Combining Family- and Population-Based Imputation Data for Association Analysis of Rare and Common Variants in Large Pedigrees

ABSTRACT In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family‐based association studies using relatively large pedigrees are suitable for bot...

Full description

Saved in:
Bibliographic Details
Published inGenetic epidemiology Vol. 38; no. 7; pp. 579 - 590
Main Authors Saad, Mohamad, Wijsman, Ellen M.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0741-0395
1098-2272
1098-2272
DOI10.1002/gepi.21844

Cover

Abstract ABSTRACT In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family‐based association studies using relatively large pedigrees are suitable for both rare and common variant identification. Because of the high cost of sequencing technologies, imputation methods are important for increasing the amount of information at low cost. A recent family‐based imputation method, Genotype Imputation Given Inheritance (GIGI), is able to handle large pedigrees and accurately impute rare variants, but does less well for common variants where population‐based methods perform better. Here, we propose a flexible approach to combine imputation data from both family‐ and population‐based methods. We also extend the Sequence Kernel Association Test for Rare and Common variants (SKAT‐RC), originally proposed for data from unrelated subjects, to family data in order to make use of such imputed data. We call this extension “famSKAT‐RC.” We compare the performance of famSKAT‐RC and several other existing burden and kernel association tests. In simulated pedigree sequence data, our results show an increase of imputation accuracy from use of our combining approach. Also, they show an increase of power of the association tests with this approach over the use of either family‐ or population‐based imputation methods alone, in the context of rare and common variants. Moreover, our results show better performance of famSKAT‐RC compared to the other considered tests, in most scenarios investigated here.
AbstractList ABSTRACT In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family‐based association studies using relatively large pedigrees are suitable for both rare and common variant identification. Because of the high cost of sequencing technologies, imputation methods are important for increasing the amount of information at low cost. A recent family‐based imputation method, Genotype Imputation Given Inheritance (GIGI), is able to handle large pedigrees and accurately impute rare variants, but does less well for common variants where population‐based methods perform better. Here, we propose a flexible approach to combine imputation data from both family‐ and population‐based methods. We also extend the Sequence Kernel Association Test for Rare and Common variants (SKAT‐RC), originally proposed for data from unrelated subjects, to family data in order to make use of such imputed data. We call this extension “famSKAT‐RC.” We compare the performance of famSKAT‐RC and several other existing burden and kernel association tests. In simulated pedigree sequence data, our results show an increase of imputation accuracy from use of our combining approach. Also, they show an increase of power of the association tests with this approach over the use of either family‐ or population‐based imputation methods alone, in the context of rare and common variants. Moreover, our results show better performance of famSKAT‐RC compared to the other considered tests, in most scenarios investigated here.
In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family-based association studies using relatively large pedigrees are suitable for both rare and common variant identification. Because of the high cost of sequencing technologies, imputation methods are important for increasing the amount of information at low cost. A recent family-based imputation method, Genotype Imputation Given Inheritance (GIGI), is able to handle large pedigrees and accurately impute rare variants, but does less well for common variants where population-based methods perform better. Here, we propose a flexible approach to combine imputation data from both family- and population-based methods. We also extend the Sequence Kernel Association Test for Rare and Common variants (SKAT-RC), originally proposed for data from unrelated subjects, to family data in order to make use of such imputed data. We call this extension "famSKAT-RC." We compare the performance of famSKAT-RC and several other existing burden and kernel association tests. In simulated pedigree sequence data, our results show an increase of imputation accuracy from use of our combining approach. Also, they show an increase of power of the association tests with this approach over the use of either family- or population-based imputation methods alone, in the context of rare and common variants. Moreover, our results show better performance of famSKAT-RC compared to the other considered tests, in most scenarios investigated here.
In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family-based association studies using relatively large pedigrees are suitable for both rare and common variant identification. Because of the high cost of sequencing technologies, imputation methods are important for increasing the amount of information at low cost. A recent family-based imputation method, Genotype Imputation Given Inheritance (GIGI), is able to handle large pedigrees and accurately impute rare variants, but does less well for common variants where population-based methods perform better. Here, we propose a flexible approach to combine imputation data from both family- and population-based methods. We also extend the Sequence Kernel Association Test for Rare and Common variants (SKAT-RC), originally proposed for data from unrelated subjects, to family data in order to make use of such imputed data. We call this extension "famSKAT-RC." We compare the performance of famSKAT-RC and several other existing burden and kernel association tests. In simulated pedigree sequence data, our results show an increase of imputation accuracy from use of our combining approach. Also, they show an increase of power of the association tests with this approach over the use of either family- or population-based imputation methods alone, in the context of rare and common variants. Moreover, our results show better performance of famSKAT-RC compared to the other considered tests, in most scenarios investigated here.In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family-based association studies using relatively large pedigrees are suitable for both rare and common variant identification. Because of the high cost of sequencing technologies, imputation methods are important for increasing the amount of information at low cost. A recent family-based imputation method, Genotype Imputation Given Inheritance (GIGI), is able to handle large pedigrees and accurately impute rare variants, but does less well for common variants where population-based methods perform better. Here, we propose a flexible approach to combine imputation data from both family- and population-based methods. We also extend the Sequence Kernel Association Test for Rare and Common variants (SKAT-RC), originally proposed for data from unrelated subjects, to family data in order to make use of such imputed data. We call this extension "famSKAT-RC." We compare the performance of famSKAT-RC and several other existing burden and kernel association tests. In simulated pedigree sequence data, our results show an increase of imputation accuracy from use of our combining approach. Also, they show an increase of power of the association tests with this approach over the use of either family- or population-based imputation methods alone, in the context of rare and common variants. Moreover, our results show better performance of famSKAT-RC compared to the other considered tests, in most scenarios investigated here.
In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family-based association studies using relatively large pedigrees are suitable for both rare and common variant identification. Because of the high cost of sequencing technologies, imputation methods are important for increasing the amount of information at low cost. A recent family-based imputation method, GIGI, is able to handle large pedigrees and accurately impute rare variants, but does less well for common variants where population-based methods perform better. Here, we propose a flexible approach to combine imputation data from both family- and population-based methods. We also extend the association test SKAT-RC, originally proposed for data from unrelated subjects, to family data in order to make use of such imputed data. We call this extension “famSKAT-RC”. We compare the performance of famSKAT-RC and several other existing burden and kernel association tests. In simulated pedigree sequence data, our results show an increase of imputation accuracy from use of our combining approach. Also, they show an increase of power of the association tests with this approach over the use of either family- or population-based imputation methods alone, in the context of rare and common variants. Moreover, our results showed better performance of famSKAT-RC compared to the other considered tests, in most scenarios investigated here.
In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family-based association studies using relatively large pedigrees are suitable for both rare and common variant identification. Because of the high cost of sequencing technologies, imputation methods are important for increasing the amount of information at low cost. A recent family-based imputation method, Genotype Imputation Given Inheritance (GIGI), is able to handle large pedigrees and accurately impute rare variants, but does less well for common variants where population-based methods perform better. Here, we propose a flexible approach to combine imputation data from both family- and population-based methods. We also extend the Sequence Kernel Association Test for Rare and Common variants (SKAT-RC), originally proposed for data from unrelated subjects, to family data in order to make use of such imputed data. We call this extension "famSKAT-RC." We compare the performance of famSKAT-RC and several other existing burden and kernel association tests. In simulated pedigree sequence data, our results show an increase of imputation accuracy from use of our combining approach. Also, they show an increase of power of the association tests with this approach over the use of either family- or population-based imputation methods alone, in the context of rare and common variants. Moreover, our results show better performance of famSKAT-RC compared to the other considered tests, in most scenarios investigated here. [PUBLICATION ABSTRACT]
Author Saad, Mohamad
Wijsman, Ellen M.
AuthorAffiliation 1 Division of Medical Genetics, Department of Medicine; and Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
AuthorAffiliation_xml – name: 1 Division of Medical Genetics, Department of Medicine; and Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
Author_xml – sequence: 1
  givenname: Mohamad
  surname: Saad
  fullname: Saad, Mohamad
  organization: Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
– sequence: 2
  givenname: Ellen M.
  surname: Wijsman
  fullname: Wijsman, Ellen M.
  email: wijsman@u.washington.edu
  organization: Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25132070$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URKeFDQ-ALLFBSCm-xIm9QRqGdhgxghEqrcTGchInuCR2sBNgNjw77qRTQYUQK1vnfP-vczsCB9ZZDcBjjE4wQuRFo3tzQjBP03tghpHgCSE5OQAzlKc4QVSwQ3AUwhVCGKeCPQCHhGFKUI5m4OfCdYWxxjbwTHWm3SZQ2QpuXD-2ajDOJq9U0BVcdf047ALwtRoUrJ2H8xBcaabg3Kp2G0yAroYflNc7l-jdxdyF8kbZIUBj4Vr5RsONrkzjtQ4Pwf1atUE_unmPwcez0_PFm2T9frlazNdJybhIE8oJRiXBDGc6pVWKCyR0JQTKaVbHH1VlTTmmNS3KitS8KDjjTJd5lZGsiM0eg5eTbz8Wna5KbQevWtl70ym_lU4Z-WfGms-ycd9kigVCeRYNnt0YePd11GGQnQmlbltltRuDxBnGGWE8x_-BIkFRHlcU0ad30Cs3-jjKSDGeYSKY4JF68nvxt1XvtxgBNAGldyF4XcvSTMuKvZhWYiSvD0VeH4rcHUqUPL8j2bv-FcYT_N20evsPUi5PN6u9Jpk0Jgz6x61G-S8yy2nO5OW7pTxnm4v15VsuP9FfcPbdeA
CitedBy_id crossref_primary_10_32604_biocell_2023_027884
crossref_primary_10_1038_s41598_023_49931_3
crossref_primary_10_1007_s40362_017_0041_x
crossref_primary_10_3389_fgene_2014_00369
crossref_primary_10_1093_bib_bbad412
crossref_primary_10_1016_j_tig_2020_07_006
crossref_primary_10_1101_gr_236315_118
crossref_primary_10_1371_journal_pcbi_1011488
crossref_primary_10_12688_f1000research_15949_2
crossref_primary_10_12688_f1000research_15949_1
crossref_primary_10_1038_s41598_018_38469_4
crossref_primary_10_1186_s12863_015_0318_5
crossref_primary_10_1186_s12919_016_0046_5
crossref_primary_10_1002_cphg_84
crossref_primary_10_1002_gepi_22147
crossref_primary_10_3389_fendo_2022_847692
crossref_primary_10_1093_toxsci_kfv164
crossref_primary_10_1161_JAHA_124_036193
crossref_primary_10_1093_bioinformatics_btz221
crossref_primary_10_1111_tan_15075
crossref_primary_10_1002_gepi_22180
crossref_primary_10_1186_s12859_022_04974_7
crossref_primary_10_1186_s12919_016_0032_y
crossref_primary_10_1186_s12919_016_0033_x
crossref_primary_10_1016_j_ajhg_2016_05_020
crossref_primary_10_1515_labmed_2016_0031
Cites_doi 10.1016/j.neuron.2004.11.005
10.1038/nrg2554
10.1038/ng2088
10.1016/j.ajhg.2013.02.011
10.1038/ng.2270
10.1038/ng.f.136
10.1101/gr.100040.109
10.1038/ng.2271
10.1126/science.273.5281.1516
10.1038/nrg2867
10.1007/s00439-012-1190-2
10.1186/1471-2156-14-8
10.1016/j.ajhg.2008.06.024
10.1016/j.ajhg.2011.05.029
10.1002/gepi.21775
10.1016/j.ajhg.2012.06.007
10.1016/j.ajhg.2013.04.004
10.1126/science.276.5321.2045
10.1038/ng1863
10.1038/349704a0
10.1002/gepi.21676
10.1038/nature09534
10.1002/gepi.21703
10.1016/j.ajhg.2013.04.015
10.1126/science.1411576
10.1038/nrg3118
10.1186/1753-6561-8-S1-S19
10.1038/nrg2779
10.1371/journal.pone.0003551
10.1159/000313555
10.1007/978-1-59745-389-9_6
10.1016/S0140-6736(10)62345-8
10.1093/hmg/10.26.3037
10.1093/hmg/ddq497
10.1146/annurev.genom.9.081307.164242
10.1002/gepi.21776
10.1016/j.ajhg.2009.01.005
10.1186/1471-2105-7-303
10.1093/biostatistics/4.1.57
ContentType Journal Article
Copyright 2014 WILEY PERIODICALS, INC.
2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 WILEY PERIODICALS, INC.
– notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/gepi.21844
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Genetics Abstracts

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
EISSN 1098-2272
EndPage 590
ExternalDocumentID PMC4190076
3452552061
25132070
10_1002_gepi_21844
GEPI21844
ark_67375_WNG_T5PVLWK8_Z
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health award
  funderid: P50 AG005136; R01 AG039700; R01 HD054562; R37 GM046255; R01 MH092367; R01 MH094293
– fundername: NIMH NIH HHS
  grantid: R01 MH094293
– fundername: NICHD NIH HHS
  grantid: R01 HD054562
– fundername: NIA NIH HHS
  grantid: R01 AG039700
– fundername: NICHD NIH HHS
  grantid: R01HD054562
– fundername: NIGMS NIH HHS
  grantid: R37 GM046255
– fundername: NIA NIH HHS
  grantid: P50 AG005136
– fundername: NIMH NIH HHS
  grantid: R01 MH092367
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
XG1
XV2
ZGI
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5894-38210c21516e43d41b09ed990736f9ed3acf3813f3bcd2f8bb8585ec7d626b513
IEDL.DBID DR2
ISSN 0741-0395
1098-2272
IngestDate Thu Aug 21 18:31:58 EDT 2025
Fri Jul 11 08:21:29 EDT 2025
Fri Jul 11 12:26:43 EDT 2025
Fri Jul 25 12:23:55 EDT 2025
Thu Apr 03 07:06:11 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Tue Jul 01 04:23:56 EDT 2025
Wed Jan 22 16:22:03 EST 2025
Wed Oct 30 09:48:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords variance components
mixed linear model
sequence data
inheritance vectors
association analysis
kernel statistic
MCMC
burden test
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY PERIODICALS, INC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5894-38210c21516e43d41b09ed990736f9ed3acf3813f3bcd2f8bb8585ec7d626b513
Notes National Institutes of Health award - No. P50 AG005136; No. R01 AG039700; No. R01 HD054562; No. R37 GM046255; No. R01 MH092367; No. R01 MH094293
istex:593E2E97AEEFF6238A0233E34AACD6AEB89B0864
ark:/67375/WNG-T5PVLWK8-Z
ArticleID:GEPI21844
This article was published online on 1 August 2014. Subsequently, it was determined that a typographical error had been introduced in the last block of equations on page 5, and the correction was published on 22 August 2014.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2725-6669
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/gepi.21844
PMID 25132070
PQID 1586129598
PQPubID 105460
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4190076
proquest_miscellaneous_1611625871
proquest_miscellaneous_1609307272
proquest_journals_1586129598
pubmed_primary_25132070
crossref_citationtrail_10_1002_gepi_21844
crossref_primary_10_1002_gepi_21844
wiley_primary_10_1002_gepi_21844_GEPI21844
istex_primary_ark_67375_WNG_T5PVLWK8_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2014
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: November 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Genetic epidemiology
PublicationTitleAlternate Genet. Epidemiol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Blue EM, Cheung C, Glazner C, Conomos M, Lewis S, Sverdlov S, Thornton T, Wijsman E. 2014. Identity-by-descent graphs offer a flexible framework for imputation and both linkage and association analyses. BMC Proc 8(Suppl 1):S19.
Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA, Rinard K, Foti A, Terwilliger JD, Juvonen H and others. 2001. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 10(26):3037-3048.
Badke YM, Bates RO, Ernst CW, Schwab C, Fix J, Van Tassell CP, Steibel JP. 2013. Methods of tagSNP selection and other variables affecting imputation accuracy in swine. BMC Genet 14:8.
Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simon-Sanchez J, Schulte C, Lesage S, Sveinbjornsdottir S and others. 2011. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641-649.
Ott J. 1991. Analysis of Human Genetic Linkage. Baltimore, MD: Johns Hopkins University Press.
Bansal V, Libiger O, Torkamani A, Schork NJ. 2010b. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11(11):773-785.
Chen H, Meigs JB, Dupuis J. 2013. Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 37(2):196-204.
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R and others. 1997. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276(5321):2045-2047.
Wijsman EM. 2012. The role of large pedigrees in an era of high-throughput sequencing. Hum Genet 131(10):1555-1563.
Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L and others. 1991. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349(6311):704-706.
Schifano ED, Li L, Christiani DC, Lin X. 2013. Genome-wide association analysis for multiple continuous secondary phenotypes. Am J Hum Genet 92(5):744-759.
Zhang D, Lin X. 2003. Hypothesis testing in semiparametric additive mixed models. Biostatistics 4(1):57-74.
Frazer KA, Murray SS, Schork NJ, Topol EJ. 2009. Human genetic variation and its contribution to complex traits. Nat Rev Genet 10(4):241-251.
Thompson E. 2011. The structure of genetic linkage data: from LIPED to 1M SNPs. Hum Hered 71(2):86-96.
Iyengar SK, Elston RC. 2007. The genetic basis of complex traits: rare variants or "common gene, common disease"? Methods Mol Biol 376:71-84.
Li B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83(3):311-321.
Risch N, Merikangas K. 1996. The future of genetic studies of complex human diseases. Science 273(5281):1516-1517.
Saad M, Wijsman EM. 2014. Power of family-based association designs to detect rare variants in large pedigrees using imputed genotypes. Genet Epidemiol 38(1):1-9.
Marchini J, Howie B, Myers S, McVean G, Donnelly P. 2007. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39(7):906-913.
Schifano ED, Epstein MP, Bielak LF, Jhun MA, Kardia SL, Peyser PA, Lin X. 2012. SNP set association analysis for familial data. Genet Epidemiol 36(1):797-810.
Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, Christiani DC, Wurfel MM, Lin X. 2012. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 91(2):224-237.
Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso ME and others. 1992. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 258(5082):668-671.
Cheung CY, Thompson EA, Wijsman EM. 2013. GIGI: an approach to effective imputation of dense genotypes on large pedigrees. Am J Hum Genet 92(4):504-516.
Jiang D, McPeek MS. 2014. Robust rare variant association testing for quantitative traits in samples with related individuals. Genet Epidemiol 38(1):10-20.
Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB and others. 2004. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601-607.
Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. 2010. A map of human genome variation from population-scale sequencing. Nature 467(7319):1061-1073.
Burdick JT, Chen WM, Abecasis GR, Cheung VG. 2006. In silico method for inferring genotypes in pedigrees. Nat Genet 38(9):1002-1004.
Nicolas P, Sun F, Li LM. 2006. A model-based approach to selection of tag SNPs. BMC Bioinformatics 7:303.
Pei YF, Li J, Zhang L, Papasian CJ, Deng HW. 2008. Analyses and comparison of accuracy of different genotype imputation methods. PLoS One 3(10):e3551.
Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, Hutchinson A, Deng X, Liu C, Horner MJ and others. 2012. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44(6):651-658.
Bodmer W, Bonilla C. 2008. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40(6):695-701.
Saad M, Lesage S, Saint-Pierre A, Corvol JC, Zelenika D, Lambert JC, Vidailhet M, Mellick GD, Lohmann E, Durif F and others. 2011. Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in the European population. Hum Mol Genet 20(3):615-627.
Li Y, Willer C, Sanna S, Abecasis G. 2009. Genotype imputation. Annu Rev Genomics Hum Genet 10:387-406.
Gibson G. 2011. Rare and common variants: twenty arguments. Nat Rev Genet 13(2):135-145.
Curtis D. 2012. A rapid method for combined analysis of common and rare variants at the level of a region, gene, or pathway. Adv Appl Bioinform Chem 5:1-9.
Wijsman EM. 1987. A deductive method of haplotype analysis in pedigrees. Am J Hum Genet 41(3):356-373.
Delepine M, Pociot F, Habita C, Hashimoto L, Froguel P, Rotter J, Cambon-Thomsen A, Deschamps I, Djoulah S, Weissenbach J and others. 1997. Evidence of a non-MHC susceptibility locus in type I diabetes linked to HLA on chromosome 6. Am J Hum Genet 60(1):174-187.
Browning BL, Browning SR. 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84(2):210-223.
Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, Ling H, Hetrick KN, Pugh EW, Amos C and others. 2012. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44(6):642-650.
Li Y, Ding J, Abecasis G. 2006. Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet 79:S2290.
Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X. 2013. Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet 92(6):841-853.
Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89(1):82-93.
Cirulli ET, Goldstein DB. 2010. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415-425.
Bansal V, Harismendy O, Tewhey R, Murray SS, Schork NJ, Topol EJ, Frazer KA. 2010a. Accurate detection and genotyping of SNPs utilizing population sequencing data. Genome Res 20(4):537-545.
2007; 39
2010; 11
2004; 44
2011; 377
2009; 84
1997; 60
2006; 79
2006; 38
2010; 467
1997; 276
2006; 7
2013; 92
2011; 13
2008; 3
1991
2012; 36
2010b; 11
2007; 376
2012; 91
2012; 131
2013; 37
2013; 14
2010a; 20
2009; 10
1987; 41
2011; 71
1992; 258
2014; 38
2011; 20
2003; 4
2011; 89
1996; 273
1991; 349
2008; 83
2014; 8
2008; 40
2012; 5
2012; 44
2001; 10
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Curtis D. (e_1_2_7_13_1) 2012; 5
Wijsman EM. (e_1_2_7_41_1) 1987; 41
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
Ott J. (e_1_2_7_30_1) 1991
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_42_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
Schifano ED (e_1_2_7_38_1) 2012; 36
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Delepine M (e_1_2_7_14_1) 1997; 60
e_1_2_7_29_1
Li Y (e_1_2_7_25_1) 2006; 79
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_39_1
References_xml – reference: Burdick JT, Chen WM, Abecasis GR, Cheung VG. 2006. In silico method for inferring genotypes in pedigrees. Nat Genet 38(9):1002-1004.
– reference: Zhang D, Lin X. 2003. Hypothesis testing in semiparametric additive mixed models. Biostatistics 4(1):57-74.
– reference: Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R and others. 1997. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276(5321):2045-2047.
– reference: Delepine M, Pociot F, Habita C, Hashimoto L, Froguel P, Rotter J, Cambon-Thomsen A, Deschamps I, Djoulah S, Weissenbach J and others. 1997. Evidence of a non-MHC susceptibility locus in type I diabetes linked to HLA on chromosome 6. Am J Hum Genet 60(1):174-187.
– reference: Pei YF, Li J, Zhang L, Papasian CJ, Deng HW. 2008. Analyses and comparison of accuracy of different genotype imputation methods. PLoS One 3(10):e3551.
– reference: Chen H, Meigs JB, Dupuis J. 2013. Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 37(2):196-204.
– reference: Saad M, Lesage S, Saint-Pierre A, Corvol JC, Zelenika D, Lambert JC, Vidailhet M, Mellick GD, Lohmann E, Durif F and others. 2011. Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in the European population. Hum Mol Genet 20(3):615-627.
– reference: Jiang D, McPeek MS. 2014. Robust rare variant association testing for quantitative traits in samples with related individuals. Genet Epidemiol 38(1):10-20.
– reference: Browning BL, Browning SR. 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84(2):210-223.
– reference: Bodmer W, Bonilla C. 2008. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40(6):695-701.
– reference: Curtis D. 2012. A rapid method for combined analysis of common and rare variants at the level of a region, gene, or pathway. Adv Appl Bioinform Chem 5:1-9.
– reference: Wijsman EM. 2012. The role of large pedigrees in an era of high-throughput sequencing. Hum Genet 131(10):1555-1563.
– reference: Risch N, Merikangas K. 1996. The future of genetic studies of complex human diseases. Science 273(5281):1516-1517.
– reference: Li Y, Ding J, Abecasis G. 2006. Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet 79:S2290.
– reference: Li Y, Willer C, Sanna S, Abecasis G. 2009. Genotype imputation. Annu Rev Genomics Hum Genet 10:387-406.
– reference: Cheung CY, Thompson EA, Wijsman EM. 2013. GIGI: an approach to effective imputation of dense genotypes on large pedigrees. Am J Hum Genet 92(4):504-516.
– reference: Li B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83(3):311-321.
– reference: Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X. 2013. Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet 92(6):841-853.
– reference: Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, Ling H, Hetrick KN, Pugh EW, Amos C and others. 2012. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44(6):642-650.
– reference: Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB and others. 2004. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601-607.
– reference: Bansal V, Harismendy O, Tewhey R, Murray SS, Schork NJ, Topol EJ, Frazer KA. 2010a. Accurate detection and genotyping of SNPs utilizing population sequencing data. Genome Res 20(4):537-545.
– reference: Bansal V, Libiger O, Torkamani A, Schork NJ. 2010b. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11(11):773-785.
– reference: Gibson G. 2011. Rare and common variants: twenty arguments. Nat Rev Genet 13(2):135-145.
– reference: Ott J. 1991. Analysis of Human Genetic Linkage. Baltimore, MD: Johns Hopkins University Press.
– reference: Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, Hutchinson A, Deng X, Liu C, Horner MJ and others. 2012. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44(6):651-658.
– reference: Nicolas P, Sun F, Li LM. 2006. A model-based approach to selection of tag SNPs. BMC Bioinformatics 7:303.
– reference: Schifano ED, Epstein MP, Bielak LF, Jhun MA, Kardia SL, Peyser PA, Lin X. 2012. SNP set association analysis for familial data. Genet Epidemiol 36(1):797-810.
– reference: Wijsman EM. 1987. A deductive method of haplotype analysis in pedigrees. Am J Hum Genet 41(3):356-373.
– reference: Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, Christiani DC, Wurfel MM, Lin X. 2012. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 91(2):224-237.
– reference: Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA, Rinard K, Foti A, Terwilliger JD, Juvonen H and others. 2001. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 10(26):3037-3048.
– reference: Marchini J, Howie B, Myers S, McVean G, Donnelly P. 2007. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39(7):906-913.
– reference: Schifano ED, Li L, Christiani DC, Lin X. 2013. Genome-wide association analysis for multiple continuous secondary phenotypes. Am J Hum Genet 92(5):744-759.
– reference: Cirulli ET, Goldstein DB. 2010. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415-425.
– reference: Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simon-Sanchez J, Schulte C, Lesage S, Sveinbjornsdottir S and others. 2011. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641-649.
– reference: Frazer KA, Murray SS, Schork NJ, Topol EJ. 2009. Human genetic variation and its contribution to complex traits. Nat Rev Genet 10(4):241-251.
– reference: Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89(1):82-93.
– reference: Badke YM, Bates RO, Ernst CW, Schwab C, Fix J, Van Tassell CP, Steibel JP. 2013. Methods of tagSNP selection and other variables affecting imputation accuracy in swine. BMC Genet 14:8.
– reference: Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso ME and others. 1992. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 258(5082):668-671.
– reference: Thompson E. 2011. The structure of genetic linkage data: from LIPED to 1M SNPs. Hum Hered 71(2):86-96.
– reference: Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L and others. 1991. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349(6311):704-706.
– reference: Iyengar SK, Elston RC. 2007. The genetic basis of complex traits: rare variants or "common gene, common disease"? Methods Mol Biol 376:71-84.
– reference: Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. 2010. A map of human genome variation from population-scale sequencing. Nature 467(7319):1061-1073.
– reference: Saad M, Wijsman EM. 2014. Power of family-based association designs to detect rare variants in large pedigrees using imputed genotypes. Genet Epidemiol 38(1):1-9.
– reference: Blue EM, Cheung C, Glazner C, Conomos M, Lewis S, Sverdlov S, Thornton T, Wijsman E. 2014. Identity-by-descent graphs offer a flexible framework for imputation and both linkage and association analyses. BMC Proc 8(Suppl 1):S19.
– volume: 89
  start-page: 82
  issue: 1
  year: 2011
  end-page: 93
  article-title: Rare‐variant association testing for sequencing data with the sequence kernel association test
  publication-title: Am J Hum Genet
– volume: 276
  start-page: 2045
  issue: 5321
  year: 1997
  end-page: 2047
  article-title: Mutation in the alpha‐synuclein gene identified in families with Parkinson's disease
  publication-title: Science
– volume: 44
  start-page: 642
  issue: 6
  year: 2012
  end-page: 650
  article-title: Detectable clonal mosaicism from birth to old age and its relationship to cancer
  publication-title: Nat Genet
– volume: 38
  start-page: 1
  issue: 1
  year: 2014
  end-page: 9
  article-title: Power of family‐based association designs to detect rare variants in large pedigrees using imputed genotypes
  publication-title: Genet Epidemiol
– volume: 131
  start-page: 1555
  issue: 10
  year: 2012
  end-page: 1563
  article-title: The role of large pedigrees in an era of high‐throughput sequencing
  publication-title: Hum Genet
– volume: 11
  start-page: 773
  issue: 11
  year: 2010b
  end-page: 785
  article-title: Statistical analysis strategies for association studies involving rare variants
  publication-title: Nat Rev Genet
– volume: 38
  start-page: 1002
  issue: 9
  year: 2006
  end-page: 1004
  article-title: In silico method for inferring genotypes in pedigrees
  publication-title: Nat Genet
– volume: 3
  start-page: e3551
  issue: 10
  year: 2008
  article-title: Analyses and comparison of accuracy of different genotype imputation methods
  publication-title: PLoS One
– volume: 20
  start-page: 537
  issue: 4
  year: 2010a
  end-page: 545
  article-title: Accurate detection and genotyping of SNPs utilizing population sequencing data
  publication-title: Genome Res
– volume: 273
  start-page: 1516
  issue: 5281
  year: 1996
  end-page: 1517
  article-title: The future of genetic studies of complex human diseases
  publication-title: Science
– volume: 38
  start-page: 10
  issue: 1
  year: 2014
  end-page: 20
  article-title: Robust rare variant association testing for quantitative traits in samples with related individuals
  publication-title: Genet Epidemiol
– volume: 44
  start-page: 651
  issue: 6
  year: 2012
  end-page: 658
  article-title: Detectable clonal mosaicism and its relationship to aging and cancer
  publication-title: Nat Genet
– volume: 4
  start-page: 57
  issue: 1
  year: 2003
  end-page: 74
  article-title: Hypothesis testing in semiparametric additive mixed models
  publication-title: Biostatistics
– volume: 11
  start-page: 415
  issue: 6
  year: 2010
  end-page: 425
  article-title: Uncovering the roles of rare variants in common disease through whole‐genome sequencing
  publication-title: Nat Rev Genet
– volume: 41
  start-page: 356
  issue: 3
  year: 1987
  end-page: 373
  article-title: A deductive method of haplotype analysis in pedigrees
  publication-title: Am J Hum Genet
– volume: 39
  start-page: 906
  issue: 7
  year: 2007
  end-page: 913
  article-title: A new multipoint method for genome‐wide association studies by imputation of genotypes
  publication-title: Nat Genet
– volume: 83
  start-page: 311
  issue: 3
  year: 2008
  end-page: 321
  article-title: Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data
  publication-title: Am J Hum Genet
– volume: 349
  start-page: 704
  issue: 6311
  year: 1991
  end-page: 706
  article-title: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease
  publication-title: Nature
– volume: 79
  start-page: S2290
  year: 2006
  article-title: Mach 1.0: rapid haplotype reconstruction and missing genotype inference
  publication-title: Am J Hum Genet
– volume: 20
  start-page: 615
  issue: 3
  year: 2011
  end-page: 627
  article-title: Genome‐wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in the European population
  publication-title: Hum Mol Genet
– volume: 8
  start-page: S19
  issue: Suppl 1
  year: 2014
  article-title: Identity‐by‐descent graphs offer a flexible framework for imputation and both linkage and association analyses
  publication-title: BMC Proc
– volume: 36
  start-page: 797
  issue: 1
  year: 2012
  end-page: 810
  article-title: SNP set association analysis for familial data
  publication-title: Genet Epidemiol
– volume: 92
  start-page: 744
  issue: 5
  year: 2013
  end-page: 759
  article-title: Genome‐wide association analysis for multiple continuous secondary phenotypes
  publication-title: Am J Hum Genet
– volume: 14
  start-page: 8
  year: 2013
  article-title: Methods of tagSNP selection and other variables affecting imputation accuracy in swine
  publication-title: BMC Genet
– volume: 71
  start-page: 86
  issue: 2
  year: 2011
  end-page: 96
  article-title: The structure of genetic linkage data: from LIPED to 1M SNPs
  publication-title: Hum Hered
– volume: 44
  start-page: 601
  issue: 4
  year: 2004
  end-page: 607
  article-title: Mutations in LRRK2 cause autosomal‐dominant parkinsonism with pleomorphic pathology
  publication-title: Neuron
– volume: 377
  start-page: 641
  issue: 9766
  year: 2011
  end-page: 649
  article-title: Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta‐analysis of genome‐wide association studies
  publication-title: Lancet
– volume: 10
  start-page: 241
  issue: 4
  year: 2009
  end-page: 251
  article-title: Human genetic variation and its contribution to complex traits
  publication-title: Nat Rev Genet
– volume: 5
  start-page: 1
  year: 2012
  end-page: 9
  article-title: A rapid method for combined analysis of common and rare variants at the level of a region, gene, or pathway
  publication-title: Adv Appl Bioinform Chem
– volume: 13
  start-page: 135
  issue: 2
  year: 2011
  end-page: 145
  article-title: Rare and common variants: twenty arguments
  publication-title: Nat Rev Genet
– volume: 258
  start-page: 668
  issue: 5082
  year: 1992
  end-page: 671
  article-title: Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14
  publication-title: Science
– volume: 60
  start-page: 174
  issue: 1
  year: 1997
  end-page: 187
  article-title: Evidence of a non‐MHC susceptibility locus in type I diabetes linked to HLA on chromosome 6
  publication-title: Am J Hum Genet
– volume: 10
  start-page: 3037
  issue: 26
  year: 2001
  end-page: 3048
  article-title: Genome‐wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q
  publication-title: Hum Mol Genet
– volume: 37
  start-page: 196
  issue: 2
  year: 2013
  end-page: 204
  article-title: Sequence kernel association test for quantitative traits in family samples
  publication-title: Genet Epidemiol
– volume: 92
  start-page: 841
  issue: 6
  year: 2013
  end-page: 853
  article-title: Sequence kernel association tests for the combined effect of rare and common variants
  publication-title: Am J Hum Genet
– volume: 40
  start-page: 695
  issue: 6
  year: 2008
  end-page: 701
  article-title: Common and rare variants in multifactorial susceptibility to common diseases
  publication-title: Nat Genet
– volume: 467
  start-page: 1061
  issue: 7319
  year: 2010
  end-page: 1073
  article-title: A map of human genome variation from population‐scale sequencing
  publication-title: Nature
– volume: 10
  start-page: 387
  year: 2009
  end-page: 406
  article-title: Genotype imputation
  publication-title: Annu Rev Genomics Hum Genet
– volume: 7
  start-page: 303
  year: 2006
  article-title: A model‐based approach to selection of tag SNPs
  publication-title: BMC Bioinformatics
– volume: 376
  start-page: 71
  year: 2007
  end-page: 84
  article-title: The genetic basis of complex traits: rare variants or “common gene, common disease”
  publication-title: Methods Mol Biol
– year: 1991
– volume: 84
  start-page: 210
  issue: 2
  year: 2009
  end-page: 223
  article-title: A unified approach to genotype imputation and haplotype‐phase inference for large data sets of trios and unrelated individuals
  publication-title: Am J Hum Genet
– volume: 92
  start-page: 504
  issue: 4
  year: 2013
  end-page: 516
  article-title: GIGI: an approach to effective imputation of dense genotypes on large pedigrees
  publication-title: Am J Hum Genet
– volume: 91
  start-page: 224
  issue: 2
  year: 2012
  end-page: 237
  article-title: Optimal unified approach for rare‐variant association testing with application to small‐sample case‐control whole‐exome sequencing studies
  publication-title: Am J Hum Genet
– ident: e_1_2_7_45_1
  doi: 10.1016/j.neuron.2004.11.005
– ident: e_1_2_7_15_1
  doi: 10.1038/nrg2554
– ident: e_1_2_7_27_1
  doi: 10.1038/ng2088
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ajhg.2013.02.011
– ident: e_1_2_7_20_1
  doi: 10.1038/ng.2270
– ident: e_1_2_7_7_1
  doi: 10.1038/ng.f.136
– ident: e_1_2_7_4_1
  doi: 10.1101/gr.100040.109
– ident: e_1_2_7_22_1
  doi: 10.1038/ng.2271
– ident: e_1_2_7_34_1
  doi: 10.1126/science.273.5281.1516
– ident: e_1_2_7_5_1
  doi: 10.1038/nrg2867
– ident: e_1_2_7_42_1
  doi: 10.1007/s00439-012-1190-2
– ident: e_1_2_7_3_1
  doi: 10.1186/1471-2156-14-8
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ajhg.2008.06.024
– volume-title: Analysis of Human Genetic Linkage
  year: 1991
  ident: e_1_2_7_30_1
– ident: e_1_2_7_43_1
  doi: 10.1016/j.ajhg.2011.05.029
– ident: e_1_2_7_21_1
  doi: 10.1002/gepi.21775
– volume: 5
  start-page: 1
  year: 2012
  ident: e_1_2_7_13_1
  article-title: A rapid method for combined analysis of common and rare variants at the level of a region, gene, or pathway
  publication-title: Adv Appl Bioinform Chem
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ajhg.2012.06.007
– ident: e_1_2_7_39_1
  doi: 10.1016/j.ajhg.2013.04.004
– ident: e_1_2_7_33_1
  doi: 10.1126/science.276.5321.2045
– ident: e_1_2_7_9_1
  doi: 10.1038/ng1863
– ident: e_1_2_7_17_1
  doi: 10.1038/349704a0
– volume: 79
  start-page: S2290
  year: 2006
  ident: e_1_2_7_25_1
  article-title: Mach 1.0: rapid haplotype reconstruction and missing genotype inference
  publication-title: Am J Hum Genet
– volume: 36
  start-page: 797
  issue: 1
  year: 2012
  ident: e_1_2_7_38_1
  article-title: SNP set association analysis for familial data
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21676
– ident: e_1_2_7_2_1
  doi: 10.1038/nature09534
– volume: 60
  start-page: 174
  issue: 1
  year: 1997
  ident: e_1_2_7_14_1
  article-title: Evidence of a non‐MHC susceptibility locus in type I diabetes linked to HLA on chromosome 6
  publication-title: Am J Hum Genet
– volume: 41
  start-page: 356
  issue: 3
  year: 1987
  ident: e_1_2_7_41_1
  article-title: A deductive method of haplotype analysis in pedigrees
  publication-title: Am J Hum Genet
– ident: e_1_2_7_10_1
  doi: 10.1002/gepi.21703
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ajhg.2013.04.015
– ident: e_1_2_7_37_1
  doi: 10.1126/science.1411576
– ident: e_1_2_7_16_1
  doi: 10.1038/nrg3118
– ident: e_1_2_7_6_1
  doi: 10.1186/1753-6561-8-S1-S19
– ident: e_1_2_7_12_1
  doi: 10.1038/nrg2779
– ident: e_1_2_7_32_1
  doi: 10.1371/journal.pone.0003551
– ident: e_1_2_7_40_1
  doi: 10.1159/000313555
– ident: e_1_2_7_19_1
  doi: 10.1007/978-1-59745-389-9_6
– ident: e_1_2_7_28_1
  doi: 10.1016/S0140-6736(10)62345-8
– ident: e_1_2_7_31_1
  doi: 10.1093/hmg/10.26.3037
– ident: e_1_2_7_36_1
  doi: 10.1093/hmg/ddq497
– ident: e_1_2_7_26_1
  doi: 10.1146/annurev.genom.9.081307.164242
– ident: e_1_2_7_35_1
  doi: 10.1002/gepi.21776
– ident: e_1_2_7_8_1
  doi: 10.1016/j.ajhg.2009.01.005
– ident: e_1_2_7_29_1
  doi: 10.1186/1471-2105-7-303
– ident: e_1_2_7_44_1
  doi: 10.1093/biostatistics/4.1.57
SSID ssj0011495
Score 2.2545888
Snippet ABSTRACT In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are...
In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with...
In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 579
SubjectTerms association analysis
burden test
Computer Simulation
Genetic Association Studies
Genetic Predisposition to Disease
Genotype
Genotype & phenotype
Humans
inheritance vectors
kernel statistic
Linkage Disequilibrium
MCMC
Methods
mixed linear model
Models, Genetic
Multivariate Analysis
Pedigree
Phenotype
Polymorphism, Single Nucleotide
Population
sequence data
Software
variance components
Title Combining Family- and Population-Based Imputation Data for Association Analysis of Rare and Common Variants in Large Pedigrees
URI https://api.istex.fr/ark:/67375/WNG-T5PVLWK8-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.21844
https://www.ncbi.nlm.nih.gov/pubmed/25132070
https://www.proquest.com/docview/1586129598
https://www.proquest.com/docview/1609307272
https://www.proquest.com/docview/1611625871
https://pubmed.ncbi.nlm.nih.gov/PMC4190076
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UiiCIl3qLVhlRBIVsk0wmmQFf1F61lqX0hiDDJJnUpZItewH1SfwF_Y39JZ4zs5t2tRT0LWROQjI5l-9MznwH4LlJYxtHqgxVYrIwlZkJpREmFCblNdqWqt3SxcetbH03fX8gDubg9XQvjOeHaBfcyDKcvyYDN8Vw6Yw09NAe9zqUoBAZaMwzIs5f3m65o2KC_p6Dk2qGlGi5SZOls0tnotEVmthvF0HNvysmzyNZF4pWb8Ln6Uv4CpSjznhUdMoff_A7_u9b3oIbE4zK3nilug1ztlmAq75r5fcFuO6X-pjfwXQHfqFPKVyfCebbaJz-PGGmqVi3bQ6GZ95iuKzYBvWQcKfYshkZhpCZndMQNuVIYf2abZuBdfehTSw4todpPVXtsF7DNqmAnVGfkcOBtcO7sLu6svNuPZy0dghLIVUacompZklwI7Mpr9K4iJStMDLmPKvxiJuyRizBa16UVVLLoqD_l7bMK0zAChHzezDf9Bv7AJjMqkpSWCWiHmOVEpaLPJJFliL4rHgAL6efWJcT3nNqv_FVe8bmRNMcazfHATxrZY8928eFUi-cprQiZnBE9XG50Ptba3pHdPc29z9I_SmAxakq6YlrGOpYSESVSigZwNN2GI2a_tSYxvbHKJNFCp1vkieXycQxJq-Y8AZw32tn-0AIWnmCzjyAfEZvWwEiFZ8daXpfHLl4iggxyrMAXjm1vGQa9NpKd8MdPfwX4UdwDUFn6vdzLsL8aDC2jxHYjYonzoB_A9UVSvo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgEwIJcRm3wAAjENKQ0jWxndiPwC4t66pq6i7ixXISZ1RD6dSLBDwhfgG_kV_COXabrTBNgrcoPokS51y-4xx_h5BXhkc2aqo8VLFJQi4TE0ojTCgMZyXYlird0sVuN2nt8w9H4mhWm4N7YTw_RL3ghpbh_DUaOC5Ir5-xhh7b00EDMxR-lSxzQBqYe23s1exREYJ_z8KJVUNK1Oyk8frZtQvxaBmn9stFYPPvmsnzWNYFo63bvuPq2HEYYg3KSWM6yRr5tz8YHv_7Pe-QWzOYSt96vbpLrthqhVzzjSu_rpCbfrWP-k1M98gPcCuZazVBfSeNX99_UlMVtFf3B4Mz7yBiFrSNbSTcKbphJoYCaqbnlITOaVLosKR7ZmTdfXAfC4wdQGaPhTt0UNEO1rBTbDVyPLJ2fJ_sb23237fCWXeHMBdS8ZBJyDZzRByJ5azgUdZUtoDgmLKkhCNm8hLgBCtZlhdxKbMMf2HaPC0gB8tExB6QpWpY2UeEyqQoJEZW5OoxVilhmUibMks44M-CBWRt_o11PqM-xw4cn7UnbY41zrF2cxyQl7XsqSf8uFDqtVOVWsSMTrBELhX6sLut-6J30DnckfpjQFbnuqRn3mGsIyEBWCqhZEBe1MNg1_izxlR2OAWZpKnA_8ZpfJlMFEH-CjlvQB569awfCHAri8GfByRdUNxaAHnFF0eqwSfHL84BJDbTJCBvnF5eMg16e7PXdkeP_0X4Obne6u92dKfd3XlCbgAG5X575ypZmoym9ingvEn2zFnzb12XTxk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UFkUQL_UWrTqiCBWy3WRmkhnwRW23XbsuS-kNQYZJMqlLJbtsd0F9En-Bv9Ff4pmZ3bSrpaBvIXMSksm5fGdy5jsAzzWLTNSUeShjnYRMJDoUmuuQa0ZLtC1ZuqWL991ka4-9O-SHC_BqthfG80PUC27WMpy_tgY-LMq1U9LQIzPsN2yCwi7BEksQSlhItFOTR0UW-3sSTls0JHlNThqvnV47F46W7Mx-OQ9r_l0yeRbKuljUugEfZ2_hS1COG5Nx1si__UHw-L-veROuT0Eqee216hYsmGoZLvu2lV-X4Zpf6yN-C9Nt-IFOJXONJojvo_Hr-0-iq4L06u5geOYNxsuCtG0TCXeKrOuxJoiZyRkVITOSFDIoyY4eGXcfu4sFx_Yxr7dlO6RfkY6tYCe20cjRyJiTO7DX2th9uxVOezuEOReShVRgrplbvJEYRgsWZU1pCgyNKU1KPKI6LxFM0JJmeRGXIsvsD0yTpwVmYBmP6F1YrAaVuQ9EJEUhbFy1TD3aSMkN5WlTZAlD9FnQAFZnn1jlU-Jz23_js_KUzbGyc6zcHAfwrJYderqPc6VeOE2pRfTo2BbIpVwddDfVLu_tdw62hfoQwMpMldTUN5yoiAuElZJLEcDTehit2v6q0ZUZTFAmaUr0vnEaXyQTRZi9YsYbwD2vnfUDIWqlMXrzANI5va0FLKv4_EjV_-TYxRlCxGaaBPDSqeUF06A2N3ptd_TgX4SfwJXeekt12t3th3AVASjzeztXYHE8mphHCPLG2WNny78BOv1NyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+family-+and+population-based+imputation+data+for+association+analysis+of+rare+and+common+variants+in+large+pedigrees&rft.jtitle=Genetic+epidemiology&rft.au=Saad%2C+Mohamad&rft.au=Wijsman%2C+Ellen+M&rft.date=2014-11-01&rft.eissn=1098-2272&rft.volume=38&rft.issue=7&rft.spage=579&rft_id=info:doi/10.1002%2Fgepi.21844&rft_id=info%3Apmid%2F25132070&rft.externalDocID=25132070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon