8KYduVN6GoQ9waKF2c5iMNw305sfslHd7aPuYCaPSMRseBj_BUTnbN37orI7caNQUoOobuLUxZ0JUwIe5Uz0MEdyqyGyNcrBWOjrZGKlGjZOa7FJ1Gg6Y3y8GczDhNXjZKhfMm8N9Ab5eXd6Xn5Pqy_VN-alKNBMFS7DBWisuGKM618QgnrGWZXWGKdd1S3DBC9zQXOgmEzxrSC24KEyhMyYwaTG9AO9W39EPv2YTJtnZoI1zqjfDHGT0YYjmHBVPoxjHb-Ci4E-jiMf5UJyJiL49oHPdmUaO3naxD_JxQBEQK6D9EII37RHBaKmJ5UYuY5bLyOWyC_LfLshdlH78T6rt2vPJK-ueY_BhNfhtndk_u7C8vL1ZoqhPVr2NK7U76pX_KXlcRCa_3V3LsqTV_e33Slb0L5ad3qI |
CitedBy_id | crossref_primary_10_1038_ni_2614 crossref_primary_10_3390_microorganisms8101546 crossref_primary_10_1093_nar_gkt1262 crossref_primary_10_3934_microbiol_2018_1_42 crossref_primary_10_1016_j_chom_2020_10_010 crossref_primary_10_1111_prd_12006 crossref_primary_10_4161_rna_24023 crossref_primary_10_1111_prd_12303 crossref_primary_10_1101_gr_150037_112 crossref_primary_10_1016_j_csbj_2015_06_001 crossref_primary_10_1093_gbe_evt075 crossref_primary_10_1186_s12864_015_1615_0 crossref_primary_10_1038_nrmicro_2017_14 crossref_primary_10_1093_nar_gku241 crossref_primary_10_3402_jom_v7_28223 crossref_primary_10_1016_j_jmb_2014_07_002 crossref_primary_10_1186_1471_2180_14_146 crossref_primary_10_1007_s13238_015_0182_0 crossref_primary_10_1111_mmi_12640 crossref_primary_10_3390_app13074377 crossref_primary_10_1186_s12866_019_1393_y crossref_primary_10_1038_s41368_019_0063_0 crossref_primary_10_1111_1462_2920_12923 crossref_primary_10_1093_nar_gkt1154 crossref_primary_10_1038_ismej_2013_63 crossref_primary_10_1038_ismej_2014_31 crossref_primary_10_1186_1471_2164_15_202 crossref_primary_10_1128_mBio_02651_18 crossref_primary_10_3402_jom_v5i0_19804 crossref_primary_10_1016_j_jbiotec_2017_01_002 crossref_primary_10_1146_annurev_ecolsys_121415_032428 crossref_primary_10_1038_s41467_020_20199_9 crossref_primary_10_1089_crispr_2018_0046 crossref_primary_10_1186_gb_2013_14_4_r40 crossref_primary_10_1186_s12918_015_0248_x crossref_primary_10_1186_1471_2180_14_175 crossref_primary_10_1111_omi_12279 crossref_primary_10_1098_rstb_2018_0092 crossref_primary_10_1073_pnas_1418895111 crossref_primary_10_4161_rna_23929 crossref_primary_10_3390_dj7010006 |
Cites_doi | 10.1111/j.1574-6941.2006.00105.x 10.1371/journal.pone.0004169 10.1128/AEM.01419-06 10.1073/pnas.202488399 10.1371/journal.pone.0007370 10.1007/978-3-7091-6607-9 10.1016/j.resmic.2008.04.006 10.1038/nature07540 10.1016/j.str.2009.05.002 10.1126/science.1155725 10.1371/journal.pbio.0060280 10.1038/nature06244 10.1126/scitranslmed.3000322 10.1126/science.1138140 10.1016/j.cell.2009.07.040 10.1101/gr.111732.110 10.1099/jmm.0.45576-0 10.1126/science.1157358 10.1126/science.1165771 10.1038/ismej.2011.169 10.1128/JB.01412-07 10.1016/j.jbiotec.2005.04.013 10.1126/science.1159689 10.1038/nprot.2009.10 10.1093/bioinformatics/bth349 10.1111/j.1462-2920.2007.01444.x 10.1128/IAI.01520-08 10.1101/gr.849004 10.1038/nature09199 10.1016/j.tim.2005.09.006 10.1902/jop.1967.38.6.610 10.1371/journal.pbio.0040368 10.1099/mic.0.023960-0 |
ContentType | Journal Article |
Copyright | 2012 Society for Applied Microbiology and Blackwell Publishing Ltd 2012 Society for Applied Microbiology and Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2012 Society for Applied Microbiology and Blackwell Publishing Ltd – notice: 2012 Society for Applied Microbiology and Blackwell Publishing Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7U9 C1K H94 7X8 7S9 L.6 |
DOI | 10.1111/j.1462-2920.2012.02775.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA CrossRef AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 2576 |
ExternalDocumentID | 22583485 10_1111_j_1462_2920_2012_02775_x EMI2775 ark_67375_WNG_CC3LTMZL_L |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIH HHS grantid: DP1 OD000964 – fundername: NIAID NIH HHS grantid: K08 AI085028 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7U9 AAMMB AEFGJ AGXDD AIDQK AIDYY C1K H94 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5895-1e1cca68553c7c2e0645f54b4136cbf219691d378cd4864d2b8689e9c45812f13 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 1462-2920 |
IngestDate | Fri Jul 11 18:35:59 EDT 2025 Fri Jul 11 02:35:13 EDT 2025 Thu Jul 10 21:13:08 EDT 2025 Thu Apr 03 07:04:41 EDT 2025 Tue Jul 01 04:00:28 EDT 2025 Thu Apr 24 23:07:55 EDT 2025 Wed Jan 22 16:55:04 EST 2025 Wed Oct 30 09:54:40 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2012 Society for Applied Microbiology and Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5895-1e1cca68553c7c2e0645f54b4136cbf219691d378cd4864d2b8689e9c45812f13 |
Notes | ark:/67375/WNG-CC3LTMZL-L istex:8C849FBEA22751B215A93C61330F12E09A3C17C4 ArticleID:EMI2775 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3424356 |
PMID | 22583485 |
PQID | 1069203148 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1365037609 proquest_miscellaneous_1115531996 proquest_miscellaneous_1069203148 pubmed_primary_22583485 crossref_primary_10_1111_j_1462_2920_2012_02775_x crossref_citationtrail_10_1111_j_1462_2920_2012_02775_x wiley_primary_10_1111_j_1462_2920_2012_02775_x_EMI2775 istex_primary_ark_67375_WNG_CC3LTMZL_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2012 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: September 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Willner, D., Furlan, M., Haynes, M., Schmieder, R., Angly, F.E., Silva, J., et al. (2009) Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE 4: e7370. Dethlefsen, L., Huse, S., Sogin, M.L., and Relman, D.A. (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6: e280. Lee, S.G., Kim, C.M., and Hwang, K.S. (2005) Development of a software tool for in silico simulation of Escherichia coli using a visual programming environment. J Biotechnol 119: 87-92. Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., and Gordon, J.I. (2009a) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1: 6ra14. Sakamoto, M., Huang, Y., Ohnishi, M., Umeda, M., Ishikawa, I., and Benno, Y. (2004) Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes. J Med Microbiol 53: 563-571. Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647-1651. Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., et al. (2009b) A core gut microbiome in obese and lean twins. Nature 457: 480-484. Willner, D., Furlan, M., Schmieder, R., Grasis, J.A., Pride, D.T., Relman, D.A., et al. (2010) Microbes and Health Sackler Colloquium: metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc Natl Acad Sci USA 108 (Suppl. 1): 4547-4553. Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. (2007) The human microbiome project. Nature 449: 804-810. Loe, H. (1967) The Gingival Index, the Plaque Index and the Retention Index Systems. J Periodontol 38 (Suppl.): 610-616. Saldanha, A.J. (2004) Java Treeview - extensible visualization of microarray data. Bioinformatics 20: 3246-3248. Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., et al. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960-964. Tyson, G.W., and Banfield, J.F. (2008) Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10: 200-207. Marraffini, L.A., and Sontheimer, E.J. (2009) Invasive DNA, chopped and in the CRISPR. Structure 17: 786-788. Ledder, R.G., Gilbert, P., Huws, S.A., Aarons, L., Ashley, M.P., Hull, P.S., and McBain, A.J. (2007) Molecular analysis of the subgingival microbiota in health and disease. Appl Environ Microbiol 73: 516-523. Marraffini, L.A., and Sontheimer, E.J. (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843-1845. Angly, F.E., Felts, B., Breitbart, M., Salamon, P., Edwards, R.A., Carlson, C., et al. (2006) The marine viromes of four oceanic regions. PLoS Biol 4: e368. Thurber, R.V., Haynes, M., Breitbart, M., Wegley, L., and Rohwer, F. (2009) Laboratory procedures to generate viral metagenomes. Nat Protoc 4: 470-483. Breitbart, M., Haynes, M., Kelley, S., Angly, F., Edwards, R.A., Felts, B., et al. (2008) Viral diversity and dynamics in an infant gut. Res Microbiol 159: 367-373. Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004) WebLogo: a sequence logo generator. Genome Res 14: 1188-1190. Hale, C.R., Zhao, P., Olson, S., Duff, M.O., Graveley, B.R., Wells, L., et al. (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139: 945-956. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712. Pride, D.T., Sun, C.L., Salzman, J., Rao, N., Loomer, P., Armitage, G.C., et al. (2011a) Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res 21: 126-136. Murphy, F.A., Fauquet, C.M., Bishop, D.H.L., Ghabrial, S.A., Jarvis, A.W., Martelli, G.P., et al. (1995) Virus Taxonomy: Sixth Report of the International Committee on Taxonomy of Viruses, Vol. Supplement 10. New York, NY, USA: Springer-Verlag. Heidelberg, J.F., Nelson, W.C., Schoenfeld, T., and Bhaya, D. (2009) Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS ONE 4: e4169. Antonopoulos, D.A., Huse, S.M., Morrison, H.G., Schmidt, T.M., Sogin, M.L., and Young, V.B. (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77: 2367-2375. Andersson, A.F., and Banfield, J.F. (2008) Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320: 1047-1050. Jenkinson, H.F., and Lamont, R.J. (2005) Oral microbial communities in sickness and in health. Trends Microbiol 13: 589-595. Pride, D.T., Salzman, J., Haynes, M., Rohwer, F., Davis-Long, C., White, R.A., 3rd, et al. (2011b) Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J 6: 915-926. Breitbart, M., Salamon, P., Andresen, B., Mahaffy, J.M., Segall, A.M., Mead, D., et al. (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA 99: 14250-14255. Good, I.J. (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40: 237-264. Reyes, A., Haynes, M., Hanson, N., Angly, F.E., Heath, A.C., Rohwer, F., and Gordon, J.I. (2010) Viruses in the faecal microbiota of monozytotic twins and their mothers. Nature 466: 334-338. 1995; Supplement 10 2008; 190 2004; 20 2007; 449 2010; 108 2010; 466 2009a; 1 2002; 99 2005; 119 2009; 155 2008; 10 2006; 4 2008; 6 2007; 73 2008; 322 2008; 321 2008; 320 2009; 139 2009; 77 2004; 53 2009b; 457 2007; 315 2004; 14 2011b; 6 1953; 40 2011a; 21 2008; 159 2009; 4 1967; 38 2005; 13 2009; 17 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Willner D. (e_1_2_7_35_1) 2010; 108 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_20_1 18541415 - Res Microbiol. 2008 Jun;159(5):367-73 22158393 - ISME J. 2012 May;6(5):915-26 18065545 - J Bacteriol. 2008 Feb;190(4):1390-400 19945378 - Cell. 2009 Nov 25;139(5):945-56 19018661 - PLoS Biol. 2008 Nov 18;6(11):e280 19132092 - PLoS One. 2009;4(1):e4169 20547834 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4547-53 19043404 - Nature. 2009 Jan 22;457(7228):480-4 5237684 - J Periodontol. 1967 Nov-Dec;38(6):Suppl:610-6 19307217 - Infect Immun. 2009 Jun;77(6):2367-75 19523896 - Structure. 2009 Jun 10;17(6):786-8 18497291 - Science. 2008 May 23;320(5879):1047-50 20631792 - Nature. 2010 Jul 15;466(7304):334-8 12384570 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14250-5 17943116 - Nature. 2007 Oct 18;449(7164):804-10 19246744 - Microbiology. 2009 Mar;155(Pt 3):733-40 15173120 - Genome Res. 2004 Jun;14(6):1188-90 19095942 - Science. 2008 Dec 19;322(5909):1843-5 19300441 - Nat Protoc. 2009;4(4):470-83 16214341 - Trends Microbiol. 2005 Dec;13(12):589-95 17379808 - Science. 2007 Mar 23;315(5819):1709-12 15180930 - Bioinformatics. 2004 Nov 22;20(17):3246-8 15150339 - J Med Microbiol. 2004 Jun;53(Pt 6):563-71 15996785 - J Biotechnol. 2005 Sep 22;119(1):87-92 18703739 - Science. 2008 Aug 15;321(5891):960-4 17085691 - Appl Environ Microbiol. 2007 Jan;73(2):516-23 17090214 - PLoS Biol. 2006 Nov;4(11):e368 18497261 - Science. 2008 Jun 20;320(5883):1647-51 19816605 - PLoS One. 2009;4(10):e7370 17894817 - Environ Microbiol. 2008 Jan;10(1):200-7 21149389 - Genome Res. 2011 Jan;21(1):126-36 20368178 - Sci Transl Med. 2009 Nov 11;1(6):6ra14 |
References_xml | – reference: Willner, D., Furlan, M., Schmieder, R., Grasis, J.A., Pride, D.T., Relman, D.A., et al. (2010) Microbes and Health Sackler Colloquium: metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc Natl Acad Sci USA 108 (Suppl. 1): 4547-4553. – reference: Lee, S.G., Kim, C.M., and Hwang, K.S. (2005) Development of a software tool for in silico simulation of Escherichia coli using a visual programming environment. J Biotechnol 119: 87-92. – reference: Reyes, A., Haynes, M., Hanson, N., Angly, F.E., Heath, A.C., Rohwer, F., and Gordon, J.I. (2010) Viruses in the faecal microbiota of monozytotic twins and their mothers. Nature 466: 334-338. – reference: Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., et al. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960-964. – reference: Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., and Gordon, J.I. (2009a) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1: 6ra14. – reference: Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647-1651. – reference: Marraffini, L.A., and Sontheimer, E.J. (2009) Invasive DNA, chopped and in the CRISPR. Structure 17: 786-788. – reference: Dethlefsen, L., Huse, S., Sogin, M.L., and Relman, D.A. (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6: e280. – reference: Angly, F.E., Felts, B., Breitbart, M., Salamon, P., Edwards, R.A., Carlson, C., et al. (2006) The marine viromes of four oceanic regions. PLoS Biol 4: e368. – reference: Ledder, R.G., Gilbert, P., Huws, S.A., Aarons, L., Ashley, M.P., Hull, P.S., and McBain, A.J. (2007) Molecular analysis of the subgingival microbiota in health and disease. Appl Environ Microbiol 73: 516-523. – reference: Andersson, A.F., and Banfield, J.F. (2008) Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320: 1047-1050. – reference: Loe, H. (1967) The Gingival Index, the Plaque Index and the Retention Index Systems. J Periodontol 38 (Suppl.): 610-616. – reference: Pride, D.T., Sun, C.L., Salzman, J., Rao, N., Loomer, P., Armitage, G.C., et al. (2011a) Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res 21: 126-136. – reference: Marraffini, L.A., and Sontheimer, E.J. (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843-1845. – reference: Saldanha, A.J. (2004) Java Treeview - extensible visualization of microarray data. Bioinformatics 20: 3246-3248. – reference: Thurber, R.V., Haynes, M., Breitbart, M., Wegley, L., and Rohwer, F. (2009) Laboratory procedures to generate viral metagenomes. Nat Protoc 4: 470-483. – reference: Antonopoulos, D.A., Huse, S.M., Morrison, H.G., Schmidt, T.M., Sogin, M.L., and Young, V.B. (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77: 2367-2375. – reference: Hale, C.R., Zhao, P., Olson, S., Duff, M.O., Graveley, B.R., Wells, L., et al. (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139: 945-956. – reference: Heidelberg, J.F., Nelson, W.C., Schoenfeld, T., and Bhaya, D. (2009) Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS ONE 4: e4169. – reference: Breitbart, M., Haynes, M., Kelley, S., Angly, F., Edwards, R.A., Felts, B., et al. (2008) Viral diversity and dynamics in an infant gut. Res Microbiol 159: 367-373. – reference: Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. (2007) The human microbiome project. Nature 449: 804-810. – reference: Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712. – reference: Sakamoto, M., Huang, Y., Ohnishi, M., Umeda, M., Ishikawa, I., and Benno, Y. (2004) Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes. J Med Microbiol 53: 563-571. – reference: Breitbart, M., Salamon, P., Andresen, B., Mahaffy, J.M., Segall, A.M., Mead, D., et al. (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA 99: 14250-14255. – reference: Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., et al. (2009b) A core gut microbiome in obese and lean twins. Nature 457: 480-484. – reference: Jenkinson, H.F., and Lamont, R.J. (2005) Oral microbial communities in sickness and in health. Trends Microbiol 13: 589-595. – reference: Murphy, F.A., Fauquet, C.M., Bishop, D.H.L., Ghabrial, S.A., Jarvis, A.W., Martelli, G.P., et al. (1995) Virus Taxonomy: Sixth Report of the International Committee on Taxonomy of Viruses, Vol. Supplement 10. New York, NY, USA: Springer-Verlag. – reference: Tyson, G.W., and Banfield, J.F. (2008) Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10: 200-207. – reference: Willner, D., Furlan, M., Haynes, M., Schmieder, R., Angly, F.E., Silva, J., et al. (2009) Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE 4: e7370. – reference: Pride, D.T., Salzman, J., Haynes, M., Rohwer, F., Davis-Long, C., White, R.A., 3rd, et al. (2011b) Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J 6: 915-926. – reference: Good, I.J. (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40: 237-264. – reference: Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004) WebLogo: a sequence logo generator. Genome Res 14: 1188-1190. – volume: 6 start-page: 915 year: 2011b end-page: 926 article-title: Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome publication-title: ISME J – volume: 53 start-page: 563 year: 2004 end-page: 571 article-title: Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes publication-title: J Med Microbiol – volume: 155 start-page: 733 year: 2009 end-page: 740 – volume: 190 start-page: 1390 year: 2008 end-page: 1400 – volume: 449 start-page: 804 year: 2007 end-page: 810 article-title: The human microbiome project publication-title: Nature – volume: 6 start-page: e280 year: 2008 article-title: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing publication-title: PLoS Biol – volume: 457 start-page: 480 year: 2009b end-page: 484 article-title: A core gut microbiome in obese and lean twins publication-title: Nature – volume: 4 start-page: e368 year: 2006 article-title: The marine viromes of four oceanic regions publication-title: PLoS Biol – volume: 99 start-page: 14250 year: 2002 end-page: 14255 article-title: Genomic analysis of uncultured marine viral communities publication-title: Proc Natl Acad Sci USA – volume: 466 start-page: 334 year: 2010 end-page: 338 article-title: Viruses in the faecal microbiota of monozytotic twins and their mothers publication-title: Nature – volume: 1 start-page: 6ra14 year: 2009a article-title: The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice publication-title: Sci Transl Med – volume: 321 start-page: 960 year: 2008 end-page: 964 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science – volume: 14 start-page: 1188 year: 2004 end-page: 1190 article-title: WebLogo: a sequence logo generator publication-title: Genome Res – volume: 139 start-page: 945 year: 2009 end-page: 956 article-title: RNA‐guided RNA cleavage by a CRISPR RNA‐Cas protein complex publication-title: Cell – volume: 10 start-page: 200 year: 2008 end-page: 207 article-title: Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses publication-title: Environ Microbiol – volume: 320 start-page: 1047 year: 2008 end-page: 1050 article-title: Virus population dynamics and acquired virus resistance in natural microbial communities publication-title: Science – volume: 108 start-page: 4547 issue: Suppl. 1 year: 2010 end-page: 4553 article-title: Microbes and Health Sackler Colloquium: metagenomic detection of phage‐encoded platelet‐binding factors in the human oral cavity publication-title: Proc Natl Acad Sci USA – volume: 320 start-page: 1647 year: 2008 end-page: 1651 article-title: Evolution of mammals and their gut microbes publication-title: Science – volume: 119 start-page: 87 year: 2005 end-page: 92 article-title: Development of a software tool for in silico simulation of Escherichia coli using a visual programming environment publication-title: J Biotechnol – volume: 77 start-page: 2367 year: 2009 end-page: 2375 article-title: Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation publication-title: Infect Immun – volume: 322 start-page: 1843 year: 2008 end-page: 1845 article-title: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA publication-title: Science – volume: 38 start-page: 610 year: 1967 end-page: 616 article-title: The Gingival Index, the Plaque Index and the Retention Index Systems publication-title: J Periodontol – volume: 20 start-page: 3246 year: 2004 end-page: 3248 article-title: Java Treeview – extensible visualization of microarray data publication-title: Bioinformatics – volume: 4 start-page: e4169 year: 2009 article-title: Germ warfare in a microbial mat community: CRISPRs provide insights into the co‐evolution of host and viral genomes publication-title: PLoS ONE – volume: 4 start-page: 470 year: 2009 end-page: 483 article-title: Laboratory procedures to generate viral metagenomes publication-title: Nat Protoc – volume: 4 start-page: e7370 year: 2009 article-title: Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non‐cystic fibrosis individuals publication-title: PLoS ONE – volume: Supplement 10 year: 1995 – volume: 159 start-page: 367 year: 2008 end-page: 373 article-title: Viral diversity and dynamics in an infant gut publication-title: Res Microbiol – volume: 17 start-page: 786 year: 2009 end-page: 788 article-title: Invasive DNA, chopped and in the CRISPR publication-title: Structure – volume: 40 start-page: 237 year: 1953 end-page: 264 article-title: The population frequencies of species and the estimation of population parameters publication-title: Biometrika – volume: 315 start-page: 1709 year: 2007 end-page: 1712 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science – volume: 73 start-page: 516 year: 2007 end-page: 523 article-title: Molecular analysis of the subgingival microbiota in health and disease publication-title: Appl Environ Microbiol – volume: 21 start-page: 126 year: 2011a end-page: 136 article-title: Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time publication-title: Genome Res – volume: 13 start-page: 589 year: 2005 end-page: 595 article-title: Oral microbial communities in sickness and in health publication-title: Trends Microbiol – ident: e_1_2_7_12_1 doi: 10.1111/j.1574-6941.2006.00105.x – ident: e_1_2_7_14_1 doi: 10.1371/journal.pone.0004169 – ident: e_1_2_7_16_1 doi: 10.1128/AEM.01419-06 – ident: e_1_2_7_6_1 doi: 10.1073/pnas.202488399 – ident: e_1_2_7_34_1 doi: 10.1371/journal.pone.0007370 – ident: e_1_2_7_23_1 doi: 10.1007/978-3-7091-6607-9 – ident: e_1_2_7_7_1 doi: 10.1016/j.resmic.2008.04.006 – ident: e_1_2_7_32_1 doi: 10.1038/nature07540 – ident: e_1_2_7_21_1 doi: 10.1016/j.str.2009.05.002 – ident: e_1_2_7_18_1 doi: 10.1126/science.1155725 – ident: e_1_2_7_10_1 doi: 10.1371/journal.pbio.0060280 – ident: e_1_2_7_30_1 doi: 10.1038/nature06244 – ident: e_1_2_7_31_1 doi: 10.1126/scitranslmed.3000322 – ident: e_1_2_7_5_1 doi: 10.1126/science.1138140 – ident: e_1_2_7_13_1 doi: 10.1016/j.cell.2009.07.040 – ident: e_1_2_7_24_1 doi: 10.1101/gr.111732.110 – ident: e_1_2_7_27_1 doi: 10.1099/jmm.0.45576-0 – ident: e_1_2_7_2_1 doi: 10.1126/science.1157358 – ident: e_1_2_7_20_1 doi: 10.1126/science.1165771 – ident: e_1_2_7_25_1 doi: 10.1038/ismej.2011.169 – ident: e_1_2_7_11_1 doi: 10.1128/JB.01412-07 – ident: e_1_2_7_17_1 doi: 10.1016/j.jbiotec.2005.04.013 – ident: e_1_2_7_8_1 doi: 10.1126/science.1159689 – ident: e_1_2_7_29_1 doi: 10.1038/nprot.2009.10 – volume: 108 start-page: 4547 issue: 1 year: 2010 ident: e_1_2_7_35_1 article-title: Microbes and Health Sackler Colloquium: metagenomic detection of phage‐encoded platelet‐binding factors in the human oral cavity publication-title: Proc Natl Acad Sci USA – ident: e_1_2_7_28_1 doi: 10.1093/bioinformatics/bth349 – ident: e_1_2_7_33_1 doi: 10.1111/j.1462-2920.2007.01444.x – ident: e_1_2_7_4_1 doi: 10.1128/IAI.01520-08 – ident: e_1_2_7_9_1 doi: 10.1101/gr.849004 – ident: e_1_2_7_26_1 doi: 10.1038/nature09199 – ident: e_1_2_7_15_1 doi: 10.1016/j.tim.2005.09.006 – ident: e_1_2_7_19_1 doi: 10.1902/jop.1967.38.6.610 – ident: e_1_2_7_3_1 doi: 10.1371/journal.pbio.0040368 – ident: e_1_2_7_22_1 doi: 10.1099/mic.0.023960-0 – reference: 15150339 - J Med Microbiol. 2004 Jun;53(Pt 6):563-71 – reference: 19095942 - Science. 2008 Dec 19;322(5909):1843-5 – reference: 19300441 - Nat Protoc. 2009;4(4):470-83 – reference: 16214341 - Trends Microbiol. 2005 Dec;13(12):589-95 – reference: 15996785 - J Biotechnol. 2005 Sep 22;119(1):87-92 – reference: 17090214 - PLoS Biol. 2006 Nov;4(11):e368 – reference: 12384570 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14250-5 – reference: 20547834 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4547-53 – reference: 17085691 - Appl Environ Microbiol. 2007 Jan;73(2):516-23 – reference: 17894817 - Environ Microbiol. 2008 Jan;10(1):200-7 – reference: 5237684 - J Periodontol. 1967 Nov-Dec;38(6):Suppl:610-6 – reference: 19816605 - PLoS One. 2009;4(10):e7370 – reference: 19043404 - Nature. 2009 Jan 22;457(7228):480-4 – reference: 19246744 - Microbiology. 2009 Mar;155(Pt 3):733-40 – reference: 18703739 - Science. 2008 Aug 15;321(5891):960-4 – reference: 18065545 - J Bacteriol. 2008 Feb;190(4):1390-400 – reference: 19018661 - PLoS Biol. 2008 Nov 18;6(11):e280 – reference: 18497291 - Science. 2008 May 23;320(5879):1047-50 – reference: 20368178 - Sci Transl Med. 2009 Nov 11;1(6):6ra14 – reference: 18497261 - Science. 2008 Jun 20;320(5883):1647-51 – reference: 17943116 - Nature. 2007 Oct 18;449(7164):804-10 – reference: 17379808 - Science. 2007 Mar 23;315(5819):1709-12 – reference: 19132092 - PLoS One. 2009;4(1):e4169 – reference: 22158393 - ISME J. 2012 May;6(5):915-26 – reference: 19523896 - Structure. 2009 Jun 10;17(6):786-8 – reference: 19945378 - Cell. 2009 Nov 25;139(5):945-56 – reference: 15180930 - Bioinformatics. 2004 Nov 22;20(17):3246-8 – reference: 20631792 - Nature. 2010 Jul 15;466(7304):334-8 – reference: 21149389 - Genome Res. 2011 Jan;21(1):126-36 – reference: 19307217 - Infect Immun. 2009 Jun;77(6):2367-75 – reference: 18541415 - Res Microbiol. 2008 Jun;159(5):367-73 – reference: 15173120 - Genome Res. 2004 Jun;14(6):1188-90 |
SSID | ssj0017370 |
Score | 2.270972 |
Snippet | Summary
Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions... Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2564 |
SubjectTerms | Bacteria community structure Ecosystem ecosystems genetics Humans immunity Inverted Repeat Sequences Inverted Repeat Sequences - genetics Metagenome Metagenome - genetics microbial communities microbiology saliva Saliva - microbiology Saliva - virology Streptococcus Streptococcus - genetics Streptococcus - virology vertebrate viruses virology Viruses Viruses - genetics |
Title | Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses |
URI | https://api.istex.fr/ark:/67375/WNG-CC3LTMZL-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2012.02775.x https://www.ncbi.nlm.nih.gov/pubmed/22583485 https://www.proquest.com/docview/1069203148 https://www.proquest.com/docview/1115531996 https://www.proquest.com/docview/1365037609 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlS6GXvh_uCxVKbw6xZPlxLKHbpaR7KLt06UXoSUtSJ1gxbPo_-n87IzuGhGVZSm_G0SiWMuMZRZ--j5B3lgnLfO3TWk1VmltnUo2SgFpAPlDe4PkZRFucFifn-ecLcTHgn_AsTM8PMf7hhpER39cY4EqHwyBnKaotIUKLTXA3UkywnkToFtZHX0cmqazkUTduMMkOQD1XdrSXqW7jpF9eVYbuV7UxLR3fJ4vdgHo0ymLSbfTE_D7gevw_I35A7g3VK_3Qu9tDcss1j8idXs9y-5j8mY2qhoGuPDXLDnkYnKVtlLxvl1uK_BSwllYG7oYfUPzTNSwFIm3CTwPt1pAcAlWNpXgC75cLYEGjkiANCvetKJJOwUPonmcarpRV6x5REOhmNTRrt9hBF1x4Qs6PP57NTtJB9yE1ogI_yVwGflVUQnBTGuaQUs-LXEO-LYz2DBl9MstL1F2qitwyXRVV7WqTCyhXfMafkqNm1bjnhCK_Wq1Lxr3HLelMO1sIBvnY2mnpPE9IufuNpRlI0VGbYyn3FkdM4qRLnHQZJ11eJiQbLdc9McgNbN5HNxoNVLtAYB189u30k5zN-Pzsy_e5nCfk7c7PJIQ77uGoxq26AF9RQK8cFrHXtMlQDArh5de0gRCZIiCqTsiz3pHHp4JXfMXzSiSkiO544_FJeHXg1Yt_NXxJ7uLtHsP3ihxt2s69hqJvo9_EcP4Lo6RIog |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qrRBseD_Mc5CAnaN6xuPHggVKKSlNs0CpqNi4nodp1eBEdiIS_oOv4Vf4GO61HUuJqqpC6oKd5cw445m59871nDkH4LXh0vAsztw43U5d31jtKpIEVBLjQZppOj9DaItB0Dv0Px3Jow34vTwLU_NDtB_cyDIqf00GTh-k162cuyS3RBAt3qHtSNmZNwjLfbv4gflb-W5vBwf7Dee7H4bdnttIDLhaRtgkz3r4CkEkpdCh5pbY2zLpK3TtgVYZJ_IYz4iQJH6iwDdcRUEU21j7EiNj5gl87jXYIkFxIu7f-dxyV3mhqJTqmjZ6azCic1u-Ehu3aJjn5y18V9fRVSDcvQ1_ll1Y41_OOrOp6uifa-yS_2kf34FbzQKdva8t6i5s2PweXK8lOxf34Ve3FW4s2ThjejQjqglrWGG_EaR3tGBEwVGgp9Z4tzzB_IZNMNupmCFONZabYPwrWZobRocMv9sSa7BKLJGVKW3NMeLVwkaomkobr1KTTmrQRMmm46ZYsaAHzEpbPoDDK-mTh7CZj3P7GBhRyMUq5CLLaNfdU9YEkuOSw5jt0GbCgXA5qRLd8L6T_MgoWcn_eEKDnNAgJ9UgJ3MHvLbmpOY-uUSdt9W8bSukxRlhB_G3L4OPSbcr-sODr_2k78Cr5cRO0KPRNlWa2_GsxL8I8KkC8_QLynikd0UI-gvKCMw-CPMVO_Cotpy2VRjFIuFH0oGgmv-Xfr8EvSNdPfnXii_hRm94gB2wN9h_CjepSA1ZfAab02Jmn-Mad6peVL6EwfFVG9Zf16Gj-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4am0C8cL-Eq5GAt1SNE-fywANqKRsrFUKbmHjxEl8AraRR04qW_8Gf4a_wZzgnSSO1mqYJaQ-8Ra3tOrbPOT715-8DeK650Nwm1k3SbuoG2ig3I0nATGA8SK2i-zOEthiFu4fBuyNxtAW_V3dhan6I9g83sozKX5OBF9puGjl3SW2JEFq8Q6eRorNoAJb7ZvkD07fy1V4f5_oF54M3B71dt1EYcJWIsUee8fANwlgIX0WKGyJvsyLI0LOHKrOcuGM87Uek8BOHgeZZHMaJSVQgMDBaz8d2L8FOEHYTko3of2ypq7zIr4Tqmj56GyiiU3u-Fhp3aJYXp-1717fRVRwcXIc_qxGs4S8nnfks66ifG-SS_-cQ34Brzfacva7t6SZsmfwWXK4FO5e34VevlW0s2cQyNZ4T0YTRbGq-EKB3vGREwDFFP63w0_IrZjeswFyn4oX4prBcgdGvZGmuGV0x_G5KrMEqqURWpnQwx4hVCzuR1UTa-JTqtKghEyWbTZpi0yU1MC9NeQcOL2RM7sJ2PsnNfWBEIJdkEfetpTN3LzM6FBw3HFp3I2N9B6LVmpKqYX0n8ZGxXMv-uKRJljTJsppkuXDAa2sWNfPJOeq8rJZtWyGdnhByEL_7NHorez1_ePD-81AOHXi2WtcS_RkdUqW5mcxL_IkQW_UxSz-jjEdqV4SfP6OMj7kHIb4SB-7VhtP2CmNY7AexcCCslv-530-ib6SnB_9a8Slc-dAfyOHeaP8hXKUSNV7xEWzPpnPzGDe4s-xJ5UkYHF-0Xf0FIDqiqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparisons+of+clustered+regularly+interspaced+short+palindromic+repeats+and+viromes+in+human+saliva+reveal+bacterial+adaptations+to+salivary+viruses&rft.jtitle=Environmental+microbiology&rft.au=Pride%2C+David+T.&rft.au=Salzman%2C+Julia&rft.au=Relman%2C+David+A.&rft.date=2012-09-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=14&rft.issue=9&rft.spage=2564&rft.epage=2576&rft_id=info:doi/10.1111%2Fj.1462-2920.2012.02775.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1462_2920_2012_02775_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |