Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode

[Display omitted] •Stainless steel and graphite felt assembly as a CO2 reducing biocathode material.•Higher acetate production rates from C. ljungdahlii with hydrogen evolution.•CH4 production predominated from CO2 reduction by non-enriched mixed culture.•H2 evolution appears to stimulate planktonic...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 195; pp. 14 - 24
Main Authors Bajracharya, Suman, ter Heijne, Annemiek, Dominguez Benetton, Xochitl, Vanbroekhoven, Karolien, Buisman, Cees J.N., Strik, David P.B.T.B., Pant, Deepak
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2015
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2015.05.081

Cover

Loading…
Abstract [Display omitted] •Stainless steel and graphite felt assembly as a CO2 reducing biocathode material.•Higher acetate production rates from C. ljungdahlii with hydrogen evolution.•CH4 production predominated from CO2 reduction by non-enriched mixed culture.•H2 evolution appears to stimulate planktonic bacteria rather than cathodic-biofilm. Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3mMd−1, along with methane and hydrogen at −1.1V/Ag/AgCl. Over 160days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45days of run-time in the C. ljungdahlii reactor, 2.4mMd−1 acetate production was achieved at −0.9V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates.
AbstractList Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3mMd−1, along with methane and hydrogen at −1.1V/Ag/AgCl. Over 160days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45days of run-time in the C. ljungdahlii reactor, 2.4mMd−1 acetate production was achieved at −0.9V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates.
Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3mMd-1, along with methane and hydrogen at -1.1V/Ag/AgCl. Over 160days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45days of run-time in the C. ljungdahlii reactor, 2.4mMd-1 acetate production was achieved at -0.9V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates
Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates.
Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates.Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates.
[Display omitted] •Stainless steel and graphite felt assembly as a CO2 reducing biocathode material.•Higher acetate production rates from C. ljungdahlii with hydrogen evolution.•CH4 production predominated from CO2 reduction by non-enriched mixed culture.•H2 evolution appears to stimulate planktonic bacteria rather than cathodic-biofilm. Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3mMd−1, along with methane and hydrogen at −1.1V/Ag/AgCl. Over 160days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45days of run-time in the C. ljungdahlii reactor, 2.4mMd−1 acetate production was achieved at −0.9V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates.
Author ter Heijne, Annemiek
Buisman, Cees J.N.
Dominguez Benetton, Xochitl
Vanbroekhoven, Karolien
Strik, David P.B.T.B.
Bajracharya, Suman
Pant, Deepak
Author_xml – sequence: 1
  givenname: Suman
  surname: Bajracharya
  fullname: Bajracharya, Suman
  organization: Separation & Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium
– sequence: 2
  givenname: Annemiek
  surname: ter Heijne
  fullname: ter Heijne, Annemiek
  organization: Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
– sequence: 3
  givenname: Xochitl
  surname: Dominguez Benetton
  fullname: Dominguez Benetton, Xochitl
  organization: Separation & Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium
– sequence: 4
  givenname: Karolien
  surname: Vanbroekhoven
  fullname: Vanbroekhoven, Karolien
  organization: Separation & Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium
– sequence: 5
  givenname: Cees J.N.
  surname: Buisman
  fullname: Buisman, Cees J.N.
  organization: Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
– sequence: 6
  givenname: David P.B.T.B.
  surname: Strik
  fullname: Strik, David P.B.T.B.
  organization: Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
– sequence: 7
  givenname: Deepak
  surname: Pant
  fullname: Pant, Deepak
  email: deepak.pant@vito.be, pantonline@gmail.com
  organization: Separation & Conversion Technologies, Flemish Institute for Technological Research (VITO), Mol, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26066971$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uGyEUhUdVqsZJ-woRy27GhRkGmKqLVlb_pEjdtGvEz7WNhcEFpokfJO9bpo433Vi60kVwvsuVzrlprkIM0DR3BC8JJuzdbqldTAXMdtlhMixxLUFeNAsieN92I2dXzQKPDLdi6Oh1c5PzDmPcE969aq47hhkbOVk0TyuVdAzIuvjoLKAEdjLF1Rt9RHv3CBapYNFhSoDM5EvtGblQn0yK2imPwIMpKeZjKFvILqMpu7CpFFI5w177I4prtEnqsHUF0Bp8-TcyF-WCh5zrCcBXNVLIqLKNFl43L9fKZ3jz3G-bX18-_1x9a-9_fP2--nTfmkGI0qpB8zUzmmqre2Gt4BhUhzvODHSqG1gVGCCcE2opV5pyw9VARibGoR9p3982709zH9QGQl0bggwqGZdlVE56p5NKR_kwJRn83A6TzpKOmNChwm9P8CHF3xPkIvcuG_BeBYhTlkRQ1veCjd1lKce0p3zsRZXePUsnvQcrD8nt5x3OllXBh5OgGpBzgrU0rqjZspKU85JgOSdE7uQ5IXJOiMS1xIyz__DzDxfBjycQqiF_HCSZjYNgwLpUEyBtdJdG_AVSAd4K
CitedBy_id crossref_primary_10_1007_s40974_024_00332_w
crossref_primary_10_1016_j_biortech_2019_01_145
crossref_primary_10_1016_j_bioelechem_2016_09_001
crossref_primary_10_1016_j_bej_2024_109366
crossref_primary_10_1016_j_scitotenv_2023_169766
crossref_primary_10_3389_fbioe_2020_00457
crossref_primary_10_1016_j_chemosphere_2019_125317
crossref_primary_10_1016_j_jpowsour_2017_03_079
crossref_primary_10_1016_j_seta_2021_101114
crossref_primary_10_1039_D2MH01178F
crossref_primary_10_1016_j_scitotenv_2020_142440
crossref_primary_10_1016_j_biortech_2016_03_023
crossref_primary_10_1016_j_renene_2022_11_123
crossref_primary_10_1002_ghg_2185
crossref_primary_10_1021_acssuschemeng_0c01276
crossref_primary_10_1021_acssynbio_8b00498
crossref_primary_10_1016_j_apenergy_2021_116885
crossref_primary_10_1002_er_3706
crossref_primary_10_1149_1945_7111_abb836
crossref_primary_10_3389_fmicb_2024_1438758
crossref_primary_10_3390_en11020343
crossref_primary_10_1016_j_biortech_2019_121401
crossref_primary_10_1016_j_electacta_2023_142722
crossref_primary_10_1016_j_scitotenv_2020_142668
crossref_primary_10_1016_j_bej_2021_108319
crossref_primary_10_1016_j_jece_2021_106189
crossref_primary_10_1021_acs_energyfuels_0c01710
crossref_primary_10_1016_j_seta_2021_101118
crossref_primary_10_1016_j_psep_2024_07_030
crossref_primary_10_1016_j_cej_2018_03_191
crossref_primary_10_1016_j_bej_2022_108496
crossref_primary_10_1016_j_jece_2022_108067
crossref_primary_10_1016_j_jpowsour_2021_230586
crossref_primary_10_1016_j_watres_2020_116214
crossref_primary_10_1016_j_bioelechem_2018_10_002
crossref_primary_10_1016_j_jece_2020_104028
crossref_primary_10_3389_fmicb_2021_696473
crossref_primary_10_1021_acsami_0c07910
crossref_primary_10_1016_j_jhazmat_2019_03_028
crossref_primary_10_1016_j_egyr_2019_08_007
crossref_primary_10_1016_j_scitotenv_2023_168410
crossref_primary_10_1039_D3GC00471F
crossref_primary_10_1149_2_0131703jes
crossref_primary_10_1016_j_scitotenv_2023_169744
crossref_primary_10_1186_s13068_019_1468_x
crossref_primary_10_2139_ssrn_4115152
crossref_primary_10_1016_j_cej_2022_138230
crossref_primary_10_1039_C6TA07571A
crossref_primary_10_1021_acssuschemeng_2c04040
crossref_primary_10_1039_C6TA02036D
crossref_primary_10_1039_D0NR07611B
crossref_primary_10_1016_j_jcou_2016_03_003
crossref_primary_10_1016_j_scitotenv_2022_155724
crossref_primary_10_1016_j_bioelechem_2018_01_002
crossref_primary_10_1016_j_jcou_2017_05_011
crossref_primary_10_1039_C7FD00050B
crossref_primary_10_1016_j_bioelechem_2019_03_011
crossref_primary_10_3389_fmicb_2022_947550
crossref_primary_10_1016_j_bej_2023_108896
crossref_primary_10_1007_s11356_019_04725_x
crossref_primary_10_1021_acssuschemeng_4c08968
crossref_primary_10_1016_j_jpowsour_2020_228990
crossref_primary_10_1016_j_tibtech_2016_10_004
crossref_primary_10_1016_S1872_2067_19_63408_X
crossref_primary_10_5004_dwt_2021_26737
crossref_primary_10_1016_j_chemosphere_2024_142157
crossref_primary_10_1016_j_chemosphere_2023_140251
crossref_primary_10_1088_1757_899X_288_1_012136
crossref_primary_10_1039_C6RA04734C
crossref_primary_10_3389_fenrg_2021_759678
crossref_primary_10_1016_j_jece_2021_106650
crossref_primary_10_1016_j_procbio_2020_11_017
crossref_primary_10_1021_acsestwater_3c00255
crossref_primary_10_1016_j_biteb_2018_12_007
crossref_primary_10_1016_j_energy_2017_04_110
crossref_primary_10_1016_j_ijhydene_2023_11_055
crossref_primary_10_1016_j_jwpe_2023_104580
crossref_primary_10_3390_microorganisms11122976
crossref_primary_10_1016_j_bioelechem_2023_108414
crossref_primary_10_1039_D1RE00166C
crossref_primary_10_1016_j_bej_2023_109035
crossref_primary_10_1016_j_chemosphere_2021_131886
crossref_primary_10_1016_j_watres_2017_12_026
crossref_primary_10_1111_1751_7915_14373
crossref_primary_10_1016_j_scitotenv_2021_148479
crossref_primary_10_1016_j_watres_2016_10_018
crossref_primary_10_1016_j_watres_2019_04_053
crossref_primary_10_1016_j_coelec_2022_101177
crossref_primary_10_3390_microorganisms11030735
crossref_primary_10_1016_j_chemosphere_2017_02_135
crossref_primary_10_3389_fmicb_2019_00188
crossref_primary_10_1007_s11356_024_33678_z
crossref_primary_10_2139_ssrn_4096287
crossref_primary_10_1016_j_ijhydene_2022_08_066
crossref_primary_10_1016_j_procbio_2020_11_005
crossref_primary_10_1039_C5EE03088A
crossref_primary_10_1016_j_chemosphere_2021_132188
crossref_primary_10_1016_j_resconrec_2021_105980
crossref_primary_10_1016_j_bioelechem_2020_107672
crossref_primary_10_1038_s43586_024_00332_4
crossref_primary_10_1007_s11157_024_09682_7
crossref_primary_10_1016_j_bej_2019_107467
crossref_primary_10_1016_j_biortech_2022_127178
crossref_primary_10_1007_s41918_022_00162_6
crossref_primary_10_1021_acs_energyfuels_2c04122
crossref_primary_10_1016_j_seta_2021_101652
crossref_primary_10_1021_acssynbio_2c00323
crossref_primary_10_1002_celc_201901427
crossref_primary_10_1128_aem_01387_23
crossref_primary_10_1016_j_electacta_2017_03_209
crossref_primary_10_1186_s13068_017_0943_5
crossref_primary_10_1016_j_jpowsour_2017_04_024
crossref_primary_10_1002_tcr_201800100
crossref_primary_10_1016_j_bej_2023_109132
crossref_primary_10_1039_D2EW00881E
crossref_primary_10_1016_j_cej_2022_137079
crossref_primary_10_1007_s11274_023_03554_y
crossref_primary_10_1039_D3SE00876B
crossref_primary_10_1016_j_scitotenv_2019_02_267
crossref_primary_10_1016_j_biotechadv_2022_107982
crossref_primary_10_1016_j_biortech_2019_02_115
crossref_primary_10_1016_j_biortech_2016_03_052
crossref_primary_10_1016_j_biortech_2018_02_059
crossref_primary_10_1002_celc_201500530
crossref_primary_10_3390_pr11030766
crossref_primary_10_3389_fmicb_2023_1192187
crossref_primary_10_1007_s12257_018_0373_7
crossref_primary_10_1016_j_biortech_2017_12_075
crossref_primary_10_1016_j_ese_2023_100324
crossref_primary_10_1016_j_ijhydene_2021_08_129
crossref_primary_10_1039_C8TA05322G
crossref_primary_10_1016_j_renene_2023_119018
crossref_primary_10_1016_j_biortech_2022_127906
crossref_primary_10_1186_s13068_016_0634_7
crossref_primary_10_1016_j_jcou_2017_04_014
crossref_primary_10_1002_cssc_201600963
crossref_primary_10_1016_j_biortech_2017_02_104
crossref_primary_10_1016_j_scitotenv_2021_151820
crossref_primary_10_2139_ssrn_4074344
crossref_primary_10_1038_s41598_017_09841_7
crossref_primary_10_1016_j_biortech_2022_128436
crossref_primary_10_1016_j_fuel_2021_121124
crossref_primary_10_1016_j_ymben_2017_12_003
crossref_primary_10_3390_membranes11030223
crossref_primary_10_1016_j_enconman_2018_09_064
crossref_primary_10_1016_j_renene_2016_03_002
crossref_primary_10_1186_s40643_019_0265_5
crossref_primary_10_2166_wst_2018_002
crossref_primary_10_1061_JHTRBP_HZENG_1229
crossref_primary_10_1016_j_chemosphere_2022_136088
crossref_primary_10_1038_s41579_019_0173_x
crossref_primary_10_1016_j_bioelechem_2024_108724
crossref_primary_10_1016_j_biteb_2024_101766
crossref_primary_10_1016_j_joule_2020_08_010
crossref_primary_10_1007_s00253_022_12031_9
crossref_primary_10_1016_j_pecs_2017_07_003
crossref_primary_10_1016_j_scitotenv_2022_160722
crossref_primary_10_1016_j_bej_2023_108928
crossref_primary_10_1016_j_jclepro_2020_122391
crossref_primary_10_1016_j_rser_2015_11_015
crossref_primary_10_1016_j_egyr_2022_01_198
crossref_primary_10_1016_j_rser_2021_111997
crossref_primary_10_1002_cphc_201700017
crossref_primary_10_1016_j_electacta_2017_09_085
crossref_primary_10_1039_D1RA08796G
crossref_primary_10_1016_j_biortech_2017_02_128
crossref_primary_10_1007_s00449_016_1579_8
crossref_primary_10_1016_j_biteb_2022_101156
crossref_primary_10_3390_fermentation7040291
crossref_primary_10_1016_j_biortech_2018_06_074
crossref_primary_10_1016_j_bioelechem_2017_10_002
crossref_primary_10_1016_j_jcou_2020_101231
crossref_primary_10_1016_j_jenvman_2023_117323
crossref_primary_10_1016_j_copbio_2019_02_004
crossref_primary_10_1016_j_ces_2018_08_056
crossref_primary_10_1016_j_seta_2020_100902
crossref_primary_10_1016_j_scitotenv_2020_144477
crossref_primary_10_1016_j_biortech_2018_08_103
crossref_primary_10_1016_j_rineng_2024_102365
crossref_primary_10_1016_j_jcou_2021_101640
crossref_primary_10_1016_j_cej_2015_07_054
crossref_primary_10_1016_j_scitotenv_2021_151732
crossref_primary_10_1016_j_bioelechem_2017_06_004
crossref_primary_10_1016_j_biortech_2017_06_164
crossref_primary_10_1016_j_procbio_2018_05_009
crossref_primary_10_1039_C5CP07458D
crossref_primary_10_1016_j_ijhydene_2024_07_367
crossref_primary_10_1039_D2RA02038F
crossref_primary_10_1016_j_biortech_2016_12_035
crossref_primary_10_1038_s41522_020_00151_x
crossref_primary_10_1016_j_bej_2022_108745
crossref_primary_10_1080_09593330_2023_2234676
crossref_primary_10_1016_j_biortech_2020_124289
crossref_primary_10_1016_j_biortech_2024_131383
crossref_primary_10_1016_j_jclepro_2022_131365
crossref_primary_10_1016_j_copbio_2016_09_004
crossref_primary_10_1016_j_biortech_2017_06_031
crossref_primary_10_1016_j_totert_2022_100023
crossref_primary_10_1002_jctb_5376
crossref_primary_10_3389_fmicb_2019_02997
crossref_primary_10_1016_j_mset_2019_08_003
crossref_primary_10_1016_j_procbio_2016_12_025
crossref_primary_10_1007_s11356_016_7196_x
crossref_primary_10_1016_j_biotechadv_2020_107520
crossref_primary_10_1016_j_biortech_2020_124272
crossref_primary_10_1016_j_renene_2016_02_056
crossref_primary_10_1007_s10800_020_01524_y
crossref_primary_10_1016_j_cej_2016_05_148
crossref_primary_10_1021_acsami_0c02946
crossref_primary_10_1016_j_ijhydene_2021_12_205
crossref_primary_10_20517_energymater_2023_60
crossref_primary_10_1016_j_biortech_2018_12_098
crossref_primary_10_1149_2_0801714jes
crossref_primary_10_1016_j_ijhydene_2021_03_165
crossref_primary_10_1016_j_ijhydene_2020_11_127
crossref_primary_10_3390_biomass4020023
crossref_primary_10_1016_j_jechem_2023_10_058
crossref_primary_10_1016_j_apenergy_2017_05_014
crossref_primary_10_3389_fbioe_2020_621166
crossref_primary_10_1016_j_biortech_2020_124141
crossref_primary_10_3390_app11167585
crossref_primary_10_1039_C7RE00220C
crossref_primary_10_3389_fenrg_2020_00094
crossref_primary_10_3390_en12173297
crossref_primary_10_1186_s13068_019_1413_z
crossref_primary_10_1016_j_biortech_2021_124676
crossref_primary_10_1016_j_chemosphere_2024_143430
crossref_primary_10_1016_j_bioelechem_2017_05_001
crossref_primary_10_1016_j_biortech_2018_03_009
crossref_primary_10_1016_j_renene_2017_03_009
crossref_primary_10_1016_j_watres_2021_117306
crossref_primary_10_1002_celc_201600587
crossref_primary_10_1016_j_biotechadv_2024_108474
crossref_primary_10_1016_j_bioelechem_2018_02_003
crossref_primary_10_1039_C7GC01801K
crossref_primary_10_1016_j_biortech_2017_06_017
crossref_primary_10_1016_j_biteb_2022_101073
Cites_doi 10.1111/j.1758-2229.2010.00211.x
10.1007/BF02936525
10.1016/j.biortech.2013.09.058
10.1023/A:1021128400602
10.1128/mBio.00103-10
10.1039/C4CC10121A
10.1016/j.ijhydene.2012.12.107
10.1038/nrmicro2422
10.1016/j.elecom.2009.11.017
10.1016/j.jbiotec.2013.10.001
10.1128/AEM.02401-12
10.1002/jctb.4413
10.1146/annurev.mi.40.100186.002215
10.1016/j.elecom.2012.11.033
10.1039/C2EE23350A
10.1111/j.1462-2920.2004.00593.x
10.1021/es400341b
10.1128/AEM.02642-10
10.14219/jada.archive.2005.0112
10.1016/j.electacta.2014.02.111
10.2166/wst.2008.084
10.1016/j.electacta.2004.04.039
10.1039/c3cp52697f
10.1023/A:1003254219905
10.1128/AEM.67.7.3180-3187.2001
10.1038/nrmicro3365
10.1016/j.biortech.2009.12.077
10.1128/AEM.47.6.1343-1345.1984
10.1007/BF00871644
10.1016/j.electacta.2007.10.018
10.1039/C4TA03101F
10.2166/wst.2005.0493
10.4014/jmb.1304.04039
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Wageningen University & Research
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
– notice: Wageningen University & Research
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
QVL
DOI 10.1016/j.biortech.2015.05.081
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 24
ExternalDocumentID oai_library_wur_nl_wurpubs_490145
26066971
10_1016_j_biortech_2015_05_081
S0960852415007543
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
AALMO
AAPBV
ABPIF
ABPTK
ADALY
IPNFZ
QVL
ID FETCH-LOGICAL-c588t-a5b7f6cb4bdb38dd870ea20276ce2a256a5bce17714d47ab47c7a519689539433
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Thu Oct 13 09:30:19 EDT 2022
Fri Jul 11 07:08:13 EDT 2025
Thu Jul 10 18:37:43 EDT 2025
Mon Jul 21 05:59:27 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Tue Jul 01 02:06:31 EDT 2025
Fri Feb 23 02:16:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microbial electrosynthesis
Biocathode
Bioproduction
CO2 reduction
Hydrogen evolution
CO reduction
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-a5b7f6cb4bdb38dd870ea20276ce2a256a5bce17714d47ab47c7a519689539433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26066971
PQID 1704347938
PQPubID 23479
PageCount 11
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_490145
proquest_miscellaneous_1846338692
proquest_miscellaneous_1704347938
pubmed_primary_26066971
crossref_citationtrail_10_1016_j_biortech_2015_05_081
crossref_primary_10_1016_j_biortech_2015_05_081
elsevier_sciencedirect_doi_10_1016_j_biortech_2015_05_081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Van Eerten-Jansen, Jansen, Plugge, de Wilde, Buisman, ter Heijne (b0145) 2015; 90
Zinder, Anguish, Cardwell (b0175) 1984; 47
Coppi, Leang, Sandler, Lovley (b0020) 2001; 67
Villano, Aulenta, Ciucci, Ferri, Giuliano, Majone (b0155) 2010; 101
Ganigué, Puig, Batlle-Vilanova, Balaguer, Colprim (b0040) 2015; 51
Vega, Prieto, Elmore, Clausen, Gaddy (b0150) 1989; 20–21
Clauwaert, Tolêdo, Van Der Ha, Crab, Verstraete, Hu, Udert, Rabaey (b0015) 2008; 57
Da Silva, Basséguy, Bergel (b0025) 2004; 49
Schuchmann, Müller (b0115) 2014; 12
Marshall, Ross, Fichot, Norman, May (b0085) 2012; 78
Nevin, Hensley, Franks, Summers, Ou, Woodard, Snoeyenbos-West, Lovley (b0090) 2011; 77
Amils (b0005) 2011
Zaybak, Pisciotta, Tokash, Logan (b0165) 2013; 168
Marshall, Ross, Fichot, Norman, May (b0080) 2013; 47
Honda, Murase, Hirato, Awakura (b0050) 1998; 28
Avery, Shannon, Jeffrey, Martens, Alperin (b0010) 2003; 62
Rabaey, Rozendal (b0110) 2010; 8
Available from
Stams (b0130) 1994; 66
Jiang, Su, Zhang, Zhan, Tao, Li (b0055) 2013; 38
Soussan, Riess, Erable, Delia, Bergel (b0125) 2013; 28
Gregory, Bond, Lovley (b0045) 2004; 6
Parini, Pitt (b0105) 2005; 136
Jourdin, Freguia, Donose, Chen, Wallace, Keller, Flexer (b0060) 2014; 2
Nevin, Woodard, Franks, Summers, Lovley (b0095) 2010; 1
Su, Jiang, Li (b0140) 2013; 23
De Silva Munoz, Erable, Etcheverry, Riess, Basséguy, Bergel (b0030) 2010; 12
.
Zamanzadeh, Parker, Verastegui, Neufeld (b0160) 2013; 149
Liew, F.M., Köpke, M., Simpson, S.D., 2013. Gas Fermentation for Commercial Biofuels Production, in: Liquid, Gaseous and Solid Biofuels – Conversion Techniques, Prof. Zhen Fang (Ed.), InTech, doi
Lovley (b0075) 2011; 3
Stams, Plugge, De Bok, Van Houten, Lens, Dijkman, Weijma (b0135) 2005; 52
Ljungdahl (b0070) 1986; 40
Nie, Zhang, Cui, Lu, Lovley, Russell (b0100) 2013; 15
Sharma, Bajracharya, Gildemyn, Patil, Alvarez-Gallego, Pant, Rabaey, Dominguez-Benetton (b0120) 2014; 140
Dumas, Basseguy, Bergel (b0035) 2008; 53
Zhang, Nie, Bain, Lu, Cui, Snoeyenbos-West, Franks, Nevin, Russell, Lovley (b0170) 2013; 6
Gregory (10.1016/j.biortech.2015.05.081_b0045) 2004; 6
Stams (10.1016/j.biortech.2015.05.081_b0130) 1994; 66
Zamanzadeh (10.1016/j.biortech.2015.05.081_b0160) 2013; 149
Dumas (10.1016/j.biortech.2015.05.081_b0035) 2008; 53
Amils (10.1016/j.biortech.2015.05.081_b0005) 2011
Jiang (10.1016/j.biortech.2015.05.081_b0055) 2013; 38
Vega (10.1016/j.biortech.2015.05.081_b0150) 1989; 20–21
Soussan (10.1016/j.biortech.2015.05.081_b0125) 2013; 28
Lovley (10.1016/j.biortech.2015.05.081_b0075) 2011; 3
Marshall (10.1016/j.biortech.2015.05.081_b0080) 2013; 47
Avery (10.1016/j.biortech.2015.05.081_b0010) 2003; 62
Stams (10.1016/j.biortech.2015.05.081_b0135) 2005; 52
Coppi (10.1016/j.biortech.2015.05.081_b0020) 2001; 67
Schuchmann (10.1016/j.biortech.2015.05.081_b0115) 2014; 12
Parini (10.1016/j.biortech.2015.05.081_b0105) 2005; 136
Nevin (10.1016/j.biortech.2015.05.081_b0090) 2011; 77
Rabaey (10.1016/j.biortech.2015.05.081_b0110) 2010; 8
Honda (10.1016/j.biortech.2015.05.081_b0050) 1998; 28
Nevin (10.1016/j.biortech.2015.05.081_b0095) 2010; 1
Su (10.1016/j.biortech.2015.05.081_b0140) 2013; 23
Villano (10.1016/j.biortech.2015.05.081_b0155) 2010; 101
Zhang (10.1016/j.biortech.2015.05.081_b0170) 2013; 6
De Silva Munoz (10.1016/j.biortech.2015.05.081_b0030) 2010; 12
Ljungdahl (10.1016/j.biortech.2015.05.081_b0070) 1986; 40
Da Silva (10.1016/j.biortech.2015.05.081_b0025) 2004; 49
Nie (10.1016/j.biortech.2015.05.081_b0100) 2013; 15
Van Eerten-Jansen (10.1016/j.biortech.2015.05.081_b0145) 2015; 90
Zaybak (10.1016/j.biortech.2015.05.081_b0165) 2013; 168
Clauwaert (10.1016/j.biortech.2015.05.081_b0015) 2008; 57
Ganigué (10.1016/j.biortech.2015.05.081_b0040) 2015; 51
Jourdin (10.1016/j.biortech.2015.05.081_b0060) 2014; 2
Marshall (10.1016/j.biortech.2015.05.081_b0085) 2012; 78
Sharma (10.1016/j.biortech.2015.05.081_b0120) 2014; 140
Zinder (10.1016/j.biortech.2015.05.081_b0175) 1984; 47
10.1016/j.biortech.2015.05.081_b0065
References_xml – volume: 53
  start-page: 2494
  year: 2008
  end-page: 2500
  ident: b0035
  article-title: Microbial electrocatalysis with
  publication-title: Electrochim. Acta
– volume: 136
  start-page: 1688
  year: 2005
  end-page: 1693
  ident: b0105
  article-title: Removal of oral biofilms by bubbles: The effect of bubble impingement angle and sonic waves
  publication-title: J. Am. Dent. Assoc.
– volume: 52
  start-page: 13
  year: 2005
  end-page: 20
  ident: b0135
  article-title: Metabolic interactions in methanogenic and sulfate-reducing bioreactors
  publication-title: Water Sci. Technol.
– volume: 140
  start-page: 191
  year: 2014
  end-page: 208
  ident: b0120
  article-title: A critical revisit of the key parameters used to describe microbial electrochemical systems
  publication-title: Electrochim. Acta
– volume: 1
  start-page: e00103
  year: 2010
  end-page: 10
  ident: b0095
  article-title: Microbial electrosynthesis: feeding microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic
  publication-title: MBio
– volume: 12
  start-page: 809
  year: 2014
  end-page: 821
  ident: b0115
  article-title: Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria
  publication-title: Nat. Rev. Microbiol.
– volume: 6
  start-page: 596
  year: 2004
  end-page: 604
  ident: b0045
  article-title: Graphite electrodes as electron donors for anaerobic respiration
  publication-title: Environ. Microbiol.
– volume: 67
  start-page: 3180
  year: 2001
  end-page: 3187
  ident: b0020
  article-title: Development of a genetic system for
  publication-title: Appl. Environ. Microbiol.
– volume: 47
  start-page: 6023
  year: 2013
  end-page: 6029
  ident: b0080
  article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
  publication-title: Environ. Sci. Technol.
– volume: 57
  start-page: 575
  year: 2008
  end-page: 579
  ident: b0015
  article-title: Combining biocatalyzed electrolysis with anaerobic digestion
  publication-title: Water Sci. Technol.
– volume: 90
  start-page: 963
  year: 2015
  end-page: 970
  ident: b0145
  article-title: Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 38
  start-page: 3497
  year: 2013
  end-page: 3502
  ident: b0055
  article-title: Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate
  publication-title: Int. J. Hydrogen Energy
– volume: 2
  start-page: 13093
  year: 2014
  end-page: 13102
  ident: b0060
  article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
  publication-title: J. Mater. Chem. A
– reference: . Available from:
– volume: 20–21
  start-page: 781
  year: 1989
  end-page: 797
  ident: b0150
  article-title: The Biological production of ethanol from synthesis gas
  publication-title: Appl. Biochem. Biotechnol.
– volume: 3
  start-page: 27
  year: 2011
  end-page: 35
  ident: b0075
  article-title: Powering microbes with electricity: direct electron transfer from electrodes to microbes
  publication-title: Environ. Microbiol. Rep.
– volume: 101
  start-page: 3085
  year: 2010
  end-page: 3090
  ident: b0155
  article-title: Bioelectrochemical reduction of CO
  publication-title: Bioresour. Technol.
– volume: 28
  start-page: 27
  year: 2013
  end-page: 30
  ident: b0125
  article-title: Electrochemical reduction of CO
  publication-title: Electrochem. Commun.
– volume: 6
  start-page: 217
  year: 2013
  end-page: 224
  ident: b0170
  article-title: Improved cathode materials for microbial electrosynthesis
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 706
  year: 2010
  end-page: 716
  ident: b0110
  article-title: Microbial electrosynthesis – revisiting the electrical route for microbial production.pdf
  publication-title: Nat. Rev. Microbiol.
– volume: 23
  start-page: 1140
  year: 2013
  end-page: 1146
  ident: b0140
  article-title: Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture
  publication-title: J. Microbiol. Biotechnol.
– volume: 15
  start-page: 14290
  year: 2013
  end-page: 14294
  ident: b0100
  article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 183
  year: 2010
  end-page: 186
  ident: b0030
  article-title: Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC)
  publication-title: Electrochem. Commun.
– volume: 47
  start-page: 1343
  year: 1984
  end-page: 1345
  ident: b0175
  article-title: Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor
  publication-title: Appl. Environ. Microbiol.
– volume: 77
  start-page: 2882
  year: 2011
  end-page: 2886
  ident: b0090
  article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
  publication-title: Appl. Environ. Microbiol.
– volume: 66
  start-page: 271
  year: 1994
  end-page: 294
  ident: b0130
  article-title: Metabolic interactions between anaerobic bacteria in methanogenic environments
  publication-title: Antonie Van Leeuwenhoek
– volume: 40
  start-page: 415
  year: 1986
  end-page: 450
  ident: b0070
  article-title: The autotrophic pathway of acetate synthesis in acetogenic bacteria
  publication-title: Annu. Rev. Microbiol.
– reference: .
– start-page: 289
  year: 2011
  ident: b0005
  article-title: Chemolithoautotroph
  publication-title: Encyclopedia of astrobiology
– volume: 78
  start-page: 8412
  year: 2012
  end-page: 8420
  ident: b0085
  article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community
  publication-title: Appl. Environ. Microbiol.
– volume: 28
  start-page: 617
  year: 1998
  end-page: 622
  ident: b0050
  article-title: PH measurement in the vicinity of a cathode evolving hydrogen gas using an antimony microelectrode
  publication-title: J. Appl. Electrochem.
– volume: 51
  start-page: 3235
  year: 2015
  end-page: 3238
  ident: b0040
  article-title: Microbial electrosynthesis of butyrate from carbon dioxide
  publication-title: Chem. Commun.
– reference: Liew, F.M., Köpke, M., Simpson, S.D., 2013. Gas Fermentation for Commercial Biofuels Production, in: Liquid, Gaseous and Solid Biofuels – Conversion Techniques, Prof. Zhen Fang (Ed.), InTech, doi:
– volume: 49
  start-page: 4553
  year: 2004
  end-page: 4561
  ident: b0025
  article-title: Electrochemical deprotonation of phosphate on stainless steel
  publication-title: Electrochim. Acta
– volume: 62
  start-page: 19
  year: 2003
  end-page: 37
  ident: b0010
  article-title: Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction
  publication-title: Biogeochemistry
– volume: 168
  start-page: 478
  year: 2013
  end-page: 485
  ident: b0165
  article-title: Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems
  publication-title: J. Biotechnol.
– volume: 149
  start-page: 318
  year: 2013
  end-page: 326
  ident: b0160
  article-title: Biokinetic and molecular studies of methanogens in phased anaerobic digestion systems
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 27
  year: 2011
  ident: 10.1016/j.biortech.2015.05.081_b0075
  article-title: Powering microbes with electricity: direct electron transfer from electrodes to microbes
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/j.1758-2229.2010.00211.x
– volume: 20–21
  start-page: 781
  year: 1989
  ident: 10.1016/j.biortech.2015.05.081_b0150
  article-title: The Biological production of ethanol from synthesis gas
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/BF02936525
– volume: 149
  start-page: 318
  year: 2013
  ident: 10.1016/j.biortech.2015.05.081_b0160
  article-title: Biokinetic and molecular studies of methanogens in phased anaerobic digestion systems
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.09.058
– volume: 62
  start-page: 19
  year: 2003
  ident: 10.1016/j.biortech.2015.05.081_b0010
  article-title: Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction
  publication-title: Biogeochemistry
  doi: 10.1023/A:1021128400602
– volume: 1
  start-page: e00103
  year: 2010
  ident: 10.1016/j.biortech.2015.05.081_b0095
  article-title: Microbial electrosynthesis: feeding microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic
  publication-title: MBio
  doi: 10.1128/mBio.00103-10
– volume: 51
  start-page: 3235
  year: 2015
  ident: 10.1016/j.biortech.2015.05.081_b0040
  article-title: Microbial electrosynthesis of butyrate from carbon dioxide
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC10121A
– volume: 38
  start-page: 3497
  year: 2013
  ident: 10.1016/j.biortech.2015.05.081_b0055
  article-title: Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.12.107
– volume: 8
  start-page: 706
  year: 2010
  ident: 10.1016/j.biortech.2015.05.081_b0110
  article-title: Microbial electrosynthesis – revisiting the electrical route for microbial production.pdf
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2422
– volume: 12
  start-page: 183
  year: 2010
  ident: 10.1016/j.biortech.2015.05.081_b0030
  article-title: Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC)
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.11.017
– volume: 168
  start-page: 478
  year: 2013
  ident: 10.1016/j.biortech.2015.05.081_b0165
  article-title: Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2013.10.001
– volume: 78
  start-page: 8412
  year: 2012
  ident: 10.1016/j.biortech.2015.05.081_b0085
  article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02401-12
– volume: 90
  start-page: 963
  year: 2015
  ident: 10.1016/j.biortech.2015.05.081_b0145
  article-title: Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.4413
– volume: 40
  start-page: 415
  year: 1986
  ident: 10.1016/j.biortech.2015.05.081_b0070
  article-title: The autotrophic pathway of acetate synthesis in acetogenic bacteria
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.40.100186.002215
– volume: 28
  start-page: 27
  year: 2013
  ident: 10.1016/j.biortech.2015.05.081_b0125
  article-title: Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.11.033
– volume: 6
  start-page: 217
  year: 2013
  ident: 10.1016/j.biortech.2015.05.081_b0170
  article-title: Improved cathode materials for microbial electrosynthesis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23350A
– volume: 6
  start-page: 596
  year: 2004
  ident: 10.1016/j.biortech.2015.05.081_b0045
  article-title: Graphite electrodes as electron donors for anaerobic respiration
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2004.00593.x
– start-page: 289
  year: 2011
  ident: 10.1016/j.biortech.2015.05.081_b0005
  article-title: Chemolithoautotroph
– volume: 47
  start-page: 6023
  year: 2013
  ident: 10.1016/j.biortech.2015.05.081_b0080
  article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400341b
– volume: 77
  start-page: 2882
  year: 2011
  ident: 10.1016/j.biortech.2015.05.081_b0090
  article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02642-10
– volume: 136
  start-page: 1688
  year: 2005
  ident: 10.1016/j.biortech.2015.05.081_b0105
  article-title: Removal of oral biofilms by bubbles: The effect of bubble impingement angle and sonic waves
  publication-title: J. Am. Dent. Assoc.
  doi: 10.14219/jada.archive.2005.0112
– volume: 140
  start-page: 191
  year: 2014
  ident: 10.1016/j.biortech.2015.05.081_b0120
  article-title: A critical revisit of the key parameters used to describe microbial electrochemical systems
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.02.111
– volume: 57
  start-page: 575
  year: 2008
  ident: 10.1016/j.biortech.2015.05.081_b0015
  article-title: Combining biocatalyzed electrolysis with anaerobic digestion
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2008.084
– volume: 49
  start-page: 4553
  year: 2004
  ident: 10.1016/j.biortech.2015.05.081_b0025
  article-title: Electrochemical deprotonation of phosphate on stainless steel
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.04.039
– ident: 10.1016/j.biortech.2015.05.081_b0065
– volume: 15
  start-page: 14290
  year: 2013
  ident: 10.1016/j.biortech.2015.05.081_b0100
  article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52697f
– volume: 28
  start-page: 617
  year: 1998
  ident: 10.1016/j.biortech.2015.05.081_b0050
  article-title: PH measurement in the vicinity of a cathode evolving hydrogen gas using an antimony microelectrode
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1003254219905
– volume: 67
  start-page: 3180
  year: 2001
  ident: 10.1016/j.biortech.2015.05.081_b0020
  article-title: Development of a genetic system for Geobacter sulfurreducens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.7.3180-3187.2001
– volume: 12
  start-page: 809
  year: 2014
  ident: 10.1016/j.biortech.2015.05.081_b0115
  article-title: Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3365
– volume: 101
  start-page: 3085
  year: 2010
  ident: 10.1016/j.biortech.2015.05.081_b0155
  article-title: Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.12.077
– volume: 47
  start-page: 1343
  year: 1984
  ident: 10.1016/j.biortech.2015.05.081_b0175
  article-title: Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.47.6.1343-1345.1984
– volume: 66
  start-page: 271
  year: 1994
  ident: 10.1016/j.biortech.2015.05.081_b0130
  article-title: Metabolic interactions between anaerobic bacteria in methanogenic environments
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/BF00871644
– volume: 53
  start-page: 2494
  year: 2008
  ident: 10.1016/j.biortech.2015.05.081_b0035
  article-title: Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.10.018
– volume: 2
  start-page: 13093
  year: 2014
  ident: 10.1016/j.biortech.2015.05.081_b0060
  article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03101F
– volume: 52
  start-page: 13
  year: 2005
  ident: 10.1016/j.biortech.2015.05.081_b0135
  article-title: Metabolic interactions in methanogenic and sulfate-reducing bioreactors
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2005.0493
– volume: 23
  start-page: 1140
  year: 2013
  ident: 10.1016/j.biortech.2015.05.081_b0140
  article-title: Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1304.04039
SSID ssj0003172
Score 2.596278
Snippet [Display omitted] •Stainless steel and graphite felt assembly as a CO2 reducing biocathode material.•Higher acetate production rates from C. ljungdahlii with...
Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis...
SourceID wageningen
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14
SubjectTerms acetates
Acetates - metabolism
Autotrophic Processes
bicarbonates
Bicarbonates - metabolism
biocatalysts
Biocathode
Bioelectric Energy Sources
Biofilms - growth & development
Bioproduction
Bioreactors
carbon dioxide
Carbon Dioxide - metabolism
Catalysis
Cell Culture Techniques - methods
Clostridium - metabolism
Clostridium ljungdahlii
CO2 reduction
Electrochemical Techniques
Electrodes
electrons
Environmental Technology
graphene
Graphite - chemistry
hydrogen
Hydrogen - metabolism
Hydrogen evolution
hydrogen production
methane
methane production
Microbial electrosynthesis
Milieutechnologie
mixed culture
Oxidation-Reduction
Sectie Milieutechnologie
silver chloride
stainless steel
Stainless Steel - chemistry
Sub-department of Environmental Technology
WIMEK
Title Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode
URI https://dx.doi.org/10.1016/j.biortech.2015.05.081
https://www.ncbi.nlm.nih.gov/pubmed/26066971
https://www.proquest.com/docview/1704347938
https://www.proquest.com/docview/1846338692
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F490145
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLemcWA7IBgfKx-TkbhmXWqndo5VxVRA7AKTdrPs2JkyZU6VtNp64b_g_-U9x9mKEOyAVKlNYztOnv3ez_F7v0fIB2Mc0lKhz1NZJLwwLJETJxNYOcPMgvWHDFkUvp5NF-f880V2sUPmQywMulVG3d_r9KCt4z_j-DTHy6oaf0PwLTO0QGj3ODJ-ci6QP__4x72bB9jHsJMAhRMsvRUlfHVsKvRoDZsSaRYYPGX6NwP1JwDdJ3s3MOl9iILaskqnT8mTCCfprO_xM7Lj_AHZn122kVLDHZDH8yGnG5zZoh98Tn7OdWsaT23V3FbW0RZpXFFQ1GzodXXrLNXe0iU0Q2NzHa08nArsTXDdmESn23jAkV3VUXSjv4RaFDC5uzb1hjYlDaTYAG1p6epVaDIEbdWgZOGXczWUppoig2xj3Qtyfvrx-3yRxDQNSZFJuUp0ZkQ5LQw31jBpLWgAp_GdSkg2BpAKChQuFSLllgttuCiEBuA4lXnGcs7YS7LrG-8OCXRDGJZpznWpuRVassJpWdqcO5nqST4i2SAbVUQOc0ylUavBWe1KDTJVKFN1Ah-Zjsj4rt6yZ_F4sEY-iF79Nh4VmJoH674fxooC-eIOjPauWXcqFSc8hO7Kf5QBRMiYnOaTEXnVD7S7Pk9wuZkLuAK7H3nKY9apTiFReHz1p27WrfI1fkELneK4WZ69_o97ekP28KiPwnxLdlft2r0DOLYyR2G-HZFHs09fFme_AGhcOew
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELcYPAAP08Y2VvbPk_aaldRO4zxW1VAZ0JeBxJtlxw4KCk6VtIJ-kH1f7lyn6zRtPEyqlKr2OW7ufHeO735HyBetLcJSYcxTkUc81ywSAysi2DnDyoL9h_BVFC6mw8kV_36dXG-RcZcLg2GVQfevdLrX1uGXfnia_VlZ9n-g8y0StEBo9zh7RnYQnQqEfWd0ejaZrhUymEh_mAD9IyTYSBS-_apLDGr15xJx4kE8Rfw3G_WnD7pP9u5h3TufCLVhmE5ekOfBo6Sj1aRfki3rDsj-6KYJqBr2gOyOu7Ju0LKBQPiK_ByrRteOmrJ-KI2lDSK5Iq-oXtK78sEaqpyhMxiGhuFaWjpo8gBOcN9QR6ddOnAl27KlGEl_A1QU3HJ7p6slrQvqcbHBu6WFreZ-SJ-3VYGehW_WVtCbKoogsrWxr8nVybfL8SQKlRqiPBFiHqlEp8Uw11wbzYQxoASswtcqvt4YeFXQIbdxmsbc8FRpnuapAt9xKLKEZZyxN2Tb1c6-JTCNVLNEca4KxU2qBMutEoXJuBWxGmQ9knS8kXmAMcdqGpXs4tVuZcdTiTyVx_ARcY_013SzFZDHkxRZx3r5m0hKsDZP0n7uZEUCf_EQRjlbL1oZp8fcZ--Kf_QBp5AxMcwGPXK4ErT1nAe448xSuAP7JXnSYeGpViJWeHj7J-8XjXQVXmCEVnI8L0-O_uM_fSK7k8uLc3l-Oj17R_awZZWU-Z5sz5uF_QDe2Vx_DKvvEfr-PJ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+dioxide+reduction+by+mixed+and+pure+cultures+in+microbial+electrosynthesis+using+an+assembly+of+graphite+felt+and+stainless+steel+as+a+cathode&rft.jtitle=Bioresource+technology&rft.au=Bajracharya%2C+Suman&rft.au=ter+Heijne%2C+Annemiek&rft.au=Dominguez+Benetton%2C+Xochitl&rft.au=Vanbroekhoven%2C+Karolien&rft.date=2015-11-01&rft.issn=0960-8524&rft.volume=195&rft.spage=14&rft.epage=24&rft_id=info:doi/10.1016%2Fj.biortech.2015.05.081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2015_05_081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon