Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance

H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pand...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 22; no. 11; p. e3002916
Main Authors Dadonaite, Bernadeta, Ahn, Jenny J., Ort, Jordan T., Yu, Jin, Furey, Colleen, Dosey, Annie, Hannon, William W., Vincent Baker, Amy L., Webby, Richard J., King, Neil P., Liu, Yan, Hensley, Scott E., Peacock, Thomas P., Moncla, Louise H., Bloom, Jesse D.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 12.11.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.
AbstractList H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.
H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind [alpha]2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.
H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.
Audience Academic
Author Webby, Richard J.
Bloom, Jesse D.
Ahn, Jenny J.
King, Neil P.
Hannon, William W.
Moncla, Louise H.
Liu, Yan
Yu, Jin
Ort, Jordan T.
Dosey, Annie
Hensley, Scott E.
Dadonaite, Bernadeta
Furey, Colleen
Vincent Baker, Amy L.
Peacock, Thomas P.
Author_xml – sequence: 1
  givenname: Bernadeta
  surname: Dadonaite
  fullname: Dadonaite, Bernadeta
– sequence: 2
  givenname: Jenny J.
  surname: Ahn
  fullname: Ahn, Jenny J.
– sequence: 3
  givenname: Jordan T.
  surname: Ort
  fullname: Ort, Jordan T.
– sequence: 4
  givenname: Jin
  surname: Yu
  fullname: Yu, Jin
– sequence: 5
  givenname: Colleen
  surname: Furey
  fullname: Furey, Colleen
– sequence: 6
  givenname: Annie
  surname: Dosey
  fullname: Dosey, Annie
– sequence: 7
  givenname: William W.
  surname: Hannon
  fullname: Hannon, William W.
– sequence: 8
  givenname: Amy L.
  surname: Vincent Baker
  fullname: Vincent Baker, Amy L.
– sequence: 9
  givenname: Richard J.
  surname: Webby
  fullname: Webby, Richard J.
– sequence: 10
  givenname: Neil P.
  surname: King
  fullname: King, Neil P.
– sequence: 11
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
– sequence: 12
  givenname: Scott E.
  surname: Hensley
  fullname: Hensley, Scott E.
– sequence: 13
  givenname: Thomas P.
  surname: Peacock
  fullname: Peacock, Thomas P.
– sequence: 14
  givenname: Louise H.
  surname: Moncla
  fullname: Moncla, Louise H.
– sequence: 15
  givenname: Jesse D.
  orcidid: 0000-0003-1267-3408
  surname: Bloom
  fullname: Bloom, Jesse D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39531474$$D View this record in MEDLINE/PubMed
BookMark eNqVkl-L1DAUxYOsuH_0G4gUfHEfZmzapEl8W9bVHVhccNXXcJvc1gxtM5u0i_rpTZ1xcUREycMNl985kJNzTA4GPyAhT2m-pKWgL9d-CgN0y03t_LLM80LR6gE5opzxhZCSH_xyPyTHMa4TU6hCPiKHpeIlZYIdkZvXiJusn0YYnU92WTQwDG5oM99klzz7jD20bTeNLi2z0WduaHzo59FNOHyD7M6FKWZxCnfoug4Gg4_Jwwa6iE9284R8fHPx4fxycXX9dnV-drUwXMpxgdwqJVneQF2yRljKbaF4ResKcouQC9agrQvMuYDKMFoJsNBYxcCIuqhUeUJWW1_rYa03wfUQvmoPTv9Y-NBqCKMzHeqac8ppaVE0JTNglCp5xfKC50IqamTyerH12gR_O2Ecde-iwflB6KeoS1pIUVHKi4Q-36ItJOc5jzGAmXF9JqmqJEvWiVr-gUrHYu9M-srGpf2e4HRPkJgRv4wtTDHq1c37_2Df_Tt7_WmffbZLYap7tPeZ_uxLAtgWMMHHGLC5R2iu51rqXS31XEu9q2WSvfpNZty2cSkU1_1d_B1StOjj
CitedBy_id crossref_primary_10_1038_s41467_024_54934_3
crossref_primary_10_1038_s41587_025_02636_6
crossref_primary_10_1056_NEJMc2415890
crossref_primary_10_1126_science_adt0180
crossref_primary_10_1038_s41586_024_08054_z
crossref_primary_10_1016_j_ebiom_2025_105632
crossref_primary_10_1371_journal_pbio_3002985
crossref_primary_10_1016_j_str_2025_01_001
crossref_primary_10_1371_journal_ppat_1012847
crossref_primary_10_17537_2024_19_579
Cites_doi 10.1093/molbev/msaa015
10.1371/journal.ppat.1007286
10.21105/joss.01915
10.1128/JVI.00058-19
10.1038/nature10831
10.1128/JVI.01100-18
10.1038/s41467-024-48475-y
10.1073/pnas.1524384113
10.1126/science.abo7896
10.1038/ncomms1158
10.1128/JVI.01889-13
10.1128/JVI.74.18.8502-8512.2000
10.1093/nar/gkf436
10.1073/pnas.2026102118
10.1038/srep23138
10.1126/science.1186430
10.7554/eLife.34420
10.1128/JVI.02790-15
10.1128/JVI.02162-09
10.1084/jem.72.6.717
10.1128/JVI.01423-19
10.1016/0092-8674(93)90260-W
10.1371/journal.pbio.1002082
10.1038/s41467-018-03665-3
10.1371/journal.ppat.1009910
10.1128/AEM.00133-16
10.1073/pnas.1218841110
10.1038/s41598-018-28706-1
10.1126/science.1124513
10.1128/JVI.02596-08
10.1073/pnas.81.6.1779
10.1093/bioinformatics/bty407
10.3390/v12050513
10.1073/pnas.1608383113
10.1126/science.1202617
10.1021/jacsau.2c00664
10.1371/journal.pone.0007836
10.1038/s41467-022-34506-z
10.1128/JVI.01651-20
10.1073/pnas.2115379119
10.1016/j.molcel.2019.05.017
10.1038/289373a0
10.1111/1348-0421.12773
10.1371/journal.pone.0066325
10.1038/s41586-024-07636-1
10.1099/vir.0.050526-0
10.1016/S0042-6822(03)00068-0
10.1126/science.1213362
10.21105/joss.06129
10.1128/JVI.02430-10
10.1038/nature16474
10.1128/JVI.02737-09
10.1371/journal.ppat.1003151
10.1038/440435a
10.7554/eLife.03300
10.1128/JVI.01955-13
10.1128/JVI.02069-09
10.1128/JVI.00980-13
10.1073/pnas.1320524110
10.1016/0264-410X(85)90109-4
10.1073/pnas.1804015115
10.1016/j.virol.2005.08.035
10.1038/srep04942
10.1128/mBio.00360-12
10.1038/s41467-018-03663-5
10.1038/s41467-023-38415-7
10.1016/j.cell.2023.02.001
10.1016/j.cmi.2016.07.007
10.1038/s41467-024-49487-4
10.1126/science.1187816
10.2807/1560-7917.ES.2023.28.3.2300001
10.1128/JVI.01175-13
10.1073/pnas.100133697
10.1038/s41586-023-06261-8
ContentType Journal Article
Copyright Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
COPYRIGHT 2024 Public Library of Science
Copyright_xml – notice: Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
– notice: COPYRIGHT 2024 Public Library of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
DOA
DOI 10.1371/journal.pbio.3002916
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1545-7885
ExternalDocumentID oai_doaj_org_article_b551513de7f34cac99356402507891c8
A819684564
39531474
10_1371_journal_pbio_3002916
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIH HHS
  grantid: S10 OD020069
– fundername: NIH HHS
  grantid: S10 OD028685
– fundername: NIAID NIH HHS
  grantid: R01 AI165821
– fundername: NIAID NIH HHS
  grantid: R01 AI141707
– fundername: NIAID NIH HHS
  grantid: 75N93021C00015
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
PYCSY
QF4
QN7
RNS
RPM
RZL
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
.GJ
ADRAZ
ADXHL
C1A
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
7X8
PUEGO
ID FETCH-LOGICAL-c588t-e5d99840fab34f7d15d29561b6a0dea074fedb2e057a6c4167adafd94ac7b2693
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Wed Aug 27 01:21:43 EDT 2025
Thu Jul 10 16:52:48 EDT 2025
Tue Jun 17 21:59:43 EDT 2025
Tue Jun 10 21:01:52 EDT 2025
Fri Jun 27 05:15:26 EDT 2025
Fri Jun 27 05:24:07 EDT 2025
Fri Jun 27 05:15:16 EDT 2025
Mon Jul 21 06:03:34 EDT 2025
Tue Jul 01 01:20:25 EDT 2025
Thu Apr 24 22:51:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-e5d99840fab34f7d15d29561b6a0dea074fedb2e057a6c4167adafd94ac7b2693
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1267-3408
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.3002916
PMID 39531474
PQID 3128761152
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b551513de7f34cac99356402507891c8
proquest_miscellaneous_3128761152
gale_infotracmisc_A819684564
gale_infotracacademiconefile_A819684564
gale_incontextgauss_ISR_A819684564
gale_incontextgauss_ISN_A819684564
gale_incontextgauss_IOV_A819684564
pubmed_primary_39531474
crossref_primary_10_1371_journal_pbio_3002916
crossref_citationtrail_10_1371_journal_pbio_3002916
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241112
PublicationDateYYYYMMDD 2024-11-12
PublicationDate_xml – month: 11
  year: 2024
  text: 20241112
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References TP Peacock (pbio.3002916.ref041) 2021; 95
A Canales (pbio.3002916.ref045) 2023; 3
A Hanson (pbio.3002916.ref014) 2016; 90
K Katoh (pbio.3002916.ref094) 2002; 30
SJ Fleishman (pbio.3002916.ref016) 2011; 332
KH Restori (pbio.3002916.ref065) 2024; 15
M Russier (pbio.3002916.ref050) 2016; 113
H Shelton (pbio.3002916.ref049) 2013
KHD Crawford (pbio.3002916.ref082) 2019; 4
AN Loes (pbio.3002916.ref093) 2024
M Imai (pbio.3002916.ref001) 2012; 486
E Kirkpatrick (pbio.3002916.ref022) 2018; 8
MB Doud (pbio.3002916.ref090) 2018; 9
G Lewis (pbio.3002916.ref073) 2019; 39
R Nataraj (pbio.3002916.ref076) 2024
S Gulati (pbio.3002916.ref044) 2013; 8
M Lipsitch (pbio.3002916.ref071) 2012; 3
pbio.3002916.ref015
TN Starr (pbio.3002916.ref077) 2022; 377
S Herfst (pbio.3002916.ref003) 2012; 336
M Matrosovich (pbio.3002916.ref035) 2000; 74
P. de Vries Robert (pbio.3002916.ref039) 2013; 87
KA Hooper (pbio.3002916.ref089) 2013; 87
G Yang (pbio.3002916.ref051) 2021; 17
E Hoffmann (pbio.3002916.ref091) 2000; 97
AN Loes (pbio.3002916.ref088) 2024; 0
C Büll (pbio.3002916.ref097) 2021; 118
S Chutinimitkul (pbio.3002916.ref037) 2010; 84
RL Poulson (pbio.3002916.ref054) 2016; 82
Q Wang (pbio.3002916.ref020) 2021; 9
HK Haddox (pbio.3002916.ref084) 2023
B Dadonaite (pbio.3002916.ref018) 2023; 186
M Agüero (pbio.3002916.ref062) 2023; 28
W Puryear (pbio.3002916.ref063) 2023
A Kandeil (pbio.3002916.ref066) 2023; 14
M Kubota (pbio.3002916.ref019) 2016; 113
G Gabriel (pbio.3002916.ref007) 2011; 2
FJ Milder (pbio.3002916.ref058) 2022; 119
TC Yu (pbio.3002916.ref085) 2022
pbio.3002916.ref038
P Sagulenko (pbio.3002916.ref096) 2018
R Xu (pbio.3002916.ref056) 2011; 85
J Hadfield (pbio.3002916.ref064) 2018; 34
P Chopra (pbio.3002916.ref031) 2024
V Götz (pbio.3002916.ref008) 2016; 6
NC Wu (pbio.3002916.ref078) 2018; 9
NR Bennett (pbio.3002916.ref017) 2024
Y Ha (pbio.3002916.ref010) 2003; 309
F Broecker (pbio.3002916.ref060) 2018; 92
JJS Santos (pbio.3002916.ref032) 2024
K Shinya (pbio.3002916.ref012) 2006; 440
JD Bloom (pbio.3002916.ref028) 2010; 328
ML Reed (pbio.3002916.ref002) 2010; 84
A Moulana (pbio.3002916.ref080) 2022; 13
KM Esvelt (pbio.3002916.ref072) 2018; 14
B Dadonaite (pbio.3002916.ref086) 2024; 631
G Ayora-Talavera (pbio.3002916.ref009) 2009; 4
M Linster (pbio.3002916.ref013) 2014; 157
M Ríos Carrasco (pbio.3002916.ref030) 2024; 0
H Zaraket (pbio.3002916.ref048) 2013; 87
A Singanayagam (pbio.3002916.ref057) 2019; 93
HK Haddox (pbio.3002916.ref079) 2018; 7
DC Wiley (pbio.3002916.ref026) 1981; 289
Y Zhang (pbio.3002916.ref042); 86
JJ Skehel (pbio.3002916.ref027) 1984; 81
KHD Crawford (pbio.3002916.ref087) 2020; 12
B Thyagarajan (pbio.3002916.ref023) 2014; 3
CM Carr (pbio.3002916.ref021) 1993; 73
M Russier (pbio.3002916.ref055) 2020; 94
Mänz Benjamin (pbio.3002916.ref004) 2013; 87
LC Caserta (pbio.3002916.ref068) 2024
A Gaymard (pbio.3002916.ref074) 2016; 22
Z Guo (pbio.3002916.ref075) 2022
Y Kikutani (pbio.3002916.ref040) 2020; 64
RM Pinto (pbio.3002916.ref006) 2023; 619
Y Narimatsu (pbio.3002916.ref033) 2019; 75
WW Hannon (pbio.3002916.ref081) 2024; 9
Li Yuan (pbio.3002916.ref070) 2023; 97
R Lei (pbio.3002916.ref047) 2024; 15
pbio.3002916.ref069
Xu Rui (pbio.3002916.ref034) 2010; 84
NC Wu (pbio.3002916.ref024) 2014; 4
JS Long (pbio.3002916.ref005) 2016; 529
C. Scholtissek (pbio.3002916.ref052) 1985; 3
AJ Kucharski (pbio.3002916.ref059) 2015; 13
BQ Minh (pbio.3002916.ref095) 2020; 37
J Stevens (pbio.3002916.ref036) 2006; 312
T Francis (pbio.3002916.ref029) 1940; 72
L Byrd-Leotis (pbio.3002916.ref046) 2022; 12
SE Galloway (pbio.3002916.ref053) 2013; 9
YP Lin (pbio.3002916.ref011) 2012; 109
A Gambaryan (pbio.3002916.ref043) 2006; 344
NS Heaton (pbio.3002916.ref025) 2013; 110
JM Lee (pbio.3002916.ref092) 2018; 115
R Xu (pbio.3002916.ref067) 2010; 328
J Otwinowski (pbio.3002916.ref083) 2018; 115
TQ Nguyen (pbio.3002916.ref061) 2024
38826368 - bioRxiv. 2024 Jul 31:2024.05.23.595634. doi: 10.1101/2024.05.23.595634
References_xml – volume: 37
  start-page: 1530
  issue: 5
  year: 2020
  ident: pbio.3002916.ref095
  article-title: IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msaa015
– volume: 14
  start-page: e1007286
  issue: 10
  year: 2018
  ident: pbio.3002916.ref072
  article-title: Inoculating science against potential pandemics and information hazards
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007286
– volume: 0
  start-page: e00689
  issue: 0
  year: 2024
  ident: pbio.3002916.ref088
  article-title: High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains
  publication-title: J Virol
– volume: 4
  start-page: 1915
  issue: 44
  year: 2019
  ident: pbio.3002916.ref082
  article-title: alignparse: A Python package for parsing complex features from high-throughput long-read sequencing
  publication-title: J Open Source Softw
  doi: 10.21105/joss.01915
– volume: 86
  start-page: 9666
  issue: 18
  ident: pbio.3002916.ref042
  article-title: Key Molecular Factors in Hemagglutinin and PB2 Contribute to Efficient Transmission of the 2009 H1N1 Pandemic Influenza Virus
  publication-title: J Virol. 2012 Sep
– volume: 93
  start-page: e00058
  issue: 17
  year: 2019
  ident: pbio.3002916.ref057
  article-title: Influenza Virus with Increased pH of Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of Infectivity in Human Airway Epithelium
  publication-title: J Virol
  doi: 10.1128/JVI.00058-19
– start-page: 2024
  year: 2024
  ident: pbio.3002916.ref093
  article-title: High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains [Internet]
  publication-title: bioRxiv [Preprint]
– volume: 486
  start-page: 420
  issue: 7403
  year: 2012
  ident: pbio.3002916.ref001
  article-title: Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets
  publication-title: Nature
  doi: 10.1038/nature10831
– volume: 92
  start-page: e01100
  issue: 20
  year: 2018
  ident: pbio.3002916.ref060
  article-title: Immunodominance of Antigenic Site B in the Hemagglutinin of the Current H3N2 Influenza Virus in Humans and Mice
  publication-title: J Virol
  doi: 10.1128/JVI.01100-18
– volume: 15
  start-page: 4112
  issue: 1
  year: 2024
  ident: pbio.3002916.ref065
  article-title: Risk assessment of a highly pathogenic H5N1 influenza virus from mink
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-48475-y
– volume: 113
  start-page: 1636
  issue: 6
  year: 2016
  ident: pbio.3002916.ref050
  article-title: Molecular requirements for a pandemic influenza virus: An acid-stable hemagglutinin protein
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1524384113
– volume: 377
  start-page: 420
  issue: 6604
  year: 2022
  ident: pbio.3002916.ref077
  article-title: Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution
  publication-title: Science
  doi: 10.1126/science.abo7896
– volume: 2
  start-page: 156
  issue: 1
  year: 2011
  ident: pbio.3002916.ref007
  article-title: Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus
  publication-title: Nat Commun
  doi: 10.1038/ncomms1158
– volume: 87
  start-page: 12531
  issue: 23
  year: 2013
  ident: pbio.3002916.ref089
  article-title: A Mutant Influenza Virus That Uses an N1 Neuraminidase as the Receptor-Binding Protein
  publication-title: J Virol
  doi: 10.1128/JVI.01889-13
– volume: 74
  start-page: 8502
  issue: 18
  year: 2000
  ident: pbio.3002916.ref035
  article-title: Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals
  publication-title: J Virol
  doi: 10.1128/JVI.74.18.8502-8512.2000
– volume: 30
  start-page: 3059
  issue: 14
  year: 2002
  ident: pbio.3002916.ref094
  article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkf436
– volume: 118
  start-page: e2026102118
  issue: 17
  year: 2021
  ident: pbio.3002916.ref097
  article-title: Probing the binding specificities of human Siglecs by cell-based glycan arrays
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2026102118
– start-page: 2024
  year: 2024
  ident: pbio.3002916.ref017
  article-title: Atomically accurate de novo design of single-domain antibodies [Internet]
  publication-title: bioRxiv [Preprint]
– volume: 6
  start-page: 23138
  issue: 1
  year: 2016
  ident: pbio.3002916.ref008
  article-title: Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import
  publication-title: Sci Rep
  doi: 10.1038/srep23138
– volume: 328
  start-page: 357
  issue: 5976
  year: 2010
  ident: pbio.3002916.ref067
  article-title: Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus
  publication-title: Science
  doi: 10.1126/science.1186430
– volume: 7
  start-page: e34420
  year: 2018
  ident: pbio.3002916.ref079
  article-title: Mapping mutational effects along the evolutionary landscape of HIV envelope
  publication-title: eLife
  doi: 10.7554/eLife.34420
– start-page: 2024
  year: 2024
  ident: pbio.3002916.ref076
  article-title: Avian influenza virus neuraminidase stalk length and haemagglutinin glycosylation patterns reveal molecularly directed reassortment promoting the emergence of highly pathogenic clade 2.3.4.4b A (H5N1) viruses [Internet]
  publication-title: bioRxiv [Preprint]
– volume: 0
  start-page: e01052
  issue: 0
  year: 2024
  ident: pbio.3002916.ref030
  article-title: The mammary glands of cows abundantly display receptors for circulating avian H5 viruses
  publication-title: J Virol
– volume: 90
  start-page: 2981
  issue: 6
  year: 2016
  ident: pbio.3002916.ref014
  article-title: Identification of Stabilizing Mutations in an H5 Hemagglutinin Influenza Virus Protein
  publication-title: J Virol
  doi: 10.1128/JVI.02790-15
– volume: 84
  start-page: 1715
  issue: 4
  year: 2010
  ident: pbio.3002916.ref034
  article-title: Paulson James C., Basler Christopher F., Wilson Ian A. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic
  publication-title: J Virol
  doi: 10.1128/JVI.02162-09
– volume: 72
  start-page: 717
  issue: 6
  year: 1940
  ident: pbio.3002916.ref029
  article-title: A STUDY OF THE NEUROTROPIC TENDENCY IN STRAINS OF THE VIRUS OF EPIDEMIC INFLUENZA
  publication-title: J Exp Med
  doi: 10.1084/jem.72.6.717
– volume: 94
  start-page: e01423
  issue: 3
  year: 2020
  ident: pbio.3002916.ref055
  article-title: Hemagglutinin Stability Regulates H1N1 Influenza Virus Replication and Pathogenicity in Mice by Modulating Type I Interferon Responses in Dendritic Cells
  publication-title: J Virol
  doi: 10.1128/JVI.01423-19
– volume: 73
  start-page: 823
  issue: 4
  year: 1993
  ident: pbio.3002916.ref021
  article-title: A spring-loaded mechanism for the conformational change of influenza hemagglutinin
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90260-W
– volume: 13
  start-page: e1002082
  issue: 3
  year: 2015
  ident: pbio.3002916.ref059
  article-title: Estimating the Life Course of Influenza A(H3N2) Antibody Responses from Cross-Sectional Data
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002082
– volume: 9
  start-page: 1386
  issue: 1
  year: 2018
  ident: pbio.3002916.ref090
  article-title: How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03665-3
– ident: pbio.3002916.ref015
– volume: 17
  start-page: e1009910
  issue: 9
  year: 2021
  ident: pbio.3002916.ref051
  article-title: Relationship between hemagglutinin stability and influenza virus persistence after exposure to low pH or supraphysiological heating
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1009910
– volume: 82
  start-page: 3721
  issue: 13
  year: 2016
  ident: pbio.3002916.ref054
  article-title: Environmental Stability of Swine and Human Pandemic Influenza Viruses in Water under Variable Conditions of Temperature, Salinity, and pH
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00133-16
– volume: 109
  start-page: 21474
  issue: 52
  year: 2012
  ident: pbio.3002916.ref011
  article-title: Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1218841110
– volume: 9
  start-page: 735558
  year: 2021
  ident: pbio.3002916.ref020
  article-title: A Linkage-specific Sialic Acid Labeling Strategy Reveals Different Site-specific Glycosylation Patterns in SARS-CoV-2
  publication-title: Spike Protein Produced in CHO and HEK Cell Substrates. Front Chem
– volume: 8
  start-page: 10432
  issue: 1
  year: 2018
  ident: pbio.3002916.ref022
  article-title: The influenza virus hemagglutinin head evolves faster than the stalk domain
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-28706-1
– volume: 312
  start-page: 404
  issue: 5772
  year: 2006
  ident: pbio.3002916.ref036
  article-title: Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus
  publication-title: Science
  doi: 10.1126/science.1124513
– volume: 97
  start-page: e01329
  issue: 11
  year: 2023
  ident: pbio.3002916.ref070
  article-title: Sabsay Kimberly R., te Velthuis Aartjan J. W., Lauring Adam S. Deep mutational scanning reveals the functional constraints and evolutionary potential of the influenza A virus PB1 protein
  publication-title: J Virol
– ident: pbio.3002916.ref038
  doi: 10.1128/JVI.02596-08
– volume: 81
  start-page: 1779
  issue: 6
  year: 1984
  ident: pbio.3002916.ref027
  article-title: A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.81.6.1779
– volume: 34
  start-page: 4121
  issue: 23
  year: 2018
  ident: pbio.3002916.ref064
  article-title: Nextstrain: real-time tracking of pathogen evolution
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty407
– volume: 12
  start-page: 513
  issue: 5
  year: 2020
  ident: pbio.3002916.ref087
  article-title: Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays
  publication-title: Viruses
  doi: 10.3390/v12050513
– volume: 113
  start-page: 11579
  issue: 41
  year: 2016
  ident: pbio.3002916.ref019
  article-title: Trisaccharide containing α2,3-linked sialic acid is a receptor for mumps virus
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1608383113
– volume: 332
  start-page: 816
  issue: 6031
  year: 2011
  ident: pbio.3002916.ref016
  article-title: Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin
  publication-title: Science
  doi: 10.1126/science.1202617
– volume: 3
  start-page: 868
  issue: 3
  year: 2023
  ident: pbio.3002916.ref045
  article-title: Revealing the Specificity of Human H1 Influenza A Viruses to Complex N-Glycans
  publication-title: JACS Au
  doi: 10.1021/jacsau.2c00664
– start-page: 2024
  year: 2024
  ident: pbio.3002916.ref061
  article-title: Emergence and interstate spread of highly pathogenic avian influenza A(H5N1) in dairy cattle [Internet]
  publication-title: bioRxiv [Preprint]
– year: 2018
  ident: pbio.3002916.ref096
  article-title: TreeTime: Maximum-likelihood phylodynamic analysis
  publication-title: Virus Evol
– volume: 4
  start-page: e7836
  issue: 11
  year: 2009
  ident: pbio.3002916.ref009
  article-title: Mutations in H5N1 Influenza Virus Hemagglutinin that Confer Binding to Human Tracheal Airway Epithelium
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0007836
– volume: 13
  start-page: 7011
  issue: 1
  year: 2022
  ident: pbio.3002916.ref080
  article-title: Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34506-z
– volume: 95
  start-page: e01651
  issue: 5
  year: 2021
  ident: pbio.3002916.ref041
  article-title: Genetic Determinants of Receptor-Binding Preference and Zoonotic Potential of H9N2 Avian Influenza Viruses
  publication-title: J Virol
  doi: 10.1128/JVI.01651-20
– volume: 119
  start-page: e2115379119
  issue: 6
  year: 2022
  ident: pbio.3002916.ref058
  article-title: Universal stabilization of the influenza hemagglutinin by structure-based redesign of the pH switch regions
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2115379119
– volume: 75
  start-page: 394
  issue: 2
  year: 2019
  ident: pbio.3002916.ref033
  article-title: An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2019.05.017
– start-page: 2024
  year: 2024
  ident: pbio.3002916.ref031
  article-title: Receptor Binding Specificity of a Bovine A(H5N1) Influenza Virus [Internet]
  publication-title: bioRxiv [Preprint]
– year: 2023
  ident: pbio.3002916.ref063
  article-title: Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in New England Seals, United States
  publication-title: Emerg Infect Dis J
– start-page: 2023
  year: 2023
  ident: pbio.3002916.ref084
  article-title: Jointly modeling deep mutational scans identifies shifted mutational effects among SARS-CoV-2 spike homologs [Internet]
  publication-title: bioRxiv [Preprint]
– volume: 289
  start-page: 373
  issue: 5796
  year: 1981
  ident: pbio.3002916.ref026
  article-title: Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation
  publication-title: Nature
  doi: 10.1038/289373a0
– volume: 64
  start-page: 304
  issue: 4
  year: 2020
  ident: pbio.3002916.ref040
  article-title: E190V substitution of H6 hemagglutinin is one of key factors for binding to sulfated sialylated glycan receptor and infection to chickens
  publication-title: Microbiol Immunol
  doi: 10.1111/1348-0421.12773
– volume: 8
  start-page: e66325
  issue: 6
  year: 2013
  ident: pbio.3002916.ref044
  article-title: Human H3N2 Influenza Viruses Isolated from 1968 To 2012 Show Varying Preference for Receptor Substructures with No Apparent Consequences for Disease or Spread
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0066325
– volume: 631
  start-page: 617
  issue: 8021
  year: 2024
  ident: pbio.3002916.ref086
  article-title: Spike deep mutational scanning helps predict success of SARS-CoV-2 clades
  publication-title: Nature
  doi: 10.1038/s41586-024-07636-1
– volume: 115
  start-page: E8276
  issue: 35
  year: 2018
  ident: pbio.3002916.ref092
  article-title: Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants
  publication-title: Proc Natl Acad Sci U S A
– start-page: 1220
  year: 2013
  ident: pbio.3002916.ref049
  article-title: Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.050526-0
– volume: 309
  start-page: 209
  issue: 2
  year: 2003
  ident: pbio.3002916.ref010
  article-title: X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus☆
  publication-title: Virology
  doi: 10.1016/S0042-6822(03)00068-0
– volume: 336
  start-page: 1534
  issue: 6088
  year: 2012
  ident: pbio.3002916.ref003
  article-title: Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets
  publication-title: Science
  doi: 10.1126/science.1213362
– volume: 9
  start-page: 6129
  issue: 99
  year: 2024
  ident: pbio.3002916.ref081
  article-title: dms-viz: Structure-informed visualizations for deep mutational scanning and other mutation-based datasets
  publication-title: J Open Source SoftwJul 17
  doi: 10.21105/joss.06129
– volume: 85
  start-page: 5172
  issue: 10
  year: 2011
  ident: pbio.3002916.ref056
  article-title: Structural Characterization of an Early Fusion Intermediate of Influenza Virus Hemagglutinin ▿
  publication-title: J Virol
  doi: 10.1128/JVI.02430-10
– start-page: 2022
  year: 2022
  ident: pbio.3002916.ref075
  article-title: Neuraminidase activity modulates cellular co-infection during influenza A virus multicycle growth [Internet]
  publication-title: bioRxiv [Preprint]
– volume: 529
  start-page: 101
  issue: 7584
  year: 2016
  ident: pbio.3002916.ref005
  article-title: Species difference in ANP32A underlies influenza A virus polymerase host restriction
  publication-title: Nature
  doi: 10.1038/nature16474
– volume: 84
  start-page: 6825
  issue: 13
  year: 2010
  ident: pbio.3002916.ref037
  article-title: In Vitro Assessment of Attachment Pattern and Replication Efficiency of H5N1 Influenza A Viruses with Altered Receptor Specificity
  publication-title: J Virol
  doi: 10.1128/JVI.02737-09
– volume: 9
  start-page: e1003151
  issue: 2
  year: 2013
  ident: pbio.3002916.ref053
  article-title: Influenza HA Subtypes Demonstrate Divergent Phenotypes for Cleavage Activation and pH of Fusion: Implications for Host Range and Adaptation
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003151
– volume: 440
  start-page: 435
  issue: 7083
  year: 2006
  ident: pbio.3002916.ref012
  article-title: Influenza virus receptors in the human airway
  publication-title: Nature
  doi: 10.1038/440435a
– volume: 3
  start-page: e03300
  year: 2014
  ident: pbio.3002916.ref023
  article-title: The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin
  publication-title: eLife
  doi: 10.7554/eLife.03300
– ident: pbio.3002916.ref069
– volume: 87
  start-page: 13868
  issue: 24
  year: 2013
  ident: pbio.3002916.ref039
  article-title: Evolution of the Hemagglutinin Protein of the New Pandemic H1N1 Influenza Virus: Maintaining Optimal Receptor Binding by Compensatory Substitutions
  publication-title: J Virol
  doi: 10.1128/JVI.01955-13
– volume: 12
  start-page: 12757
  year: 2022
  ident: pbio.3002916.ref046
  publication-title: Jul 26
– volume: 84
  start-page: 1527
  issue: 3
  year: 2010
  ident: pbio.3002916.ref002
  article-title: The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity and Transmissibility in Ducks
  publication-title: J Virol
  doi: 10.1128/JVI.02069-09
– volume: 87
  start-page: 7200
  issue: 13
  year: 2013
  ident: pbio.3002916.ref004
  article-title: Adaptation of Avian Influenza A Virus Polymerase in Mammals To Overcome the Host Species Barrier
  publication-title: J Virol
  doi: 10.1128/JVI.00980-13
– volume: 110
  start-page: 20248
  issue: 50
  year: 2013
  ident: pbio.3002916.ref025
  article-title: Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1320524110
– volume: 3
  start-page: 215
  issue: 3
  year: 1985
  ident: pbio.3002916.ref052
  article-title: Stability of infectious influenza A viruses at low pH and at elevated temperature
  publication-title: Vaccine
  doi: 10.1016/0264-410X(85)90109-4
– volume: 115
  start-page: E7550
  issue: 32
  year: 2018
  ident: pbio.3002916.ref083
  article-title: Inferring the shape of global epistasis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1804015115
– volume: 344
  start-page: 432
  issue: 2
  year: 2006
  ident: pbio.3002916.ref043
  article-title: Evolution of the receptor binding phenotype of influenza A (H5) viruses
  publication-title: Virology
  doi: 10.1016/j.virol.2005.08.035
– volume: 4
  start-page: 4942
  issue: 1
  year: 2014
  ident: pbio.3002916.ref024
  article-title: High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution
  publication-title: Sci Rep
  doi: 10.1038/srep04942
– volume: 157
  start-page: 329
  issue: 2
  year: 2014
  ident: pbio.3002916.ref013
  article-title: Identification, Characterization, and Natural Selection of Mutations Driving Airborne Transmission of A/H5N1
  publication-title: Virus. Cell
– volume: 3
  start-page: e00360
  issue: 5
  year: 2012
  ident: pbio.3002916.ref071
  article-title: Rethinking Biosafety in Research on Potential Pandemic Pathogens
  publication-title: MBio
  doi: 10.1128/mBio.00360-12
– volume: 9
  start-page: 1264
  issue: 1
  year: 2018
  ident: pbio.3002916.ref078
  article-title: A complex epistatic network limits the mutational reversibility in the influenza hemagglutinin receptor-binding site
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03663-5
– start-page: 2024
  year: 2024
  ident: pbio.3002916.ref032
  article-title: Bovine H5N1 influenza virus binds poorly to human-type sialic acid receptors [Internet]
  publication-title: bioRxiv [Preprint]
– year: 2022
  ident: pbio.3002916.ref085
  article-title: A biophysical model of viral escape from polyclonal antibodies
  publication-title: Virus Evol
– volume: 14
  start-page: 3082
  issue: 1
  year: 2023
  ident: pbio.3002916.ref066
  article-title: Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-38415-7
– volume: 186
  start-page: 1263
  issue: 6
  year: 2023
  ident: pbio.3002916.ref018
  article-title: A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike
  publication-title: Cell
  doi: 10.1016/j.cell.2023.02.001
– volume: 22
  start-page: 975
  issue: 12
  year: 2016
  ident: pbio.3002916.ref074
  article-title: Functional balance between neuraminidase and haemagglutinin in influenza viruses
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2016.07.007
– volume: 15
  start-page: 5175
  issue: 1
  year: 2024
  ident: pbio.3002916.ref047
  article-title: Epistasis mediates the evolution of the receptor binding mode in recent human H3N2 hemagglutinin
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-49487-4
– volume: 328
  start-page: 1272
  issue: 5983
  year: 2010
  ident: pbio.3002916.ref028
  article-title: Permissive Secondary Mutations Enable the Evolution of Influenza Oseltamivir Resistance
  publication-title: Science
  doi: 10.1126/science.1187816
– volume: 28
  start-page: 2300001
  issue: 3
  year: 2023
  ident: pbio.3002916.ref062
  article-title: Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2023.28.3.2300001
– volume: 87
  start-page: 9911
  issue: 17
  year: 2013
  ident: pbio.3002916.ref048
  article-title: Increased Acid Stability of the Hemagglutinin Protein Enhances H5N1 Influenza Virus Growth in the Upper Respiratory Tract but Is Insufficient for Transmission in Ferrets
  publication-title: J Virol
  doi: 10.1128/JVI.01175-13
– volume: 39
  start-page: 975
  issue: 5
  year: 2019
  ident: pbio.3002916.ref073
  publication-title: Information Hazards in Biotechnology. Risk Anal
– volume: 97
  start-page: 6108
  issue: 11
  year: 2000
  ident: pbio.3002916.ref091
  article-title: A DNA transfection system for generation of influenza A virus from eight plasmids
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.100133697
– start-page: 1
  year: 2024
  ident: pbio.3002916.ref068
  article-title: Spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle
  publication-title: Nature
– volume: 619
  start-page: 338
  issue: 7969
  year: 2023
  ident: pbio.3002916.ref006
  article-title: BTN3A3 evasion promotes the zoonotic potential of influenza A viruses
  publication-title: Nature
  doi: 10.1038/s41586-023-06261-8
– reference: 38826368 - bioRxiv. 2024 Jul 31:2024.05.23.595634. doi: 10.1101/2024.05.23.595634
SSID ssj0022928
Score 2.5428553
Snippet H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage e3002916
SubjectTerms Amino acids
Animals
Antibodies, Viral - blood
Antibodies, Viral - immunology
Epidemics
Female
Ferrets
Genetic aspects
Health aspects
Hemagglutinin Glycoproteins, Influenza Virus - genetics
Hemagglutinin Glycoproteins, Influenza Virus - immunology
Humans
Influenza
Influenza A virus - genetics
Influenza A virus - immunology
Influenza viruses
Influenza, Human - epidemiology
Influenza, Human - immunology
Influenza, Human - virology
Lectins
Mice
Mutation
Mutation (Biology)
Orthomyxoviridae Infections - virology
United States
Vaccination
Viral proteins
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF6kUPBFtP46bWUVwae0SfZX9rFVy-lDBWulb8smu3sUNDkuSUH_emeye0dPkfrgUyCZQPh2dueb7M43hLxmlnvNqjrzOse_VYXNtON1ZkXBpC1zW7npgOyZnF_wj5fi8karLzwTFuWBI3BHNYR0eM95FRhvbAPxVEiOkVtVumimMl-IeetkKqVapZ66qqLUDExnxVLRHFPFURqjw2V91R0y3JXCXuc3gtKk3f_nCv0b75ziz-l9ci8RR3ocP_gBuePbPbIbW0n-eEjO33m_pN_HIf3co30TuxHRLtC5oKjNuligm8FNOnQ0KqbiBZuU_LT0-mo19rQfV9ceOxGBMzwiF6fvv7ydZ6lhQtaIqhoyLxxkTzwPtmY8KFcIV2Lhai1t7rwFthC8q0sPHM3KBqiYss4Gp7ltVF1KzR6TnbZr_VNCtbBOVoC5CoIzh0J1XAcYB5tXGlLqGWFrxEyT1MSxqcU3M22RKcgqIi4GcTYJ5xnJNm8to5rGLfYnOBgbW9TCnm6Ah5jkIeY2D5mRVziUBtUuWjxOs7Bj35sPn76aY-BDskJFnb8ZnZ_9i9HnLaM3ySh0gAh8UKxzAFxRamvLcn_LEiZ2s_X45dr3DD7C03Ct78beMCAVSgKXL2fkSXTKDURMw6rKFX_2P6B7Tu6WQOKw9rIo98nOsBr9AZCwoX4xzbdf_6QrYg
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance
URI https://www.ncbi.nlm.nih.gov/pubmed/39531474
https://www.proquest.com/docview/3128761152
https://doaj.org/article/b551513de7f34cac99356402507891c8
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwGA17QfBFvDvuOkQRfOrQNknTPIjs6i6j4qi7jsxbSJt0WFjb2V4W11_v97WdgaqL-tJC-7WE0y_Nye0cQp4zw51iceI55eNoVWA8ZXniGRGwyIS-iW27QHYWTef83UIstsjas7UHsPpj1w79pObl-eT7xdUrqPAvW9cGGawfmqySs2LCcJ4piLbJLrRNEj0NPvDNvEIYqtZtFXkDrqMT_Wa6694yaKxaTf_f_9y_8NG2XTq-TW71hJIedBlwh2y5_C650VlMXt0jp2-cW9FvTd0P-tEq7VyKaJHRqaCo2bpcYvrBRVoXtFNSxROal_ww9PKsbCpaNeWlQ4ciSJL7ZH589OX11OuNFLxUxHHtOWGhV8X9zCSMZ9IGwoa4oTWJjG-dARaROZuEDribiVKgaNJYk1nFTSqTMFLsAdnJi9w9IlQJY6NYZkxmgjOLAnZcZQGzxo8VdLVHhK0R02mvMo5mF-e6nTqT0NvocNGIs-5xHhFv89SqU9n4S_whfoxNLGpktxeKcqn7KqcTIIOQcdZBaXlqUmBiIuLI-WSsgjQekWf4KTWqYOS4zGZpmqrSbz9-1QfAk6IYlXauCzqd_UvQySDoRR-UFYAIFKjb_wC4ogTXIHJ_EAkVPh3cfrrOPY23cJVc7oqm0gzIhoyA44cj8rBLyg1ETMHflkv--D-h3iM3Q-BxuP0yCPfJTl027gnwsDoZk225kGOye3g0-3Qybkcz4Pj-czxuK91PKVM0rA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+mutational+scanning+of+H5+hemagglutinin+to+inform+influenza+virus+surveillance&rft.jtitle=PLoS+biology&rft.au=Dadonaite%2C+Bernadeta&rft.au=Ahn%2C+Jenny+J.&rft.au=Ort%2C+Jordan+T.&rft.au=Yu%2C+Jin&rft.date=2024-11-12&rft.issn=1545-7885&rft.eissn=1545-7885&rft.volume=22&rft.issue=11&rft.spage=e3002916&rft_id=info:doi/10.1371%2Fjournal.pbio.3002916&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pbio_3002916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon