Tunable nonequilibrium dynamics of field quenches in spin ice

We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 2; pp. 640 - 645
Main Authors Mostame, Sarah, Castelnovo, Claudio, Moessner, Roderich, Sondhi, Shivaji L.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 14.01.2014
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1317631111

Cover

Abstract We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state—a “Coulomb phase”—whose excitations are point-like defects—magnetic monopoles—in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties—including even the effective dimensionality of the system—can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics.
AbstractList Spin ices are a class of magnetic compounds exhibiting a unique ground state in the form of a so-called magnetic Coulomb liquid that has as its excitations emergent magnetic monopoles. It is through the motion of these monopoles that spin ices are dynamical; dynamical studies thus exhibit new behavior on account of the exotic magnetic phase and also provide experimental evidence of its unusual monopole excitations. We find that nonequilibrium dynamics is an ideal setting for achieving both goals—in particular, it brings together notions from different types of dynamical systems popular in other branches of the natural sciences, such as reaction-diffusion problems, dimer physics, and kinematically constrained dynamics. Such dynamics can be transparently understood theoretically and simply probed experimentally. We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state—a “Coulomb phase”—whose excitations are point-like defects—magnetic monopoles—in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties—including even the effective dimensionality of the system—can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics.
We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state--a "Coulomb phase"--whose excitations are point-like defects--magnetic monopoles--in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties--including even the effective dimensionality of the system--can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics.
We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state-a "Coulomb phase"-whose excitations are point-like defects-magnetic monopoles-in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties-including even the effective dimensionality of the system-can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics. [PUBLICATION ABSTRACT]
We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state--a "Coulomb phase"--whose excitations are point-like defects--magnetic monopoles--in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties--including even the effective dimensionality of the system--can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics.We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state--a "Coulomb phase"--whose excitations are point-like defects--magnetic monopoles--in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties--including even the effective dimensionality of the system--can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics.
Author Castelnovo, Claudio
Moessner, Roderich
Sondhi, Shivaji L.
Mostame, Sarah
Author_xml – sequence: 1
  givenname: Sarah
  surname: Mostame
  fullname: Mostame, Sarah
– sequence: 2
  givenname: Claudio
  surname: Castelnovo
  fullname: Castelnovo, Claudio
– sequence: 3
  givenname: Roderich
  surname: Moessner
  fullname: Moessner, Roderich
– sequence: 4
  givenname: Shivaji L.
  surname: Sondhi
  fullname: Sondhi, Shivaji L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24379372$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAUtFAR3RbOnIBIXLikff6IPw5FQhVfUiUOtGfLsZ3Wq8TexglS_z0Ou-xCD-CD32Hmjee98Qk6iil6hF5iOMMg6PkmmnyGKRac4nKeoBUGhWvOFByhFQARtWSEHaOTnNcAoBoJz9AxYVQoKsgKXVzP0bS9rxbh-zn0oR3DPFTuIZoh2FylruqC7111P_to73yuQqzyplzB-ufoaWf67F_s6im6-fTx-vJLffXt89fLD1e1baSc6kZY0fLOtZZablrHOsdVg50C3AArhbYeEyMNJdJ5h51zxIIltqGOyK6lp-j9Vnczt4N31sdpNL3ejGEw44NOJui_kRju9G36oalUHEteBN7tBMZUBsmTHkK2vu9N9GnOGkugoBgj5P_UslvBBROsUN8-oq7TPMayiV8spYggorBe_2l-7_p3CIVwviXYMeU8-m5PwaCXmPUSsz7EXDqaRx02TGYKaZk-9P_oe7WzsgD7VzDWRHMGB3ydpzQenFIhyt9ZnL7Z4p1J2tyOIeub7wQwB8CMcq7oT2KUyKQ
CitedBy_id crossref_primary_10_1103_PhysRevB_109_094427
crossref_primary_10_1038_nmat3924
crossref_primary_10_1103_PhysRevB_102_060407
crossref_primary_10_1088_1402_4896_ad5e10
crossref_primary_10_1103_PhysRevB_105_184422
crossref_primary_10_1103_PhysRevB_89_235130
crossref_primary_10_1088_1361_648X_aa5334
crossref_primary_10_1088_1361_6463_aab0de
crossref_primary_10_1103_PhysRevB_90_064409
crossref_primary_10_1038_s41567_018_0077_0
crossref_primary_10_1103_PhysRevB_90_064427
crossref_primary_10_1103_PhysRevE_89_030301
crossref_primary_10_1103_PhysRevLett_131_056502
crossref_primary_10_1038_s41467_023_36886_2
crossref_primary_10_1038_s42005_021_00552_0
crossref_primary_10_1103_PhysRevB_101_224416
crossref_primary_10_1088_1361_648X_acf106
crossref_primary_10_1088_1742_5468_ab3aef
crossref_primary_10_1103_PhysRevB_100_184411
crossref_primary_10_1016_j_jmmm_2019_166133
crossref_primary_10_1088_1367_2630_17_5_053036
crossref_primary_10_1103_PhysRevB_92_075142
crossref_primary_10_1007_s10909_020_02521_3
crossref_primary_10_1063_1_4980125
crossref_primary_10_1088_1361_648X_aba153
crossref_primary_10_1103_PhysRevB_92_155120
crossref_primary_10_1103_PhysRevB_94_104416
crossref_primary_10_1038_nphys3251
Cites_doi 10.1103/PhysRevLett.108.217203
10.1143/JPSJ.80.123711
10.1038/nphys2466
10.1103/PhysRevLett.111.057204
10.1080/00018730110099650
10.1088/0953-8984/12/40/103
10.1134/1.2103216
10.1063/1.445022
10.1103/PhysRevB.69.064414
10.1103/PhysRevB.87.214302
10.1088/1367-2630/15/5/055012
10.1103/PhysRevB.85.020410
10.1038/nature06433
10.1103/PhysRevLett.90.207205
10.1146/annurev-conmatphys-070909-104138
10.1126/science.1163338
10.1038/nphys2613
10.1088/0953-8984/25/36/363201
10.1098/rspa.1980.0135
10.1088/0953-8984/16/43/R02
10.1126/science.267.5206.1924
10.1038/nphys1227
10.1103/PhysRevLett.104.107201
10.1038/nature12399
10.1146/annurev-conmatphys-020911-125058
10.1103/PhysRevLett.53.1244
10.1126/science.1064761
10.1143/JPSJ.72.411
10.1073/pnas.0902443106
10.1016/S0010-4655(01)00412-X
10.1103/RevModPhys.85.1473
10.1080/0001873031000093582
10.1209/0295-5075/97/30002
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 14, 2014
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 14, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1317631111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE

AGRICOLA
Virology and AIDS Abstracts

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
DocumentTitleAlternate Tunable non-eq. dynamics in spin ice field quench
EISSN 1091-6490
EndPage 645
ExternalDocumentID PMC3896186
3187871761
24379372
10_1073_pnas_1317631111
111_2_640
23770092
US201600143669
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c588t-57c7b6fdbc3c6abd4fd6951d901504d903be12a8a328ded1ddd2c0c2c53d28fb3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 16:59:22 EDT 2025
Thu Sep 04 22:10:34 EDT 2025
Fri Sep 05 09:17:37 EDT 2025
Mon Jun 30 08:24:22 EDT 2025
Mon Jul 21 06:01:43 EDT 2025
Tue Jul 01 01:52:57 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Wed Nov 11 00:30:32 EST 2020
Thu May 29 08:40:52 EDT 2025
Wed Dec 27 19:20:11 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords reaction-diffusion processes
frustrated magnetism
kinetically constrained models
nonequilibrium dynamics and quenches
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c588t-57c7b6fdbc3c6abd4fd6951d901504d903be12a8a328ded1ddd2c0c2c53d28fb3
Notes http://dx.doi.org/10.1073/pnas.1317631111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Eduardo Fradkin, University of Illinois at Urbana–Champaign, Urbana, IL, and approved December 4, 2013 (received for review September 19, 2013)
Author contributions: S.M., C.C., R.M., and S.L.S. designed research, performed research, analyzed data, and wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/111/2/640.full.pdf
PMID 24379372
PQID 1490992727
PQPubID 42026
PageCount 6
ParticipantIDs pubmed_primary_24379372
proquest_journals_1490992727
proquest_miscellaneous_1803094422
proquest_miscellaneous_1490767474
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3896186
crossref_citationtrail_10_1073_pnas_1317631111
fao_agris_US201600143669
crossref_primary_10_1073_pnas_1317631111
pnas_primary_111_2_640
jstor_primary_23770092
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-14
PublicationDateYYYYMMDD 2014-01-14
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Tokuyama M (e_1_3_3_3_2) 2004
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_21_2
23985872 - Nature. 2013 Aug 29;500(7464):553-7
19720990 - Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15209-13
23948652 - J Phys Condens Matter. 2013 Sep 11;25(36):363201
19008440 - Science. 2008 Nov 14;322(5904):1077-81
18172493 - Nature. 2008 Jan 3;451(7174):42-5
23952441 - Phys Rev Lett. 2013 Aug 2;111(5):057204
23003295 - Phys Rev Lett. 2012 May 25;108(21):217203
12785926 - Phys Rev Lett. 2003 May 23;90(20):207205
17770101 - Science. 1995 Mar 31;267(5206):1924-35
11711667 - Science. 2001 Nov 16;294(5546):1495-501
20366451 - Phys Rev Lett. 2010 Mar 12;104(10):107201
References_xml – ident: e_1_3_3_27_2
  doi: 10.1103/PhysRevLett.108.217203
– ident: e_1_3_3_18_2
  doi: 10.1143/JPSJ.80.123711
– ident: e_1_3_3_20_2
  doi: 10.1038/nphys2466
– ident: e_1_3_3_35_2
  doi: 10.1103/PhysRevLett.111.057204
– ident: e_1_3_3_1_2
  doi: 10.1080/00018730110099650
– ident: e_1_3_3_15_2
  doi: 10.1088/0953-8984/12/40/103
– ident: e_1_3_3_13_2
  doi: 10.1134/1.2103216
– ident: e_1_3_3_6_2
  doi: 10.1063/1.445022
– ident: e_1_3_3_16_2
  doi: 10.1103/PhysRevB.69.064414
– volume-title: Slow Dynamics in Complex Systems: Third International Symposium on Slow Dynamics in Complex Systems
  year: 2004
  ident: e_1_3_3_3_2
– ident: e_1_3_3_17_2
– ident: e_1_3_3_12_2
  doi: 10.1103/PhysRevB.87.214302
– ident: e_1_3_3_32_2
  doi: 10.1088/1367-2630/15/5/055012
– ident: e_1_3_3_19_2
  doi: 10.1103/PhysRevB.85.020410
– ident: e_1_3_3_8_2
  doi: 10.1038/nature06433
– ident: e_1_3_3_23_2
  doi: 10.1103/PhysRevLett.90.207205
– ident: e_1_3_3_21_2
  doi: 10.1146/annurev-conmatphys-070909-104138
– ident: e_1_3_3_28_2
  doi: 10.1126/science.1163338
– ident: e_1_3_3_34_2
  doi: 10.1038/nphys2613
– ident: e_1_3_3_30_2
  doi: 10.1088/0953-8984/25/36/363201
– ident: e_1_3_3_25_2
  doi: 10.1098/rspa.1980.0135
– ident: e_1_3_3_24_2
  doi: 10.1088/0953-8984/16/43/R02
– ident: e_1_3_3_2_2
  doi: 10.1126/science.267.5206.1924
– ident: e_1_3_3_14_2
  doi: 10.1038/nphys1227
– ident: e_1_3_3_10_2
  doi: 10.1103/PhysRevLett.104.107201
– ident: e_1_3_3_33_2
  doi: 10.1038/nature12399
– ident: e_1_3_3_9_2
  doi: 10.1146/annurev-conmatphys-020911-125058
– ident: e_1_3_3_4_2
  doi: 10.1103/PhysRevLett.53.1244
– ident: e_1_3_3_7_2
  doi: 10.1126/science.1064761
– ident: e_1_3_3_22_2
  doi: 10.1143/JPSJ.72.411
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.0902443106
– ident: e_1_3_3_26_2
  doi: 10.1016/S0010-4655(01)00412-X
– ident: e_1_3_3_31_2
  doi: 10.1103/RevModPhys.85.1473
– ident: e_1_3_3_5_2
  doi: 10.1080/0001873031000093582
– ident: e_1_3_3_11_2
  doi: 10.1209/0295-5075/97/30002
– reference: 23985872 - Nature. 2013 Aug 29;500(7464):553-7
– reference: 23003295 - Phys Rev Lett. 2012 May 25;108(21):217203
– reference: 23952441 - Phys Rev Lett. 2013 Aug 2;111(5):057204
– reference: 23948652 - J Phys Condens Matter. 2013 Sep 11;25(36):363201
– reference: 20366451 - Phys Rev Lett. 2010 Mar 12;104(10):107201
– reference: 11711667 - Science. 2001 Nov 16;294(5546):1495-501
– reference: 17770101 - Science. 1995 Mar 31;267(5206):1924-35
– reference: 19008440 - Science. 2008 Nov 14;322(5904):1077-81
– reference: 19720990 - Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15209-13
– reference: 18172493 - Nature. 2008 Jan 3;451(7174):42-5
– reference: 12785926 - Phys Rev Lett. 2003 May 23;90(20):207205
SSID ssj0009580
Score 2.302609
Snippet We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range...
Spin ices are a class of magnetic compounds exhibiting a unique ground state in the form of a so-called magnetic Coulomb liquid that has as its excitations...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 640
SubjectTerms Computer Simulation
Diffusion
Dimerization
Dimers
Entropy
Ice
Kinetics
Low temperature
Magnetic fields
Magnetic monopoles
Magnetics
Magnetism
Magnetization
Metals, Rare Earth - chemistry
Models, Chemical
monitoring
Monopoles
nuclear magnetic resonance spectroscopy
Physical Sciences
Physics
Rapid quenching
Stochastic Processes
temperature
Tetrahedrons
Title Tunable nonequilibrium dynamics of field quenches in spin ice
URI https://www.jstor.org/stable/23770092
http://www.pnas.org/content/111/2/640.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24379372
https://www.proquest.com/docview/1490992727
https://www.proquest.com/docview/1490767474
https://www.proquest.com/docview/1803094422
https://pubmed.ncbi.nlm.nih.gov/PMC3896186
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2l5cIFUaDUUJCROBRZDvWuvescqwqoEI0q0ki5WetdmxgFu5C4B34JP5fZLycOLSpcnMhej53M8-zMeuYNQq9zkh7zBB5AAbNtGNM0D0dgi8NElGmRCFkkUhUKn4_p2TT-OEtmg8GvjayldpUPxc8b60r-R6uwD_SqqmT_QbOdUNgB30G_sAUNw_ZuOm5N5ROE8MX3ttLp--23QJou8zpJQ2eoBTpdeq5zr4LlFWxsxptzSy-6aWzpkgbGbpXwZF1zYg3BMgiDi_G6g_F5Ay6m6bbeW2A-5QChRd1cm-XYBW-lyfoyJ4GNtdU2n1VDtkp0J06aWupmw8FkXl3zr1Xwabi5PBGplJbQlIV25QIwDcamUHpYGCsLTkpIY9MntDPD1uhWG-GwMarUEDrZ-Zka-sk_TD_YKtWvuObLYQROESWRk9gj2d6a_LqURP0ynpFMCcjWAnbQPcyYTgD4MIs26JxTU9xkf5wjjWLk7dYd9PydnZI3LvFVsenC0Jsim-0E3Q2P5_IhemBDFf_E4G4PDYr6EdpzGPCPLGP5m8fIAdHvA9F3QPSb0tdA9B0Q_ar2FRB9AOITNH3_7vL0LLR9OUKRpOkqTJhgOS1lLoigPJdxKSk46lKvnsXwQfIiwjzlBKeykJGUEotjgUVCJE7LnOyjXXU_B8jnEjMQQ3KImmMpxEgmKRNlwSmGcbnw0ND9e5mwpPWqd8oiu0VfHjrqTrgyfC23Dz0AdWT8C8ym2XSCFdeiYrukdOShfa2jTgQmjCl6MjigpXSiIXzGGQDUQ4dOjZm1EHAtgPhohCFE8NCr7jDYb_VSjtdF05oxilCLxX8Zk6oXoXGM4fpPDTLWd6YIRQmDI6yHmW6A4o_vH6mrueaRh1hFdct4dve_7Dm6v37GD9Hu6kdbvACnfJW_1M_Hb5jI3-Q
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+nonequilibrium+dynamics+of+field+quenches+in+spin+ice&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mostame%2C+Sarah&rft.au=Castelnovo%2C+Claudio&rft.au=Moessner%2C+Roderich&rft.au=Sondhi%2C+Shivaji+L.&rft.date=2014-01-14&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=2&rft.spage=640&rft.epage=645&rft_id=info:doi/10.1073%2Fpnas.1317631111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1317631111
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F2.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F2.cover.gif