FCRNet: Fast Fourier convolutional residual network for ventilator bearing fault diagnosis

This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively captur...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 7; p. e0327342
Main Authors Cao, Yu, Du, Yongzhi, Le, Likun, Li, Xiaoxue, Gao, Yanfang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 11.07.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively capture local spatial features and global frequency patterns. A Spectral Transformation (ST) module achieves unified processing of multi-scale spatial and frequency information by integrating local Fourier features (LFF), global fourier features (GFF), and local time-domain features (LF), overcoming the limitations of conventional convolutional approaches. The testing results on publicly available datasets and our self-built platform validate that the proposed method outperforms several existing fault diagnosis methods at various noise levels, providing strong support for the condition monitoring of mine ventilation.
AbstractList This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively capture local spatial features and global frequency patterns. A Spectral Transformation (ST) module achieves unified processing of multi-scale spatial and frequency information by integrating local Fourier features (LFF), global fourier features (GFF), and local time-domain features (LF), overcoming the limitations of conventional convolutional approaches. The testing results on publicly available datasets and our self-built platform validate that the proposed method outperforms several existing fault diagnosis methods at various noise levels, providing strong support for the condition monitoring of mine ventilation.
This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively capture local spatial features and global frequency patterns. A Spectral Transformation (ST) module achieves unified processing of multi-scale spatial and frequency information by integrating local Fourier features (LFF), global fourier features (GFF), and local time-domain features (LF), overcoming the limitations of conventional convolutional approaches. The testing results on publicly available datasets and our self-built platform validate that the proposed method outperforms several existing fault diagnosis methods at various noise levels, providing strong support for the condition monitoring of mine ventilation.This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively capture local spatial features and global frequency patterns. A Spectral Transformation (ST) module achieves unified processing of multi-scale spatial and frequency information by integrating local Fourier features (LFF), global fourier features (GFF), and local time-domain features (LF), overcoming the limitations of conventional convolutional approaches. The testing results on publicly available datasets and our self-built platform validate that the proposed method outperforms several existing fault diagnosis methods at various noise levels, providing strong support for the condition monitoring of mine ventilation.
Audience Academic
Author Li, Xiaoxue
Cao, Yu
Gao, Yanfang
Du, Yongzhi
Le, Likun
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0009-0001-0994-4134
  surname: Cao
  fullname: Cao, Yu
– sequence: 2
  givenname: Yongzhi
  surname: Du
  fullname: Du, Yongzhi
– sequence: 3
  givenname: Likun
  surname: Le
  fullname: Le, Likun
– sequence: 4
  givenname: Xiaoxue
  surname: Li
  fullname: Li, Xiaoxue
– sequence: 5
  givenname: Yanfang
  surname: Gao
  fullname: Gao, Yanfang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40644364$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEQx1eoiD7gGyBYCQnBIcGvfZhbFRGIVFGpPA5crPErddisg-0t7bfHIduqQT0gHzwa_-Y_9vh_XBz0vjdF8RyjKaYNfrfyQ-ihm25yeoooaSgjj4ojzCmZ1ATRg3vxYXEc4wqhirZ1_aQ4ZKhmjNbsqPgxn118Nul9OYeYynnWdCaUyvdXvhuS87lDGUx0eshBb9JvH36W1ofyyvTJdZByKA0E1y9LC0OXSu1g2fvo4tPisYUummfjflJ8m3_4Ovs0OTv_uJidnk1U1bZpInXFuGosJlbmAFPTEKRrqBSyYAjTUutak7aqZasqrLEEi5VW2zPJmpqeFC93upvORzGOJQpKCGctaTHNxGJHaA8rsQluDeFGeHDib8KHpYCQnOqMaBtmObQVZYoxziTnEohVmGumDZc4a70ZuwX_azAxibWLynQd9MYPu7YVQqTaoq_-QR--3EgtIfd3vfUpgNqKitOWNZQ3DSeZmj5A5aXN2uXvMtbl_F7B272CzCRznZYwxCgWXy7-nz3_vs--vsdeGujSZRy9EvfBF-PrB7k2-m7st97LANsBKvgYg7F3CEZia_HbcYmtxcVocfoHEQ7tFA
Cites_doi 10.1016/j.neucom.2011.01.021
10.1007/s11668-023-01616-9
10.1007/s00521-019-04097-w
10.1016/j.ijmst.2015.02.001
10.1016/j.ijmst.2017.05.018
10.1016/j.knosys.2020.105971
10.1109/TMECH.2023.3318373
10.3390/pr11051527
10.1016/j.aei.2022.101666
10.1063/5.0251808
10.3390/en10060785
10.1016/j.engappai.2022.105269
10.1109/CAC48633.2019.8996346
10.3390/s22051705
10.3390/e24050573
10.1109/KhPIWeek51551.2020.9250078
10.1016/j.isatra.2021.11.028
10.1016/j.ijmst.2013.07.016
10.3390/en15020408
10.1016/j.aei.2023.101877
10.1007/s11265-019-01461-w
10.1080/21642583.2020.1860153
10.1016/j.knosys.2025.113690
10.1038/s41598-023-32530-7
10.1109/SPIC62469.2024.10691549
10.1016/j.ress.2024.110400
10.1016/j.triboint.2015.12.037
10.1016/j.egyr.2022.08.041
10.1016/j.engappai.2022.105794
10.1109/ACCESS.2018.2888842
10.1016/j.apenergy.2015.01.134
10.1109/ACCESS.2020.2972859
10.1007/s10462-024-10820-4
10.1088/1361-6501/acc885
10.1016/j.tust.2015.02.005
10.3390/e25081233
ContentType Journal Article
Copyright Copyright: © 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0327342
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Agricultural Science Database


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3229482813
oai_doaj_org_article_874f9a8534c4494b99ba2fc19d4de9b1
A847397792
40644364
10_1371_journal_pone_0327342
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
RC3
7X8
ID FETCH-LOGICAL-c588t-bd549c7f12fb49c13e720d6a5c0fae24dbdd6d2856b8c51d1baf1cdcae24b4763
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Aug 31 00:08:04 EDT 2025
Wed Aug 27 01:31:41 EDT 2025
Sat Jul 12 17:30:31 EDT 2025
Sat Aug 23 14:14:49 EDT 2025
Wed Jul 30 23:49:46 EDT 2025
Tue Jul 29 03:42:08 EDT 2025
Tue Jul 29 03:20:55 EDT 2025
Tue Jul 29 03:20:45 EDT 2025
Tue Jul 29 02:10:26 EDT 2025
Mon Jul 21 06:04:55 EDT 2025
Tue Aug 05 11:59:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Copyright: © 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-bd549c7f12fb49c13e720d6a5c0fae24dbdd6d2856b8c51d1baf1cdcae24b4763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-0994-4134
OpenAccessLink https://www.proquest.com/docview/3229482813?pq-origsite=%requestingapplication%
PMID 40644364
PQID 3229482813
PQPubID 1436336
PageCount e0327342
ParticipantIDs plos_journals_3229482813
doaj_primary_oai_doaj_org_article_874f9a8534c4494b99ba2fc19d4de9b1
proquest_miscellaneous_3229500251
proquest_journals_3229482813
gale_infotracmisc_A847397792
gale_infotracacademiconefile_A847397792
gale_incontextgauss_ISR_A847397792
gale_incontextgauss_IOV_A847397792
gale_healthsolutions_A847397792
pubmed_primary_40644364
crossref_primary_10_1371_journal_pone_0327342
PublicationCentury 2000
PublicationDate 20250711
PublicationDateYYYYMMDD 2025-07-11
PublicationDate_xml – month: 07
  year: 2025
  text: 20250711
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Grodzicka (pone.0327342.ref037) 2022; 15
Q Guan (pone.0327342.ref040) 2024
S Yu (pone.0327342.ref012) 2019
Z Guo (pone.0327342.ref023) 2022; 8
P Liang (pone.0327342.ref035) 2022; 115
A Chatterjee (pone.0327342.ref001) 2015; 146
L Liu (pone.0327342.ref010) 2022; 53
H Wang (pone.0327342.ref030) 2024; 251
H Wang (pone.0327342.ref031) 2022; 128
W He (pone.0327342.ref019) 2023; 29
H Yu (pone.0327342.ref038) 2022; 22
L Jia (pone.0327342.ref025) 2023; 119
G Wu (pone.0327342.ref032) 2023; 11
D Ruan (pone.0327342.ref021) 2023; 55
E De Souza (pone.0327342.ref005) 2017; 27
D Wang (pone.0327342.ref020) 2019; 91
D Peng (pone.0327342.ref033) 2019; 7
PK Kankar (pone.0327342.ref015) 2011; 74
V Martynenko (pone.0327342.ref007) 2020
D Wang (pone.0327342.ref009) 2023; 13
N Kursunoglu (pone.0327342.ref008) 2015; 48
Z Shen (pone.0327342.ref011) 2025; 15
B Zhao (pone.0327342.ref027) 2020; 199
W He (pone.0327342.ref022) 2024
J Chen (pone.0327342.ref029) 2021; 9
C Li (pone.0327342.ref018) 2024; 57
Q Zhang (pone.0327342.ref014) 2023; 23
C Li (pone.0327342.ref026) 2025
S Zhang (pone.0327342.ref017) 2020; 8
pone.0327342.ref003
W He (pone.0327342.ref024) 2024
pone.0327342.ref002
Y Gou (pone.0327342.ref006) 2017; 10
W Cui (pone.0327342.ref013) 2023; 25
H Wang (pone.0327342.ref028) 2022; 24
S Hou (pone.0327342.ref039) 2023; 34
K El-Nagdy (pone.0327342.ref004) 2013; 23
L Wen (pone.0327342.ref034) 2020; 32
A Rai (pone.0327342.ref016) 2016; 96
K Wallace (pone.0327342.ref036) 2015; 25
References_xml – volume: 74
  start-page: 1638
  issue: 10
  year: 2011
  ident: pone.0327342.ref015
  article-title: Rolling element bearing fault diagnosis using wavelet transform
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.01.021
– volume: 23
  start-page: 795
  issue: 2
  year: 2023
  ident: pone.0327342.ref014
  article-title: An intelligent fault diagnosis method of rolling bearings based on short-time Fourier transform and convolutional neural network
  publication-title: J Failure Anal Prevent
  doi: 10.1007/s11668-023-01616-9
– volume: 32
  start-page: 6111
  issue: 10
  year: 2020
  ident: pone.0327342.ref034
  article-title: A transfer convolutional neural network for fault diagnosis based on ResNet-50
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04097-w
– volume: 25
  start-page: 165
  issue: 2
  year: 2015
  ident: pone.0327342.ref036
  article-title: The practice of mine ventilation engineering
  publication-title: Int J Mining Sci Technol
  doi: 10.1016/j.ijmst.2015.02.001
– volume: 27
  start-page: 647
  issue: 4
  year: 2017
  ident: pone.0327342.ref005
  article-title: Application of ventilation management programs for improved mine safety
  publication-title: Int J Mining Sci Technol
  doi: 10.1016/j.ijmst.2017.05.018
– volume: 199
  start-page: 105971
  year: 2020
  ident: pone.0327342.ref027
  article-title: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105971
– volume: 29
  start-page: 2056
  issue: 3
  year: 2023
  ident: pone.0327342.ref019
  article-title: Fault identification of rotating machinery based on dynamic feature reconstruction signal graph
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2023.3318373
– volume: 11
  start-page: 1527
  issue: 5
  year: 2023
  ident: pone.0327342.ref032
  article-title: Signal-to-image: rolling bearing fault diagnosis using ResNet family deep-learning models
  publication-title: Processes
  doi: 10.3390/pr11051527
– volume: 53
  start-page: 101666
  year: 2022
  ident: pone.0327342.ref010
  article-title: Machine learning algorithm selection for windage alteration fault diagnosis of mine ventilation system
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101666
– volume: 15
  issue: 2
  year: 2025
  ident: pone.0327342.ref011
  article-title: Fault diagnosis of the mine ventilation system based on OCKIELM
  publication-title: AIP Advances
  doi: 10.1063/5.0251808
– volume: 10
  start-page: 785
  issue: 6
  year: 2017
  ident: pone.0327342.ref006
  article-title: Characterization and effects of the shock losses in a parallel fan station in the underground mine
  publication-title: Energies
  doi: 10.3390/en10060785
– year: 2024
  ident: pone.0327342.ref024
  article-title: Mqkin: Manufacturing quality knowledge-driven interpretable fault diagnosis network for robotic grinding equipment
  publication-title: IEEE Trans Automat Sci Eng
– volume: 115
  start-page: 105269
  year: 2022
  ident: pone.0327342.ref035
  article-title: Intelligent fault diagnosis of rolling bearing based on wavelet transform and improved ResNet under noisy labels and environment
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105269
– start-page: 5226
  volume-title: 2019 Chinese Automation Congress (CAC)
  year: 2019
  ident: pone.0327342.ref012
  article-title: Review of fault diagnosis and early warning of coal mine ventilator.
  doi: 10.1109/CAC48633.2019.8996346
– volume: 22
  start-page: 1705
  issue: 5
  year: 2022
  ident: pone.0327342.ref038
  article-title: Bearing fault reconstruction diagnosis method based on ResNet-152 with multi-scale stacked receptive field
  publication-title: Sensors (Basel)
  doi: 10.3390/s22051705
– year: 2024
  ident: pone.0327342.ref022
  article-title: Unified diagnostic and matching framework of fault and quality for robotic grinding system
  publication-title: IEEE Trans Instrument Measur
– volume: 24
  start-page: 573
  issue: 5
  year: 2022
  ident: pone.0327342.ref028
  article-title: Rolling bearing fault diagnosis using multi-sensor data fusion based on 1D-CNN model
  publication-title: Entropy (Basel)
  doi: 10.3390/e24050573
– start-page: 19
  volume-title: 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek)
  year: 2020
  ident: pone.0327342.ref007
  article-title: Analysis of strength and bearing capacity of the auxiliary mine ventilation fan connected to the rotor of its electrical drive.
  doi: 10.1109/KhPIWeek51551.2020.9250078
– volume: 128
  start-page: 470
  year: 2022
  ident: pone.0327342.ref031
  article-title: Attention-guided joint learning CNN with noise robustness for bearing fault diagnosis and vibration signal denoising
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2021.11.028
– ident: pone.0327342.ref002
– volume: 23
  start-page: 569
  issue: 4
  year: 2013
  ident: pone.0327342.ref004
  article-title: Stability of multiple fans in mine ventilation networks
  publication-title: Int J Mining Sci Technol
  doi: 10.1016/j.ijmst.2013.07.016
– volume: 15
  start-page: 408
  issue: 2
  year: 2022
  ident: pone.0327342.ref037
  article-title: Selection of employees for performing work activities in currently used ventilation systems in hard coal mining
  publication-title: Energies
  doi: 10.3390/en15020408
– volume: 55
  start-page: 101877
  year: 2023
  ident: pone.0327342.ref021
  article-title: CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2023.101877
– volume: 91
  start-page: 1205
  issue: 10
  year: 2019
  ident: pone.0327342.ref020
  article-title: Application of multiscale learning neural network based on CNN in bearing fault diagnosis
  publication-title: J Signal Process Syst
  doi: 10.1007/s11265-019-01461-w
– volume: 9
  start-page: 11
  issue: 1
  year: 2021
  ident: pone.0327342.ref029
  article-title: A self-adaptive CNN with PSO for bearing fault diagnosis
  publication-title: Syst Sci Control Eng
  doi: 10.1080/21642583.2020.1860153
– start-page: 113690
  year: 2025
  ident: pone.0327342.ref026
  article-title: An enhanced CLKAN-RF framework for robust anomaly detection in unmanned aerial vehicle sensor data
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2025.113690
– volume: 13
  start-page: 5259
  issue: 1
  year: 2023
  ident: pone.0327342.ref009
  article-title: A supervised diagnostic experiment of resistance variable multifault locations in a mine ventilation system
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-32530-7
– start-page: 779
  volume-title: 2024 2nd International Conference on Signal Processing and Intelligent Computing (SPIC)
  year: 2024
  ident: pone.0327342.ref040
  article-title: Research on fault diagnosis method for fan rolling bearing based on improved ResNet50.
  doi: 10.1109/SPIC62469.2024.10691549
– volume: 251
  start-page: 110400
  year: 2024
  ident: pone.0327342.ref030
  article-title: A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions
  publication-title: Reliab Eng Syst Safety
  doi: 10.1016/j.ress.2024.110400
– volume: 96
  start-page: 289
  year: 2016
  ident: pone.0327342.ref016
  article-title: A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2015.12.037
– volume: 8
  start-page: 904
  year: 2022
  ident: pone.0327342.ref023
  article-title: Bearing fault diagnosis based on speed signal and CNN model
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.08.041
– volume: 119
  start-page: 105794
  year: 2023
  ident: pone.0327342.ref025
  article-title: GTFE-Net: a gramian time frequency enhancement CNN for bearing fault diagnosis
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105794
– volume: 7
  start-page: 10278
  year: 2019
  ident: pone.0327342.ref033
  article-title: A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888842
– volume: 146
  start-page: 65
  year: 2015
  ident: pone.0327342.ref001
  article-title: Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.134
– volume: 8
  start-page: 29857
  year: 2020
  ident: pone.0327342.ref017
  article-title: Deep learning algorithms for bearing fault diagnostics—A comprehensive review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972859
– ident: pone.0327342.ref003
– volume: 57
  start-page: 214
  issue: 8
  year: 2024
  ident: pone.0327342.ref018
  article-title: Small data challenges for intelligent prognostics and health management: a review
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-024-10820-4
– volume: 34
  start-page: 075108
  issue: 7
  year: 2023
  ident: pone.0327342.ref039
  article-title: Bearing fault diagnosis method using the joint feature extraction of transformer and ResNet
  publication-title: Measur Sci Technol
  doi: 10.1088/1361-6501/acc885
– volume: 48
  start-page: 101
  year: 2015
  ident: pone.0327342.ref008
  article-title: Selection of an appropriate fan for an underground coal mine using the Analytic Hierarchy Process
  publication-title: Tunnel Undergr Space Technol
  doi: 10.1016/j.tust.2015.02.005
– volume: 25
  start-page: 1233
  issue: 8
  year: 2023
  ident: pone.0327342.ref013
  article-title: Fault diagnosis of rolling bearings in primary mine fans under sample imbalance conditions
  publication-title: Entropy (Basel)
  doi: 10.3390/e25081233
SSID ssj0053866
Score 2.4797623
Snippet This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0327342
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Bearings
Bearings (Machinery)
Condition monitoring
Deep learning
Equipment and supplies
Fault diagnosis
Fault location (Engineering)
Fourier Analysis
Fourier transforms
Frequency dependence
Humans
Information processing
Inspection
Methods
Mine ventilation
Mining
Mining accidents & safety
Neural networks
Neural Networks, Computer
Noise levels
Propagation
Signal processing
Ventilation
Ventilators
Ventilators, Mechanical
Wavelet transforms
Working conditions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kTl7E9bWjo7YiqIfsppNOJ_G2LoZVcIXVlcVL008Rhsywyfx_q7p7ggFFD95Cusjjq6quqqQehLwoaus9NyIzFa8zLlyVgZdfZaLSIrBchQ9uH8_F2SX_cFVd_TLqC3PCYnvgCNxxU3PfKjAq3HDect22WhXesNZy61odAh-weftgKu7BoMVCpEK5smbHiS9H203vjvISW7oUM0MU-vVPu_Jiu94Mf3Y5g-npbpNbyWekJ_FZD8gN198hB0krB_oqtY5-fZd8604vzt34hnZqGGkX59FRzCxPEgaXgfg6FGDRPmaAU3Bbach6XGMATjXIPtgz6tVuPVIbU_F-DPfIZffuy-lZlqYnAOxNM2baQuhnas8Kr-GAla4ucitUZXKvXMGtxmFSRVMJ3ZiKWaaVZ8YaXNMctp37ZNEDXoeEghOocqZdwYTDylalSweenclz02jGyiXJ9lDKbWySIcOfshqCi4iRROhlgn5J3iLeEy22uA4ngPEyMV7-jfFL8hS5JWO96KSo8gTsLXq1LdzmeaDANhc95tF8V7thkO8_ff0Hos8XM6KXichvxmtlVKpdgHfC9lkzytWMEpTVzJYPUbb2qAwS9tOWQ9SLIK728vb75WfTMl4Uc-N6t9lFmirEikvyIMrphCy4a5yXgj_8H4g_IjcLnH6MbUXZiizG6517DC7ZqJ8E7fsJnsIyyQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF8rDDAICXjIFieOk_CCxkQ0kBjSYKjixfLnhFQlXZP-_7tz3KBKgHir6qur_Hxn_865D0JeZaX1nhuRmIKXCReuSIDlF4kotAhLrsKF25czcXrBPy-KRbxw62NY5XZPDBu17QzekR-B4tUc3AOWv19dJdg1Ct-uxhYaN8ktLF2GIV3lYnK4wJaFiOlyecmO4uocrrrWHaY5FnbJdo6jULV_2ptnq2XX_514hgOouUvuROZIj8el3iM3XHuP7EXb7OmbWED67X3yszk5P3PDO9qofqDN2JWOYnx51DOYBrzskIZF2zEOnAJ5pSH2cYluONVgAXCqUa82y4HaMSDvV_-AXDQfv5-cJrGHAoBfVUOiLTiApvQs8xo-sNyVWWqFKkzqlcu41dhSKqsKoStTMMu08sxYg2Oaw-bzkMxawGufUKCCKmXaZUw4zG9VOnfA70yamkozls9JsoVSrsZSGTK8LyvBxRgxkgi9jNDPyQfEe5LFQtfhi259KaPdyKrkvlbAKbjhvOa6rrXKvGG15dbVms3Jc1wtOWaNTuYqj-HURW5bw9-8DBJY7KLFaJpLtel7-enrj_8Q-na-I_Q6CvluWCujYgYDPBMW0dqRPNiRBJM1O8P7qFtbVHr5W7nhl1t9-_Pwi2kYJ8UIudZ1m1GmCB7jnDwa9XRCFkgb57ngj_89-RNyO8Puxlg2lB2Q2bDeuKdAuQb9LNjVNS5PKgg
  priority: 102
  providerName: ProQuest
Title FCRNet: Fast Fourier convolutional residual network for ventilator bearing fault diagnosis
URI https://www.ncbi.nlm.nih.gov/pubmed/40644364
https://www.proquest.com/docview/3229482813
https://www.proquest.com/docview/3229500251
https://doaj.org/article/874f9a8534c4494b99ba2fc19d4de9b1
http://dx.doi.org/10.1371/journal.pone.0327342
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZG98ILYtxWKMUgJOAhVZw4NySEtqphIK2gQlG1l8h2nAmpSromlcYLv51zHDdSpE3wYlX1qaN-9rG_E58LIa-9KC8KrkJHBTxyeKgDB1h-4ISBDM2UC_PC7Xweni35l1WwOiD7mq0WwPpG0w7rSS2368n11e-PoPAfTNWGiO1_NNlUpZ64PiZsgU35EM6mCFX1nHf3CqDd5vYSWYsTeq5vg-luG6V3WJmc_t3OPdisq_p2WmqOp_Q-uWd5JT1pF8IROdDlA3JkNbemb2166XcPyUU6Xcx1856mom5o2taso-h9blchDAM2uAnSomXrJU6B2lLjGblGI51K0A8482ghduuG5q273q_6EVmmsx_TM8dWWICpiePGkTmYhyoqmFdI-MB8HXluHopAuYXQHs8lFpzy4iCUsQpYzqQomMoV9kkOW9NjMigBr2NCgSgKl0ntsVBj9KuQvgb2p1xXxZIxf0icPZTZpk2kkZnbtAgMkBajDKHPLPRDcop4d7KYBtt8UW0vM6tVWRzxIhHAOLjiPOEySaTwCsWSnOc6kWxIXuBsZW1MaafM2Qmcych8E3jMKyOBqTBK9LW5FLu6zj5__fkfQt8XPaE3Vqiomq1QwsY3wH_CFFs9yVFPEhRa9bqPcW3tUakz2HMTDpYxgjjar7ebu1923Tgo-s-Vutq1MoGxJ4fkSbtOO2SB0nHuh_zpP8F6Ru56WP4Y84qyERk0251-DpyskWNyJ1pF0MZThm36aUwOT2fzb4uxecsxNmqI7Z_ZX8SEOTQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeYAXxLitMJhBIOAhW-w4NySExqBq2VaksU0VL8Z2nAmpSkqTCvGn-I2c41xQJUC87K2KT9z2-Fy-k5wLIU95nOW5MJFnQhF7IrKhByg_9KJQR-7IlXvgdjyNxmfiwyycbZCfXS0MplV2NtEZ6qw0-Ix8DwQvFRAesODN4puHU6Pw7Wo3QqMRi0P74zuEbNXryTs432ecj96fHoy9dqoA_JwkqT2dQUhk4pzxXMMHFtiY-1mkQuPnynKRaRyyxJMw0okJWca0ypnJDK5pAeoI-14hV8Hx-qhR8awP8MB2RFFbnhfEbK-Vht1FWdhdP8BGMnzN_bkpAb0vGCzmZfV3oOsc3ugmudEiVbrfiNYm2bDFLbLZ2oKKvmgbVr-8TT6PDk6mtn5FR6qq6aiZgkcxn72Va9gGonpX9kWLJu-cAlimLtdyjmE_1cBa8KI0V6t5TbMmAfBrdYecXQp375JBAfzaIhSgp_KZtpxFFutplQ4s4Enj-ybRjAVD4nWslIumNYd07-diCGkaHklkvWxZPyRvkd89LTbWdhfK5YVs9VQmschTBRhGGCFSodNUK54blmYis6lmQ7KDpyWbKtXePMh98PKIpVP4mieOAptrFJi9c6FWVSUnH8__g-jTyRrR85YoL-ulMqqtmID_hE271ii31yjBRJi15S2UrY4rlfytTHBnJ29_Xn7cL-OmmJFX2HLV0IQuQh2Se42c9pwFkChEEIn7_958h1wbnx4fyaPJ9PABuc5xsjK2LGXbZFAvV_YhwL1aP3I6RsmXy1bqX7BBaTM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkRAviHFbYTCDQMBD1jhxbkgIjY1oZTDQYKjixdiOMyFVSWlSIf4av45zHCeoEiBe9lbVp277-VydcyHkYZAUZcl17OmIJx6PTeSBlx95caRie-TSXri9PY4PT_nrWTTbID_7WhhMq-x1olXURa3xjnwCjJdxCA9YOCldWsT7g_zF4puHE6TwSWs_TqNjkSPz4zuEb83z6QGc9aMgyF993D_03IQB-Glp2nqqgPBIJyULSgUvWGiSwC9iGWm_lCbghcKBS0EaxSrVESuYkiXThcY1xUE0Yd8L5GISRgxlLJkNwR7okTh2pXphwiaOM3YXdWV2_RCbygRrptBODBjswmgxr5u_O73W-OVXyRXntdK9js02yYaprpFNpxca-sQ1r356nXzO90-OTfuM5rJpad5NxKOY2-54HLaBCN-WgNGqy0Gn4DhTm3c5xysAqgBasKi0lKt5S4suGfBrc4Ocngu6N8moAry2CAU3VPpMmYDFBmtrpQoN-Jba93WqGAvHxOuhFIuuTYewz-oSCG86jARCLxz0Y_IS8R5oscm2faNengknsyJNeJlJ8Ge45jzjKsuUDErNsoIXJlNsTHbwtERXsTqoCrEHFh_96gy-5oGlwEYbFbLsmVw1jZi--_QfRB9O1ogeO6KybpdSS1c9Af8JG3itUW6vUYK60GvLW8hbPSqN-C1Y8Mme3_68fH9Yxk0xO68y9aqjiWy0Oia3Oj4dkAWHkfMw5rf_vfkOuQTiLN5Mj4_ukMsBDlnG7qVsm4za5crcBc-vVfesiFHy5bxl-hdzXG1p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCRNet%3A+Fast+Fourier+convolutional+residual+network+for+ventilator+bearing+fault+diagnosis&rft.jtitle=PloS+one&rft.au=Gao%2C+Yanfang&rft.au=Du%2C+Yongzhi&rft.au=Li%2C+Xiaoxue&rft.au=Le%2C+Likun&rft.date=2025-07-11&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=7&rft.spage=e0327342&rft_id=info:doi/10.1371%2Fjournal.pone.0327342&rft.externalDBID=n%2Fa&rft.externalDocID=A847397792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon