Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response
The control of porosity morphology and physico-chemical characteristics of calcium phosphate bone substitutes is a key-point to guaranty healing success. In this work, micro- and macroporosity of materials processed with 70% Hydroxyapatite (HAP) and 30% beta-tricalcium phosphate (beta-TCP) were cont...
Saved in:
Published in | Journal of materials science. Materials in medicine Vol. 14; no. 12; pp. 1089 - 1097 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Springer Nature B.V
01.12.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The control of porosity morphology and physico-chemical characteristics of calcium phosphate bone substitutes is a key-point to guaranty healing success. In this work, micro- and macroporosity of materials processed with 70% Hydroxyapatite (HAP) and 30% beta-tricalcium phosphate (beta-TCP) were controlled by sintering temperature and porogen addition, respectively. Porosity was quantified by scanning electron microscopy (pore size) and mercury intrusion porosimetry (interconnection between pores). The content of macrointerconnections and their size were dependent on porogen content, shape, and size. Mechanical properties (compressive strength) were strongly dependent on macroporosity size and content, on the basis of exponential laws, whereas microporosity ratio was less influent. Relying on those results, three types of materials with contrasting porous morphologies were processed and assessed in vitro, in primary culture of human osteoblasts and fibroblasts. With both types of cells, an exponential cellular growth was effective. Cells colonized the surface of the materials, bridging macroporosity, before colonizing the depth of the materials. Cell migration across and into macroporosity occurred via the emission by the cells of long cytoplasmic extensions that hanged on microporosity. Both macroporosity and macrointerconnectivity size influenced the penetration of cells. An interconnection size of 15 microm appeared to be effective to support this invasion without bringing down mechanical strength. |
---|---|
AbstractList | The control of porosity morphology and physico-chemical characteristics of calcium phosphate bone substitutes is a key-point to guaranty healing success. In this work, micro- and macroporosity of materials processed with 70% Hydroxyapatite (HAP) and 30% *b-tricalcium phosphate (*b-TCP) were controlled by sintering temperature and porogen addition, respectively. Porosity was quantified by scanning electron microscopy (pore size) and mercury intrusion porosimetry (interconnection between pores). The content of macrointerconnections and their size were dependent on porogen content, shape, and size. Mechanical properties (compressive strength) were strongly dependent on macroporosity size and content, on the basis of exponential laws, whereas microporosity ratio was less influent. Relying on those results, three types of materials with contrasting porous morphologies were processed and assessed in vitro, in primary culture of human osteoblasts and fibroblasts. With both types of cells, an exponential cellular growth was effective. Cells colonized the surface of the materials, bridging macroporosity, before colonizing the depth of the materials. Cell migration across and into macroporosity occurred via the emission by the cells of long cytoplasmic extensions that hanged on microporosity. Both macroporosity and macrointerconnectivity size influenced the penetration of cells. An interconnection size of 15 *mm appeared to be effective to support this invasion without bringing down mechanical strength. The control of porosity morphology and physico-chemical characteristics of calcium phosphate bone substitutes is a key-point to guaranty healing success. In this work, micro- and macroporosity of materials processed with 70% Hydroxyapatite (HAP) and 30% beta -tricalcium phosphate ( beta -TCP) were controlled by sintering temperature and porogen addition, respectively. Porosity was quantified by scanning electron microscopy (pore size) and mercury intrusion porosimetry (interconnection between pores). The content of macrointerconnections and their size were dependent on porogen content, shape, and size. Mechanical properties (compressive strength) were strongly dependent on macroporosity size and content, on the basis of exponential laws, whereas microporosity ratio was less influent. Relying on those results, three types of materials with contrasting porous morphologies were processed and assessed in vitro, in primary culture of human osteoblasts and fibroblasts. With both types of cells, an exponential cellular growth was effective. Cells colonized the surface of the materials, bridging macroporosity, before colonizing the depth of the materials. Cell migration across and into macroporosity occurred via the emission by the cells of long cytoplasmic extensions that hanged on microporosity. Both macroporosity and macrointerconnectivity size influenced the penetration of cells. An interconnection size of 15 mu m appeared to be effective to support this invasion without bringing down mechanical strength. The control of porosity morphology and physico-chemical characteristics of calcium phosphate bone substitutes is a key-point to guaranty healing success. In this work, micro- and macroporosity of materials processed with 70% Hydroxyapatite (HAP) and 30% b-tricalcium phosphate (b-TCP) were controlled by sintering temperature and porogen addition, respectively. Porosity was quantified by scanning electron microscopy (pore size) and mercury intrusion porosimetry (interconnection between pores). The content of macrointerconnections and their size were dependent on porogen content, shape, and size. Mechanical properties (compressive strength) were strongly dependent on macroporosity size and content, on the basis of exponential laws, whereas microporosity ratio was less influent. Relying on those results, three types of materials with contrasting porous morphologies were processed and assessed in vitro, in primary culture of human osteoblasts and fibroblasts. With both types of cells, an exponential cellular growth was effective. Cells colonized the surface of the materials, bridging macroporosity, before colonizing the depth of the materials. Cell migration across and into macroporosity occurred via the emission by the cells of long cytoplasmic extensions that hanged on microporosity. Both macroporosity and macrointerconnectivity size influenced the penetration of cells. An interconnection size of 15 km appeared to be effective to support this invasion without bringing down mechanical strength. The control of porosity morphology and physico-chemical characteristics of calcium phosphate bone substitutes is a key-point to guaranty healing success. In this work, micro- and macroporosity of materials processed with 70% Hydroxyapatite (HAP) and 30% beta-tricalcium phosphate (beta-TCP) were controlled by sintering temperature and porogen addition, respectively. Porosity was quantified by scanning electron microscopy (pore size) and mercury intrusion porosimetry (interconnection between pores). The content of macrointerconnections and their size were dependent on porogen content, shape, and size. Mechanical properties (compressive strength) were strongly dependent on macroporosity size and content, on the basis of exponential laws, whereas microporosity ratio was less influent. Relying on those results, three types of materials with contrasting porous morphologies were processed and assessed in vitro, in primary culture of human osteoblasts and fibroblasts. With both types of cells, an exponential cellular growth was effective. Cells colonized the surface of the materials, bridging macroporosity, before colonizing the depth of the materials. Cell migration across and into macroporosity occurred via the emission by the cells of long cytoplasmic extensions that hanged on microporosity. Both macroporosity and macrointerconnectivity size influenced the penetration of cells. An interconnection size of 15 microm appeared to be effective to support this invasion without bringing down mechanical strength. The control of porosity morphology and physico-chemical characteristics of calcium phosphate bone substitutes is a key-point to guaranty healing success. In this work, micro- and macroporosity of materials processed with 70% Hydroxyapatite (HAP) and 30% β-tricalcium phosphate (β-TCP) were controlled by sintering temperature and porogen addition, respectively. Porosity was quantified by scanning electron microscopy (pore size) and mercury intrusion porosimetry (interconnection between pores). The content of macrointerconnections and their size were dependent on porogen content, shape, and size. Mechanical properties (compressive strength) were strongly dependent on macroporosity size and content, on the basis of exponential laws, whereas microporosity ratio was less influent. Relying on those results, three types of materials with contrasting porous morphologies were processed and assessed in vitro, in primary culture of human osteoblasts and fibroblasts. With both types of cells, an exponential cellular growth was effective. Cells colonized the surface of the materials, bridging macroporosity, before colonizing the depth of the materials. Cell migration across and into macroporosity occurred via the emission by the cells of long cytoplasmic extensions that hanged on microporosity. Both macroporosity and macrointerconnectivity size influenced the penetration of cells. An interconnection size of 15 μm appeared to be effective to support this invasion without bringing down mechanical strength.[PUBLICATION ABSTRACT] Micro- and macroporosity of materials processed with 70% hydroxyapatite and 30% beta-tricalcium phosphate were controlled by sintering temperature and porogen addition, respectively. Pore size was quantified by SEM and interconnection between pores by mercury intrusion porosimetry. The content of macrointerconnections and their size were dependent on porogen content, shape, and size. Mechanical properties (compressive strength) were strongly dependent on macroporosity size and content on the basis of exponential laws, whereas microporosity ratio was less influential. Relying on those results, three types of material with contrasting porous morphologies were processed and assessed, in vitro, in primary culture of human osteoblasts and fibroblasts. With both types of cell, an exponential cellular growth was effective. Cells colonised the surface of the materials, bridging macroporosity, before colonising the depth of the materials. Cell migration across and into macroporosity occurred via the emission by the cells of long cytoplasmic extensions that hung on microporosity. Both macroporosity and macrointerconnectivity size influenced the penetration of cells. An interconnection size of 15 micron appeared to be effective to support this penetration without reducing mechanical strength. 20 refs. |
Author | Hartmann, D Bignon, A Melin, M Chouteau, J Carret, J-P Chevalier, J Fantozzi, G Chavassieux, P Boivin, G |
Author_xml | – sequence: 1 givenname: A surname: Bignon fullname: Bignon, A organization: Institut National des Sciences appliquées, Groupe d'Etude de Métallurgie Physique et de Physique des Matériaux, CNRS Unité 5510, bat. Blaise Pascal, 20 av. Albert Einstein, 69621 Villeurbanne, France – sequence: 2 givenname: J surname: Chouteau fullname: Chouteau, J – sequence: 3 givenname: J surname: Chevalier fullname: Chevalier, J – sequence: 4 givenname: G surname: Fantozzi fullname: Fantozzi, G – sequence: 5 givenname: J-P surname: Carret fullname: Carret, J-P – sequence: 6 givenname: P surname: Chavassieux fullname: Chavassieux, P – sequence: 7 givenname: G surname: Boivin fullname: Boivin, G – sequence: 8 givenname: M surname: Melin fullname: Melin, M – sequence: 9 givenname: D surname: Hartmann fullname: Hartmann, D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15348502$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9P3DAQxa2KqixbvkJlcWi5ZGt7_JdbQRRagXqAu-UkjghN4q3tHPj2OLASUg-AL7Y0vzfz5HkHaG8Kk0foiJINJQy-n578vr653pCnwwmRG0PAmE3NP6AVFQoqrkHvoRUxQlVcANlHByndL7QR4hPapwK4FoSt0N_zrvNNxqHDY9_EUGE3tXh05bkNMaQ-Pyy1ujjAaa5T7vOcfcJhwvnO9xGPvrlzU9-4AW-Lxsfcl_LSpPHDMA8u4ujTNkzJf0YfOzckf7i71-j25_nt2WV19efi19mPq6oRWueqoa51xbUAXbfMsI4b8Eq2BrQhXBvfSDCuY9KAkbRuDaE1cCZ0K9uihDX69ty2-Pk3-5Tt2KfFjJt8mJPVQKkCpVUhv75KKiqMLj_8JsiUlsoo-i4QyobeBVJN3gapYaAVWTwevw7K4k9KrURBj_5D78Mcp7ITq4QEppbJa3TyDJUopBR9Z7exH118sJTYJYf21C45tC85tE85tDUv4i-7CXM9-vZFugsePAJrHdpF |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2011_07_022 crossref_primary_10_1248_jhs_54_154 crossref_primary_10_1016_j_msec_2022_112690 crossref_primary_10_1111_jace_15819 crossref_primary_10_1002_jbm_a_34439 crossref_primary_10_1016_j_apsusc_2019_05_354 crossref_primary_10_1007_s10856_007_0163_9 crossref_primary_10_3390_jfb1010022 crossref_primary_10_1016_j_jmbbm_2012_02_003 crossref_primary_10_1002_jbm_a_31844 crossref_primary_10_1111_ijac_12024 crossref_primary_10_1016_j_dental_2022_06_020 crossref_primary_10_1016_j_ceramint_2015_11_168 crossref_primary_10_1007_s10856_014_5225_1 crossref_primary_10_1088_1758_5090_7_2_025008 crossref_primary_10_1016_j_msec_2018_12_044 crossref_primary_10_2298_SOS1102183A crossref_primary_10_1093_rb_rbx029 crossref_primary_10_1016_j_biomaterials_2006_01_001 crossref_primary_10_1016_j_actbio_2013_05_026 crossref_primary_10_1002_jbm_b_31009 crossref_primary_10_3390_jfb14030170 crossref_primary_10_1016_j_actbio_2010_03_018 crossref_primary_10_1177_0885328213491790 crossref_primary_10_1007_s10856_007_3346_5 crossref_primary_10_1007_s10856_007_3045_2 crossref_primary_10_1002_mabi_201600523 crossref_primary_10_1016_j_jmbbm_2021_104717 crossref_primary_10_1016_j_msec_2019_110039 crossref_primary_10_3390_nano7110389 crossref_primary_10_1002_jbm_a_36285 crossref_primary_10_3389_fbioe_2015_00175 crossref_primary_10_1016_j_jeurceramsoc_2016_08_018 crossref_primary_10_1016_j_cej_2021_128709 crossref_primary_10_1002_jbm_a_34539 crossref_primary_10_1016_j_jeurceramsoc_2022_07_033 crossref_primary_10_1002_jbm_b_31833 crossref_primary_10_1016_j_msec_2016_12_044 crossref_primary_10_1021_acsabm_0c01176 crossref_primary_10_1016_j_rvsc_2008_04_008 crossref_primary_10_1007_s00264_009_0875_1 crossref_primary_10_1016_j_msec_2014_07_026 crossref_primary_10_1016_j_msec_2017_03_166 crossref_primary_10_1016_j_jeurceramsoc_2016_05_001 crossref_primary_10_1038_s41413_020_00131_z crossref_primary_10_1080_09506608_2015_1128310 crossref_primary_10_1111_j_1744_7402_2005_02020_x crossref_primary_10_1155_2017_9547896 crossref_primary_10_4012_dmj_2011_089 crossref_primary_10_1016_j_joms_2015_05_037 crossref_primary_10_1155_2013_863157 crossref_primary_10_3389_fbioe_2017_00015 crossref_primary_10_1088_1748_605X_ac9e34 crossref_primary_10_1016_j_biomaterials_2005_04_038 crossref_primary_10_1007_s10856_011_4530_1 crossref_primary_10_1088_1758_5090_aa6a62 crossref_primary_10_2485_jhtb_18_71 crossref_primary_10_1002_term_555 crossref_primary_10_1016_j_matpr_2021_09_459 crossref_primary_10_1016_S2211_0801_21_00001_7 crossref_primary_10_1016_j_jallcom_2023_169131 crossref_primary_10_5035_nishiseisai_67_292 crossref_primary_10_1002_mame_202100863 crossref_primary_10_1002_jbm_b_33750 crossref_primary_10_1002_jbm_a_37108 crossref_primary_10_1002_jbm_b_30240 crossref_primary_10_4012_dmj_2012_169 crossref_primary_10_1002_jbm_a_34094 crossref_primary_10_1016_j_mtcomm_2022_104109 crossref_primary_10_1088_1758_5082_3_1_012001 crossref_primary_10_1186_s40824_019_0161_2 crossref_primary_10_1016_j_ceramint_2023_12_055 crossref_primary_10_1098_rsta_2004_1466 crossref_primary_10_1007_s10856_012_4561_2 crossref_primary_10_1016_j_jbiomech_2010_05_027 crossref_primary_10_11005_jbm_2017_24_1_23 crossref_primary_10_1016_j_eurpolymj_2020_109870 crossref_primary_10_1016_j_msec_2017_04_132 crossref_primary_10_3390_ma8031150 crossref_primary_10_1007_s00339_012_6992_5 crossref_primary_10_1016_j_msec_2018_12_012 crossref_primary_10_4028_www_scientific_net_KEM_361_363_265 crossref_primary_10_1002_bit_22667 crossref_primary_10_1097_MAT_0000000000000155 crossref_primary_10_1039_c2jm33354f crossref_primary_10_1007_s40843_017_9134_x crossref_primary_10_1080_10667857_2021_1950886 crossref_primary_10_1177_0885328215625759 crossref_primary_10_1016_j_actamat_2018_02_060 crossref_primary_10_1016_j_jmst_2018_09_066 crossref_primary_10_1007_s10924_023_02977_w crossref_primary_10_1002_jbm_a_31587 crossref_primary_10_1016_j_oceram_2021_100141 crossref_primary_10_1088_1748_6041_10_2_025012 crossref_primary_10_1002_jbm_b_34049 crossref_primary_10_1007_s11661_017_4030_0 crossref_primary_10_1016_j_ceramint_2023_10_238 crossref_primary_10_1039_C5NR08418K crossref_primary_10_1007_s10856_009_3961_4 crossref_primary_10_1016_j_engfracmech_2013_12_003 crossref_primary_10_1016_j_jeurceramsoc_2018_12_024 crossref_primary_10_1016_j_ijbiomac_2017_09_030 crossref_primary_10_1016_j_jeurceramsoc_2009_09_017 crossref_primary_10_1016_S2211_033X_20_44341_5 crossref_primary_10_1016_j_actbio_2010_07_012 crossref_primary_10_3390_ma10101187 crossref_primary_10_1002_jbm_a_32443 crossref_primary_10_1016_j_jeurceramsoc_2017_05_021 crossref_primary_10_3892_mmr_2017_7266 crossref_primary_10_1080_21691401_2023_2278156 crossref_primary_10_1021_cm048776c crossref_primary_10_1111_j_1600_0501_2010_01953_x crossref_primary_10_4028_www_scientific_net_AMR_450_451_210 crossref_primary_10_1016_j_colsurfb_2017_04_012 crossref_primary_10_1179_0950660812Z_00000000021 crossref_primary_10_4028_www_scientific_net_KEM_361_363_1111 crossref_primary_10_1016_j_msec_2010_10_014 crossref_primary_10_1002_jbm_a_31324 crossref_primary_10_1016_j_jiec_2019_06_027 crossref_primary_10_1016_j_jeurceramsoc_2007_07_012 crossref_primary_10_1586_17434440_2013_827529 crossref_primary_10_1016_j_actbio_2018_09_031 crossref_primary_10_1002_btpr_246 crossref_primary_10_1089_ten_tea_2014_0497 crossref_primary_10_1002_jbm_b_31773 crossref_primary_10_1007_s10856_010_4044_2 crossref_primary_10_1016_j_actbio_2010_09_039 crossref_primary_10_1016_j_msec_2018_11_069 crossref_primary_10_4012_dmj_28_627 crossref_primary_10_1111_jace_14213 crossref_primary_10_1016_j_matlet_2010_01_085 crossref_primary_10_1002_lio2_325 crossref_primary_10_1097_ID_0000000000000289 crossref_primary_10_1002_jbm_b_32979 crossref_primary_10_1002_adma_201303412 crossref_primary_10_1007_s00170_013_5210_8 crossref_primary_10_1016_j_biomaterials_2008_04_039 crossref_primary_10_1111_j_1708_8208_2009_00270_x crossref_primary_10_1016_j_msec_2008_08_009 crossref_primary_10_1016_j_tibtech_2004_10_004 crossref_primary_10_1016_j_matchemphys_2017_06_064 crossref_primary_10_3390_app9071469 crossref_primary_10_3390_ijms25105363 crossref_primary_10_1002_jbm_b_33614 crossref_primary_10_1007_s11373_005_9032_z crossref_primary_10_1016_j_colsurfb_2022_112370 crossref_primary_10_1039_c2ra20836a crossref_primary_10_1016_j_actbio_2017_01_076 crossref_primary_10_1016_j_biomaterials_2009_11_050 crossref_primary_10_1016_j_ceramint_2008_12_006 crossref_primary_10_1021_acsami_0c07304 crossref_primary_10_4028_www_scientific_net_KEM_361_363_1203 crossref_primary_10_1016_j_actbio_2023_08_041 crossref_primary_10_1016_j_ceramint_2015_05_070 crossref_primary_10_1016_j_bioactmat_2016_09_001 crossref_primary_10_1002_slct_202303971 crossref_primary_10_1016_j_ceramint_2019_02_044 crossref_primary_10_1680_bbn_14_00029 crossref_primary_10_5051_jpis_2015_45_2_46 crossref_primary_10_1002_jbm_a_31559 crossref_primary_10_1016_j_mser_2016_01_001 crossref_primary_10_1016_j_polymertesting_2015_02_012 crossref_primary_10_1016_j_ceramint_2017_08_053 crossref_primary_10_1002_jbm_a_35475 crossref_primary_10_1016_j_msec_2014_12_070 crossref_primary_10_1089_ten_tec_2016_0521 crossref_primary_10_1016_j_msec_2009_03_012 crossref_primary_10_3892_ijmm_2014_1954 crossref_primary_10_1007_s10856_011_4289_4 crossref_primary_10_1088_1748_6041_10_4_045006 crossref_primary_10_1097_CORR_0000000000001894 crossref_primary_10_1021_acsbiomaterials_6b00370 crossref_primary_10_1002_mame_201500048 crossref_primary_10_1007_s11837_011_0063_9 crossref_primary_10_1177_0885328216633890 crossref_primary_10_1016_j_oceram_2023_100498 crossref_primary_10_1111_j_1525_1594_2008_00557_x crossref_primary_10_3389_fbioe_2015_00151 crossref_primary_10_1002_jbm_a_30797 crossref_primary_10_1002_jbm_a_31644 crossref_primary_10_1002_jbm_b_30648 crossref_primary_10_1016_j_biomaterials_2006_08_021 crossref_primary_10_1016_j_msec_2018_03_022 crossref_primary_10_1002_mabi_201000011 crossref_primary_10_1016_j_geoen_2023_211675 crossref_primary_10_1016_j_jcms_2011_04_008 crossref_primary_10_1088_1748_605X_abac4c crossref_primary_10_3390_ma15041433 crossref_primary_10_1016_j_knee_2008_02_005 crossref_primary_10_1002_jbm_b_32935 crossref_primary_10_1080_09205063_2022_2127143 crossref_primary_10_1002_jbm_a_36422 crossref_primary_10_1007_s43465_022_00657_w crossref_primary_10_1002_jbm_a_30682 crossref_primary_10_1016_j_actbio_2007_10_001 crossref_primary_10_1016_j_msec_2016_09_040 crossref_primary_10_1089_ten_tea_2014_0580 crossref_primary_10_1016_j_colsurfb_2012_10_067 crossref_primary_10_1007_s10853_006_0430_z crossref_primary_10_1016_j_jeurceramsoc_2016_11_035 crossref_primary_10_1007_BF03401159 crossref_primary_10_1002_term_2371 crossref_primary_10_1016_j_matlet_2016_05_170 crossref_primary_10_1016_j_tiv_2017_12_002 crossref_primary_10_1111_j_1708_8208_2007_00031_x crossref_primary_10_1016_j_jmbbm_2009_01_009 crossref_primary_10_1088_1758_5090_8_1_015005 crossref_primary_10_1002_crat_200900551 crossref_primary_10_30782_jrvm_1381682 crossref_primary_10_1007_s10856_011_4279_6 crossref_primary_10_1007_s10856_011_4443_z crossref_primary_10_1002_jbm_b_31192 crossref_primary_10_1007_s10856_005_6988_1 crossref_primary_10_1002_term_2362 crossref_primary_10_2147_IJN_S439775 crossref_primary_10_1002_mawe_200700232 crossref_primary_10_4028_www_scientific_net_KEM_361_363_403 crossref_primary_10_1016_j_actbio_2007_09_001 crossref_primary_10_3390_ijerph17144931 crossref_primary_10_1016_j_actbio_2018_09_008 crossref_primary_10_1016_j_ceramint_2017_09_208 crossref_primary_10_3390_jfb13030123 crossref_primary_10_1002_jbm_a_37735 crossref_primary_10_1002_jbm_a_36644 crossref_primary_10_1016_j_msec_2021_112578 |
ContentType | Journal Article |
Copyright | Kluwer Academic Publishers 2003 |
Copyright_xml | – notice: Kluwer Academic Publishers 2003 |
DBID | NPM AAYXX CITATION 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KB. KR7 L7M LK8 L~C L~D M0S M1P M2P M7P P64 PDBOC PQEST PQQKQ PQUKI PRINS Q9U S0W 7X8 7QP |
DOI | 10.1023/B:JMSM.0000004006.90399.b4 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DELNET Engineering & Technology Collection MEDLINE - Academic Calcium & Calcified Tissue Abstracts |
DatabaseTitle | PubMed CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest Medical Library ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | Materials Research Database Engineering Research Database Engineering Research Database Materials Research Database Materials Research Database PubMed Materials Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-4838 |
Editor | WCA |
Editor_xml | – fullname: WCA |
EndPage | 1097 |
ExternalDocumentID | 2154112911 10_1023_B_JMSM_0000004006_90399_b4 15348502 |
Genre | Journal Article |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAEOY AAHNG AAIAL AAIKT AAJKR AAJSJ AAKKN AARHV AARTL AATVU AAWCG AAYIU AAYQN AAYTO AAYZH AAYZJ ABBBX ABBXA ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTMW ABUWG ABXPI ACACY ACBXY ACGFS ACGOD ACHXU ACIPQ ACIWK ACKNC ACMLO ACOKC ACOMO ACPRK ACULB ADBBV ADHHG ADHIR ADINQ ADIYS ADKNI ADKPE ADRFC ADURQ ADYFF ADZKW AEBTG AEFIE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AETLH AEXYK AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGJZZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBXF AHBYD AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYQR ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI C24 C6C CAG CCPQU COF CS3 CSCUP CZ9 D1I DL5 DU5 DWQXO EBD EBLON EBS EDO EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z G8K GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_DOAJ GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX KB. KC. KDC KOV KOW LAK LK8 M1P M2P M4Y M7P MA- MK0 MK~ N2Q N9A NB0 NDZJH NPM NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 OVD P0- P19 P2P P9N PDBOC PQQKQ PROAC PSQYO PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SNE SNX SOJ SPISZ SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8V Z8W Z8Z Z91 ZMTXR ~EX AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PQEST PQUKI PRINS Q9U ABDPE 7X8 7QP |
ID | FETCH-LOGICAL-c588t-c1ada453538bd292f493e76d93890489ec639af2693961bd901b34258d6dada3 |
IEDL.DBID | BENPR |
ISSN | 0957-4530 |
IngestDate | Sat Oct 26 01:45:44 EDT 2024 Fri Oct 25 04:51:50 EDT 2024 Fri Oct 25 11:41:38 EDT 2024 Fri Oct 25 12:29:12 EDT 2024 Sat Oct 26 00:11:14 EDT 2024 Fri Oct 25 21:09:54 EDT 2024 Mon Nov 04 12:52:54 EST 2024 Thu Oct 10 22:16:04 EDT 2024 Thu Sep 12 19:59:02 EDT 2024 Tue Oct 15 23:31:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c588t-c1ada453538bd292f493e76d93890489ec639af2693961bd901b34258d6dada3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 15348502 |
PQID | 756327180 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_831173787 proquest_miscellaneous_71598040 proquest_miscellaneous_27867971 proquest_miscellaneous_27863573 proquest_miscellaneous_27861803 proquest_miscellaneous_19238700 proquest_miscellaneous_1671366875 proquest_journals_756327180 crossref_primary_10_1023_B_JMSM_0000004006_90399_b4 pubmed_primary_15348502 |
PublicationCentury | 2000 |
PublicationDate | 2003-12-01 |
PublicationDateYYYYMMDD | 2003-12-01 |
PublicationDate_xml | – month: 12 year: 2003 text: 2003-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: London |
PublicationTitle | Journal of materials science. Materials in medicine |
PublicationTitleAlternate | J Mater Sci Mater Med |
PublicationYear | 2003 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 10847976 - J Long Term Eff Med Implants. 1999;9(4):403-12 9468047 - J Biomed Mater Res. 1998 Mar 5;39(3):390-7 10509190 - Biomaterials. 1999 Oct;20(19):1799-806 6606682 - J Immunol Methods. 1983 Dec 16;65(1-2):55-63 15347932 - J Mater Sci Mater Med. 1999 Feb;10(2):111-20 9678860 - Biomaterials. 1998 Jan-Feb;19(1-3):133-9 12610435 - Rev Chir Orthop Reparatrice Appar Mot. 2003 Feb;89(1):44-52 12209909 - J Biomed Mater Res. 2002;63(5):619-26 2777831 - J Biomed Mater Res. 1989 Aug;23(8):883-94 11374457 - Biomaterials. 2001 Jun;22(12):1579-82 8380596 - J Biomed Mater Res. 1993 Jan;27(1):25-34 |
References_xml | |
SSID | ssj0004955 |
Score | 2.2758875 |
Snippet | The control of porosity morphology and physico-chemical characteristics of calcium phosphate bone substitutes is a key-point to guaranty healing success. In... Micro- and macroporosity of materials processed with 70% hydroxyapatite and 30% beta-tricalcium phosphate were controlled by sintering temperature and porogen... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 1089 |
SubjectTerms | Biomedical materials Cellular Interconnection Macroporosity Materials science Mechanical properties Microporosity Morphology Porosity Scanning electron microscopy Surgical implants |
Title | Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15348502 https://www.proquest.com/docview/756327180 https://search.proquest.com/docview/1671366875 https://search.proquest.com/docview/19238700 https://search.proquest.com/docview/27861803 https://search.proquest.com/docview/27863573 https://search.proquest.com/docview/27867971 https://search.proquest.com/docview/71598040 https://search.proquest.com/docview/831173787 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7RrYToAUF5hUIxEte08SN2zAWxqEtVaSsERdpbZCfOBW2ybLaH_ntmkuwuHFIuuWTy8Ngz89n-PAPwgVcpBqWSx4Y7HSsbbGxVxWPprUy9K4SxdBp5fq0vf6qrRboYuDntQKvc-sTOUZdNQWvk5ybVUqAjTT6tfsdUNIo2V4cKGgdwKHCikEzgcHpx_e37_mCk7cqeIoyg5N5yl3VUyPPpx6v5j3mfvpAGsj6zCQbrM6_-jVAjsLMLP7Mn8HjAjexz39FP4UGoj-Hor2yCx_BwPuyTP4NffVJi1lRsSYy7mLm6ZEtH9bqaNfG07uieb-rAWnQdPV-gZU3Nup0Dtgx0Ipg6kK1ouX5NeVe7l9BKP1FX2bpn14bncDO7uPlyGQ9lFeIizbJNXHBXOtQGujpfCisqZWUwurSIXdCebSgQtbhKaCut5r5ExOAlmnZW6hKflC9gUuPvvQKmszQoi5M2pYWSgrsiWJ_q4CgEZqWPQG41ma_65Bl5t-ktZD7NSf_5Xv95p__cqwhOtkrPB4Nq8133R_B-dxctgRrt6tDctjnXOOHWGidgEbwbk0E8ix4qGZcQJtP4GXm_hEzNfySMNXxcwiCKzLDZEbARiUxybiS60whe9gNvr8JUqixNxOt7FXUCj3riIVFv3sBks74NbxFAbfwpHJiFwWs2-3o6mMwf8bYZ4Q |
link.rule.ids | 315,783,787,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,74079,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagSDwOCMorFKiRuKZdv2MuiCKqpTS9sEh7s-zYuVSbLJvtgX_PTJLdhcOWsycPjz0zn-3PM4R8YLWCoBRZbpjXubTJ5lbWLBfBChV8xY3F28jllZ7-lBdzNR-5Od1Iq9z4xN5Rx7bCPfJTo7Tg4Egnn5a_ciwahYerYwWNu-QepuHCAgZmbnbXIm1f9BRABKb2Ftuco1ycnn28KH-UQ_JCnMb6xE4gVJ8E-W982gM6--Bz_oQ8HlEj_TwM81NyJzWH5NFfuQQPyf1yPCV_Rq6HlMS0rekC-XY59U2kC4_VutoVsrR-Y1tom0Q7cBwDW6CjbUP7cwO6SHgfGIePLnGzfoVZV_uX4D4_ElfpauDWpudkdv519mWaj0UV8koVxTqvmI8etAGOLkRueS2tSEZHC8gFrNmmCjCLr7m2wmoWIuCFIMCwi6gjPClekIMGfu8VobpQSVpYsknNpeDMV8kGpZPHAFjEkBGx0aRbDqkzXH_kzYU7c6h_t9O_6_XvgszI0UbpbjSnzm0HPyPvt61gB9hp36T2pnNMw3Jba1h-ZeR4nwygWfBPk_0S3BQaPiNulxDK_EfCWMP2SxjAkAV0OyN0j0QhGDMCnGlGXg4Tb6dCJWShJvz1rYo6Jg-ms_LSXX67-n5EHg4URCThvCEH69VNegtQah3e9QbzB2gYGZ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagSBUcEBQoaYEaiWvatR2_uCAKLKWwFRJF6s2yY-eCNlk220P_PTNJdhcOKWdPHh57Zj7bn2cIecMqCUEpslwzr_LCJpvbomK5CFbI4EuuLd5Gnl2os5_F-ZW8GlIKtQOtcu0TO0cdmxL3yE-0VIJrvJhcDayI7x-n7xa_cywghQetQzWNu-QeBEWFE9xMP2-vSNquACoACkzzLTb5R7k4OX17Pvsx6xMZ4pRWx3YCYfs4FP_GqhEA2gWi6SPycECQ9H0_5I_JnVTvkQd_5RXcI7uz4cT8CfnVpyemTUXnyL3Lqa8jnXus3NUskbF1g22hqRNtwYn0zIGWNjXtzhDoPOHdYBxKusCN-yVmYO1egnv-SGKly55nm56Sy-mnyw9n-VBgIS-lMau8ZD560AY4vRC55VVhRdIqWkAxYNk2lYBffMWVFVaxEAE7BAFGbqKK8KR4RnZq-L3nhCojU2Fh-VYoXgjOfJlskCp5DIYmhoyItSbdok-j4brjby7cqUP9u63-Xad_F4qMHK6V7gbTat1mImTk9aYVbAI77evUXLeOKVh6KwVLsYwcjckAsgVfNRmX4Noo-Iy4XUJI_R8JbTUbl9CAJw10OyN0RMIIxrQAx5qR_X7ibVUoRWHkhB_cqqgjsgu24r59ufh6SO73bETk47wgO6vldXoJqGoVXnX28gfwsB3d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+micro-+and+macroporosity+of+bone+substitutes+on+their+mechanical+properties+and+cellular+response&rft.jtitle=Journal+of+materials+science.+Materials+in+medicine&rft.au=Bignon%2C+A&rft.au=Chouteau%2C+J&rft.au=Chevalier%2C+J&rft.au=Fantozzi%2C+G&rft.date=2003-12-01&rft.issn=0957-4530&rft.volume=14&rft.issue=12&rft.spage=1089&rft.epage=1097&rft_id=info:doi/10.1023%2FB%3AJMSM.0000004006.90399.b4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4530&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4530&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4530&client=summon |