Lipid nanoparticle-targeted mRNA formulation as a treatment for ornithine-transcarbamylase deficiency model mice

Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Nucleic acids Vol. 33; pp. 210 - 226
Main Authors Yamazaki, Kazuto, Kubara, Kenji, Ishii, Satoko, Kondo, Keita, Suzuki, Yuta, Miyazaki, Takayuki, Mitsuhashi, Kaoru, Ito, Masashi, Tsukahara, Kappei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.09.2023
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text
ISSN2162-2531
2162-2531
DOI10.1016/j.omtn.2023.06.023

Cover

Abstract Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD. [Display omitted] Yamazaki et al. used LNP to formulate hOTC-mRNA for delivery to hepatocytes to treat OTCD. hOTC proteins produced by hOTC-mRNA/LNP in cells shows the trimeric conformation and mitochondrial localization. Single and multiple doses of hOTC-mRNA/LNP demonstrated efficacy in an OTCD mouse model.
AbstractList Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (h OTC ) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with h OTC -mRNA/LNP at 1.0 mg/kg, the delivered h OTC mRNA levels steeply decreased with a half-life (t 1/2 ) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t 1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otc spf-ash hemizygous males), a single dose of h OTC -mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated h OTC mRNA for OTCD. Yamazaki et al. used LNP to formulate hOTC-mRNA for delivery to hepatocytes to treat OTCD. hOTC proteins produced by h OTC -mRNA/LNP in cells shows the trimeric conformation and mitochondrial localization. Single and multiple doses of h OTC -mRNA/LNP demonstrated efficacy in an OTCD mouse model.
Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD. [Display omitted] Yamazaki et al. used LNP to formulate hOTC-mRNA for delivery to hepatocytes to treat OTCD. hOTC proteins produced by hOTC-mRNA/LNP in cells shows the trimeric conformation and mitochondrial localization. Single and multiple doses of hOTC-mRNA/LNP demonstrated efficacy in an OTCD mouse model.
Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human (h ) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with h -mRNA/LNP at 1.0 mg/kg, the delivered h mRNA levels steeply decreased with a half-life (t ) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t of 2.2 days. In OTCD model mice (high-protein diet-fed hemizygous males), a single dose of h -mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated h mRNA for OTCD.
Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD.
Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD.Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD.
Author Ishii, Satoko
Miyazaki, Takayuki
Mitsuhashi, Kaoru
Ito, Masashi
Yamazaki, Kazuto
Tsukahara, Kappei
Kubara, Kenji
Suzuki, Yuta
Kondo, Keita
Author_xml – sequence: 1
  givenname: Kazuto
  orcidid: 0000-0002-4130-3740
  surname: Yamazaki
  fullname: Yamazaki, Kazuto
  email: k5-yamazaki@hhc.eisai.co.jp
  organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
– sequence: 2
  givenname: Kenji
  surname: Kubara
  fullname: Kubara, Kenji
  organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
– sequence: 3
  givenname: Satoko
  surname: Ishii
  fullname: Ishii, Satoko
  organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
– sequence: 4
  givenname: Keita
  surname: Kondo
  fullname: Kondo, Keita
  organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
– sequence: 5
  givenname: Yuta
  surname: Suzuki
  fullname: Suzuki, Yuta
  organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
– sequence: 6
  givenname: Takayuki
  surname: Miyazaki
  fullname: Miyazaki, Takayuki
  organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
– sequence: 7
  givenname: Kaoru
  surname: Mitsuhashi
  fullname: Mitsuhashi, Kaoru
  organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
– sequence: 8
  givenname: Masashi
  surname: Ito
  fullname: Ito, Masashi
  organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
– sequence: 9
  givenname: Kappei
  surname: Tsukahara
  fullname: Tsukahara, Kappei
  organization: Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37520683$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQNSWlSdP8gR6Kjr3Y1YcteaFQQuhHYGmhtGcxlsYbLba0lbSB_ffVfjQkPUSXEZr33szozevqzAePVfWW0YZRJj-smzBn33DKRUNlU8KL6oIzyWveCXb26H5eXaW0puVIyrjkr6pzoTpOZS8uqs3SbZwlHnzYQMzOTFhniCvMaMn88_s1GUOctxNkFzyBRIDkiJBn9HmfIiF6l--cL7QIPhmIA8y7CRISi6MzDr3ZkTlYnMjsDL6pXo4wJbw6xcvq95fPv26-1csfX29vrpe16fo-16qnSgmrrOJ8HKyQVthOGMWtWSDQTo28YxIsG4YeDZeKs4HLcbQcF6PkIC6r26OuDbDWm-hmiDsdwOnDQ4grfZpXtz2iHEB0Czu2qAxQBqodTDfIzpqOFa1PR63NdpjRmjJ7hOmJ6NOMd3d6Fe41o6I0Jtui8P6kEMOfLaasZ5cMThN4DNuked-2tJeiVQX67nGxhyr_PCsAfgSYGFKKOD5AGNX73dBlvLIber8bmkpdQiH1_5GMywdTS8Nuep768UjFYte9w6jTwVW0LqLJ5T_dc_S_5NfX_A
CitedBy_id crossref_primary_10_3390_nu16010061
crossref_primary_10_1248_cpb_c24_00089
crossref_primary_10_1021_acs_molpharmaceut_3c00547
crossref_primary_10_1002_1873_3468_14957
crossref_primary_10_1016_j_omtn_2024_102313
crossref_primary_10_1016_j_omtn_2025_102467
crossref_primary_10_1016_j_ymthe_2025_01_010
crossref_primary_10_1016_j_ijpx_2024_100283
crossref_primary_10_1136_gutjnl_2023_331742
crossref_primary_10_1002_jimd_12807
crossref_primary_10_1002_jimd_12709
crossref_primary_10_3390_vaccines12020186
crossref_primary_10_1007_s12038_023_00415_6
crossref_primary_10_1016_j_addr_2023_115175
crossref_primary_10_1016_j_jconrel_2024_03_056
crossref_primary_10_1016_j_ymthe_2024_01_020
crossref_primary_10_1186_s43556_023_00160_0
crossref_primary_10_1126_scitranslmed_adl2720
Cites_doi 10.1042/bj3540501
10.1016/j.ijpharm.2017.01.016
10.1016/j.omtn.2021.08.023
10.1016/j.omtm.2020.11.005
10.1038/gt.2011.111
10.1016/0003-2697(81)90594-7
10.1016/j.str.2021.05.004
10.1016/j.ymthe.2021.08.031
10.1016/j.ymgme.2017.02.011
10.1016/j.ymgmr.2016.06.009
10.1038/s41598-022-05195-x
10.1016/j.jgg.2015.04.003
10.1089/dna.1985.4.147
10.1002/pro.3943
10.2174/1389201015666140327141710
10.1074/jbc.273.51.34247
10.1038/s41422-022-00630-0
10.1002/humu.20813
10.1128/CVI.05107-11
10.1042/BCJ20210708
10.1016/j.celrep.2017.11.081
10.1016/j.tibtech.2004.04.006
10.1016/j.omtn.2023.01.005
10.1038/srep24156
10.1038/s41467-021-23318-2
10.1016/0006-291X(81)91790-3
10.1016/j.ymgme.2014.08.001
10.1023/A:1005317909946
10.1007/s10545-007-0429-x
10.1016/j.ymthe.2017.12.024
10.1111/j.1432-1033.1982.tb06487.x
10.1002/(SICI)1097-0134(20000601)39:4<271::AID-PROT10>3.0.CO;2-E
10.1097/TP.0000000000004207
10.1016/j.omtm.2021.09.005
10.1016/B978-0-12-152827-0.50040-2
10.1016/j.jsb.2020.107545
10.1093/oxfordjournals.jbchem.a133158
10.1002/hep.510240219
10.1016/j.jsb.2015.08.008
10.1007/978-1-4939-0363-4_6
10.1038/nmeth.4193
10.1016/S1089-3261(05)70143-4
10.1016/S0006-291X(82)80002-8
10.1038/nmeth.2019
10.1016/j.ymgme.2008.04.011
10.1073/pnas.1906182116
10.1297/cpe.19.25
10.1016/j.omtn.2022.09.017
10.1073/pnas.86.11.4142
10.1080/17425255.2017.1262843
10.1007/s10528-017-9825-6
10.1074/jbc.M604292200
10.1016/j.ymthe.2018.03.010
10.1002/ctd2.33
10.1016/j.biopha.2021.111953
10.1002/1096-8628(20000814)93:4<313::AID-AJMG11>3.0.CO;2-M
10.1107/S205225251801463X
ContentType Journal Article
Copyright 2023 The Author(s)
2023 The Author(s).
2023 The Author(s) 2023
Copyright_xml – notice: 2023 The Author(s)
– notice: 2023 The Author(s).
– notice: 2023 The Author(s) 2023
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.omtn.2023.06.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2162-2531
EndPage 226
ExternalDocumentID oai_doaj_org_article_48ee6ba359df4e7ca01a74bc5b65dc51
PMC10372164
37520683
10_1016_j_omtn_2023_06_023
S2162253123001737
Genre Journal Article
GroupedDBID 0R~
0SF
53G
5VS
6I.
7X7
8FE
8FH
8FI
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFKRA
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
DIK
EBS
FDB
FYUFA
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M41
M48
M7P
M~E
NCXOZ
O9-
OK1
PIMPY
PQQKQ
PROAC
RNTTT
ROL
RPM
SSZ
88I
8FJ
AAMRU
AAYWO
AAYXX
ABUWG
ADRAZ
ADVLN
ALIPV
APXCP
CCPQU
CITATION
DWQXO
EJD
GNUQQ
HMCUK
HYE
IPNFZ
PHGZM
PHGZT
RIG
UKHRP
NPM
7X8
5PM
ID FETCH-LOGICAL-c588t-780773d7d722fbd36d3d53c72dc9ea057f2516ad1bb8ec26721b26ffd2e9f62a3
IEDL.DBID M48
ISSN 2162-2531
IngestDate Wed Aug 27 01:24:21 EDT 2025
Thu Aug 21 18:36:42 EDT 2025
Fri Sep 05 10:35:38 EDT 2025
Thu Jan 02 22:51:46 EST 2025
Thu Apr 24 23:07:48 EDT 2025
Tue Jul 01 02:00:43 EDT 2025
Fri Feb 23 02:35:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords lipid nanoparticles
MT: delivery strategies: ornithine transcarbamylase
mitochondria localization
Otcspf-ash mice
messenger RNA therapy
homotrimer conformation
cryo-electron microscopy
Language English
License This is an open access article under the CC BY-NC-ND license.
2023 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-780773d7d722fbd36d3d53c72dc9ea057f2516ad1bb8ec26721b26ffd2e9f62a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
ORCID 0000-0002-4130-3740
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2023.06.023
PMID 37520683
PQID 2844086347
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_48ee6ba359df4e7ca01a74bc5b65dc51
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10372164
proquest_miscellaneous_2844086347
pubmed_primary_37520683
crossref_primary_10_1016_j_omtn_2023_06_023
crossref_citationtrail_10_1016_j_omtn_2023_06_023
elsevier_sciencedirect_doi_10_1016_j_omtn_2023_06_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-12
PublicationDateYYYYMMDD 2023-09-12
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular therapy. Nucleic acids
PublicationTitleAlternate Mol Ther Nucleic Acids
PublicationYear 2023
Publisher Elsevier Inc
American Society of Gene & Cell Therapy
Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Society of Gene & Cell Therapy
– name: Elsevier
References De Sabbata, Boisgerault, Guarnaccia, Iaconcig, Bortolussi, Collaud, Ronzitti, Sola, Vidal, Rouillon (bib15) 2021; 20
Ishigooka, Katsumata, Saiga, Tokita, Motoi, Matsui, Suzuki, Tomimatsu, Nakatani, Kuboi (bib23) 2022; 106
De Las Heras, Aldámiz-Echevarría, Martínez-Chantar, Delgado (bib13) 2017; 13
Caldovic, Abdikarim, Narain, Tuchman, Morizono (bib4) 2015; 42
Baruteau, Cunningham, Yilmaz, Perocheau, Eaglestone, Burke, Thrasher, Waddington, Lisowski, Alexander, Gissen (bib16) 2021; 23
Hodges, Rosenberg (bib59) 1989; 86
An, Schneller, Frassetto, Liang, Zhu, Park, Theisen, Hong, Zhou, Rajendran (bib40) 2017; 21
Wasim, Awan, Khan, Tawab, Iqbal, Ayesha (bib8) 2018; 56
Calcedo, Morizono, Wang, McCarter, He, Jones, Batshaw, Wilson (bib17) 2011; 18
Wang, Bell, Morizono, He, Pumbo, Yu, White, Batshaw, Wilson (bib31) 2017; 120
Dalwadi, Calabria, Tiyaboonchai, Posey, Naugler, Montini, Grompe (bib19) 2021; 29
Ricciuti, Gelehrter, Rosenberg (bib12) 1976; 28
Ramlaul, Palmer, Nakane, Aylett (bib57) 2020; 211
Prieve, Harvie, Monahan, Roy, Li, Blevins, Paschal, Waldheim, Bell, Galperin (bib20) 2018; 26
Dall'Acqua, Kiener, Wu (bib46) 2006; 281
Mori, Miura, Tatibana, Cohen (bib34) 1980; 88
Zhang, Shigematsu, Shimizu, Ohto (bib51) 2021; 29
Shi, Morizono, Ha, Aoyagi, Tuchman, Allewell (bib26) 1998; 273
Wang, Cai, Stothard, Moore, Goebel, Wang, Lin, Yu, Batshaw, Wilson (bib30) 2012; 5
Granados-Riveron, Aquino-Jarquin (bib45) 2021; 142
Conboy, Fenton, Rosenberg (bib37) 1982; 105
Darvish-Damavandi, Ho, Kang (bib29) 2016; 8
Gustafsson, Govindarajan, Minshull (bib49) 2004; 22
Burton (bib2) 2000; 4
Li, Zhang, Bao, Wang, Liu, Huang (bib39) 2016; 6
Ono, Tsuda, Mouri, Arai, Arinami, Noguchi (bib11) 2010; 19
Pettersen, Goddard, Huang, Meng, Couch, Croll, Morris, Ferrin (bib56) 2021; 30
McCullough, Yudkoff, Batshaw, Wilson, Raper, Tuchman (bib5) 2000; 93
Yu, Brewer, Shields, Crowder, Sacchetti, Soontornniyomkij, Dou, Clemente, Sablad, Chivukula (bib48) 2022; 2
Selot, Hareendran, Jayandharan (bib18) 2014; 14
Whitington, Alonso, Boyle, Molleston, Rosenthal, Emond, Millis (bib14) 1998; 21
Morita, Mori, Tatibana, Cohen (bib33) 1981; 99
Matsuda (bib3) 2004; 47
Giessel, Dousis, Ravichandran, Smith, Sur, McFadyen, Zheng, Licht (bib47) 2022; 12
Grisolía, Hernández-Yago, Knecht (bib44) 1985; 27
Miura, Mori, Amaya, Tatibana (bib36) 1982; 122
Zivanov, Nakane, Scheres (bib58) 2019; 6
Pastra-Landis, Foote, Kantrowitz (bib60) 1981; 118
Dingemanse, de Jonge, de Boer, Mori, Lamers, Moorman (bib38) 1996; 24
Nagamani, Lichter-Konecki (bib9) 2017
McIntyre, Graf, Mercer, Wake, Hudson, Hoogenraad (bib35) 1985; 4
Truong, Allegri, Liu, Burke, Zhu, Cederbaum, Häberle, Martini, Lipshutz (bib32) 2019; 116
Shi, Morizono, Yu, Tong, Allewell, Tuchman (bib28) 2001; 354
Arranz, Riudor, Marco-Marín, Rubio (bib6) 2007; 30
Cao, Choi, Guadagnin, Soty, Silva, Verzieux, Weisser, Markel, Zhuo, Liang (bib41) 2021; 12
Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib54) 2017; 14
Deng, Zhang, Zhang, Zhong, Xu, Qiu, Wang, Zhao, Zhou, Zu (bib43) 2022; 32
Kimanius, Dong, Sharov, Nakane, Scheres (bib53) 2021; 478
Suzuki, Miyazaki, Muto, Kubara, Mukai, Watari, Sato, Kondo, Tsukumo, Yasutomo (bib25) 2022; 30
Suzuki, Hyodo, Suzuki, Tanaka, Kikuchi, Ishihara (bib21) 2017; 519
Shi, Morizono, Aoyagi, Tuchman, Allewell (bib27) 2000; 39
Kawase, Kurotaki, Suzuki, Ishihara, Ban, Sato, Ichikawa, Yanai, Taniguchi, Tsukahara, Tamura (bib22) 2021; 25
Rohou, Grigorieff (bib55) 2015; 192
Sabnis, Kumarasinghe, Salerno, Mihai, Ketova, Senn, Lynn, Bulychev, McFadyen, Chan (bib42) 2018; 26
Kuboi, Suzuki, Motoi, Matsui, Toritsuka, Nakatani, Tahara, Takahashi, Ida, Tomimatsu (bib24) 2023; 31
Mitchell, Ellingson, Coyne, Hall, Neill, Christian, Higham, Dobrowolski, Tuchman, Summar (bib1) 2009; 30
Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib52) 2012; 9
Deardorff, Gaddipati, Kaplan, Sanchez-Lara, Sondheimer, Spinner, Hakonarson, Ficicioglu, Ganesh, Markello (bib10) 2008; 94
Walsh, Ou, Belliveau, Leaver, Wild, Huft, Lin, Chen, Leung, Lee (bib50) 2014; 1141
Batshaw, Tuchman, Summar, Seminara (bib7) 2014; 113
Kimanius (10.1016/j.omtn.2023.06.023_bib53) 2021; 478
Zhang (10.1016/j.omtn.2023.06.023_bib51) 2021; 29
Suzuki (10.1016/j.omtn.2023.06.023_bib21) 2017; 519
Truong (10.1016/j.omtn.2023.06.023_bib32) 2019; 116
Arranz (10.1016/j.omtn.2023.06.023_bib6) 2007; 30
Matsuda (10.1016/j.omtn.2023.06.023_bib3) 2004; 47
Li (10.1016/j.omtn.2023.06.023_bib39) 2016; 6
Ono (10.1016/j.omtn.2023.06.023_bib11) 2010; 19
Batshaw (10.1016/j.omtn.2023.06.023_bib7) 2014; 113
De Las Heras (10.1016/j.omtn.2023.06.023_bib13) 2017; 13
Wang (10.1016/j.omtn.2023.06.023_bib31) 2017; 120
Grisolía (10.1016/j.omtn.2023.06.023_bib44) 1985; 27
Conboy (10.1016/j.omtn.2023.06.023_bib37) 1982; 105
Schindelin (10.1016/j.omtn.2023.06.023_bib52) 2012; 9
Zivanov (10.1016/j.omtn.2023.06.023_bib58) 2019; 6
Caldovic (10.1016/j.omtn.2023.06.023_bib4) 2015; 42
Burton (10.1016/j.omtn.2023.06.023_bib2) 2000; 4
Ishigooka (10.1016/j.omtn.2023.06.023_bib23) 2022; 106
Shi (10.1016/j.omtn.2023.06.023_bib28) 2001; 354
Prieve (10.1016/j.omtn.2023.06.023_bib20) 2018; 26
Shi (10.1016/j.omtn.2023.06.023_bib27) 2000; 39
Miura (10.1016/j.omtn.2023.06.023_bib36) 1982; 122
Yu (10.1016/j.omtn.2023.06.023_bib48) 2022; 2
Nagamani (10.1016/j.omtn.2023.06.023_bib9) 2017
Giessel (10.1016/j.omtn.2023.06.023_bib47) 2022; 12
Dall'Acqua (10.1016/j.omtn.2023.06.023_bib46) 2006; 281
Kuboi (10.1016/j.omtn.2023.06.023_bib24) 2023; 31
Deardorff (10.1016/j.omtn.2023.06.023_bib10) 2008; 94
Shi (10.1016/j.omtn.2023.06.023_bib26) 1998; 273
Dalwadi (10.1016/j.omtn.2023.06.023_bib19) 2021; 29
Ricciuti (10.1016/j.omtn.2023.06.023_bib12) 1976; 28
Mori (10.1016/j.omtn.2023.06.023_bib34) 1980; 88
Wasim (10.1016/j.omtn.2023.06.023_bib8) 2018; 56
Whitington (10.1016/j.omtn.2023.06.023_bib14) 1998; 21
Gustafsson (10.1016/j.omtn.2023.06.023_bib49) 2004; 22
Ramlaul (10.1016/j.omtn.2023.06.023_bib57) 2020; 211
Morita (10.1016/j.omtn.2023.06.023_bib33) 1981; 99
Selot (10.1016/j.omtn.2023.06.023_bib18) 2014; 14
Suzuki (10.1016/j.omtn.2023.06.023_bib25) 2022; 30
Hodges (10.1016/j.omtn.2023.06.023_bib59) 1989; 86
Zheng (10.1016/j.omtn.2023.06.023_bib54) 2017; 14
Pettersen (10.1016/j.omtn.2023.06.023_bib56) 2021; 30
Cao (10.1016/j.omtn.2023.06.023_bib41) 2021; 12
Walsh (10.1016/j.omtn.2023.06.023_bib50) 2014; 1141
Deng (10.1016/j.omtn.2023.06.023_bib43) 2022; 32
Wang (10.1016/j.omtn.2023.06.023_bib30) 2012; 5
Pastra-Landis (10.1016/j.omtn.2023.06.023_bib60) 1981; 118
Granados-Riveron (10.1016/j.omtn.2023.06.023_bib45) 2021; 142
Darvish-Damavandi (10.1016/j.omtn.2023.06.023_bib29) 2016; 8
McIntyre (10.1016/j.omtn.2023.06.023_bib35) 1985; 4
Rohou (10.1016/j.omtn.2023.06.023_bib55) 2015; 192
Baruteau (10.1016/j.omtn.2023.06.023_bib16) 2021; 23
Calcedo (10.1016/j.omtn.2023.06.023_bib17) 2011; 18
Kawase (10.1016/j.omtn.2023.06.023_bib22) 2021; 25
An (10.1016/j.omtn.2023.06.023_bib40) 2017; 21
Sabnis (10.1016/j.omtn.2023.06.023_bib42) 2018; 26
De Sabbata (10.1016/j.omtn.2023.06.023_bib15) 2021; 20
Mitchell (10.1016/j.omtn.2023.06.023_bib1) 2009; 30
Dingemanse (10.1016/j.omtn.2023.06.023_bib38) 1996; 24
McCullough (10.1016/j.omtn.2023.06.023_bib5) 2000; 93
References_xml – volume: 18
  start-page: 1586
  year: 2011
  end-page: 1588
  ident: bib17
  article-title: Adeno-associated virus antibody profiles in newborns, children, and adolescents
  publication-title: Clin. Vaccine Immunol.
– volume: 27
  start-page: 387
  year: 1985
  end-page: 396
  ident: bib44
  article-title: Regulation of mitochondrial protein concentration: a plausible model which may permit assessing protein turnover
  publication-title: Curr. Top. Cell. Regul.
– volume: 94
  start-page: 498
  year: 2008
  end-page: 502
  ident: bib10
  article-title: Complex management of a patient with a contiguous Xp11.4 gene deletion involving ornithine transcarbamylase: a role for detailed molecular analysis in complex presentations of classical diseases
  publication-title: Mol. Genet. Metabol.
– volume: 88
  start-page: 1829
  year: 1980
  end-page: 1836
  ident: bib34
  article-title: Processing of a putative precursor of rat liver ornithine transcarbamylase, a mitochondrial matrix enzyme
  publication-title: J. Biochem.
– volume: 30
  start-page: 56
  year: 2009
  end-page: 60
  ident: bib1
  article-title: Genetic variation in the urea cycle: a model resource for investigating key candidate genes for common diseases
  publication-title: Hum. Mutat.
– volume: 118
  start-page: 358
  year: 1981
  end-page: 363
  ident: bib60
  article-title: An improved colorimetric assay for aspartate and ornithine transcarbamylases
  publication-title: Anal. Biochem.
– volume: 4
  start-page: 815
  year: 2000
  end-page: 830.vi
  ident: bib2
  article-title: Urea cycle disorders
  publication-title: Clin. Liver Dis.
– volume: 30
  start-page: 217
  year: 2007
  end-page: 226
  ident: bib6
  article-title: Estimation of the total number of disease-causing mutations in ornithine transcarbamylase (OTC) deficiency. Value of the OTC structure in predicting a mutation pathogenic potential
  publication-title: J. Inherit. Metab. Dis.
– volume: 24
  start-page: 407
  year: 1996
  end-page: 411
  ident: bib38
  article-title: Development of the ornithine cycle in rat liver: zonation of a metabolic pathway
  publication-title: Hepatology
– volume: 519
  start-page: 34
  year: 2017
  end-page: 43
  ident: bib21
  article-title: Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates
  publication-title: Int. J. Pharm.
– volume: 8
  start-page: 51
  year: 2016
  end-page: 60
  ident: bib29
  article-title: Towards the development of an enzyme replacement therapy for the metabolic disorder propionic acidemia
  publication-title: Mol. Genet. Metab. Rep.
– volume: 113
  start-page: 127
  year: 2014
  end-page: 130
  ident: bib7
  article-title: A longitudinal study of urea cycle disorders
  publication-title: Mol. Genet. Metabol.
– start-page: 298
  year: 2017
  end-page: 304
  ident: bib9
  article-title: Inborn errors of urea synthesis
  publication-title: Swaiman's Pediatric Neurology, 6th Edition Principles and Practice
– volume: 22
  start-page: 346
  year: 2004
  end-page: 353
  ident: bib49
  article-title: Codon bias and heterologous protein expression
  publication-title: Trends Biotechnol.
– volume: 105
  start-page: 1
  year: 1982
  end-page: 7
  ident: bib37
  article-title: Processing of pre-ornithine transcarbamylase requires a zinc-dependent protease localized to the mitochondrial matrix
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 120
  start-page: 299
  year: 2017
  end-page: 305
  ident: bib31
  article-title: AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice
  publication-title: Mol. Genet. Metabol.
– volume: 21
  start-page: 3548
  year: 2017
  end-page: 3558
  ident: bib40
  article-title: Systemic messenger RNA therapy as a treatment for methylmalonic acidemia
  publication-title: Cell Rep.
– volume: 116
  start-page: 21150
  year: 2019
  end-page: 21159
  ident: bib32
  article-title: Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 1536
  year: 2022
  ident: bib47
  article-title: Therapeutic enzyme engineering using a generative neural network
  publication-title: Sci. Rep.
– volume: 32
  start-page: 375
  year: 2022
  end-page: 382
  ident: bib43
  article-title: Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters
  publication-title: Cell Res.
– volume: 478
  start-page: 4169
  year: 2021
  end-page: 4185
  ident: bib53
  article-title: New tools for automated cryo-EM single-particle analysis in RELION-4.0
  publication-title: Biochem. J.
– volume: 28
  start-page: 332
  year: 1976
  end-page: 338
  ident: bib12
  article-title: X-chromosome inactivation in human liver: confirmation of X-linkage of ornithine transcarbamylase
  publication-title: Am. J. Hum. Genet.
– volume: 106
  start-page: 2338
  year: 2022
  end-page: 2347
  ident: bib23
  article-title: Novel complement C5 small-interfering RNA lipid nanoparticle prolongs graft survival in a hypersensitized rat kidney transplant model
  publication-title: Transplantation
– volume: 47
  start-page: 160
  year: 2004
  end-page: 165
  ident: bib3
  article-title: Hyperammonemia in pediatric clinics: a review of ornithine transcarbamylase deficiency (OTCD) based on our case studies
  publication-title: JMAJ
– volume: 39
  start-page: 271
  year: 2000
  end-page: 277
  ident: bib27
  article-title: Crystal structure of human ornithine transcarbamylase complexed with carbamoyl phosphate and L-norvaline at 1.9 Å resolution
  publication-title: Proteins
– volume: 6
  start-page: 5
  year: 2019
  end-page: 17
  ident: bib58
  article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis
  publication-title: IUCrJ
– volume: 86
  start-page: 4142
  year: 1989
  end-page: 4146
  ident: bib59
  article-title: The
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 142
  start-page: 111953
  year: 2021
  ident: bib45
  article-title: Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2
  publication-title: Biomed. Pharmacother.
– volume: 26
  start-page: 801
  year: 2018
  end-page: 813
  ident: bib20
  article-title: Targeted mRNA therapy for ornithine transcarbamylase deficiency
  publication-title: Mol. Ther.
– volume: 20
  start-page: 169
  year: 2021
  end-page: 180
  ident: bib15
  article-title: Long-term correction of ornithine transcarbamylase deficiency in Spf-Ash mice with a translationally optimized AAV vector
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 14
  start-page: 1072
  year: 2014
  end-page: 1082
  ident: bib18
  article-title: Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations
  publication-title: Curr. Pharmaceut. Biotechnol.
– volume: 12
  start-page: 3090
  year: 2021
  ident: bib41
  article-title: mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease
  publication-title: Nat. Commun.
– volume: 6
  start-page: 24156
  year: 2016
  ident: bib39
  article-title: PGC-1α promotes ureagenesis in mouse periportal hepatocytes through SIRT3 and SIRT5 in response to glucagon
  publication-title: Sci. Rep.
– volume: 4
  start-page: 147
  year: 1985
  end-page: 156
  ident: bib35
  article-title: The primary structure of the imported mitochondrial protein, ornithine transcarbamylase from rat liver: mRNA levels during ontogeny
  publication-title: DNA
– volume: 1141
  start-page: 109
  year: 2014
  end-page: 120
  ident: bib50
  article-title: Microfluidic-based manufacture of siRNA-lipid nanoparticles for therapeutic applications
  publication-title: Methods Mol. Biol.
– volume: 13
  start-page: 439
  year: 2017
  end-page: 448
  ident: bib13
  article-title: An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease
  publication-title: Expet Opin. Drug Metabol. Toxicol.
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  ident: bib54
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
– volume: 56
  start-page: 7
  year: 2018
  end-page: 21
  ident: bib8
  article-title: Aminoacidopathies: prevalence, etiology, screening, and treatment options
  publication-title: Biochem. Genet.
– volume: 281
  start-page: 23514
  year: 2006
  end-page: 23524
  ident: bib46
  article-title: Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn)
  publication-title: J. Biol. Chem.
– volume: 211
  start-page: 107545
  year: 2020
  ident: bib57
  article-title: Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER
  publication-title: J. Struct. Biol.
– volume: 42
  start-page: 181
  year: 2015
  end-page: 194
  ident: bib4
  article-title: Genotype-phenotype correlations in ornithine transcarbamylase deficiency: a mutation update
  publication-title: J. Genet. Genomics
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bib52
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 29
  start-page: 2898
  year: 2021
  end-page: 2909
  ident: bib19
  article-title: AAV integration in human hepatocytes
  publication-title: Mol. Ther.
– volume: 29
  start-page: 1192
  year: 2021
  end-page: 1199.e4
  ident: bib51
  article-title: Improving particle quality in cryo-EM analysis using a PEGylation method
  publication-title: Structure
– volume: 273
  start-page: 34247
  year: 1998
  end-page: 34254
  ident: bib26
  article-title: 1.85-Å resolution crystal structure of human ornithine transcarbamoylase complexed with N-phosphonacetyl-L-ornithine. Catalytic mechanism and correlation with inherited deficiency
  publication-title: J. Biol. Chem.
– volume: 93
  start-page: 313
  year: 2000
  end-page: 319
  ident: bib5
  article-title: Genotype spectrum of ornithine transcarbamylase deficiency: correlation with the clinical and biochemical phenotype
  publication-title: Am. J. Med. Genet.
– volume: 23
  start-page: 135
  year: 2021
  end-page: 146
  ident: bib16
  article-title: Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 21
  start-page: 112
  year: 1998
  end-page: 118
  ident: bib14
  article-title: Liver transplantation for the treatment of urea cycle disorders
  publication-title: J. Inherit. Metab. Dis.
– volume: 31
  start-page: 339
  year: 2023
  end-page: 351
  ident: bib24
  article-title: Identification of potent siRNA targeting complement C5 and its robust activity in pre-clinical models of myasthenia gravis and collagen-induced arthritis
  publication-title: Mol. Ther. Nucleic Acids
– volume: 122
  start-page: 641
  year: 1982
  end-page: 647
  ident: bib36
  article-title: A mitochondrial protease that cleaves the precursor of ornithine carbamoyltransferase. Purification and properties
  publication-title: Eur. J. Biochem.
– volume: 30
  start-page: 70
  year: 2021
  end-page: 82
  ident: bib56
  article-title: UCSF ChimeraX: Structure visualization for researchers, educators, and developers
  publication-title: Protein Sci.
– volume: 19
  start-page: 25
  year: 2010
  end-page: 30
  ident: bib11
  article-title: Contiguous Xp11.4 Gene deletion leading to ornithine transcarbamylase deficiency detected by high-density single-nucleotide array
  publication-title: Clin. Pediatr. Endocrinol.
– volume: 354
  start-page: 501
  year: 2001
  end-page: 509
  ident: bib28
  article-title: Human ornithine transcarbamylase: crystallographic insights into substrate recognition and conformational changes
  publication-title: Biochem. J.
– volume: 99
  start-page: 623
  year: 1981
  end-page: 629
  ident: bib33
  article-title: Site of synthesis and intracellular transport of the precursor of mitochondrial ornithine carbamoyltransferase
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 2
  start-page: e33
  year: 2022
  ident: bib48
  article-title: Restoring ornithine transcarbamylase (OTC) activity in an OTC-deficient mouse model using LUNAR-OTC mRNA
  publication-title: Clin. Transl. Discov.
– volume: 30
  start-page: 226
  year: 2022
  end-page: 240
  ident: bib25
  article-title: Design and lyophilization of lipid nanoparticles for mRNA vaccine and its robust immune response in mice and nonhuman primates
  publication-title: Mol. Ther. Nucleic Acids
– volume: 192
  start-page: 216
  year: 2015
  end-page: 221
  ident: bib55
  article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs
  publication-title: J. Struct. Biol.
– volume: 25
  start-page: 708
  year: 2021
  end-page: 715
  ident: bib22
  article-title: siRNA-loaded biodegradable lipid nanoparticles ameliorate concanavalin A-induced liver injury
  publication-title: Mol. Ther. Nucleic Acids
– volume: 26
  start-page: 1509
  year: 2018
  end-page: 1519
  ident: bib42
  article-title: A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates
  publication-title: Mol. Ther.
– volume: 5
  start-page: 404
  year: 2012
  end-page: 410
  ident: bib30
  article-title: Sustained correction of OTC deficiency in
  publication-title: Gene Ther.
– volume: 354
  start-page: 501
  year: 2001
  ident: 10.1016/j.omtn.2023.06.023_bib28
  article-title: Human ornithine transcarbamylase: crystallographic insights into substrate recognition and conformational changes
  publication-title: Biochem. J.
  doi: 10.1042/bj3540501
– volume: 519
  start-page: 34
  year: 2017
  ident: 10.1016/j.omtn.2023.06.023_bib21
  article-title: Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.01.016
– volume: 25
  start-page: 708
  year: 2021
  ident: 10.1016/j.omtn.2023.06.023_bib22
  article-title: Irf5 siRNA-loaded biodegradable lipid nanoparticles ameliorate concanavalin A-induced liver injury
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2021.08.023
– volume: 20
  start-page: 169
  year: 2021
  ident: 10.1016/j.omtn.2023.06.023_bib15
  article-title: Long-term correction of ornithine transcarbamylase deficiency in Spf-Ash mice with a translationally optimized AAV vector
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2020.11.005
– volume: 5
  start-page: 404
  year: 2012
  ident: 10.1016/j.omtn.2023.06.023_bib30
  article-title: Sustained correction of OTC deficiency in Spfash mice using optimized self-complementary AAV2/8 vectors
  publication-title: Gene Ther.
  doi: 10.1038/gt.2011.111
– volume: 118
  start-page: 358
  year: 1981
  ident: 10.1016/j.omtn.2023.06.023_bib60
  article-title: An improved colorimetric assay for aspartate and ornithine transcarbamylases
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(81)90594-7
– volume: 29
  start-page: 1192
  year: 2021
  ident: 10.1016/j.omtn.2023.06.023_bib51
  article-title: Improving particle quality in cryo-EM analysis using a PEGylation method
  publication-title: Structure
  doi: 10.1016/j.str.2021.05.004
– volume: 29
  start-page: 2898
  year: 2021
  ident: 10.1016/j.omtn.2023.06.023_bib19
  article-title: AAV integration in human hepatocytes
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2021.08.031
– volume: 120
  start-page: 299
  year: 2017
  ident: 10.1016/j.omtn.2023.06.023_bib31
  article-title: AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice
  publication-title: Mol. Genet. Metabol.
  doi: 10.1016/j.ymgme.2017.02.011
– volume: 8
  start-page: 51
  year: 2016
  ident: 10.1016/j.omtn.2023.06.023_bib29
  article-title: Towards the development of an enzyme replacement therapy for the metabolic disorder propionic acidemia
  publication-title: Mol. Genet. Metab. Rep.
  doi: 10.1016/j.ymgmr.2016.06.009
– volume: 12
  start-page: 1536
  year: 2022
  ident: 10.1016/j.omtn.2023.06.023_bib47
  article-title: Therapeutic enzyme engineering using a generative neural network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-05195-x
– volume: 42
  start-page: 181
  year: 2015
  ident: 10.1016/j.omtn.2023.06.023_bib4
  article-title: Genotype-phenotype correlations in ornithine transcarbamylase deficiency: a mutation update
  publication-title: J. Genet. Genomics
  doi: 10.1016/j.jgg.2015.04.003
– volume: 4
  start-page: 147
  year: 1985
  ident: 10.1016/j.omtn.2023.06.023_bib35
  article-title: The primary structure of the imported mitochondrial protein, ornithine transcarbamylase from rat liver: mRNA levels during ontogeny
  publication-title: DNA
  doi: 10.1089/dna.1985.4.147
– volume: 30
  start-page: 70
  year: 2021
  ident: 10.1016/j.omtn.2023.06.023_bib56
  article-title: UCSF ChimeraX: Structure visualization for researchers, educators, and developers
  publication-title: Protein Sci.
  doi: 10.1002/pro.3943
– volume: 14
  start-page: 1072
  year: 2014
  ident: 10.1016/j.omtn.2023.06.023_bib18
  article-title: Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations
  publication-title: Curr. Pharmaceut. Biotechnol.
  doi: 10.2174/1389201015666140327141710
– volume: 273
  start-page: 34247
  year: 1998
  ident: 10.1016/j.omtn.2023.06.023_bib26
  article-title: 1.85-Å resolution crystal structure of human ornithine transcarbamoylase complexed with N-phosphonacetyl-L-ornithine. Catalytic mechanism and correlation with inherited deficiency
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.51.34247
– volume: 32
  start-page: 375
  year: 2022
  ident: 10.1016/j.omtn.2023.06.023_bib43
  article-title: Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters
  publication-title: Cell Res.
  doi: 10.1038/s41422-022-00630-0
– volume: 30
  start-page: 56
  year: 2009
  ident: 10.1016/j.omtn.2023.06.023_bib1
  article-title: Genetic variation in the urea cycle: a model resource for investigating key candidate genes for common diseases
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.20813
– volume: 18
  start-page: 1586
  year: 2011
  ident: 10.1016/j.omtn.2023.06.023_bib17
  article-title: Adeno-associated virus antibody profiles in newborns, children, and adolescents
  publication-title: Clin. Vaccine Immunol.
  doi: 10.1128/CVI.05107-11
– volume: 478
  start-page: 4169
  year: 2021
  ident: 10.1016/j.omtn.2023.06.023_bib53
  article-title: New tools for automated cryo-EM single-particle analysis in RELION-4.0
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20210708
– volume: 21
  start-page: 3548
  year: 2017
  ident: 10.1016/j.omtn.2023.06.023_bib40
  article-title: Systemic messenger RNA therapy as a treatment for methylmalonic acidemia
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.11.081
– volume: 22
  start-page: 346
  year: 2004
  ident: 10.1016/j.omtn.2023.06.023_bib49
  article-title: Codon bias and heterologous protein expression
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2004.04.006
– volume: 31
  start-page: 339
  year: 2023
  ident: 10.1016/j.omtn.2023.06.023_bib24
  article-title: Identification of potent siRNA targeting complement C5 and its robust activity in pre-clinical models of myasthenia gravis and collagen-induced arthritis
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2023.01.005
– volume: 6
  start-page: 24156
  year: 2016
  ident: 10.1016/j.omtn.2023.06.023_bib39
  article-title: PGC-1α promotes ureagenesis in mouse periportal hepatocytes through SIRT3 and SIRT5 in response to glucagon
  publication-title: Sci. Rep.
  doi: 10.1038/srep24156
– volume: 12
  start-page: 3090
  year: 2021
  ident: 10.1016/j.omtn.2023.06.023_bib41
  article-title: mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23318-2
– volume: 99
  start-page: 623
  year: 1981
  ident: 10.1016/j.omtn.2023.06.023_bib33
  article-title: Site of synthesis and intracellular transport of the precursor of mitochondrial ornithine carbamoyltransferase
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(81)91790-3
– volume: 113
  start-page: 127
  year: 2014
  ident: 10.1016/j.omtn.2023.06.023_bib7
  article-title: A longitudinal study of urea cycle disorders
  publication-title: Mol. Genet. Metabol.
  doi: 10.1016/j.ymgme.2014.08.001
– volume: 21
  start-page: 112
  issue: Suppl. 1
  year: 1998
  ident: 10.1016/j.omtn.2023.06.023_bib14
  article-title: Liver transplantation for the treatment of urea cycle disorders
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1023/A:1005317909946
– volume: 30
  start-page: 217
  year: 2007
  ident: 10.1016/j.omtn.2023.06.023_bib6
  article-title: Estimation of the total number of disease-causing mutations in ornithine transcarbamylase (OTC) deficiency. Value of the OTC structure in predicting a mutation pathogenic potential
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-007-0429-x
– volume: 26
  start-page: 801
  year: 2018
  ident: 10.1016/j.omtn.2023.06.023_bib20
  article-title: Targeted mRNA therapy for ornithine transcarbamylase deficiency
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.12.024
– start-page: 298
  year: 2017
  ident: 10.1016/j.omtn.2023.06.023_bib9
  article-title: Inborn errors of urea synthesis
– volume: 122
  start-page: 641
  year: 1982
  ident: 10.1016/j.omtn.2023.06.023_bib36
  article-title: A mitochondrial protease that cleaves the precursor of ornithine carbamoyltransferase. Purification and properties
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1982.tb06487.x
– volume: 39
  start-page: 271
  year: 2000
  ident: 10.1016/j.omtn.2023.06.023_bib27
  article-title: Crystal structure of human ornithine transcarbamylase complexed with carbamoyl phosphate and L-norvaline at 1.9 Å resolution
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(20000601)39:4<271::AID-PROT10>3.0.CO;2-E
– volume: 106
  start-page: 2338
  year: 2022
  ident: 10.1016/j.omtn.2023.06.023_bib23
  article-title: Novel complement C5 small-interfering RNA lipid nanoparticle prolongs graft survival in a hypersensitized rat kidney transplant model
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000004207
– volume: 23
  start-page: 135
  year: 2021
  ident: 10.1016/j.omtn.2023.06.023_bib16
  article-title: Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2021.09.005
– volume: 27
  start-page: 387
  year: 1985
  ident: 10.1016/j.omtn.2023.06.023_bib44
  article-title: Regulation of mitochondrial protein concentration: a plausible model which may permit assessing protein turnover
  publication-title: Curr. Top. Cell. Regul.
  doi: 10.1016/B978-0-12-152827-0.50040-2
– volume: 211
  start-page: 107545
  year: 2020
  ident: 10.1016/j.omtn.2023.06.023_bib57
  article-title: Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2020.107545
– volume: 88
  start-page: 1829
  year: 1980
  ident: 10.1016/j.omtn.2023.06.023_bib34
  article-title: Processing of a putative precursor of rat liver ornithine transcarbamylase, a mitochondrial matrix enzyme
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a133158
– volume: 24
  start-page: 407
  year: 1996
  ident: 10.1016/j.omtn.2023.06.023_bib38
  article-title: Development of the ornithine cycle in rat liver: zonation of a metabolic pathway
  publication-title: Hepatology
  doi: 10.1002/hep.510240219
– volume: 192
  start-page: 216
  year: 2015
  ident: 10.1016/j.omtn.2023.06.023_bib55
  article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.08.008
– volume: 1141
  start-page: 109
  year: 2014
  ident: 10.1016/j.omtn.2023.06.023_bib50
  article-title: Microfluidic-based manufacture of siRNA-lipid nanoparticles for therapeutic applications
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-0363-4_6
– volume: 47
  start-page: 160
  year: 2004
  ident: 10.1016/j.omtn.2023.06.023_bib3
  article-title: Hyperammonemia in pediatric clinics: a review of ornithine transcarbamylase deficiency (OTCD) based on our case studies
  publication-title: JMAJ
– volume: 14
  start-page: 331
  year: 2017
  ident: 10.1016/j.omtn.2023.06.023_bib54
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 4
  start-page: 815
  year: 2000
  ident: 10.1016/j.omtn.2023.06.023_bib2
  article-title: Urea cycle disorders
  publication-title: Clin. Liver Dis.
  doi: 10.1016/S1089-3261(05)70143-4
– volume: 105
  start-page: 1
  year: 1982
  ident: 10.1016/j.omtn.2023.06.023_bib37
  article-title: Processing of pre-ornithine transcarbamylase requires a zinc-dependent protease localized to the mitochondrial matrix
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(82)80002-8
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.omtn.2023.06.023_bib52
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 94
  start-page: 498
  year: 2008
  ident: 10.1016/j.omtn.2023.06.023_bib10
  article-title: Complex management of a patient with a contiguous Xp11.4 gene deletion involving ornithine transcarbamylase: a role for detailed molecular analysis in complex presentations of classical diseases
  publication-title: Mol. Genet. Metabol.
  doi: 10.1016/j.ymgme.2008.04.011
– volume: 116
  start-page: 21150
  year: 2019
  ident: 10.1016/j.omtn.2023.06.023_bib32
  article-title: Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1906182116
– volume: 19
  start-page: 25
  year: 2010
  ident: 10.1016/j.omtn.2023.06.023_bib11
  article-title: Contiguous Xp11.4 Gene deletion leading to ornithine transcarbamylase deficiency detected by high-density single-nucleotide array
  publication-title: Clin. Pediatr. Endocrinol.
  doi: 10.1297/cpe.19.25
– volume: 30
  start-page: 226
  year: 2022
  ident: 10.1016/j.omtn.2023.06.023_bib25
  article-title: Design and lyophilization of lipid nanoparticles for mRNA vaccine and its robust immune response in mice and nonhuman primates
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2022.09.017
– volume: 86
  start-page: 4142
  year: 1989
  ident: 10.1016/j.omtn.2023.06.023_bib59
  article-title: The spfash mouse: a missense mutation in the ornithine transcarbamylase gene also causes aberrant mRNA splicing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.86.11.4142
– volume: 13
  start-page: 439
  year: 2017
  ident: 10.1016/j.omtn.2023.06.023_bib13
  article-title: An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease
  publication-title: Expet Opin. Drug Metabol. Toxicol.
  doi: 10.1080/17425255.2017.1262843
– volume: 56
  start-page: 7
  year: 2018
  ident: 10.1016/j.omtn.2023.06.023_bib8
  article-title: Aminoacidopathies: prevalence, etiology, screening, and treatment options
  publication-title: Biochem. Genet.
  doi: 10.1007/s10528-017-9825-6
– volume: 281
  start-page: 23514
  year: 2006
  ident: 10.1016/j.omtn.2023.06.023_bib46
  article-title: Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M604292200
– volume: 28
  start-page: 332
  year: 1976
  ident: 10.1016/j.omtn.2023.06.023_bib12
  article-title: X-chromosome inactivation in human liver: confirmation of X-linkage of ornithine transcarbamylase
  publication-title: Am. J. Hum. Genet.
– volume: 26
  start-page: 1509
  year: 2018
  ident: 10.1016/j.omtn.2023.06.023_bib42
  article-title: A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.03.010
– volume: 2
  start-page: e33
  year: 2022
  ident: 10.1016/j.omtn.2023.06.023_bib48
  article-title: Restoring ornithine transcarbamylase (OTC) activity in an OTC-deficient mouse model using LUNAR-OTC mRNA
  publication-title: Clin. Transl. Discov.
  doi: 10.1002/ctd2.33
– volume: 142
  start-page: 111953
  year: 2021
  ident: 10.1016/j.omtn.2023.06.023_bib45
  article-title: Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2021.111953
– volume: 93
  start-page: 313
  year: 2000
  ident: 10.1016/j.omtn.2023.06.023_bib5
  article-title: Genotype spectrum of ornithine transcarbamylase deficiency: correlation with the clinical and biochemical phenotype
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/1096-8628(20000814)93:4<313::AID-AJMG11>3.0.CO;2-M
– volume: 6
  start-page: 5
  year: 2019
  ident: 10.1016/j.omtn.2023.06.023_bib58
  article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis
  publication-title: IUCrJ
  doi: 10.1107/S205225251801463X
SSID ssj0000601262
Score 2.4157593
Snippet Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 210
SubjectTerms cryo-electron microscopy
homotrimer conformation
lipid nanoparticles
messenger RNA therapy
mitochondria localization
MT: delivery strategies: ornithine transcarbamylase
Original
Otcspf-ash mice
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB7LS0ZCXJBF1u8cF0RVIdEDolJvlp9qEZut2vTQf8-MnV1tQCoXrkmcxPY48008832EvCsi6BJMYiGGwqTKitkgMluaAsvcmhQrkfa3E318Kr-eqbM9qS_MCWv0wG3gPkqbsw5eqD4VmU303dIbGaIKWqVYi6d513d7wVT7BsOHt6qJ8qXmjIOlTRUzLblrsx6R_JSLSt7JxcwrVfL-mXP6G3z-mUO555SOHpIHE5qkq9aLR-ReHh6Tw9UAkfT6lr6nNb-z_jg_JJcoU53o4AeIk1sD1vLAc6Lr7ycrivh1UvOi_pp6ustCx1MUK7jGc0ClbEQHF3GnYn0L6DvTlJGIAqs4aZXWoShy_4ScHn358fmYTXoLLCprR2ZsZ4xIJhnOS0hCJ5GUiIan2GcPwK4AGNI-LUOwOXINwWPgupTEc1809-IpORg2Q35OaLDcSxV7baKRnnMfQlHgB5PPynqfFmS5HW8XJzJy1MT45bZZZz8dzpHDOXKYesfFgnzYtblsVBx3Xv0Jp3F3JdJo1wNgXG4aZfcv41oQtTUCNyGShjTgVhd3Pvzt1mIcLFfcg_FD3txcO0ADEqJIIc2CPGsWtHtFYRTvtIXWdmZbsz7MzwwX55USHKs9wdLli__R65fkPvaFVaGMV-RgvLrJrwF6jeFNXWW_Ae3NMPE
  priority: 102
  providerName: Directory of Open Access Journals
Title Lipid nanoparticle-targeted mRNA formulation as a treatment for ornithine-transcarbamylase deficiency model mice
URI https://dx.doi.org/10.1016/j.omtn.2023.06.023
https://www.ncbi.nlm.nih.gov/pubmed/37520683
https://www.proquest.com/docview/2844086347
https://pubmed.ncbi.nlm.nih.gov/PMC10372164
https://doaj.org/article/48ee6ba359df4e7ca01a74bc5b65dc51
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXBBQHkshcpIiAsy2rXjxx4QWhBVhdQeECv1ZvlJi7rZsptK3X_PjJMsBKoeuCaePOyx55tk_H2EvM7Cq-x1ZD74zCqZJDNeJDbRGaa50TEUIu3jE3U0r76cytMd0ssddR24vjG1Qz2p-eri3fXPzQeY8O9_12otFw1ymXJRuDi5uEPuQmRSmIwdd3C_XZlhOVa82ztzs-kgPhUa_0GY-heG_l1N-Ud4OnxA7ne4ks5aR3hIdlL9iOzNasipFxv6hpZKz_IJfY9comB1pLWrIWNuDVhbEZ4iXXw9mVFEsp2uF3Vr6ui2Hh1PUdzL1ZwBPmUNhrqA_ywWG8DhicaElBS4n5MWkR2KcvePyfzw87dPR6xTXmBBGtMwbcZai6ij5jz7KFQUUYqgeQzT5ADiZYBFysWJ9yYFriCN9FzlHHmaZsWdeEJ262WdnhHqDXeVDFOlg64c5877LCEiRpekcS6OyKTvbxs6WnJUx7iwff3ZD4tjZHGMLBbhcTEib7c2ly0px62tP-IwblsioXY5sFx9t10v28qkpLwTchpzlXRw44nTlQ_SKxmDnIyI7J3AdtikxRxwqfNbb_6q9xgLExf_xrg6La_WFnBBBfmkqPSIPG09aPuIQks-VgaszcC3Bu8wPFOfnxVycNz3ySEHfv7_pvvkHr4BK0IZL8hus7pKLwF6Nf6gfLI4KLPqF1GbNi4
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipid+nanoparticle-targeted+mRNA+formulation+as+a+treatment+for+ornithine-transcarbamylase+deficiency+model+mice&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Yamazaki%2C+Kazuto&rft.au=Kubara%2C+Kenji&rft.au=Ishii%2C+Satoko&rft.au=Kondo%2C+Keita&rft.date=2023-09-12&rft.pub=American+Society+of+Gene+%26+Cell+Therapy&rft.eissn=2162-2531&rft.volume=33&rft.spage=210&rft.epage=226&rft_id=info:doi/10.1016%2Fj.omtn.2023.06.023&rft.externalDocID=PMC10372164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon