Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode
[Display omitted] •Stainless steel and graphite felt assembly as a CO2 reducing biocathode material.•Higher acetate production rates from C. ljungdahlii with hydrogen evolution.•CH4 production predominated from CO2 reduction by non-enriched mixed culture.•H2 evolution appears to stimulate planktonic...
Saved in:
Published in | Bioresource technology Vol. 195; pp. 14 - 24 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-8524 1873-2976 1873-2976 |
DOI | 10.1016/j.biortech.2015.05.081 |
Cover
Loading…
Abstract | [Display omitted]
•Stainless steel and graphite felt assembly as a CO2 reducing biocathode material.•Higher acetate production rates from C. ljungdahlii with hydrogen evolution.•CH4 production predominated from CO2 reduction by non-enriched mixed culture.•H2 evolution appears to stimulate planktonic bacteria rather than cathodic-biofilm.
Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3mMd−1, along with methane and hydrogen at −1.1V/Ag/AgCl. Over 160days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45days of run-time in the C. ljungdahlii reactor, 2.4mMd−1 acetate production was achieved at −0.9V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates. |
---|---|
AbstractList | Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3mMd−1, along with methane and hydrogen at −1.1V/Ag/AgCl. Over 160days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45days of run-time in the C. ljungdahlii reactor, 2.4mMd−1 acetate production was achieved at −0.9V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates. Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3mMd-1, along with methane and hydrogen at -1.1V/Ag/AgCl. Over 160days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45days of run-time in the C. ljungdahlii reactor, 2.4mMd-1 acetate production was achieved at -0.9V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates. Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates.Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates. [Display omitted] •Stainless steel and graphite felt assembly as a CO2 reducing biocathode material.•Higher acetate production rates from C. ljungdahlii with hydrogen evolution.•CH4 production predominated from CO2 reduction by non-enriched mixed culture.•H2 evolution appears to stimulate planktonic bacteria rather than cathodic-biofilm. Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3mMd−1, along with methane and hydrogen at −1.1V/Ag/AgCl. Over 160days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45days of run-time in the C. ljungdahlii reactor, 2.4mMd−1 acetate production was achieved at −0.9V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates. |
Author | ter Heijne, Annemiek Buisman, Cees J.N. Dominguez Benetton, Xochitl Vanbroekhoven, Karolien Strik, David P.B.T.B. Bajracharya, Suman Pant, Deepak |
Author_xml | – sequence: 1 givenname: Suman surname: Bajracharya fullname: Bajracharya, Suman organization: Separation & Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium – sequence: 2 givenname: Annemiek surname: ter Heijne fullname: ter Heijne, Annemiek organization: Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands – sequence: 3 givenname: Xochitl surname: Dominguez Benetton fullname: Dominguez Benetton, Xochitl organization: Separation & Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium – sequence: 4 givenname: Karolien surname: Vanbroekhoven fullname: Vanbroekhoven, Karolien organization: Separation & Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium – sequence: 5 givenname: Cees J.N. surname: Buisman fullname: Buisman, Cees J.N. organization: Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands – sequence: 6 givenname: David P.B.T.B. surname: Strik fullname: Strik, David P.B.T.B. organization: Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands – sequence: 7 givenname: Deepak surname: Pant fullname: Pant, Deepak email: deepak.pant@vito.be, pantonline@gmail.com organization: Separation & Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26066971$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uGyEUhUdVqsZJ-woRy27GhRkGmKqLVlb_pEjdtGvEz7WNhcEFpokfJO9bpo433Vi60kVwvsuVzrlprkIM0DR3BC8JJuzdbqldTAXMdtlhMixxLUFeNAsieN92I2dXzQKPDLdi6Oh1c5PzDmPcE969aq47hhkbOVk0TyuVdAzIuvjoLKAEdjLF1Rt9RHv3CBapYNFhSoDM5EvtGblQn0yK2imPwIMpKeZjKFvILqMpu7CpFFI5w177I4prtEnqsHUF0Bp8-TcyF-WCh5zrCcBXNVLIqLKNFl43L9fKZ3jz3G-bX18-_1x9a-9_fP2--nTfmkGI0qpB8zUzmmqre2Gt4BhUhzvODHSqG1gVGCCcE2opV5pyw9VARibGoR9p3982709zH9QGQl0bggwqGZdlVE56p5NKR_kwJRn83A6TzpKOmNChwm9P8CHF3xPkIvcuG_BeBYhTlkRQ1veCjd1lKce0p3zsRZXePUsnvQcrD8nt5x3OllXBh5OgGpBzgrU0rqjZspKU85JgOSdE7uQ5IXJOiMS1xIyz__DzDxfBjycQqiF_HCSZjYNgwLpUEyBtdJdG_AVSAd4K |
CitedBy_id | crossref_primary_10_1007_s40974_024_00332_w crossref_primary_10_1016_j_biortech_2019_01_145 crossref_primary_10_1016_j_bioelechem_2016_09_001 crossref_primary_10_1016_j_bej_2024_109366 crossref_primary_10_1016_j_scitotenv_2023_169766 crossref_primary_10_3389_fbioe_2020_00457 crossref_primary_10_1016_j_chemosphere_2019_125317 crossref_primary_10_1016_j_jpowsour_2017_03_079 crossref_primary_10_1016_j_seta_2021_101114 crossref_primary_10_1039_D2MH01178F crossref_primary_10_1016_j_scitotenv_2020_142440 crossref_primary_10_1016_j_biortech_2016_03_023 crossref_primary_10_1016_j_renene_2022_11_123 crossref_primary_10_1002_ghg_2185 crossref_primary_10_1021_acssuschemeng_0c01276 crossref_primary_10_1021_acssynbio_8b00498 crossref_primary_10_1016_j_apenergy_2021_116885 crossref_primary_10_1002_er_3706 crossref_primary_10_1149_1945_7111_abb836 crossref_primary_10_3389_fmicb_2024_1438758 crossref_primary_10_3390_en11020343 crossref_primary_10_1016_j_biortech_2019_121401 crossref_primary_10_1016_j_electacta_2023_142722 crossref_primary_10_1016_j_scitotenv_2020_142668 crossref_primary_10_1016_j_bej_2021_108319 crossref_primary_10_1016_j_jece_2021_106189 crossref_primary_10_1021_acs_energyfuels_0c01710 crossref_primary_10_1016_j_seta_2021_101118 crossref_primary_10_1016_j_psep_2024_07_030 crossref_primary_10_1016_j_cej_2018_03_191 crossref_primary_10_1016_j_bej_2022_108496 crossref_primary_10_1016_j_jece_2022_108067 crossref_primary_10_1016_j_jpowsour_2021_230586 crossref_primary_10_1016_j_watres_2020_116214 crossref_primary_10_1016_j_bioelechem_2018_10_002 crossref_primary_10_1016_j_jece_2020_104028 crossref_primary_10_3389_fmicb_2021_696473 crossref_primary_10_1021_acsami_0c07910 crossref_primary_10_1016_j_jhazmat_2019_03_028 crossref_primary_10_1016_j_egyr_2019_08_007 crossref_primary_10_1016_j_scitotenv_2023_168410 crossref_primary_10_1039_D3GC00471F crossref_primary_10_1149_2_0131703jes crossref_primary_10_1016_j_scitotenv_2023_169744 crossref_primary_10_1186_s13068_019_1468_x crossref_primary_10_2139_ssrn_4115152 crossref_primary_10_1016_j_cej_2022_138230 crossref_primary_10_1039_C6TA07571A crossref_primary_10_1021_acssuschemeng_2c04040 crossref_primary_10_1039_C6TA02036D crossref_primary_10_1039_D0NR07611B crossref_primary_10_1016_j_jcou_2016_03_003 crossref_primary_10_1016_j_scitotenv_2022_155724 crossref_primary_10_1016_j_bioelechem_2018_01_002 crossref_primary_10_1016_j_jcou_2017_05_011 crossref_primary_10_1039_C7FD00050B crossref_primary_10_1016_j_bioelechem_2019_03_011 crossref_primary_10_3389_fmicb_2022_947550 crossref_primary_10_1016_j_bej_2023_108896 crossref_primary_10_1007_s11356_019_04725_x crossref_primary_10_1021_acssuschemeng_4c08968 crossref_primary_10_1016_j_jpowsour_2020_228990 crossref_primary_10_1016_j_tibtech_2016_10_004 crossref_primary_10_1016_S1872_2067_19_63408_X crossref_primary_10_5004_dwt_2021_26737 crossref_primary_10_1016_j_chemosphere_2024_142157 crossref_primary_10_1016_j_chemosphere_2023_140251 crossref_primary_10_1088_1757_899X_288_1_012136 crossref_primary_10_1039_C6RA04734C crossref_primary_10_3389_fenrg_2021_759678 crossref_primary_10_1016_j_jece_2021_106650 crossref_primary_10_1016_j_procbio_2020_11_017 crossref_primary_10_1021_acsestwater_3c00255 crossref_primary_10_1016_j_biteb_2018_12_007 crossref_primary_10_1016_j_energy_2017_04_110 crossref_primary_10_1016_j_ijhydene_2023_11_055 crossref_primary_10_1016_j_jwpe_2023_104580 crossref_primary_10_3390_microorganisms11122976 crossref_primary_10_1016_j_bioelechem_2023_108414 crossref_primary_10_1039_D1RE00166C crossref_primary_10_1016_j_bej_2023_109035 crossref_primary_10_1016_j_chemosphere_2021_131886 crossref_primary_10_1016_j_watres_2017_12_026 crossref_primary_10_1111_1751_7915_14373 crossref_primary_10_1016_j_scitotenv_2021_148479 crossref_primary_10_1016_j_watres_2016_10_018 crossref_primary_10_1016_j_watres_2019_04_053 crossref_primary_10_1016_j_coelec_2022_101177 crossref_primary_10_3390_microorganisms11030735 crossref_primary_10_1016_j_chemosphere_2017_02_135 crossref_primary_10_3389_fmicb_2019_00188 crossref_primary_10_1007_s11356_024_33678_z crossref_primary_10_2139_ssrn_4096287 crossref_primary_10_1016_j_ijhydene_2022_08_066 crossref_primary_10_1016_j_procbio_2020_11_005 crossref_primary_10_1039_C5EE03088A crossref_primary_10_1016_j_chemosphere_2021_132188 crossref_primary_10_1016_j_resconrec_2021_105980 crossref_primary_10_1016_j_bioelechem_2020_107672 crossref_primary_10_1038_s43586_024_00332_4 crossref_primary_10_1007_s11157_024_09682_7 crossref_primary_10_1016_j_bej_2019_107467 crossref_primary_10_1016_j_biortech_2022_127178 crossref_primary_10_1007_s41918_022_00162_6 crossref_primary_10_1021_acs_energyfuels_2c04122 crossref_primary_10_1016_j_seta_2021_101652 crossref_primary_10_1021_acssynbio_2c00323 crossref_primary_10_1002_celc_201901427 crossref_primary_10_1128_aem_01387_23 crossref_primary_10_1016_j_electacta_2017_03_209 crossref_primary_10_1186_s13068_017_0943_5 crossref_primary_10_1016_j_jpowsour_2017_04_024 crossref_primary_10_1002_tcr_201800100 crossref_primary_10_1016_j_bej_2023_109132 crossref_primary_10_1039_D2EW00881E crossref_primary_10_1016_j_cej_2022_137079 crossref_primary_10_1007_s11274_023_03554_y crossref_primary_10_1039_D3SE00876B crossref_primary_10_1016_j_scitotenv_2019_02_267 crossref_primary_10_1016_j_biotechadv_2022_107982 crossref_primary_10_1016_j_biortech_2019_02_115 crossref_primary_10_1016_j_biortech_2016_03_052 crossref_primary_10_1016_j_biortech_2018_02_059 crossref_primary_10_1002_celc_201500530 crossref_primary_10_3390_pr11030766 crossref_primary_10_3389_fmicb_2023_1192187 crossref_primary_10_1007_s12257_018_0373_7 crossref_primary_10_1016_j_biortech_2017_12_075 crossref_primary_10_1016_j_ese_2023_100324 crossref_primary_10_1016_j_ijhydene_2021_08_129 crossref_primary_10_1039_C8TA05322G crossref_primary_10_1016_j_renene_2023_119018 crossref_primary_10_1016_j_biortech_2022_127906 crossref_primary_10_1186_s13068_016_0634_7 crossref_primary_10_1016_j_jcou_2017_04_014 crossref_primary_10_1002_cssc_201600963 crossref_primary_10_1016_j_biortech_2017_02_104 crossref_primary_10_1016_j_scitotenv_2021_151820 crossref_primary_10_2139_ssrn_4074344 crossref_primary_10_1038_s41598_017_09841_7 crossref_primary_10_1016_j_biortech_2022_128436 crossref_primary_10_1016_j_fuel_2021_121124 crossref_primary_10_1016_j_ymben_2017_12_003 crossref_primary_10_3390_membranes11030223 crossref_primary_10_1016_j_enconman_2018_09_064 crossref_primary_10_1016_j_renene_2016_03_002 crossref_primary_10_1186_s40643_019_0265_5 crossref_primary_10_2166_wst_2018_002 crossref_primary_10_1061_JHTRBP_HZENG_1229 crossref_primary_10_1016_j_chemosphere_2022_136088 crossref_primary_10_1038_s41579_019_0173_x crossref_primary_10_1016_j_bioelechem_2024_108724 crossref_primary_10_1016_j_biteb_2024_101766 crossref_primary_10_1016_j_joule_2020_08_010 crossref_primary_10_1007_s00253_022_12031_9 crossref_primary_10_1016_j_pecs_2017_07_003 crossref_primary_10_1016_j_scitotenv_2022_160722 crossref_primary_10_1016_j_bej_2023_108928 crossref_primary_10_1016_j_jclepro_2020_122391 crossref_primary_10_1016_j_rser_2015_11_015 crossref_primary_10_1016_j_egyr_2022_01_198 crossref_primary_10_1016_j_rser_2021_111997 crossref_primary_10_1002_cphc_201700017 crossref_primary_10_1016_j_electacta_2017_09_085 crossref_primary_10_1039_D1RA08796G crossref_primary_10_1016_j_biortech_2017_02_128 crossref_primary_10_1007_s00449_016_1579_8 crossref_primary_10_1016_j_biteb_2022_101156 crossref_primary_10_3390_fermentation7040291 crossref_primary_10_1016_j_biortech_2018_06_074 crossref_primary_10_1016_j_bioelechem_2017_10_002 crossref_primary_10_1016_j_jcou_2020_101231 crossref_primary_10_1016_j_jenvman_2023_117323 crossref_primary_10_1016_j_copbio_2019_02_004 crossref_primary_10_1016_j_ces_2018_08_056 crossref_primary_10_1016_j_seta_2020_100902 crossref_primary_10_1016_j_scitotenv_2020_144477 crossref_primary_10_1016_j_biortech_2018_08_103 crossref_primary_10_1016_j_rineng_2024_102365 crossref_primary_10_1016_j_jcou_2021_101640 crossref_primary_10_1016_j_cej_2015_07_054 crossref_primary_10_1016_j_scitotenv_2021_151732 crossref_primary_10_1016_j_bioelechem_2017_06_004 crossref_primary_10_1016_j_biortech_2017_06_164 crossref_primary_10_1016_j_procbio_2018_05_009 crossref_primary_10_1039_C5CP07458D crossref_primary_10_1016_j_ijhydene_2024_07_367 crossref_primary_10_1039_D2RA02038F crossref_primary_10_1016_j_biortech_2016_12_035 crossref_primary_10_1038_s41522_020_00151_x crossref_primary_10_1016_j_bej_2022_108745 crossref_primary_10_1080_09593330_2023_2234676 crossref_primary_10_1016_j_biortech_2020_124289 crossref_primary_10_1016_j_biortech_2024_131383 crossref_primary_10_1016_j_jclepro_2022_131365 crossref_primary_10_1016_j_copbio_2016_09_004 crossref_primary_10_1016_j_biortech_2017_06_031 crossref_primary_10_1016_j_totert_2022_100023 crossref_primary_10_1002_jctb_5376 crossref_primary_10_3389_fmicb_2019_02997 crossref_primary_10_1016_j_mset_2019_08_003 crossref_primary_10_1016_j_procbio_2016_12_025 crossref_primary_10_1007_s11356_016_7196_x crossref_primary_10_1016_j_biotechadv_2020_107520 crossref_primary_10_1016_j_biortech_2020_124272 crossref_primary_10_1016_j_renene_2016_02_056 crossref_primary_10_1007_s10800_020_01524_y crossref_primary_10_1016_j_cej_2016_05_148 crossref_primary_10_1021_acsami_0c02946 crossref_primary_10_1016_j_ijhydene_2021_12_205 crossref_primary_10_20517_energymater_2023_60 crossref_primary_10_1016_j_biortech_2018_12_098 crossref_primary_10_1149_2_0801714jes crossref_primary_10_1016_j_ijhydene_2021_03_165 crossref_primary_10_1016_j_ijhydene_2020_11_127 crossref_primary_10_3390_biomass4020023 crossref_primary_10_1016_j_jechem_2023_10_058 crossref_primary_10_1016_j_apenergy_2017_05_014 crossref_primary_10_3389_fbioe_2020_621166 crossref_primary_10_1016_j_biortech_2020_124141 crossref_primary_10_3390_app11167585 crossref_primary_10_1039_C7RE00220C crossref_primary_10_3389_fenrg_2020_00094 crossref_primary_10_3390_en12173297 crossref_primary_10_1186_s13068_019_1413_z crossref_primary_10_1016_j_biortech_2021_124676 crossref_primary_10_1016_j_chemosphere_2024_143430 crossref_primary_10_1016_j_bioelechem_2017_05_001 crossref_primary_10_1016_j_biortech_2018_03_009 crossref_primary_10_1016_j_renene_2017_03_009 crossref_primary_10_1016_j_watres_2021_117306 crossref_primary_10_1002_celc_201600587 crossref_primary_10_1016_j_biotechadv_2024_108474 crossref_primary_10_1016_j_bioelechem_2018_02_003 crossref_primary_10_1039_C7GC01801K crossref_primary_10_1016_j_biortech_2017_06_017 crossref_primary_10_1016_j_biteb_2022_101073 |
Cites_doi | 10.1111/j.1758-2229.2010.00211.x 10.1007/BF02936525 10.1016/j.biortech.2013.09.058 10.1023/A:1021128400602 10.1128/mBio.00103-10 10.1039/C4CC10121A 10.1016/j.ijhydene.2012.12.107 10.1038/nrmicro2422 10.1016/j.elecom.2009.11.017 10.1016/j.jbiotec.2013.10.001 10.1128/AEM.02401-12 10.1002/jctb.4413 10.1146/annurev.mi.40.100186.002215 10.1016/j.elecom.2012.11.033 10.1039/C2EE23350A 10.1111/j.1462-2920.2004.00593.x 10.1021/es400341b 10.1128/AEM.02642-10 10.14219/jada.archive.2005.0112 10.1016/j.electacta.2014.02.111 10.2166/wst.2008.084 10.1016/j.electacta.2004.04.039 10.1039/c3cp52697f 10.1023/A:1003254219905 10.1128/AEM.67.7.3180-3187.2001 10.1038/nrmicro3365 10.1016/j.biortech.2009.12.077 10.1128/AEM.47.6.1343-1345.1984 10.1007/BF00871644 10.1016/j.electacta.2007.10.018 10.1039/C4TA03101F 10.2166/wst.2005.0493 10.4014/jmb.1304.04039 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. Wageningen University & Research |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: Wageningen University & Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 QVL |
DOI | 10.1016/j.biortech.2015.05.081 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 24 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_490145 26066971 10_1016_j_biortech_2015_05_081 S0960852415007543 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 AALMO AAPBV ABPIF ABPTK ADALY IPNFZ QVL |
ID | FETCH-LOGICAL-c588t-a5b7f6cb4bdb38dd870ea20276ce2a256a5bce17714d47ab47c7a519689539433 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Thu Oct 13 09:30:19 EDT 2022 Fri Jul 11 07:08:13 EDT 2025 Thu Jul 10 18:37:43 EDT 2025 Mon Jul 21 05:59:27 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Tue Jul 01 02:06:31 EDT 2025 Fri Feb 23 02:16:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microbial electrosynthesis Biocathode Bioproduction CO2 reduction Hydrogen evolution CO reduction |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c588t-a5b7f6cb4bdb38dd870ea20276ce2a256a5bce17714d47ab47c7a519689539433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26066971 |
PQID | 1704347938 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_490145 proquest_miscellaneous_1846338692 proquest_miscellaneous_1704347938 pubmed_primary_26066971 crossref_citationtrail_10_1016_j_biortech_2015_05_081 crossref_primary_10_1016_j_biortech_2015_05_081 elsevier_sciencedirect_doi_10_1016_j_biortech_2015_05_081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Van Eerten-Jansen, Jansen, Plugge, de Wilde, Buisman, ter Heijne (b0145) 2015; 90 Zinder, Anguish, Cardwell (b0175) 1984; 47 Coppi, Leang, Sandler, Lovley (b0020) 2001; 67 Villano, Aulenta, Ciucci, Ferri, Giuliano, Majone (b0155) 2010; 101 Ganigué, Puig, Batlle-Vilanova, Balaguer, Colprim (b0040) 2015; 51 Vega, Prieto, Elmore, Clausen, Gaddy (b0150) 1989; 20–21 Clauwaert, Tolêdo, Van Der Ha, Crab, Verstraete, Hu, Udert, Rabaey (b0015) 2008; 57 Da Silva, Basséguy, Bergel (b0025) 2004; 49 Schuchmann, Müller (b0115) 2014; 12 Marshall, Ross, Fichot, Norman, May (b0085) 2012; 78 Nevin, Hensley, Franks, Summers, Ou, Woodard, Snoeyenbos-West, Lovley (b0090) 2011; 77 Amils (b0005) 2011 Zaybak, Pisciotta, Tokash, Logan (b0165) 2013; 168 Marshall, Ross, Fichot, Norman, May (b0080) 2013; 47 Honda, Murase, Hirato, Awakura (b0050) 1998; 28 Avery, Shannon, Jeffrey, Martens, Alperin (b0010) 2003; 62 Rabaey, Rozendal (b0110) 2010; 8 Available from Stams (b0130) 1994; 66 Jiang, Su, Zhang, Zhan, Tao, Li (b0055) 2013; 38 Soussan, Riess, Erable, Delia, Bergel (b0125) 2013; 28 Gregory, Bond, Lovley (b0045) 2004; 6 Parini, Pitt (b0105) 2005; 136 Jourdin, Freguia, Donose, Chen, Wallace, Keller, Flexer (b0060) 2014; 2 Nevin, Woodard, Franks, Summers, Lovley (b0095) 2010; 1 Su, Jiang, Li (b0140) 2013; 23 De Silva Munoz, Erable, Etcheverry, Riess, Basséguy, Bergel (b0030) 2010; 12 . Zamanzadeh, Parker, Verastegui, Neufeld (b0160) 2013; 149 Liew, F.M., Köpke, M., Simpson, S.D., 2013. Gas Fermentation for Commercial Biofuels Production, in: Liquid, Gaseous and Solid Biofuels – Conversion Techniques, Prof. Zhen Fang (Ed.), InTech, doi Lovley (b0075) 2011; 3 Stams, Plugge, De Bok, Van Houten, Lens, Dijkman, Weijma (b0135) 2005; 52 Ljungdahl (b0070) 1986; 40 Nie, Zhang, Cui, Lu, Lovley, Russell (b0100) 2013; 15 Sharma, Bajracharya, Gildemyn, Patil, Alvarez-Gallego, Pant, Rabaey, Dominguez-Benetton (b0120) 2014; 140 Dumas, Basseguy, Bergel (b0035) 2008; 53 Zhang, Nie, Bain, Lu, Cui, Snoeyenbos-West, Franks, Nevin, Russell, Lovley (b0170) 2013; 6 Gregory (10.1016/j.biortech.2015.05.081_b0045) 2004; 6 Stams (10.1016/j.biortech.2015.05.081_b0130) 1994; 66 Zamanzadeh (10.1016/j.biortech.2015.05.081_b0160) 2013; 149 Dumas (10.1016/j.biortech.2015.05.081_b0035) 2008; 53 Amils (10.1016/j.biortech.2015.05.081_b0005) 2011 Jiang (10.1016/j.biortech.2015.05.081_b0055) 2013; 38 Vega (10.1016/j.biortech.2015.05.081_b0150) 1989; 20–21 Soussan (10.1016/j.biortech.2015.05.081_b0125) 2013; 28 Lovley (10.1016/j.biortech.2015.05.081_b0075) 2011; 3 Marshall (10.1016/j.biortech.2015.05.081_b0080) 2013; 47 Avery (10.1016/j.biortech.2015.05.081_b0010) 2003; 62 Stams (10.1016/j.biortech.2015.05.081_b0135) 2005; 52 Coppi (10.1016/j.biortech.2015.05.081_b0020) 2001; 67 Schuchmann (10.1016/j.biortech.2015.05.081_b0115) 2014; 12 Parini (10.1016/j.biortech.2015.05.081_b0105) 2005; 136 Nevin (10.1016/j.biortech.2015.05.081_b0090) 2011; 77 Rabaey (10.1016/j.biortech.2015.05.081_b0110) 2010; 8 Honda (10.1016/j.biortech.2015.05.081_b0050) 1998; 28 Nevin (10.1016/j.biortech.2015.05.081_b0095) 2010; 1 Su (10.1016/j.biortech.2015.05.081_b0140) 2013; 23 Villano (10.1016/j.biortech.2015.05.081_b0155) 2010; 101 Zhang (10.1016/j.biortech.2015.05.081_b0170) 2013; 6 De Silva Munoz (10.1016/j.biortech.2015.05.081_b0030) 2010; 12 Ljungdahl (10.1016/j.biortech.2015.05.081_b0070) 1986; 40 Da Silva (10.1016/j.biortech.2015.05.081_b0025) 2004; 49 Nie (10.1016/j.biortech.2015.05.081_b0100) 2013; 15 Van Eerten-Jansen (10.1016/j.biortech.2015.05.081_b0145) 2015; 90 Zaybak (10.1016/j.biortech.2015.05.081_b0165) 2013; 168 Clauwaert (10.1016/j.biortech.2015.05.081_b0015) 2008; 57 Ganigué (10.1016/j.biortech.2015.05.081_b0040) 2015; 51 Jourdin (10.1016/j.biortech.2015.05.081_b0060) 2014; 2 Marshall (10.1016/j.biortech.2015.05.081_b0085) 2012; 78 Sharma (10.1016/j.biortech.2015.05.081_b0120) 2014; 140 Zinder (10.1016/j.biortech.2015.05.081_b0175) 1984; 47 10.1016/j.biortech.2015.05.081_b0065 |
References_xml | – volume: 53 start-page: 2494 year: 2008 end-page: 2500 ident: b0035 article-title: Microbial electrocatalysis with publication-title: Electrochim. Acta – volume: 136 start-page: 1688 year: 2005 end-page: 1693 ident: b0105 article-title: Removal of oral biofilms by bubbles: The effect of bubble impingement angle and sonic waves publication-title: J. Am. Dent. Assoc. – volume: 52 start-page: 13 year: 2005 end-page: 20 ident: b0135 article-title: Metabolic interactions in methanogenic and sulfate-reducing bioreactors publication-title: Water Sci. Technol. – volume: 140 start-page: 191 year: 2014 end-page: 208 ident: b0120 article-title: A critical revisit of the key parameters used to describe microbial electrochemical systems publication-title: Electrochim. Acta – volume: 1 start-page: e00103 year: 2010 end-page: 10 ident: b0095 article-title: Microbial electrosynthesis: feeding microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic publication-title: MBio – volume: 12 start-page: 809 year: 2014 end-page: 821 ident: b0115 article-title: Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria publication-title: Nat. Rev. Microbiol. – volume: 6 start-page: 596 year: 2004 end-page: 604 ident: b0045 article-title: Graphite electrodes as electron donors for anaerobic respiration publication-title: Environ. Microbiol. – volume: 67 start-page: 3180 year: 2001 end-page: 3187 ident: b0020 article-title: Development of a genetic system for publication-title: Appl. Environ. Microbiol. – volume: 47 start-page: 6023 year: 2013 end-page: 6029 ident: b0080 article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes publication-title: Environ. Sci. Technol. – volume: 57 start-page: 575 year: 2008 end-page: 579 ident: b0015 article-title: Combining biocatalyzed electrolysis with anaerobic digestion publication-title: Water Sci. Technol. – volume: 90 start-page: 963 year: 2015 end-page: 970 ident: b0145 article-title: Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures publication-title: J. Chem. Technol. Biotechnol. – volume: 38 start-page: 3497 year: 2013 end-page: 3502 ident: b0055 article-title: Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate publication-title: Int. J. Hydrogen Energy – volume: 2 start-page: 13093 year: 2014 end-page: 13102 ident: b0060 article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis publication-title: J. Mater. Chem. A – reference: . Available from: – volume: 20–21 start-page: 781 year: 1989 end-page: 797 ident: b0150 article-title: The Biological production of ethanol from synthesis gas publication-title: Appl. Biochem. Biotechnol. – volume: 3 start-page: 27 year: 2011 end-page: 35 ident: b0075 article-title: Powering microbes with electricity: direct electron transfer from electrodes to microbes publication-title: Environ. Microbiol. Rep. – volume: 101 start-page: 3085 year: 2010 end-page: 3090 ident: b0155 article-title: Bioelectrochemical reduction of CO publication-title: Bioresour. Technol. – volume: 28 start-page: 27 year: 2013 end-page: 30 ident: b0125 article-title: Electrochemical reduction of CO publication-title: Electrochem. Commun. – volume: 6 start-page: 217 year: 2013 end-page: 224 ident: b0170 article-title: Improved cathode materials for microbial electrosynthesis publication-title: Energy Environ. Sci. – volume: 8 start-page: 706 year: 2010 end-page: 716 ident: b0110 article-title: Microbial electrosynthesis – revisiting the electrical route for microbial production.pdf publication-title: Nat. Rev. Microbiol. – volume: 23 start-page: 1140 year: 2013 end-page: 1146 ident: b0140 article-title: Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture publication-title: J. Microbiol. Biotechnol. – volume: 15 start-page: 14290 year: 2013 end-page: 14294 ident: b0100 article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 183 year: 2010 end-page: 186 ident: b0030 article-title: Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC) publication-title: Electrochem. Commun. – volume: 47 start-page: 1343 year: 1984 end-page: 1345 ident: b0175 article-title: Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor publication-title: Appl. Environ. Microbiol. – volume: 77 start-page: 2882 year: 2011 end-page: 2886 ident: b0090 article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms publication-title: Appl. Environ. Microbiol. – volume: 66 start-page: 271 year: 1994 end-page: 294 ident: b0130 article-title: Metabolic interactions between anaerobic bacteria in methanogenic environments publication-title: Antonie Van Leeuwenhoek – volume: 40 start-page: 415 year: 1986 end-page: 450 ident: b0070 article-title: The autotrophic pathway of acetate synthesis in acetogenic bacteria publication-title: Annu. Rev. Microbiol. – reference: . – start-page: 289 year: 2011 ident: b0005 article-title: Chemolithoautotroph publication-title: Encyclopedia of astrobiology – volume: 78 start-page: 8412 year: 2012 end-page: 8420 ident: b0085 article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community publication-title: Appl. Environ. Microbiol. – volume: 28 start-page: 617 year: 1998 end-page: 622 ident: b0050 article-title: PH measurement in the vicinity of a cathode evolving hydrogen gas using an antimony microelectrode publication-title: J. Appl. Electrochem. – volume: 51 start-page: 3235 year: 2015 end-page: 3238 ident: b0040 article-title: Microbial electrosynthesis of butyrate from carbon dioxide publication-title: Chem. Commun. – reference: Liew, F.M., Köpke, M., Simpson, S.D., 2013. Gas Fermentation for Commercial Biofuels Production, in: Liquid, Gaseous and Solid Biofuels – Conversion Techniques, Prof. Zhen Fang (Ed.), InTech, doi: – volume: 49 start-page: 4553 year: 2004 end-page: 4561 ident: b0025 article-title: Electrochemical deprotonation of phosphate on stainless steel publication-title: Electrochim. Acta – volume: 62 start-page: 19 year: 2003 end-page: 37 ident: b0010 article-title: Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction publication-title: Biogeochemistry – volume: 168 start-page: 478 year: 2013 end-page: 485 ident: b0165 article-title: Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems publication-title: J. Biotechnol. – volume: 149 start-page: 318 year: 2013 end-page: 326 ident: b0160 article-title: Biokinetic and molecular studies of methanogens in phased anaerobic digestion systems publication-title: Bioresour. Technol. – volume: 3 start-page: 27 year: 2011 ident: 10.1016/j.biortech.2015.05.081_b0075 article-title: Powering microbes with electricity: direct electron transfer from electrodes to microbes publication-title: Environ. Microbiol. Rep. doi: 10.1111/j.1758-2229.2010.00211.x – volume: 20–21 start-page: 781 year: 1989 ident: 10.1016/j.biortech.2015.05.081_b0150 article-title: The Biological production of ethanol from synthesis gas publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/BF02936525 – volume: 149 start-page: 318 year: 2013 ident: 10.1016/j.biortech.2015.05.081_b0160 article-title: Biokinetic and molecular studies of methanogens in phased anaerobic digestion systems publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.09.058 – volume: 62 start-page: 19 year: 2003 ident: 10.1016/j.biortech.2015.05.081_b0010 article-title: Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction publication-title: Biogeochemistry doi: 10.1023/A:1021128400602 – volume: 1 start-page: e00103 year: 2010 ident: 10.1016/j.biortech.2015.05.081_b0095 article-title: Microbial electrosynthesis: feeding microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic publication-title: MBio doi: 10.1128/mBio.00103-10 – volume: 51 start-page: 3235 year: 2015 ident: 10.1016/j.biortech.2015.05.081_b0040 article-title: Microbial electrosynthesis of butyrate from carbon dioxide publication-title: Chem. Commun. doi: 10.1039/C4CC10121A – volume: 38 start-page: 3497 year: 2013 ident: 10.1016/j.biortech.2015.05.081_b0055 article-title: Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.12.107 – volume: 8 start-page: 706 year: 2010 ident: 10.1016/j.biortech.2015.05.081_b0110 article-title: Microbial electrosynthesis – revisiting the electrical route for microbial production.pdf publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2422 – volume: 12 start-page: 183 year: 2010 ident: 10.1016/j.biortech.2015.05.081_b0030 article-title: Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC) publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.11.017 – volume: 168 start-page: 478 year: 2013 ident: 10.1016/j.biortech.2015.05.081_b0165 article-title: Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2013.10.001 – volume: 78 start-page: 8412 year: 2012 ident: 10.1016/j.biortech.2015.05.081_b0085 article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02401-12 – volume: 90 start-page: 963 year: 2015 ident: 10.1016/j.biortech.2015.05.081_b0145 article-title: Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4413 – volume: 40 start-page: 415 year: 1986 ident: 10.1016/j.biortech.2015.05.081_b0070 article-title: The autotrophic pathway of acetate synthesis in acetogenic bacteria publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.mi.40.100186.002215 – volume: 28 start-page: 27 year: 2013 ident: 10.1016/j.biortech.2015.05.081_b0125 article-title: Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.11.033 – volume: 6 start-page: 217 year: 2013 ident: 10.1016/j.biortech.2015.05.081_b0170 article-title: Improved cathode materials for microbial electrosynthesis publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23350A – volume: 6 start-page: 596 year: 2004 ident: 10.1016/j.biortech.2015.05.081_b0045 article-title: Graphite electrodes as electron donors for anaerobic respiration publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2004.00593.x – start-page: 289 year: 2011 ident: 10.1016/j.biortech.2015.05.081_b0005 article-title: Chemolithoautotroph – volume: 47 start-page: 6023 year: 2013 ident: 10.1016/j.biortech.2015.05.081_b0080 article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes publication-title: Environ. Sci. Technol. doi: 10.1021/es400341b – volume: 77 start-page: 2882 year: 2011 ident: 10.1016/j.biortech.2015.05.081_b0090 article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02642-10 – volume: 136 start-page: 1688 year: 2005 ident: 10.1016/j.biortech.2015.05.081_b0105 article-title: Removal of oral biofilms by bubbles: The effect of bubble impingement angle and sonic waves publication-title: J. Am. Dent. Assoc. doi: 10.14219/jada.archive.2005.0112 – volume: 140 start-page: 191 year: 2014 ident: 10.1016/j.biortech.2015.05.081_b0120 article-title: A critical revisit of the key parameters used to describe microbial electrochemical systems publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.02.111 – volume: 57 start-page: 575 year: 2008 ident: 10.1016/j.biortech.2015.05.081_b0015 article-title: Combining biocatalyzed electrolysis with anaerobic digestion publication-title: Water Sci. Technol. doi: 10.2166/wst.2008.084 – volume: 49 start-page: 4553 year: 2004 ident: 10.1016/j.biortech.2015.05.081_b0025 article-title: Electrochemical deprotonation of phosphate on stainless steel publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.04.039 – ident: 10.1016/j.biortech.2015.05.081_b0065 – volume: 15 start-page: 14290 year: 2013 ident: 10.1016/j.biortech.2015.05.081_b0100 article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52697f – volume: 28 start-page: 617 year: 1998 ident: 10.1016/j.biortech.2015.05.081_b0050 article-title: PH measurement in the vicinity of a cathode evolving hydrogen gas using an antimony microelectrode publication-title: J. Appl. Electrochem. doi: 10.1023/A:1003254219905 – volume: 67 start-page: 3180 year: 2001 ident: 10.1016/j.biortech.2015.05.081_b0020 article-title: Development of a genetic system for Geobacter sulfurreducens publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.7.3180-3187.2001 – volume: 12 start-page: 809 year: 2014 ident: 10.1016/j.biortech.2015.05.081_b0115 article-title: Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3365 – volume: 101 start-page: 3085 year: 2010 ident: 10.1016/j.biortech.2015.05.081_b0155 article-title: Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.12.077 – volume: 47 start-page: 1343 year: 1984 ident: 10.1016/j.biortech.2015.05.081_b0175 article-title: Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.47.6.1343-1345.1984 – volume: 66 start-page: 271 year: 1994 ident: 10.1016/j.biortech.2015.05.081_b0130 article-title: Metabolic interactions between anaerobic bacteria in methanogenic environments publication-title: Antonie Van Leeuwenhoek doi: 10.1007/BF00871644 – volume: 53 start-page: 2494 year: 2008 ident: 10.1016/j.biortech.2015.05.081_b0035 article-title: Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.10.018 – volume: 2 start-page: 13093 year: 2014 ident: 10.1016/j.biortech.2015.05.081_b0060 article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03101F – volume: 52 start-page: 13 year: 2005 ident: 10.1016/j.biortech.2015.05.081_b0135 article-title: Metabolic interactions in methanogenic and sulfate-reducing bioreactors publication-title: Water Sci. Technol. doi: 10.2166/wst.2005.0493 – volume: 23 start-page: 1140 year: 2013 ident: 10.1016/j.biortech.2015.05.081_b0140 article-title: Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1304.04039 |
SSID | ssj0003172 |
Score | 2.596278 |
Snippet | [Display omitted]
•Stainless steel and graphite felt assembly as a CO2 reducing biocathode material.•Higher acetate production rates from C. ljungdahlii with... Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis... |
SourceID | wageningen proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14 |
SubjectTerms | acetates Acetates - metabolism Autotrophic Processes bicarbonates Bicarbonates - metabolism biocatalysts Biocathode Bioelectric Energy Sources Biofilms - growth & development Bioproduction Bioreactors carbon dioxide Carbon Dioxide - metabolism Catalysis Cell Culture Techniques - methods Clostridium - metabolism Clostridium ljungdahlii CO2 reduction Electrochemical Techniques Electrodes electrons Environmental Technology graphene Graphite - chemistry hydrogen Hydrogen - metabolism Hydrogen evolution hydrogen production methane methane production Microbial electrosynthesis Milieutechnologie mixed culture Oxidation-Reduction Sectie Milieutechnologie silver chloride stainless steel Stainless Steel - chemistry Sub-department of Environmental Technology WIMEK |
Title | Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode |
URI | https://dx.doi.org/10.1016/j.biortech.2015.05.081 https://www.ncbi.nlm.nih.gov/pubmed/26066971 https://www.proquest.com/docview/1704347938 https://www.proquest.com/docview/1846338692 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F490145 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLemcWA7IBgfKx-TkbhmXWqndo5VxVRA7AKTdrPs2JkyZU6VtNp64b_g_-U9x9mKEOyAVKlNYztOnv3ez_F7v0fIB2Mc0lKhz1NZJLwwLJETJxNYOcPMgvWHDFkUvp5NF-f880V2sUPmQywMulVG3d_r9KCt4z_j-DTHy6oaf0PwLTO0QGj3ODJ-ci6QP__4x72bB9jHsJMAhRMsvRUlfHVsKvRoDZsSaRYYPGX6NwP1JwDdJ3s3MOl9iILaskqnT8mTCCfprO_xM7Lj_AHZn122kVLDHZDH8yGnG5zZoh98Tn7OdWsaT23V3FbW0RZpXFFQ1GzodXXrLNXe0iU0Q2NzHa08nArsTXDdmESn23jAkV3VUXSjv4RaFDC5uzb1hjYlDaTYAG1p6epVaDIEbdWgZOGXczWUppoig2xj3Qtyfvrx-3yRxDQNSZFJuUp0ZkQ5LQw31jBpLWgAp_GdSkg2BpAKChQuFSLllgttuCiEBuA4lXnGcs7YS7LrG-8OCXRDGJZpznWpuRVassJpWdqcO5nqST4i2SAbVUQOc0ylUavBWe1KDTJVKFN1Ah-Zjsj4rt6yZ_F4sEY-iF79Nh4VmJoH674fxooC-eIOjPauWXcqFSc8hO7Kf5QBRMiYnOaTEXnVD7S7Pk9wuZkLuAK7H3nKY9apTiFReHz1p27WrfI1fkELneK4WZ69_o97ekP28KiPwnxLdlft2r0DOLYyR2G-HZFHs09fFme_AGhcOew |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELcYPAAP08Y2VvbPk_aaldRO4zxW1VAZ0JeBxJtlxw4KCk6VtIJ-kH1f7lyn6zRtPEyqlKr2OW7ufHeO735HyBetLcJSYcxTkUc81ywSAysi2DnDyoL9h_BVFC6mw8kV_36dXG-RcZcLg2GVQfevdLrX1uGXfnia_VlZ9n-g8y0StEBo9zh7RnYQnQqEfWd0ejaZrhUymEh_mAD9IyTYSBS-_apLDGr15xJx4kE8Rfw3G_WnD7pP9u5h3TufCLVhmE5ekOfBo6Sj1aRfki3rDsj-6KYJqBr2gOyOu7Ju0LKBQPiK_ByrRteOmrJ-KI2lDSK5Iq-oXtK78sEaqpyhMxiGhuFaWjpo8gBOcN9QR6ddOnAl27KlGEl_A1QU3HJ7p6slrQvqcbHBu6WFreZ-SJ-3VYGehW_WVtCbKoogsrWxr8nVybfL8SQKlRqiPBFiHqlEp8Uw11wbzYQxoASswtcqvt4YeFXQIbdxmsbc8FRpnuapAt9xKLKEZZyxN2Tb1c6-JTCNVLNEca4KxU2qBMutEoXJuBWxGmQ9knS8kXmAMcdqGpXs4tVuZcdTiTyVx_ARcY_013SzFZDHkxRZx3r5m0hKsDZP0n7uZEUCf_EQRjlbL1oZp8fcZ--Kf_QBp5AxMcwGPXK4ErT1nAe448xSuAP7JXnSYeGpViJWeHj7J-8XjXQVXmCEVnI8L0-O_uM_fSK7k8uLc3l-Oj17R_awZZWU-Z5sz5uF_QDe2Vx_DKvvEfr-PJ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+dioxide+reduction+by+mixed+and+pure+cultures+in+microbial+electrosynthesis+using+an+assembly+of+graphite+felt+and+stainless+steel+as+a+cathode&rft.jtitle=Bioresource+technology&rft.au=Bajracharya%2C+Suman&rft.au=ter+Heijne%2C+Annemiek&rft.au=Dominguez+Benetton%2C+Xochitl&rft.au=Vanbroekhoven%2C+Karolien&rft.date=2015-11-01&rft.issn=0960-8524&rft.volume=195&rft.spage=14&rft.epage=24&rft_id=info:doi/10.1016%2Fj.biortech.2015.05.081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2015_05_081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |