Lipid nanoparticle-targeted mRNA formulation as a treatment for ornithine-transcarbamylase deficiency model mice
Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP...
Saved in:
Published in | Molecular therapy. Nucleic acids Vol. 33; pp. 210 - 226 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.09.2023
American Society of Gene & Cell Therapy Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2162-2531 2162-2531 |
DOI | 10.1016/j.omtn.2023.06.023 |
Cover
Abstract | Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD.
[Display omitted]
Yamazaki et al. used LNP to formulate hOTC-mRNA for delivery to hepatocytes to treat OTCD. hOTC proteins produced by hOTC-mRNA/LNP in cells shows the trimeric conformation and mitochondrial localization. Single and multiple doses of hOTC-mRNA/LNP demonstrated efficacy in an OTCD mouse model. |
---|---|
AbstractList | Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human
OTC
(h
OTC
) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with h
OTC
-mRNA/LNP at 1.0 mg/kg, the delivered h
OTC
mRNA levels steeply decreased with a half-life (t
1/2
) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t
1/2
of 2.2 days. In OTCD model mice (high-protein diet-fed
Otc
spf-ash
hemizygous males), a single dose of h
OTC
-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated h
OTC
mRNA for OTCD.
Yamazaki et al. used LNP to formulate hOTC-mRNA for delivery to hepatocytes to treat OTCD. hOTC proteins produced by h
OTC
-mRNA/LNP in cells shows the trimeric conformation and mitochondrial localization. Single and multiple doses of h
OTC
-mRNA/LNP demonstrated efficacy in an OTCD mouse model. Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD. [Display omitted] Yamazaki et al. used LNP to formulate hOTC-mRNA for delivery to hepatocytes to treat OTCD. hOTC proteins produced by hOTC-mRNA/LNP in cells shows the trimeric conformation and mitochondrial localization. Single and multiple doses of hOTC-mRNA/LNP demonstrated efficacy in an OTCD mouse model. Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human (h ) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with h -mRNA/LNP at 1.0 mg/kg, the delivered h mRNA levels steeply decreased with a half-life (t ) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t of 2.2 days. In OTCD model mice (high-protein diet-fed hemizygous males), a single dose of h -mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated h mRNA for OTCD. Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD. Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD.Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD. |
Author | Ishii, Satoko Miyazaki, Takayuki Mitsuhashi, Kaoru Ito, Masashi Yamazaki, Kazuto Tsukahara, Kappei Kubara, Kenji Suzuki, Yuta Kondo, Keita |
Author_xml | – sequence: 1 givenname: Kazuto orcidid: 0000-0002-4130-3740 surname: Yamazaki fullname: Yamazaki, Kazuto email: k5-yamazaki@hhc.eisai.co.jp organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan – sequence: 2 givenname: Kenji surname: Kubara fullname: Kubara, Kenji organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan – sequence: 3 givenname: Satoko surname: Ishii fullname: Ishii, Satoko organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan – sequence: 4 givenname: Keita surname: Kondo fullname: Kondo, Keita organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan – sequence: 5 givenname: Yuta surname: Suzuki fullname: Suzuki, Yuta organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan – sequence: 6 givenname: Takayuki surname: Miyazaki fullname: Miyazaki, Takayuki organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan – sequence: 7 givenname: Kaoru surname: Mitsuhashi fullname: Mitsuhashi, Kaoru organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan – sequence: 8 givenname: Masashi surname: Ito fullname: Ito, Masashi organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan – sequence: 9 givenname: Kappei surname: Tsukahara fullname: Tsukahara, Kappei organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37520683$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQNSWlSdP8gR6Kjr3Y1YcteaFQQuhHYGmhtGcxlsYbLba0lbSB_ffVfjQkPUSXEZr33szozevqzAePVfWW0YZRJj-smzBn33DKRUNlU8KL6oIzyWveCXb26H5eXaW0puVIyrjkr6pzoTpOZS8uqs3SbZwlHnzYQMzOTFhniCvMaMn88_s1GUOctxNkFzyBRIDkiJBn9HmfIiF6l--cL7QIPhmIA8y7CRISi6MzDr3ZkTlYnMjsDL6pXo4wJbw6xcvq95fPv26-1csfX29vrpe16fo-16qnSgmrrOJ8HKyQVthOGMWtWSDQTo28YxIsG4YeDZeKs4HLcbQcF6PkIC6r26OuDbDWm-hmiDsdwOnDQ4grfZpXtz2iHEB0Czu2qAxQBqodTDfIzpqOFa1PR63NdpjRmjJ7hOmJ6NOMd3d6Fe41o6I0Jtui8P6kEMOfLaasZ5cMThN4DNuked-2tJeiVQX67nGxhyr_PCsAfgSYGFKKOD5AGNX73dBlvLIber8bmkpdQiH1_5GMywdTS8Nuep768UjFYte9w6jTwVW0LqLJ5T_dc_S_5NfX_A |
CitedBy_id | crossref_primary_10_3390_nu16010061 crossref_primary_10_1248_cpb_c24_00089 crossref_primary_10_1021_acs_molpharmaceut_3c00547 crossref_primary_10_1002_1873_3468_14957 crossref_primary_10_1016_j_omtn_2024_102313 crossref_primary_10_1016_j_omtn_2025_102467 crossref_primary_10_1016_j_ymthe_2025_01_010 crossref_primary_10_1016_j_ijpx_2024_100283 crossref_primary_10_1136_gutjnl_2023_331742 crossref_primary_10_1002_jimd_12807 crossref_primary_10_1002_jimd_12709 crossref_primary_10_3390_vaccines12020186 crossref_primary_10_1007_s12038_023_00415_6 crossref_primary_10_1016_j_addr_2023_115175 crossref_primary_10_1016_j_jconrel_2024_03_056 crossref_primary_10_1016_j_ymthe_2024_01_020 crossref_primary_10_1186_s43556_023_00160_0 crossref_primary_10_1126_scitranslmed_adl2720 |
Cites_doi | 10.1042/bj3540501 10.1016/j.ijpharm.2017.01.016 10.1016/j.omtn.2021.08.023 10.1016/j.omtm.2020.11.005 10.1038/gt.2011.111 10.1016/0003-2697(81)90594-7 10.1016/j.str.2021.05.004 10.1016/j.ymthe.2021.08.031 10.1016/j.ymgme.2017.02.011 10.1016/j.ymgmr.2016.06.009 10.1038/s41598-022-05195-x 10.1016/j.jgg.2015.04.003 10.1089/dna.1985.4.147 10.1002/pro.3943 10.2174/1389201015666140327141710 10.1074/jbc.273.51.34247 10.1038/s41422-022-00630-0 10.1002/humu.20813 10.1128/CVI.05107-11 10.1042/BCJ20210708 10.1016/j.celrep.2017.11.081 10.1016/j.tibtech.2004.04.006 10.1016/j.omtn.2023.01.005 10.1038/srep24156 10.1038/s41467-021-23318-2 10.1016/0006-291X(81)91790-3 10.1016/j.ymgme.2014.08.001 10.1023/A:1005317909946 10.1007/s10545-007-0429-x 10.1016/j.ymthe.2017.12.024 10.1111/j.1432-1033.1982.tb06487.x 10.1002/(SICI)1097-0134(20000601)39:4<271::AID-PROT10>3.0.CO;2-E 10.1097/TP.0000000000004207 10.1016/j.omtm.2021.09.005 10.1016/B978-0-12-152827-0.50040-2 10.1016/j.jsb.2020.107545 10.1093/oxfordjournals.jbchem.a133158 10.1002/hep.510240219 10.1016/j.jsb.2015.08.008 10.1007/978-1-4939-0363-4_6 10.1038/nmeth.4193 10.1016/S1089-3261(05)70143-4 10.1016/S0006-291X(82)80002-8 10.1038/nmeth.2019 10.1016/j.ymgme.2008.04.011 10.1073/pnas.1906182116 10.1297/cpe.19.25 10.1016/j.omtn.2022.09.017 10.1073/pnas.86.11.4142 10.1080/17425255.2017.1262843 10.1007/s10528-017-9825-6 10.1074/jbc.M604292200 10.1016/j.ymthe.2018.03.010 10.1002/ctd2.33 10.1016/j.biopha.2021.111953 10.1002/1096-8628(20000814)93:4<313::AID-AJMG11>3.0.CO;2-M 10.1107/S205225251801463X |
ContentType | Journal Article |
Copyright | 2023 The Author(s) 2023 The Author(s). 2023 The Author(s) 2023 |
Copyright_xml | – notice: 2023 The Author(s) – notice: 2023 The Author(s). – notice: 2023 The Author(s) 2023 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.omtn.2023.06.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2162-2531 |
EndPage | 226 |
ExternalDocumentID | oai_doaj_org_article_48ee6ba359df4e7ca01a74bc5b65dc51 PMC10372164 37520683 10_1016_j_omtn_2023_06_023 S2162253123001737 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 53G 5VS 6I. 7X7 8FE 8FH 8FI AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFKRA AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI DIK EBS FDB FYUFA GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M41 M48 M7P M~E NCXOZ O9- OK1 PIMPY PQQKQ PROAC RNTTT ROL RPM SSZ 88I 8FJ AAMRU AAYWO AAYXX ABUWG ADRAZ ADVLN ALIPV APXCP CCPQU CITATION DWQXO EJD GNUQQ HMCUK HYE IPNFZ PHGZM PHGZT RIG UKHRP NPM 7X8 5PM |
ID | FETCH-LOGICAL-c588t-780773d7d722fbd36d3d53c72dc9ea057f2516ad1bb8ec26721b26ffd2e9f62a3 |
IEDL.DBID | M48 |
ISSN | 2162-2531 |
IngestDate | Wed Aug 27 01:24:21 EDT 2025 Thu Aug 21 18:36:42 EDT 2025 Fri Sep 05 10:35:38 EDT 2025 Thu Jan 02 22:51:46 EST 2025 Thu Apr 24 23:07:48 EDT 2025 Tue Jul 01 02:00:43 EDT 2025 Fri Feb 23 02:35:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | lipid nanoparticles MT: delivery strategies: ornithine transcarbamylase mitochondria localization Otcspf-ash mice messenger RNA therapy homotrimer conformation cryo-electron microscopy |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2023 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c588t-780773d7d722fbd36d3d53c72dc9ea057f2516ad1bb8ec26721b26ffd2e9f62a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally |
ORCID | 0000-0002-4130-3740 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2023.06.023 |
PMID | 37520683 |
PQID | 2844086347 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48ee6ba359df4e7ca01a74bc5b65dc51 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10372164 proquest_miscellaneous_2844086347 pubmed_primary_37520683 crossref_primary_10_1016_j_omtn_2023_06_023 crossref_citationtrail_10_1016_j_omtn_2023_06_023 elsevier_sciencedirect_doi_10_1016_j_omtn_2023_06_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-12 |
PublicationDateYYYYMMDD | 2023-09-12 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular therapy. Nucleic acids |
PublicationTitleAlternate | Mol Ther Nucleic Acids |
PublicationYear | 2023 |
Publisher | Elsevier Inc American Society of Gene & Cell Therapy Elsevier |
Publisher_xml | – name: Elsevier Inc – name: American Society of Gene & Cell Therapy – name: Elsevier |
References | De Sabbata, Boisgerault, Guarnaccia, Iaconcig, Bortolussi, Collaud, Ronzitti, Sola, Vidal, Rouillon (bib15) 2021; 20 Ishigooka, Katsumata, Saiga, Tokita, Motoi, Matsui, Suzuki, Tomimatsu, Nakatani, Kuboi (bib23) 2022; 106 De Las Heras, Aldámiz-Echevarría, Martínez-Chantar, Delgado (bib13) 2017; 13 Caldovic, Abdikarim, Narain, Tuchman, Morizono (bib4) 2015; 42 Baruteau, Cunningham, Yilmaz, Perocheau, Eaglestone, Burke, Thrasher, Waddington, Lisowski, Alexander, Gissen (bib16) 2021; 23 Hodges, Rosenberg (bib59) 1989; 86 An, Schneller, Frassetto, Liang, Zhu, Park, Theisen, Hong, Zhou, Rajendran (bib40) 2017; 21 Wasim, Awan, Khan, Tawab, Iqbal, Ayesha (bib8) 2018; 56 Calcedo, Morizono, Wang, McCarter, He, Jones, Batshaw, Wilson (bib17) 2011; 18 Wang, Bell, Morizono, He, Pumbo, Yu, White, Batshaw, Wilson (bib31) 2017; 120 Dalwadi, Calabria, Tiyaboonchai, Posey, Naugler, Montini, Grompe (bib19) 2021; 29 Ricciuti, Gelehrter, Rosenberg (bib12) 1976; 28 Ramlaul, Palmer, Nakane, Aylett (bib57) 2020; 211 Prieve, Harvie, Monahan, Roy, Li, Blevins, Paschal, Waldheim, Bell, Galperin (bib20) 2018; 26 Dall'Acqua, Kiener, Wu (bib46) 2006; 281 Mori, Miura, Tatibana, Cohen (bib34) 1980; 88 Zhang, Shigematsu, Shimizu, Ohto (bib51) 2021; 29 Shi, Morizono, Ha, Aoyagi, Tuchman, Allewell (bib26) 1998; 273 Wang, Cai, Stothard, Moore, Goebel, Wang, Lin, Yu, Batshaw, Wilson (bib30) 2012; 5 Granados-Riveron, Aquino-Jarquin (bib45) 2021; 142 Conboy, Fenton, Rosenberg (bib37) 1982; 105 Darvish-Damavandi, Ho, Kang (bib29) 2016; 8 Gustafsson, Govindarajan, Minshull (bib49) 2004; 22 Burton (bib2) 2000; 4 Li, Zhang, Bao, Wang, Liu, Huang (bib39) 2016; 6 Ono, Tsuda, Mouri, Arai, Arinami, Noguchi (bib11) 2010; 19 Pettersen, Goddard, Huang, Meng, Couch, Croll, Morris, Ferrin (bib56) 2021; 30 McCullough, Yudkoff, Batshaw, Wilson, Raper, Tuchman (bib5) 2000; 93 Yu, Brewer, Shields, Crowder, Sacchetti, Soontornniyomkij, Dou, Clemente, Sablad, Chivukula (bib48) 2022; 2 Selot, Hareendran, Jayandharan (bib18) 2014; 14 Whitington, Alonso, Boyle, Molleston, Rosenthal, Emond, Millis (bib14) 1998; 21 Morita, Mori, Tatibana, Cohen (bib33) 1981; 99 Matsuda (bib3) 2004; 47 Giessel, Dousis, Ravichandran, Smith, Sur, McFadyen, Zheng, Licht (bib47) 2022; 12 Grisolía, Hernández-Yago, Knecht (bib44) 1985; 27 Miura, Mori, Amaya, Tatibana (bib36) 1982; 122 Zivanov, Nakane, Scheres (bib58) 2019; 6 Pastra-Landis, Foote, Kantrowitz (bib60) 1981; 118 Dingemanse, de Jonge, de Boer, Mori, Lamers, Moorman (bib38) 1996; 24 Nagamani, Lichter-Konecki (bib9) 2017 McIntyre, Graf, Mercer, Wake, Hudson, Hoogenraad (bib35) 1985; 4 Truong, Allegri, Liu, Burke, Zhu, Cederbaum, Häberle, Martini, Lipshutz (bib32) 2019; 116 Shi, Morizono, Yu, Tong, Allewell, Tuchman (bib28) 2001; 354 Arranz, Riudor, Marco-Marín, Rubio (bib6) 2007; 30 Cao, Choi, Guadagnin, Soty, Silva, Verzieux, Weisser, Markel, Zhuo, Liang (bib41) 2021; 12 Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib54) 2017; 14 Deng, Zhang, Zhang, Zhong, Xu, Qiu, Wang, Zhao, Zhou, Zu (bib43) 2022; 32 Kimanius, Dong, Sharov, Nakane, Scheres (bib53) 2021; 478 Suzuki, Miyazaki, Muto, Kubara, Mukai, Watari, Sato, Kondo, Tsukumo, Yasutomo (bib25) 2022; 30 Suzuki, Hyodo, Suzuki, Tanaka, Kikuchi, Ishihara (bib21) 2017; 519 Shi, Morizono, Aoyagi, Tuchman, Allewell (bib27) 2000; 39 Kawase, Kurotaki, Suzuki, Ishihara, Ban, Sato, Ichikawa, Yanai, Taniguchi, Tsukahara, Tamura (bib22) 2021; 25 Rohou, Grigorieff (bib55) 2015; 192 Sabnis, Kumarasinghe, Salerno, Mihai, Ketova, Senn, Lynn, Bulychev, McFadyen, Chan (bib42) 2018; 26 Kuboi, Suzuki, Motoi, Matsui, Toritsuka, Nakatani, Tahara, Takahashi, Ida, Tomimatsu (bib24) 2023; 31 Mitchell, Ellingson, Coyne, Hall, Neill, Christian, Higham, Dobrowolski, Tuchman, Summar (bib1) 2009; 30 Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib52) 2012; 9 Deardorff, Gaddipati, Kaplan, Sanchez-Lara, Sondheimer, Spinner, Hakonarson, Ficicioglu, Ganesh, Markello (bib10) 2008; 94 Walsh, Ou, Belliveau, Leaver, Wild, Huft, Lin, Chen, Leung, Lee (bib50) 2014; 1141 Batshaw, Tuchman, Summar, Seminara (bib7) 2014; 113 Kimanius (10.1016/j.omtn.2023.06.023_bib53) 2021; 478 Zhang (10.1016/j.omtn.2023.06.023_bib51) 2021; 29 Suzuki (10.1016/j.omtn.2023.06.023_bib21) 2017; 519 Truong (10.1016/j.omtn.2023.06.023_bib32) 2019; 116 Arranz (10.1016/j.omtn.2023.06.023_bib6) 2007; 30 Matsuda (10.1016/j.omtn.2023.06.023_bib3) 2004; 47 Li (10.1016/j.omtn.2023.06.023_bib39) 2016; 6 Ono (10.1016/j.omtn.2023.06.023_bib11) 2010; 19 Batshaw (10.1016/j.omtn.2023.06.023_bib7) 2014; 113 De Las Heras (10.1016/j.omtn.2023.06.023_bib13) 2017; 13 Wang (10.1016/j.omtn.2023.06.023_bib31) 2017; 120 Grisolía (10.1016/j.omtn.2023.06.023_bib44) 1985; 27 Conboy (10.1016/j.omtn.2023.06.023_bib37) 1982; 105 Schindelin (10.1016/j.omtn.2023.06.023_bib52) 2012; 9 Zivanov (10.1016/j.omtn.2023.06.023_bib58) 2019; 6 Caldovic (10.1016/j.omtn.2023.06.023_bib4) 2015; 42 Burton (10.1016/j.omtn.2023.06.023_bib2) 2000; 4 Ishigooka (10.1016/j.omtn.2023.06.023_bib23) 2022; 106 Shi (10.1016/j.omtn.2023.06.023_bib28) 2001; 354 Prieve (10.1016/j.omtn.2023.06.023_bib20) 2018; 26 Shi (10.1016/j.omtn.2023.06.023_bib27) 2000; 39 Miura (10.1016/j.omtn.2023.06.023_bib36) 1982; 122 Yu (10.1016/j.omtn.2023.06.023_bib48) 2022; 2 Nagamani (10.1016/j.omtn.2023.06.023_bib9) 2017 Giessel (10.1016/j.omtn.2023.06.023_bib47) 2022; 12 Dall'Acqua (10.1016/j.omtn.2023.06.023_bib46) 2006; 281 Kuboi (10.1016/j.omtn.2023.06.023_bib24) 2023; 31 Deardorff (10.1016/j.omtn.2023.06.023_bib10) 2008; 94 Shi (10.1016/j.omtn.2023.06.023_bib26) 1998; 273 Dalwadi (10.1016/j.omtn.2023.06.023_bib19) 2021; 29 Ricciuti (10.1016/j.omtn.2023.06.023_bib12) 1976; 28 Mori (10.1016/j.omtn.2023.06.023_bib34) 1980; 88 Wasim (10.1016/j.omtn.2023.06.023_bib8) 2018; 56 Whitington (10.1016/j.omtn.2023.06.023_bib14) 1998; 21 Gustafsson (10.1016/j.omtn.2023.06.023_bib49) 2004; 22 Ramlaul (10.1016/j.omtn.2023.06.023_bib57) 2020; 211 Morita (10.1016/j.omtn.2023.06.023_bib33) 1981; 99 Selot (10.1016/j.omtn.2023.06.023_bib18) 2014; 14 Suzuki (10.1016/j.omtn.2023.06.023_bib25) 2022; 30 Hodges (10.1016/j.omtn.2023.06.023_bib59) 1989; 86 Zheng (10.1016/j.omtn.2023.06.023_bib54) 2017; 14 Pettersen (10.1016/j.omtn.2023.06.023_bib56) 2021; 30 Cao (10.1016/j.omtn.2023.06.023_bib41) 2021; 12 Walsh (10.1016/j.omtn.2023.06.023_bib50) 2014; 1141 Deng (10.1016/j.omtn.2023.06.023_bib43) 2022; 32 Wang (10.1016/j.omtn.2023.06.023_bib30) 2012; 5 Pastra-Landis (10.1016/j.omtn.2023.06.023_bib60) 1981; 118 Granados-Riveron (10.1016/j.omtn.2023.06.023_bib45) 2021; 142 Darvish-Damavandi (10.1016/j.omtn.2023.06.023_bib29) 2016; 8 McIntyre (10.1016/j.omtn.2023.06.023_bib35) 1985; 4 Rohou (10.1016/j.omtn.2023.06.023_bib55) 2015; 192 Baruteau (10.1016/j.omtn.2023.06.023_bib16) 2021; 23 Calcedo (10.1016/j.omtn.2023.06.023_bib17) 2011; 18 Kawase (10.1016/j.omtn.2023.06.023_bib22) 2021; 25 An (10.1016/j.omtn.2023.06.023_bib40) 2017; 21 Sabnis (10.1016/j.omtn.2023.06.023_bib42) 2018; 26 De Sabbata (10.1016/j.omtn.2023.06.023_bib15) 2021; 20 Mitchell (10.1016/j.omtn.2023.06.023_bib1) 2009; 30 Dingemanse (10.1016/j.omtn.2023.06.023_bib38) 1996; 24 McCullough (10.1016/j.omtn.2023.06.023_bib5) 2000; 93 |
References_xml | – volume: 18 start-page: 1586 year: 2011 end-page: 1588 ident: bib17 article-title: Adeno-associated virus antibody profiles in newborns, children, and adolescents publication-title: Clin. Vaccine Immunol. – volume: 27 start-page: 387 year: 1985 end-page: 396 ident: bib44 article-title: Regulation of mitochondrial protein concentration: a plausible model which may permit assessing protein turnover publication-title: Curr. Top. Cell. Regul. – volume: 94 start-page: 498 year: 2008 end-page: 502 ident: bib10 article-title: Complex management of a patient with a contiguous Xp11.4 gene deletion involving ornithine transcarbamylase: a role for detailed molecular analysis in complex presentations of classical diseases publication-title: Mol. Genet. Metabol. – volume: 88 start-page: 1829 year: 1980 end-page: 1836 ident: bib34 article-title: Processing of a putative precursor of rat liver ornithine transcarbamylase, a mitochondrial matrix enzyme publication-title: J. Biochem. – volume: 30 start-page: 56 year: 2009 end-page: 60 ident: bib1 article-title: Genetic variation in the urea cycle: a model resource for investigating key candidate genes for common diseases publication-title: Hum. Mutat. – volume: 118 start-page: 358 year: 1981 end-page: 363 ident: bib60 article-title: An improved colorimetric assay for aspartate and ornithine transcarbamylases publication-title: Anal. Biochem. – volume: 4 start-page: 815 year: 2000 end-page: 830.vi ident: bib2 article-title: Urea cycle disorders publication-title: Clin. Liver Dis. – volume: 30 start-page: 217 year: 2007 end-page: 226 ident: bib6 article-title: Estimation of the total number of disease-causing mutations in ornithine transcarbamylase (OTC) deficiency. Value of the OTC structure in predicting a mutation pathogenic potential publication-title: J. Inherit. Metab. Dis. – volume: 24 start-page: 407 year: 1996 end-page: 411 ident: bib38 article-title: Development of the ornithine cycle in rat liver: zonation of a metabolic pathway publication-title: Hepatology – volume: 519 start-page: 34 year: 2017 end-page: 43 ident: bib21 article-title: Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates publication-title: Int. J. Pharm. – volume: 8 start-page: 51 year: 2016 end-page: 60 ident: bib29 article-title: Towards the development of an enzyme replacement therapy for the metabolic disorder propionic acidemia publication-title: Mol. Genet. Metab. Rep. – volume: 113 start-page: 127 year: 2014 end-page: 130 ident: bib7 article-title: A longitudinal study of urea cycle disorders publication-title: Mol. Genet. Metabol. – start-page: 298 year: 2017 end-page: 304 ident: bib9 article-title: Inborn errors of urea synthesis publication-title: Swaiman's Pediatric Neurology, 6th Edition Principles and Practice – volume: 22 start-page: 346 year: 2004 end-page: 353 ident: bib49 article-title: Codon bias and heterologous protein expression publication-title: Trends Biotechnol. – volume: 105 start-page: 1 year: 1982 end-page: 7 ident: bib37 article-title: Processing of pre-ornithine transcarbamylase requires a zinc-dependent protease localized to the mitochondrial matrix publication-title: Biochem. Biophys. Res. Commun. – volume: 120 start-page: 299 year: 2017 end-page: 305 ident: bib31 article-title: AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice publication-title: Mol. Genet. Metabol. – volume: 21 start-page: 3548 year: 2017 end-page: 3558 ident: bib40 article-title: Systemic messenger RNA therapy as a treatment for methylmalonic acidemia publication-title: Cell Rep. – volume: 116 start-page: 21150 year: 2019 end-page: 21159 ident: bib32 article-title: Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 1536 year: 2022 ident: bib47 article-title: Therapeutic enzyme engineering using a generative neural network publication-title: Sci. Rep. – volume: 32 start-page: 375 year: 2022 end-page: 382 ident: bib43 article-title: Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters publication-title: Cell Res. – volume: 478 start-page: 4169 year: 2021 end-page: 4185 ident: bib53 article-title: New tools for automated cryo-EM single-particle analysis in RELION-4.0 publication-title: Biochem. J. – volume: 28 start-page: 332 year: 1976 end-page: 338 ident: bib12 article-title: X-chromosome inactivation in human liver: confirmation of X-linkage of ornithine transcarbamylase publication-title: Am. J. Hum. Genet. – volume: 106 start-page: 2338 year: 2022 end-page: 2347 ident: bib23 article-title: Novel complement C5 small-interfering RNA lipid nanoparticle prolongs graft survival in a hypersensitized rat kidney transplant model publication-title: Transplantation – volume: 47 start-page: 160 year: 2004 end-page: 165 ident: bib3 article-title: Hyperammonemia in pediatric clinics: a review of ornithine transcarbamylase deficiency (OTCD) based on our case studies publication-title: JMAJ – volume: 39 start-page: 271 year: 2000 end-page: 277 ident: bib27 article-title: Crystal structure of human ornithine transcarbamylase complexed with carbamoyl phosphate and L-norvaline at 1.9 Å resolution publication-title: Proteins – volume: 6 start-page: 5 year: 2019 end-page: 17 ident: bib58 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ – volume: 86 start-page: 4142 year: 1989 end-page: 4146 ident: bib59 article-title: The publication-title: Proc. Natl. Acad. Sci. USA – volume: 142 start-page: 111953 year: 2021 ident: bib45 article-title: Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2 publication-title: Biomed. Pharmacother. – volume: 26 start-page: 801 year: 2018 end-page: 813 ident: bib20 article-title: Targeted mRNA therapy for ornithine transcarbamylase deficiency publication-title: Mol. Ther. – volume: 20 start-page: 169 year: 2021 end-page: 180 ident: bib15 article-title: Long-term correction of ornithine transcarbamylase deficiency in Spf-Ash mice with a translationally optimized AAV vector publication-title: Mol. Ther. Methods Clin. Dev. – volume: 14 start-page: 1072 year: 2014 end-page: 1082 ident: bib18 article-title: Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations publication-title: Curr. Pharmaceut. Biotechnol. – volume: 12 start-page: 3090 year: 2021 ident: bib41 article-title: mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease publication-title: Nat. Commun. – volume: 6 start-page: 24156 year: 2016 ident: bib39 article-title: PGC-1α promotes ureagenesis in mouse periportal hepatocytes through SIRT3 and SIRT5 in response to glucagon publication-title: Sci. Rep. – volume: 4 start-page: 147 year: 1985 end-page: 156 ident: bib35 article-title: The primary structure of the imported mitochondrial protein, ornithine transcarbamylase from rat liver: mRNA levels during ontogeny publication-title: DNA – volume: 1141 start-page: 109 year: 2014 end-page: 120 ident: bib50 article-title: Microfluidic-based manufacture of siRNA-lipid nanoparticles for therapeutic applications publication-title: Methods Mol. Biol. – volume: 13 start-page: 439 year: 2017 end-page: 448 ident: bib13 article-title: An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease publication-title: Expet Opin. Drug Metabol. Toxicol. – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: bib54 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods – volume: 56 start-page: 7 year: 2018 end-page: 21 ident: bib8 article-title: Aminoacidopathies: prevalence, etiology, screening, and treatment options publication-title: Biochem. Genet. – volume: 281 start-page: 23514 year: 2006 end-page: 23524 ident: bib46 article-title: Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn) publication-title: J. Biol. Chem. – volume: 211 start-page: 107545 year: 2020 ident: bib57 article-title: Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER publication-title: J. Struct. Biol. – volume: 42 start-page: 181 year: 2015 end-page: 194 ident: bib4 article-title: Genotype-phenotype correlations in ornithine transcarbamylase deficiency: a mutation update publication-title: J. Genet. Genomics – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bib52 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 29 start-page: 2898 year: 2021 end-page: 2909 ident: bib19 article-title: AAV integration in human hepatocytes publication-title: Mol. Ther. – volume: 29 start-page: 1192 year: 2021 end-page: 1199.e4 ident: bib51 article-title: Improving particle quality in cryo-EM analysis using a PEGylation method publication-title: Structure – volume: 273 start-page: 34247 year: 1998 end-page: 34254 ident: bib26 article-title: 1.85-Å resolution crystal structure of human ornithine transcarbamoylase complexed with N-phosphonacetyl-L-ornithine. Catalytic mechanism and correlation with inherited deficiency publication-title: J. Biol. Chem. – volume: 93 start-page: 313 year: 2000 end-page: 319 ident: bib5 article-title: Genotype spectrum of ornithine transcarbamylase deficiency: correlation with the clinical and biochemical phenotype publication-title: Am. J. Med. Genet. – volume: 23 start-page: 135 year: 2021 end-page: 146 ident: bib16 article-title: Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys publication-title: Mol. Ther. Methods Clin. Dev. – volume: 21 start-page: 112 year: 1998 end-page: 118 ident: bib14 article-title: Liver transplantation for the treatment of urea cycle disorders publication-title: J. Inherit. Metab. Dis. – volume: 31 start-page: 339 year: 2023 end-page: 351 ident: bib24 article-title: Identification of potent siRNA targeting complement C5 and its robust activity in pre-clinical models of myasthenia gravis and collagen-induced arthritis publication-title: Mol. Ther. Nucleic Acids – volume: 122 start-page: 641 year: 1982 end-page: 647 ident: bib36 article-title: A mitochondrial protease that cleaves the precursor of ornithine carbamoyltransferase. Purification and properties publication-title: Eur. J. Biochem. – volume: 30 start-page: 70 year: 2021 end-page: 82 ident: bib56 article-title: UCSF ChimeraX: Structure visualization for researchers, educators, and developers publication-title: Protein Sci. – volume: 19 start-page: 25 year: 2010 end-page: 30 ident: bib11 article-title: Contiguous Xp11.4 Gene deletion leading to ornithine transcarbamylase deficiency detected by high-density single-nucleotide array publication-title: Clin. Pediatr. Endocrinol. – volume: 354 start-page: 501 year: 2001 end-page: 509 ident: bib28 article-title: Human ornithine transcarbamylase: crystallographic insights into substrate recognition and conformational changes publication-title: Biochem. J. – volume: 99 start-page: 623 year: 1981 end-page: 629 ident: bib33 article-title: Site of synthesis and intracellular transport of the precursor of mitochondrial ornithine carbamoyltransferase publication-title: Biochem. Biophys. Res. Commun. – volume: 2 start-page: e33 year: 2022 ident: bib48 article-title: Restoring ornithine transcarbamylase (OTC) activity in an OTC-deficient mouse model using LUNAR-OTC mRNA publication-title: Clin. Transl. Discov. – volume: 30 start-page: 226 year: 2022 end-page: 240 ident: bib25 article-title: Design and lyophilization of lipid nanoparticles for mRNA vaccine and its robust immune response in mice and nonhuman primates publication-title: Mol. Ther. Nucleic Acids – volume: 192 start-page: 216 year: 2015 end-page: 221 ident: bib55 article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. – volume: 25 start-page: 708 year: 2021 end-page: 715 ident: bib22 article-title: siRNA-loaded biodegradable lipid nanoparticles ameliorate concanavalin A-induced liver injury publication-title: Mol. Ther. Nucleic Acids – volume: 26 start-page: 1509 year: 2018 end-page: 1519 ident: bib42 article-title: A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates publication-title: Mol. Ther. – volume: 5 start-page: 404 year: 2012 end-page: 410 ident: bib30 article-title: Sustained correction of OTC deficiency in publication-title: Gene Ther. – volume: 354 start-page: 501 year: 2001 ident: 10.1016/j.omtn.2023.06.023_bib28 article-title: Human ornithine transcarbamylase: crystallographic insights into substrate recognition and conformational changes publication-title: Biochem. J. doi: 10.1042/bj3540501 – volume: 519 start-page: 34 year: 2017 ident: 10.1016/j.omtn.2023.06.023_bib21 article-title: Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.01.016 – volume: 25 start-page: 708 year: 2021 ident: 10.1016/j.omtn.2023.06.023_bib22 article-title: Irf5 siRNA-loaded biodegradable lipid nanoparticles ameliorate concanavalin A-induced liver injury publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2021.08.023 – volume: 20 start-page: 169 year: 2021 ident: 10.1016/j.omtn.2023.06.023_bib15 article-title: Long-term correction of ornithine transcarbamylase deficiency in Spf-Ash mice with a translationally optimized AAV vector publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2020.11.005 – volume: 5 start-page: 404 year: 2012 ident: 10.1016/j.omtn.2023.06.023_bib30 article-title: Sustained correction of OTC deficiency in Spfash mice using optimized self-complementary AAV2/8 vectors publication-title: Gene Ther. doi: 10.1038/gt.2011.111 – volume: 118 start-page: 358 year: 1981 ident: 10.1016/j.omtn.2023.06.023_bib60 article-title: An improved colorimetric assay for aspartate and ornithine transcarbamylases publication-title: Anal. Biochem. doi: 10.1016/0003-2697(81)90594-7 – volume: 29 start-page: 1192 year: 2021 ident: 10.1016/j.omtn.2023.06.023_bib51 article-title: Improving particle quality in cryo-EM analysis using a PEGylation method publication-title: Structure doi: 10.1016/j.str.2021.05.004 – volume: 29 start-page: 2898 year: 2021 ident: 10.1016/j.omtn.2023.06.023_bib19 article-title: AAV integration in human hepatocytes publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2021.08.031 – volume: 120 start-page: 299 year: 2017 ident: 10.1016/j.omtn.2023.06.023_bib31 article-title: AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice publication-title: Mol. Genet. Metabol. doi: 10.1016/j.ymgme.2017.02.011 – volume: 8 start-page: 51 year: 2016 ident: 10.1016/j.omtn.2023.06.023_bib29 article-title: Towards the development of an enzyme replacement therapy for the metabolic disorder propionic acidemia publication-title: Mol. Genet. Metab. Rep. doi: 10.1016/j.ymgmr.2016.06.009 – volume: 12 start-page: 1536 year: 2022 ident: 10.1016/j.omtn.2023.06.023_bib47 article-title: Therapeutic enzyme engineering using a generative neural network publication-title: Sci. Rep. doi: 10.1038/s41598-022-05195-x – volume: 42 start-page: 181 year: 2015 ident: 10.1016/j.omtn.2023.06.023_bib4 article-title: Genotype-phenotype correlations in ornithine transcarbamylase deficiency: a mutation update publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2015.04.003 – volume: 4 start-page: 147 year: 1985 ident: 10.1016/j.omtn.2023.06.023_bib35 article-title: The primary structure of the imported mitochondrial protein, ornithine transcarbamylase from rat liver: mRNA levels during ontogeny publication-title: DNA doi: 10.1089/dna.1985.4.147 – volume: 30 start-page: 70 year: 2021 ident: 10.1016/j.omtn.2023.06.023_bib56 article-title: UCSF ChimeraX: Structure visualization for researchers, educators, and developers publication-title: Protein Sci. doi: 10.1002/pro.3943 – volume: 14 start-page: 1072 year: 2014 ident: 10.1016/j.omtn.2023.06.023_bib18 article-title: Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations publication-title: Curr. Pharmaceut. Biotechnol. doi: 10.2174/1389201015666140327141710 – volume: 273 start-page: 34247 year: 1998 ident: 10.1016/j.omtn.2023.06.023_bib26 article-title: 1.85-Å resolution crystal structure of human ornithine transcarbamoylase complexed with N-phosphonacetyl-L-ornithine. Catalytic mechanism and correlation with inherited deficiency publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.51.34247 – volume: 32 start-page: 375 year: 2022 ident: 10.1016/j.omtn.2023.06.023_bib43 article-title: Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters publication-title: Cell Res. doi: 10.1038/s41422-022-00630-0 – volume: 30 start-page: 56 year: 2009 ident: 10.1016/j.omtn.2023.06.023_bib1 article-title: Genetic variation in the urea cycle: a model resource for investigating key candidate genes for common diseases publication-title: Hum. Mutat. doi: 10.1002/humu.20813 – volume: 18 start-page: 1586 year: 2011 ident: 10.1016/j.omtn.2023.06.023_bib17 article-title: Adeno-associated virus antibody profiles in newborns, children, and adolescents publication-title: Clin. Vaccine Immunol. doi: 10.1128/CVI.05107-11 – volume: 478 start-page: 4169 year: 2021 ident: 10.1016/j.omtn.2023.06.023_bib53 article-title: New tools for automated cryo-EM single-particle analysis in RELION-4.0 publication-title: Biochem. J. doi: 10.1042/BCJ20210708 – volume: 21 start-page: 3548 year: 2017 ident: 10.1016/j.omtn.2023.06.023_bib40 article-title: Systemic messenger RNA therapy as a treatment for methylmalonic acidemia publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.11.081 – volume: 22 start-page: 346 year: 2004 ident: 10.1016/j.omtn.2023.06.023_bib49 article-title: Codon bias and heterologous protein expression publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2004.04.006 – volume: 31 start-page: 339 year: 2023 ident: 10.1016/j.omtn.2023.06.023_bib24 article-title: Identification of potent siRNA targeting complement C5 and its robust activity in pre-clinical models of myasthenia gravis and collagen-induced arthritis publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2023.01.005 – volume: 6 start-page: 24156 year: 2016 ident: 10.1016/j.omtn.2023.06.023_bib39 article-title: PGC-1α promotes ureagenesis in mouse periportal hepatocytes through SIRT3 and SIRT5 in response to glucagon publication-title: Sci. Rep. doi: 10.1038/srep24156 – volume: 12 start-page: 3090 year: 2021 ident: 10.1016/j.omtn.2023.06.023_bib41 article-title: mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease publication-title: Nat. Commun. doi: 10.1038/s41467-021-23318-2 – volume: 99 start-page: 623 year: 1981 ident: 10.1016/j.omtn.2023.06.023_bib33 article-title: Site of synthesis and intracellular transport of the precursor of mitochondrial ornithine carbamoyltransferase publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(81)91790-3 – volume: 113 start-page: 127 year: 2014 ident: 10.1016/j.omtn.2023.06.023_bib7 article-title: A longitudinal study of urea cycle disorders publication-title: Mol. Genet. Metabol. doi: 10.1016/j.ymgme.2014.08.001 – volume: 21 start-page: 112 issue: Suppl. 1 year: 1998 ident: 10.1016/j.omtn.2023.06.023_bib14 article-title: Liver transplantation for the treatment of urea cycle disorders publication-title: J. Inherit. Metab. Dis. doi: 10.1023/A:1005317909946 – volume: 30 start-page: 217 year: 2007 ident: 10.1016/j.omtn.2023.06.023_bib6 article-title: Estimation of the total number of disease-causing mutations in ornithine transcarbamylase (OTC) deficiency. Value of the OTC structure in predicting a mutation pathogenic potential publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-007-0429-x – volume: 26 start-page: 801 year: 2018 ident: 10.1016/j.omtn.2023.06.023_bib20 article-title: Targeted mRNA therapy for ornithine transcarbamylase deficiency publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.12.024 – start-page: 298 year: 2017 ident: 10.1016/j.omtn.2023.06.023_bib9 article-title: Inborn errors of urea synthesis – volume: 122 start-page: 641 year: 1982 ident: 10.1016/j.omtn.2023.06.023_bib36 article-title: A mitochondrial protease that cleaves the precursor of ornithine carbamoyltransferase. Purification and properties publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1982.tb06487.x – volume: 39 start-page: 271 year: 2000 ident: 10.1016/j.omtn.2023.06.023_bib27 article-title: Crystal structure of human ornithine transcarbamylase complexed with carbamoyl phosphate and L-norvaline at 1.9 Å resolution publication-title: Proteins doi: 10.1002/(SICI)1097-0134(20000601)39:4<271::AID-PROT10>3.0.CO;2-E – volume: 106 start-page: 2338 year: 2022 ident: 10.1016/j.omtn.2023.06.023_bib23 article-title: Novel complement C5 small-interfering RNA lipid nanoparticle prolongs graft survival in a hypersensitized rat kidney transplant model publication-title: Transplantation doi: 10.1097/TP.0000000000004207 – volume: 23 start-page: 135 year: 2021 ident: 10.1016/j.omtn.2023.06.023_bib16 article-title: Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2021.09.005 – volume: 27 start-page: 387 year: 1985 ident: 10.1016/j.omtn.2023.06.023_bib44 article-title: Regulation of mitochondrial protein concentration: a plausible model which may permit assessing protein turnover publication-title: Curr. Top. Cell. Regul. doi: 10.1016/B978-0-12-152827-0.50040-2 – volume: 211 start-page: 107545 year: 2020 ident: 10.1016/j.omtn.2023.06.023_bib57 article-title: Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2020.107545 – volume: 88 start-page: 1829 year: 1980 ident: 10.1016/j.omtn.2023.06.023_bib34 article-title: Processing of a putative precursor of rat liver ornithine transcarbamylase, a mitochondrial matrix enzyme publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a133158 – volume: 24 start-page: 407 year: 1996 ident: 10.1016/j.omtn.2023.06.023_bib38 article-title: Development of the ornithine cycle in rat liver: zonation of a metabolic pathway publication-title: Hepatology doi: 10.1002/hep.510240219 – volume: 192 start-page: 216 year: 2015 ident: 10.1016/j.omtn.2023.06.023_bib55 article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 1141 start-page: 109 year: 2014 ident: 10.1016/j.omtn.2023.06.023_bib50 article-title: Microfluidic-based manufacture of siRNA-lipid nanoparticles for therapeutic applications publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-0363-4_6 – volume: 47 start-page: 160 year: 2004 ident: 10.1016/j.omtn.2023.06.023_bib3 article-title: Hyperammonemia in pediatric clinics: a review of ornithine transcarbamylase deficiency (OTCD) based on our case studies publication-title: JMAJ – volume: 14 start-page: 331 year: 2017 ident: 10.1016/j.omtn.2023.06.023_bib54 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 4 start-page: 815 year: 2000 ident: 10.1016/j.omtn.2023.06.023_bib2 article-title: Urea cycle disorders publication-title: Clin. Liver Dis. doi: 10.1016/S1089-3261(05)70143-4 – volume: 105 start-page: 1 year: 1982 ident: 10.1016/j.omtn.2023.06.023_bib37 article-title: Processing of pre-ornithine transcarbamylase requires a zinc-dependent protease localized to the mitochondrial matrix publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(82)80002-8 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.omtn.2023.06.023_bib52 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 94 start-page: 498 year: 2008 ident: 10.1016/j.omtn.2023.06.023_bib10 article-title: Complex management of a patient with a contiguous Xp11.4 gene deletion involving ornithine transcarbamylase: a role for detailed molecular analysis in complex presentations of classical diseases publication-title: Mol. Genet. Metabol. doi: 10.1016/j.ymgme.2008.04.011 – volume: 116 start-page: 21150 year: 2019 ident: 10.1016/j.omtn.2023.06.023_bib32 article-title: Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1906182116 – volume: 19 start-page: 25 year: 2010 ident: 10.1016/j.omtn.2023.06.023_bib11 article-title: Contiguous Xp11.4 Gene deletion leading to ornithine transcarbamylase deficiency detected by high-density single-nucleotide array publication-title: Clin. Pediatr. Endocrinol. doi: 10.1297/cpe.19.25 – volume: 30 start-page: 226 year: 2022 ident: 10.1016/j.omtn.2023.06.023_bib25 article-title: Design and lyophilization of lipid nanoparticles for mRNA vaccine and its robust immune response in mice and nonhuman primates publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2022.09.017 – volume: 86 start-page: 4142 year: 1989 ident: 10.1016/j.omtn.2023.06.023_bib59 article-title: The spfash mouse: a missense mutation in the ornithine transcarbamylase gene also causes aberrant mRNA splicing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.86.11.4142 – volume: 13 start-page: 439 year: 2017 ident: 10.1016/j.omtn.2023.06.023_bib13 article-title: An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease publication-title: Expet Opin. Drug Metabol. Toxicol. doi: 10.1080/17425255.2017.1262843 – volume: 56 start-page: 7 year: 2018 ident: 10.1016/j.omtn.2023.06.023_bib8 article-title: Aminoacidopathies: prevalence, etiology, screening, and treatment options publication-title: Biochem. Genet. doi: 10.1007/s10528-017-9825-6 – volume: 281 start-page: 23514 year: 2006 ident: 10.1016/j.omtn.2023.06.023_bib46 article-title: Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M604292200 – volume: 28 start-page: 332 year: 1976 ident: 10.1016/j.omtn.2023.06.023_bib12 article-title: X-chromosome inactivation in human liver: confirmation of X-linkage of ornithine transcarbamylase publication-title: Am. J. Hum. Genet. – volume: 26 start-page: 1509 year: 2018 ident: 10.1016/j.omtn.2023.06.023_bib42 article-title: A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.03.010 – volume: 2 start-page: e33 year: 2022 ident: 10.1016/j.omtn.2023.06.023_bib48 article-title: Restoring ornithine transcarbamylase (OTC) activity in an OTC-deficient mouse model using LUNAR-OTC mRNA publication-title: Clin. Transl. Discov. doi: 10.1002/ctd2.33 – volume: 142 start-page: 111953 year: 2021 ident: 10.1016/j.omtn.2023.06.023_bib45 article-title: Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2021.111953 – volume: 93 start-page: 313 year: 2000 ident: 10.1016/j.omtn.2023.06.023_bib5 article-title: Genotype spectrum of ornithine transcarbamylase deficiency: correlation with the clinical and biochemical phenotype publication-title: Am. J. Med. Genet. doi: 10.1002/1096-8628(20000814)93:4<313::AID-AJMG11>3.0.CO;2-M – volume: 6 start-page: 5 year: 2019 ident: 10.1016/j.omtn.2023.06.023_bib58 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ doi: 10.1107/S205225251801463X |
SSID | ssj0000601262 |
Score | 2.4157593 |
Snippet | Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 210 |
SubjectTerms | cryo-electron microscopy homotrimer conformation lipid nanoparticles messenger RNA therapy mitochondria localization MT: delivery strategies: ornithine transcarbamylase Original Otcspf-ash mice |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB7LS0ZCXJBF1u8cF0RVIdEDolJvlp9qEZut2vTQf8-MnV1tQCoXrkmcxPY48008832EvCsi6BJMYiGGwqTKitkgMluaAsvcmhQrkfa3E318Kr-eqbM9qS_MCWv0wG3gPkqbsw5eqD4VmU303dIbGaIKWqVYi6d513d7wVT7BsOHt6qJ8qXmjIOlTRUzLblrsx6R_JSLSt7JxcwrVfL-mXP6G3z-mUO555SOHpIHE5qkq9aLR-ReHh6Tw9UAkfT6lr6nNb-z_jg_JJcoU53o4AeIk1sD1vLAc6Lr7ycrivh1UvOi_pp6ustCx1MUK7jGc0ClbEQHF3GnYn0L6DvTlJGIAqs4aZXWoShy_4ScHn358fmYTXoLLCprR2ZsZ4xIJhnOS0hCJ5GUiIan2GcPwK4AGNI-LUOwOXINwWPgupTEc1809-IpORg2Q35OaLDcSxV7baKRnnMfQlHgB5PPynqfFmS5HW8XJzJy1MT45bZZZz8dzpHDOXKYesfFgnzYtblsVBx3Xv0Jp3F3JdJo1wNgXG4aZfcv41oQtTUCNyGShjTgVhd3Pvzt1mIcLFfcg_FD3txcO0ADEqJIIc2CPGsWtHtFYRTvtIXWdmZbsz7MzwwX55USHKs9wdLli__R65fkPvaFVaGMV-RgvLrJrwF6jeFNXWW_Ae3NMPE priority: 102 providerName: Directory of Open Access Journals |
Title | Lipid nanoparticle-targeted mRNA formulation as a treatment for ornithine-transcarbamylase deficiency model mice |
URI | https://dx.doi.org/10.1016/j.omtn.2023.06.023 https://www.ncbi.nlm.nih.gov/pubmed/37520683 https://www.proquest.com/docview/2844086347 https://pubmed.ncbi.nlm.nih.gov/PMC10372164 https://doaj.org/article/48ee6ba359df4e7ca01a74bc5b65dc51 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXBBQHkshcpIiAsy2rXjxx4QWhBVhdQeECv1ZvlJi7rZsptK3X_PjJMsBKoeuCaePOyx55tk_H2EvM7Cq-x1ZD74zCqZJDNeJDbRGaa50TEUIu3jE3U0r76cytMd0ssddR24vjG1Qz2p-eri3fXPzQeY8O9_12otFw1ymXJRuDi5uEPuQmRSmIwdd3C_XZlhOVa82ztzs-kgPhUa_0GY-heG_l1N-Ud4OnxA7ne4ks5aR3hIdlL9iOzNasipFxv6hpZKz_IJfY9comB1pLWrIWNuDVhbEZ4iXXw9mVFEsp2uF3Vr6ui2Hh1PUdzL1ZwBPmUNhrqA_ywWG8DhicaElBS4n5MWkR2KcvePyfzw87dPR6xTXmBBGtMwbcZai6ij5jz7KFQUUYqgeQzT5ADiZYBFysWJ9yYFriCN9FzlHHmaZsWdeEJ262WdnhHqDXeVDFOlg64c5877LCEiRpekcS6OyKTvbxs6WnJUx7iwff3ZD4tjZHGMLBbhcTEib7c2ly0px62tP-IwblsioXY5sFx9t10v28qkpLwTchpzlXRw44nTlQ_SKxmDnIyI7J3AdtikxRxwqfNbb_6q9xgLExf_xrg6La_WFnBBBfmkqPSIPG09aPuIQks-VgaszcC3Bu8wPFOfnxVycNz3ySEHfv7_pvvkHr4BK0IZL8hus7pKLwF6Nf6gfLI4KLPqF1GbNi4 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipid+nanoparticle-targeted+mRNA+formulation+as+a+treatment+for+ornithine-transcarbamylase+deficiency+model+mice&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Yamazaki%2C+Kazuto&rft.au=Kubara%2C+Kenji&rft.au=Ishii%2C+Satoko&rft.au=Kondo%2C+Keita&rft.date=2023-09-12&rft.pub=American+Society+of+Gene+%26+Cell+Therapy&rft.eissn=2162-2531&rft.volume=33&rft.spage=210&rft.epage=226&rft_id=info:doi/10.1016%2Fj.omtn.2023.06.023&rft.externalDocID=PMC10372164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon |