FCRNet: Fast Fourier convolutional residual network for ventilator bearing fault diagnosis
This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively captur...
Saved in:
Published in | PloS one Vol. 20; no. 7; p. e0327342 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
11.07.2025
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively capture local spatial features and global frequency patterns. A Spectral Transformation (ST) module achieves unified processing of multi-scale spatial and frequency information by integrating local Fourier features (LFF), global fourier features (GFF), and local time-domain features (LF), overcoming the limitations of conventional convolutional approaches. The testing results on publicly available datasets and our self-built platform validate that the proposed method outperforms several existing fault diagnosis methods at various noise levels, providing strong support for the condition monitoring of mine ventilation. |
---|---|
AbstractList | This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively capture local spatial features and global frequency patterns. A Spectral Transformation (ST) module achieves unified processing of multi-scale spatial and frequency information by integrating local Fourier features (LFF), global fourier features (GFF), and local time-domain features (LF), overcoming the limitations of conventional convolutional approaches. The testing results on publicly available datasets and our self-built platform validate that the proposed method outperforms several existing fault diagnosis methods at various noise levels, providing strong support for the condition monitoring of mine ventilation. This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively capture local spatial features and global frequency patterns. A Spectral Transformation (ST) module achieves unified processing of multi-scale spatial and frequency information by integrating local Fourier features (LFF), global fourier features (GFF), and local time-domain features (LF), overcoming the limitations of conventional convolutional approaches. The testing results on publicly available datasets and our self-built platform validate that the proposed method outperforms several existing fault diagnosis methods at various noise levels, providing strong support for the condition monitoring of mine ventilation.This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating conditions. By integrating residual learning with Fast Fourier Convolution (FFC), FCRNet employs a dual-branch architecture to effectively capture local spatial features and global frequency patterns. A Spectral Transformation (ST) module achieves unified processing of multi-scale spatial and frequency information by integrating local Fourier features (LFF), global fourier features (GFF), and local time-domain features (LF), overcoming the limitations of conventional convolutional approaches. The testing results on publicly available datasets and our self-built platform validate that the proposed method outperforms several existing fault diagnosis methods at various noise levels, providing strong support for the condition monitoring of mine ventilation. |
Audience | Academic |
Author | Li, Xiaoxue Cao, Yu Gao, Yanfang Du, Yongzhi Le, Likun |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0009-0001-0994-4134 surname: Cao fullname: Cao, Yu – sequence: 2 givenname: Yongzhi surname: Du fullname: Du, Yongzhi – sequence: 3 givenname: Likun surname: Le fullname: Le, Likun – sequence: 4 givenname: Xiaoxue surname: Li fullname: Li, Xiaoxue – sequence: 5 givenname: Yanfang surname: Gao fullname: Gao, Yanfang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40644364$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvEzEQx1eoiD7gGyBYCQnBIcGvfZhbFRGIVFGpPA5crPErddisg-0t7bfHIduqQT0gHzwa_-Y_9vh_XBz0vjdF8RyjKaYNfrfyQ-ihm25yeoooaSgjj4ojzCmZ1ATRg3vxYXEc4wqhirZ1_aQ4ZKhmjNbsqPgxn118Nul9OYeYynnWdCaUyvdXvhuS87lDGUx0eshBb9JvH36W1ofyyvTJdZByKA0E1y9LC0OXSu1g2fvo4tPisYUummfjflJ8m3_4Ovs0OTv_uJidnk1U1bZpInXFuGosJlbmAFPTEKRrqBSyYAjTUutak7aqZasqrLEEi5VW2zPJmpqeFC93upvORzGOJQpKCGctaTHNxGJHaA8rsQluDeFGeHDib8KHpYCQnOqMaBtmObQVZYoxziTnEohVmGumDZc4a70ZuwX_azAxibWLynQd9MYPu7YVQqTaoq_-QR--3EgtIfd3vfUpgNqKitOWNZQ3DSeZmj5A5aXN2uXvMtbl_F7B272CzCRznZYwxCgWXy7-nz3_vs--vsdeGujSZRy9EvfBF-PrB7k2-m7st97LANsBKvgYg7F3CEZia_HbcYmtxcVocfoHEQ7tFA |
Cites_doi | 10.1016/j.neucom.2011.01.021 10.1007/s11668-023-01616-9 10.1007/s00521-019-04097-w 10.1016/j.ijmst.2015.02.001 10.1016/j.ijmst.2017.05.018 10.1016/j.knosys.2020.105971 10.1109/TMECH.2023.3318373 10.3390/pr11051527 10.1016/j.aei.2022.101666 10.1063/5.0251808 10.3390/en10060785 10.1016/j.engappai.2022.105269 10.1109/CAC48633.2019.8996346 10.3390/s22051705 10.3390/e24050573 10.1109/KhPIWeek51551.2020.9250078 10.1016/j.isatra.2021.11.028 10.1016/j.ijmst.2013.07.016 10.3390/en15020408 10.1016/j.aei.2023.101877 10.1007/s11265-019-01461-w 10.1080/21642583.2020.1860153 10.1016/j.knosys.2025.113690 10.1038/s41598-023-32530-7 10.1109/SPIC62469.2024.10691549 10.1016/j.ress.2024.110400 10.1016/j.triboint.2015.12.037 10.1016/j.egyr.2022.08.041 10.1016/j.engappai.2022.105794 10.1109/ACCESS.2018.2888842 10.1016/j.apenergy.2015.01.134 10.1109/ACCESS.2020.2972859 10.1007/s10462-024-10820-4 10.1088/1361-6501/acc885 10.1016/j.tust.2015.02.005 10.3390/e25081233 |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 DOA |
DOI | 10.1371/journal.pone.0327342 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1932-6203 |
ExternalDocumentID | 3229482813 oai_doaj_org_article_874f9a8534c4494b99ba2fc19d4de9b1 A847397792 40644364 10_1371_journal_pone_0327342 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS PUEGO RC3 7X8 |
ID | FETCH-LOGICAL-c588t-bd549c7f12fb49c13e720d6a5c0fae24dbdd6d2856b8c51d1baf1cdcae24b4763 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Aug 31 00:08:04 EDT 2025 Wed Aug 27 01:31:41 EDT 2025 Sat Jul 12 17:30:31 EDT 2025 Sat Aug 23 14:14:49 EDT 2025 Wed Jul 30 23:49:46 EDT 2025 Tue Jul 29 03:42:08 EDT 2025 Tue Jul 29 03:20:55 EDT 2025 Tue Jul 29 03:20:45 EDT 2025 Tue Jul 29 02:10:26 EDT 2025 Mon Jul 21 06:04:55 EDT 2025 Tue Aug 05 11:59:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Copyright: © 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c588t-bd549c7f12fb49c13e720d6a5c0fae24dbdd6d2856b8c51d1baf1cdcae24b4763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0001-0994-4134 |
OpenAccessLink | https://www.proquest.com/docview/3229482813?pq-origsite=%requestingapplication% |
PMID | 40644364 |
PQID | 3229482813 |
PQPubID | 1436336 |
PageCount | e0327342 |
ParticipantIDs | plos_journals_3229482813 doaj_primary_oai_doaj_org_article_874f9a8534c4494b99ba2fc19d4de9b1 proquest_miscellaneous_3229500251 proquest_journals_3229482813 gale_infotracmisc_A847397792 gale_infotracacademiconefile_A847397792 gale_incontextgauss_ISR_A847397792 gale_incontextgauss_IOV_A847397792 gale_healthsolutions_A847397792 pubmed_primary_40644364 crossref_primary_10_1371_journal_pone_0327342 |
PublicationCentury | 2000 |
PublicationDate | 20250711 |
PublicationDateYYYYMMDD | 2025-07-11 |
PublicationDate_xml | – month: 07 year: 2025 text: 20250711 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2025 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A Grodzicka (pone.0327342.ref037) 2022; 15 Q Guan (pone.0327342.ref040) 2024 S Yu (pone.0327342.ref012) 2019 Z Guo (pone.0327342.ref023) 2022; 8 P Liang (pone.0327342.ref035) 2022; 115 A Chatterjee (pone.0327342.ref001) 2015; 146 L Liu (pone.0327342.ref010) 2022; 53 H Wang (pone.0327342.ref030) 2024; 251 H Wang (pone.0327342.ref031) 2022; 128 W He (pone.0327342.ref019) 2023; 29 H Yu (pone.0327342.ref038) 2022; 22 L Jia (pone.0327342.ref025) 2023; 119 G Wu (pone.0327342.ref032) 2023; 11 D Ruan (pone.0327342.ref021) 2023; 55 E De Souza (pone.0327342.ref005) 2017; 27 D Wang (pone.0327342.ref020) 2019; 91 D Peng (pone.0327342.ref033) 2019; 7 PK Kankar (pone.0327342.ref015) 2011; 74 V Martynenko (pone.0327342.ref007) 2020 D Wang (pone.0327342.ref009) 2023; 13 N Kursunoglu (pone.0327342.ref008) 2015; 48 Z Shen (pone.0327342.ref011) 2025; 15 B Zhao (pone.0327342.ref027) 2020; 199 W He (pone.0327342.ref022) 2024 J Chen (pone.0327342.ref029) 2021; 9 C Li (pone.0327342.ref018) 2024; 57 Q Zhang (pone.0327342.ref014) 2023; 23 C Li (pone.0327342.ref026) 2025 S Zhang (pone.0327342.ref017) 2020; 8 pone.0327342.ref003 W He (pone.0327342.ref024) 2024 pone.0327342.ref002 Y Gou (pone.0327342.ref006) 2017; 10 W Cui (pone.0327342.ref013) 2023; 25 H Wang (pone.0327342.ref028) 2022; 24 S Hou (pone.0327342.ref039) 2023; 34 K El-Nagdy (pone.0327342.ref004) 2013; 23 L Wen (pone.0327342.ref034) 2020; 32 A Rai (pone.0327342.ref016) 2016; 96 K Wallace (pone.0327342.ref036) 2015; 25 |
References_xml | – volume: 74 start-page: 1638 issue: 10 year: 2011 ident: pone.0327342.ref015 article-title: Rolling element bearing fault diagnosis using wavelet transform publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.01.021 – volume: 23 start-page: 795 issue: 2 year: 2023 ident: pone.0327342.ref014 article-title: An intelligent fault diagnosis method of rolling bearings based on short-time Fourier transform and convolutional neural network publication-title: J Failure Anal Prevent doi: 10.1007/s11668-023-01616-9 – volume: 32 start-page: 6111 issue: 10 year: 2020 ident: pone.0327342.ref034 article-title: A transfer convolutional neural network for fault diagnosis based on ResNet-50 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04097-w – volume: 25 start-page: 165 issue: 2 year: 2015 ident: pone.0327342.ref036 article-title: The practice of mine ventilation engineering publication-title: Int J Mining Sci Technol doi: 10.1016/j.ijmst.2015.02.001 – volume: 27 start-page: 647 issue: 4 year: 2017 ident: pone.0327342.ref005 article-title: Application of ventilation management programs for improved mine safety publication-title: Int J Mining Sci Technol doi: 10.1016/j.ijmst.2017.05.018 – volume: 199 start-page: 105971 year: 2020 ident: pone.0327342.ref027 article-title: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.105971 – volume: 29 start-page: 2056 issue: 3 year: 2023 ident: pone.0327342.ref019 article-title: Fault identification of rotating machinery based on dynamic feature reconstruction signal graph publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2023.3318373 – volume: 11 start-page: 1527 issue: 5 year: 2023 ident: pone.0327342.ref032 article-title: Signal-to-image: rolling bearing fault diagnosis using ResNet family deep-learning models publication-title: Processes doi: 10.3390/pr11051527 – volume: 53 start-page: 101666 year: 2022 ident: pone.0327342.ref010 article-title: Machine learning algorithm selection for windage alteration fault diagnosis of mine ventilation system publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101666 – volume: 15 issue: 2 year: 2025 ident: pone.0327342.ref011 article-title: Fault diagnosis of the mine ventilation system based on OCKIELM publication-title: AIP Advances doi: 10.1063/5.0251808 – volume: 10 start-page: 785 issue: 6 year: 2017 ident: pone.0327342.ref006 article-title: Characterization and effects of the shock losses in a parallel fan station in the underground mine publication-title: Energies doi: 10.3390/en10060785 – year: 2024 ident: pone.0327342.ref024 article-title: Mqkin: Manufacturing quality knowledge-driven interpretable fault diagnosis network for robotic grinding equipment publication-title: IEEE Trans Automat Sci Eng – volume: 115 start-page: 105269 year: 2022 ident: pone.0327342.ref035 article-title: Intelligent fault diagnosis of rolling bearing based on wavelet transform and improved ResNet under noisy labels and environment publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105269 – start-page: 5226 volume-title: 2019 Chinese Automation Congress (CAC) year: 2019 ident: pone.0327342.ref012 article-title: Review of fault diagnosis and early warning of coal mine ventilator. doi: 10.1109/CAC48633.2019.8996346 – volume: 22 start-page: 1705 issue: 5 year: 2022 ident: pone.0327342.ref038 article-title: Bearing fault reconstruction diagnosis method based on ResNet-152 with multi-scale stacked receptive field publication-title: Sensors (Basel) doi: 10.3390/s22051705 – year: 2024 ident: pone.0327342.ref022 article-title: Unified diagnostic and matching framework of fault and quality for robotic grinding system publication-title: IEEE Trans Instrument Measur – volume: 24 start-page: 573 issue: 5 year: 2022 ident: pone.0327342.ref028 article-title: Rolling bearing fault diagnosis using multi-sensor data fusion based on 1D-CNN model publication-title: Entropy (Basel) doi: 10.3390/e24050573 – start-page: 19 volume-title: 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek) year: 2020 ident: pone.0327342.ref007 article-title: Analysis of strength and bearing capacity of the auxiliary mine ventilation fan connected to the rotor of its electrical drive. doi: 10.1109/KhPIWeek51551.2020.9250078 – volume: 128 start-page: 470 year: 2022 ident: pone.0327342.ref031 article-title: Attention-guided joint learning CNN with noise robustness for bearing fault diagnosis and vibration signal denoising publication-title: ISA Trans doi: 10.1016/j.isatra.2021.11.028 – ident: pone.0327342.ref002 – volume: 23 start-page: 569 issue: 4 year: 2013 ident: pone.0327342.ref004 article-title: Stability of multiple fans in mine ventilation networks publication-title: Int J Mining Sci Technol doi: 10.1016/j.ijmst.2013.07.016 – volume: 15 start-page: 408 issue: 2 year: 2022 ident: pone.0327342.ref037 article-title: Selection of employees for performing work activities in currently used ventilation systems in hard coal mining publication-title: Energies doi: 10.3390/en15020408 – volume: 55 start-page: 101877 year: 2023 ident: pone.0327342.ref021 article-title: CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2023.101877 – volume: 91 start-page: 1205 issue: 10 year: 2019 ident: pone.0327342.ref020 article-title: Application of multiscale learning neural network based on CNN in bearing fault diagnosis publication-title: J Signal Process Syst doi: 10.1007/s11265-019-01461-w – volume: 9 start-page: 11 issue: 1 year: 2021 ident: pone.0327342.ref029 article-title: A self-adaptive CNN with PSO for bearing fault diagnosis publication-title: Syst Sci Control Eng doi: 10.1080/21642583.2020.1860153 – start-page: 113690 year: 2025 ident: pone.0327342.ref026 article-title: An enhanced CLKAN-RF framework for robust anomaly detection in unmanned aerial vehicle sensor data publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2025.113690 – volume: 13 start-page: 5259 issue: 1 year: 2023 ident: pone.0327342.ref009 article-title: A supervised diagnostic experiment of resistance variable multifault locations in a mine ventilation system publication-title: Sci Rep doi: 10.1038/s41598-023-32530-7 – start-page: 779 volume-title: 2024 2nd International Conference on Signal Processing and Intelligent Computing (SPIC) year: 2024 ident: pone.0327342.ref040 article-title: Research on fault diagnosis method for fan rolling bearing based on improved ResNet50. doi: 10.1109/SPIC62469.2024.10691549 – volume: 251 start-page: 110400 year: 2024 ident: pone.0327342.ref030 article-title: A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions publication-title: Reliab Eng Syst Safety doi: 10.1016/j.ress.2024.110400 – volume: 96 start-page: 289 year: 2016 ident: pone.0327342.ref016 article-title: A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings publication-title: Tribol Int doi: 10.1016/j.triboint.2015.12.037 – volume: 8 start-page: 904 year: 2022 ident: pone.0327342.ref023 article-title: Bearing fault diagnosis based on speed signal and CNN model publication-title: Energy Rep doi: 10.1016/j.egyr.2022.08.041 – volume: 119 start-page: 105794 year: 2023 ident: pone.0327342.ref025 article-title: GTFE-Net: a gramian time frequency enhancement CNN for bearing fault diagnosis publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105794 – volume: 7 start-page: 10278 year: 2019 ident: pone.0327342.ref033 article-title: A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888842 – volume: 146 start-page: 65 year: 2015 ident: pone.0327342.ref001 article-title: Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.134 – volume: 8 start-page: 29857 year: 2020 ident: pone.0327342.ref017 article-title: Deep learning algorithms for bearing fault diagnostics—A comprehensive review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972859 – ident: pone.0327342.ref003 – volume: 57 start-page: 214 issue: 8 year: 2024 ident: pone.0327342.ref018 article-title: Small data challenges for intelligent prognostics and health management: a review publication-title: Artif Intell Rev doi: 10.1007/s10462-024-10820-4 – volume: 34 start-page: 075108 issue: 7 year: 2023 ident: pone.0327342.ref039 article-title: Bearing fault diagnosis method using the joint feature extraction of transformer and ResNet publication-title: Measur Sci Technol doi: 10.1088/1361-6501/acc885 – volume: 48 start-page: 101 year: 2015 ident: pone.0327342.ref008 article-title: Selection of an appropriate fan for an underground coal mine using the Analytic Hierarchy Process publication-title: Tunnel Undergr Space Technol doi: 10.1016/j.tust.2015.02.005 – volume: 25 start-page: 1233 issue: 8 year: 2023 ident: pone.0327342.ref013 article-title: Fault diagnosis of rolling bearings in primary mine fans under sample imbalance conditions publication-title: Entropy (Basel) doi: 10.3390/e25081233 |
SSID | ssj0053866 |
Score | 2.4797623 |
Snippet | This study presents FCRNet, a Fast Fourier Convolution Residual Network, tailored for fault diagnosis of mine ventilation bearings under complex operating... |
SourceID | plos doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | e0327342 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Bearings Bearings (Machinery) Condition monitoring Deep learning Equipment and supplies Fault diagnosis Fault location (Engineering) Fourier Analysis Fourier transforms Frequency dependence Humans Information processing Inspection Methods Mine ventilation Mining Mining accidents & safety Neural networks Neural Networks, Computer Noise levels Propagation Signal processing Ventilation Ventilators Ventilators, Mechanical Wavelet transforms Working conditions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kTl7E9bWjo7YiqIfsppNOJ_G2LoZVcIXVlcVL008Rhsywyfx_q7p7ggFFD95Cusjjq6quqqQehLwoaus9NyIzFa8zLlyVgZdfZaLSIrBchQ9uH8_F2SX_cFVd_TLqC3PCYnvgCNxxU3PfKjAq3HDect22WhXesNZy61odAh-weftgKu7BoMVCpEK5smbHiS9H203vjvISW7oUM0MU-vVPu_Jiu94Mf3Y5g-npbpNbyWekJ_FZD8gN198hB0krB_oqtY5-fZd8604vzt34hnZqGGkX59FRzCxPEgaXgfg6FGDRPmaAU3Bbach6XGMATjXIPtgz6tVuPVIbU_F-DPfIZffuy-lZlqYnAOxNM2baQuhnas8Kr-GAla4ucitUZXKvXMGtxmFSRVMJ3ZiKWaaVZ8YaXNMctp37ZNEDXoeEghOocqZdwYTDylalSweenclz02jGyiXJ9lDKbWySIcOfshqCi4iRROhlgn5J3iLeEy22uA4ngPEyMV7-jfFL8hS5JWO96KSo8gTsLXq1LdzmeaDANhc95tF8V7thkO8_ff0Hos8XM6KXichvxmtlVKpdgHfC9lkzytWMEpTVzJYPUbb2qAwS9tOWQ9SLIK728vb75WfTMl4Uc-N6t9lFmirEikvyIMrphCy4a5yXgj_8H4g_IjcLnH6MbUXZiizG6517DC7ZqJ8E7fsJnsIyyQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF8rDDAICXjIFieOk_CCxkQ0kBjSYKjixfLnhFQlXZP-_7tz3KBKgHir6qur_Hxn_865D0JeZaX1nhuRmIKXCReuSIDlF4kotAhLrsKF25czcXrBPy-KRbxw62NY5XZPDBu17QzekR-B4tUc3AOWv19dJdg1Ct-uxhYaN8ktLF2GIV3lYnK4wJaFiOlyecmO4uocrrrWHaY5FnbJdo6jULV_2ptnq2XX_514hgOouUvuROZIj8el3iM3XHuP7EXb7OmbWED67X3yszk5P3PDO9qofqDN2JWOYnx51DOYBrzskIZF2zEOnAJ5pSH2cYluONVgAXCqUa82y4HaMSDvV_-AXDQfv5-cJrGHAoBfVUOiLTiApvQs8xo-sNyVWWqFKkzqlcu41dhSKqsKoStTMMu08sxYg2Oaw-bzkMxawGufUKCCKmXaZUw4zG9VOnfA70yamkozls9JsoVSrsZSGTK8LyvBxRgxkgi9jNDPyQfEe5LFQtfhi259KaPdyKrkvlbAKbjhvOa6rrXKvGG15dbVms3Jc1wtOWaNTuYqj-HURW5bw9-8DBJY7KLFaJpLtel7-enrj_8Q-na-I_Q6CvluWCujYgYDPBMW0dqRPNiRBJM1O8P7qFtbVHr5W7nhl1t9-_Pwi2kYJ8UIudZ1m1GmCB7jnDwa9XRCFkgb57ngj_89-RNyO8Puxlg2lB2Q2bDeuKdAuQb9LNjVNS5PKgg priority: 102 providerName: ProQuest |
Title | FCRNet: Fast Fourier convolutional residual network for ventilator bearing fault diagnosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40644364 https://www.proquest.com/docview/3229482813 https://www.proquest.com/docview/3229500251 https://doaj.org/article/874f9a8534c4494b99ba2fc19d4de9b1 http://dx.doi.org/10.1371/journal.pone.0327342 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZG98ILYtxWKMUgJOAhVZw4NySEtqphIK2gQlG1l8h2nAmpSromlcYLv51zHDdSpE3wYlX1qaN-9rG_E58LIa-9KC8KrkJHBTxyeKgDB1h-4ISBDM2UC_PC7Xweni35l1WwOiD7mq0WwPpG0w7rSS2368n11e-PoPAfTNWGiO1_NNlUpZ64PiZsgU35EM6mCFX1nHf3CqDd5vYSWYsTeq5vg-luG6V3WJmc_t3OPdisq_p2WmqOp_Q-uWd5JT1pF8IROdDlA3JkNbemb2166XcPyUU6Xcx1856mom5o2taso-h9blchDAM2uAnSomXrJU6B2lLjGblGI51K0A8482ghduuG5q273q_6EVmmsx_TM8dWWICpiePGkTmYhyoqmFdI-MB8HXluHopAuYXQHs8lFpzy4iCUsQpYzqQomMoV9kkOW9NjMigBr2NCgSgKl0ntsVBj9KuQvgb2p1xXxZIxf0icPZTZpk2kkZnbtAgMkBajDKHPLPRDcop4d7KYBtt8UW0vM6tVWRzxIhHAOLjiPOEySaTwCsWSnOc6kWxIXuBsZW1MaafM2Qmcych8E3jMKyOBqTBK9LW5FLu6zj5__fkfQt8XPaE3Vqiomq1QwsY3wH_CFFs9yVFPEhRa9bqPcW3tUakz2HMTDpYxgjjar7ebu1923Tgo-s-Vutq1MoGxJ4fkSbtOO2SB0nHuh_zpP8F6Ru56WP4Y84qyERk0251-DpyskWNyJ1pF0MZThm36aUwOT2fzb4uxecsxNmqI7Z_ZX8SEOTQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeYAXxLitMJhBIOAhW-w4NySExqBq2VaksU0VL8Z2nAmpSkqTCvGn-I2c41xQJUC87K2KT9z2-Fy-k5wLIU95nOW5MJFnQhF7IrKhByg_9KJQR-7IlXvgdjyNxmfiwyycbZCfXS0MplV2NtEZ6qw0-Ix8DwQvFRAesODN4puHU6Pw7Wo3QqMRi0P74zuEbNXryTs432ecj96fHoy9dqoA_JwkqT2dQUhk4pzxXMMHFtiY-1mkQuPnynKRaRyyxJMw0okJWca0ypnJDK5pAeoI-14hV8Hx-qhR8awP8MB2RFFbnhfEbK-Vht1FWdhdP8BGMnzN_bkpAb0vGCzmZfV3oOsc3ugmudEiVbrfiNYm2bDFLbLZ2oKKvmgbVr-8TT6PDk6mtn5FR6qq6aiZgkcxn72Va9gGonpX9kWLJu-cAlimLtdyjmE_1cBa8KI0V6t5TbMmAfBrdYecXQp375JBAfzaIhSgp_KZtpxFFutplQ4s4Enj-ybRjAVD4nWslIumNYd07-diCGkaHklkvWxZPyRvkd89LTbWdhfK5YVs9VQmschTBRhGGCFSodNUK54blmYis6lmQ7KDpyWbKtXePMh98PKIpVP4mieOAptrFJi9c6FWVSUnH8__g-jTyRrR85YoL-ulMqqtmID_hE271ii31yjBRJi15S2UrY4rlfytTHBnJ29_Xn7cL-OmmJFX2HLV0IQuQh2Se42c9pwFkChEEIn7_958h1wbnx4fyaPJ9PABuc5xsjK2LGXbZFAvV_YhwL1aP3I6RsmXy1bqX7BBaTM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkRAviHFbYTCDQMBD1jhxbkgIjY1oZTDQYKjixdiOMyFVSWlSIf4av45zHCeoEiBe9lbVp277-VydcyHkYZAUZcl17OmIJx6PTeSBlx95caRie-TSXri9PY4PT_nrWTTbID_7WhhMq-x1olXURa3xjnwCjJdxCA9YOCldWsT7g_zF4puHE6TwSWs_TqNjkSPz4zuEb83z6QGc9aMgyF993D_03IQB-Glp2nqqgPBIJyULSgUvWGiSwC9iGWm_lCbghcKBS0EaxSrVESuYkiXThcY1xUE0Yd8L5GISRgxlLJkNwR7okTh2pXphwiaOM3YXdWV2_RCbygRrptBODBjswmgxr5u_O73W-OVXyRXntdK9js02yYaprpFNpxca-sQ1r356nXzO90-OTfuM5rJpad5NxKOY2-54HLaBCN-WgNGqy0Gn4DhTm3c5xysAqgBasKi0lKt5S4suGfBrc4Ocngu6N8moAry2CAU3VPpMmYDFBmtrpQoN-Jba93WqGAvHxOuhFIuuTYewz-oSCG86jARCLxz0Y_IS8R5oscm2faNengknsyJNeJlJ8Ge45jzjKsuUDErNsoIXJlNsTHbwtERXsTqoCrEHFh_96gy-5oGlwEYbFbLsmVw1jZi--_QfRB9O1ogeO6KybpdSS1c9Af8JG3itUW6vUYK60GvLW8hbPSqN-C1Y8Mme3_68fH9Yxk0xO68y9aqjiWy0Oia3Oj4dkAWHkfMw5rf_vfkOuQTiLN5Mj4_ukMsBDlnG7qVsm4za5crcBc-vVfesiFHy5bxl-hdzXG1p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCRNet%3A+Fast+Fourier+convolutional+residual+network+for+ventilator+bearing+fault+diagnosis&rft.jtitle=PloS+one&rft.au=Gao%2C+Yanfang&rft.au=Du%2C+Yongzhi&rft.au=Li%2C+Xiaoxue&rft.au=Le%2C+Likun&rft.date=2025-07-11&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=7&rft.spage=e0327342&rft_id=info:doi/10.1371%2Fjournal.pone.0327342&rft.externalDBID=n%2Fa&rft.externalDocID=A847397792 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |