基于HHT的脑电信号去噪处理研究

在分析多种时频分析方法的基础上,提出应用改进型的希尔伯特一黄变换来实现对脑电信号噪声干扰的处理。利用经验模态分解获得有限项目的经验模式函数,在局部数据平均的基础上利用希尔伯特变换获得能量谱。研究结果表明,改进的极值域均值模式分解法能够有效去除脑电信号的噪声部分,消除邻近频率的混叠影响和边界效应。对利用脑电信号诊断癫痫、缺血性脑损和睡眠监护有临床指导作用。...

Full description

Saved in:
Bibliographic Details
Published in电子技术应用 Vol. 39; no. 11; pp. 132 - 135
Main Author 单慧琳 张银胜 唐慧强
Format Journal Article
LanguageChinese
Published 南京信息工程大学,江苏南京,210044 2013
Subjects
Online AccessGet full text
ISSN0258-7998

Cover

More Information
Summary:在分析多种时频分析方法的基础上,提出应用改进型的希尔伯特一黄变换来实现对脑电信号噪声干扰的处理。利用经验模态分解获得有限项目的经验模式函数,在局部数据平均的基础上利用希尔伯特变换获得能量谱。研究结果表明,改进的极值域均值模式分解法能够有效去除脑电信号的噪声部分,消除邻近频率的混叠影响和边界效应。对利用脑电信号诊断癫痫、缺血性脑损和睡眠监护有临床指导作用。
Bibliography:EEG; HHT; de-noising
Based on analysis of time-frequency distribution method, this paper presents the improved HHT to process EEG noise. EMD is applied to obtain IMF of limited project, and Hilbert transform is adopted to gain the energy spectrum based on the local average data. The research results show that IEMMD can effectively remove the noise in EEG signal, and aliasing and bound- ary effect of adjacent frequency can be effectively eliminated. It has clinically instructive in diagnosis of epilepsy, ischemic brain damage and sleep monitoring with EEG.
Shan Huilin, Zhang Yinsheng, Tang Huiqiang (Nanjing University of Information Science and Technology, Nanjing 210044
11-2305/TN
ISSN:0258-7998