Determination of ferrous and total iron in refractory spinels

Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of col...

Full description

Saved in:
Bibliographic Details
Published inAnalytica chimica acta Vol. 910; pp. 25 - 35
Main Authors Amonette, J.E., Matyáš, J.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 03.03.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a series of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with recommended values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.03 wt% Fe) and total Fe values higher than obtained by ICP-AES analysis after decomposition by lithium metaborate/tetraborate fusion. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite. Formal comparisons of accuracy and precision were made with 13 existing methods. Accuracy for Fe(II) and total Fe was at or near the top of the group. Precision varied with the parameter used to measure it but was generally in the middle to upper part of the group for Fe(II) while that for total Fe ranged from the bottom of the group to near the top. [Display omitted] •Refractory samples, such as spinels, are the most difficult for Fe redox analysis.•Oxidimetric(Ag+)/colorimetric (phen) method allows analysis of a single sample.•Fe2+ measured by Ag+ potentiometry, total Fe by Fe-phen3 absorbance at 510 nm.•Excellent accuracy, relative differences of 0.4% for Fe2+ and 1.2% for total Fe.•Modest precision, relative standard deviations of 3.7% for Fe2+ 3.3% for total Fe.
AbstractList Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a series of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with recommended values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.03 wt% Fe) and total Fe values higher than obtained by ICP-AES analysis after decomposition by lithium metaborate/tetraborate fusion. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite. Formal comparisons of accuracy and precision were made with 13 existing methods. Accuracy for Fe(II) and total Fe was at or near the top of the group. Precision varied with the parameter used to measure it but was generally in the middle to upper part of the group for Fe(II) while that for total Fe ranged from the bottom of the group to near the top.
Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a series of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with published values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.05 wt% Fe) and total Fe values slightly higher than obtained by total elemental analysis. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite.
Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a series of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with recommended values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.03 wt% Fe) and total Fe values higher than obtained by ICP-AES analysis after decomposition by lithium metaborate/tetraborate fusion. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite. Formal comparisons of accuracy and precision were made with 13 existing methods. Accuracy for Fe(II) and total Fe was at or near the top of the group. Precision varied with the parameter used to measure it but was generally in the middle to upper part of the group for Fe(II) while that for total Fe ranged from the bottom of the group to near the top. [Display omitted] •Refractory samples, such as spinels, are the most difficult for Fe redox analysis.•Oxidimetric(Ag+)/colorimetric (phen) method allows analysis of a single sample.•Fe2+ measured by Ag+ potentiometry, total Fe by Fe-phen3 absorbance at 510 nm.•Excellent accuracy, relative differences of 0.4% for Fe2+ and 1.2% for total Fe.•Modest precision, relative standard deviations of 3.7% for Fe2+ 3.3% for total Fe.
Author Amonette, J.E.
Matyáš, J.
Author_xml – sequence: 1
  givenname: J.E.
  surname: Amonette
  fullname: Amonette, J.E.
  organization: Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 2
  givenname: J.
  surname: Matyáš
  fullname: Matyáš, J.
  organization: Material Science Department, Pacific Northwest National Laboratory, Richland, WA 99352, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26873465$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1243163$$D View this record in Osti.gov
BookMark eNqNkb1uFDEUhS0URDaBB6BBIyqamfj6f4QoUPiLFIkmqS2v547watZebC9S3h5vNlBQJFSW5e9c-Z7vjJzEFJGQ10AHoKAuNoPzbmAU5ABsoEw8IyswmveCM3FCVpRS3jOl6Sk5K2XTrgyoeEFOmWqUUHJFPnzCinkboqshxS7N3Yw5p33pXJy6mqpbupDbS4hdxjk7X1O-68ouRFzKS_J8dkvBVw_nObn98vnm8lt__f3r1eXH695LY2ovqVCjM2zWSowzdbOTOBrFtdQoRj8Z471BqRwIt57Qrw1TsxJq4msjFZv5OXl7nJtKDbb4UNH_8ClG9NUCExwUb9C7I7TL6eceS7XbUDwui4vYFrKs7Q_KcD0-iYIBRTXj4umpoEc6StBC_geqJFAz3v_1zQO6X29xsrscti7f2T9iGgBHwOdUSmv-LwLUHuTbjW3y7UF-a8A2-S2j_8m0ou691uzC8mjy_THZnOKvgPnQMUaPU8iHiqcUHkn_Bkj8xXI
CitedBy_id crossref_primary_10_1016_j_saa_2018_06_109
crossref_primary_10_1111_ggr_12164
crossref_primary_10_1016_j_microc_2020_104743
crossref_primary_10_1016_j_foodchem_2018_03_050
crossref_primary_10_1111_ggr_12353
crossref_primary_10_1007_s00253_017_8549_1
crossref_primary_10_1093_chemle_upad014
crossref_primary_10_1007_s13201_018_0876_6
crossref_primary_10_2343_geochemj_2_0605
crossref_primary_10_1021_acsearthspacechem_9b00012
crossref_primary_10_1007_s44211_022_00110_w
crossref_primary_10_1039_D4AN00055B
crossref_primary_10_1016_j_jclepro_2017_10_300
crossref_primary_10_1111_ijag_12554
crossref_primary_10_1021_acssuschemeng_6b01761
crossref_primary_10_1038_srep30969
crossref_primary_10_1016_j_talanta_2018_12_091
Cites_doi 10.1021/ac60342a037
10.1346/CCMN.1998.0460106
10.1111/j.1751-908X.1988.tb00044.x
10.1016/S0003-2670(00)86137-1
10.2136/sssaj1981.03615995004500030040x
10.1021/ac00002a010
10.1021/ac00227a718
10.1039/an9790401055
10.1111/j.1751-908X.1992.tb00492.x
10.1111/j.1751-908X.2012.00183.x
10.1016/S0009-2541(01)00274-1
10.1346/CCMN.1988.0360415
10.1021/ac60272a003
10.1021/ac60291a021
10.1002/9780470930991.ch5
10.1046/j.1365-2494.1998.53202081.x-i1
10.1039/an9669100755
10.1111/j.1751-908X.2010.00041.x
10.1180/minmag.1982.046.338.17
10.1016/0009-2541(91)90077-5
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
NPM
7X8
7ST
C1K
SOI
7U5
8FD
L7M
7S9
L.6
OTOTI
DOI 10.1016/j.aca.2015.12.024
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Environment Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts
PubMed
AGRICOLA

Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4324
EndPage 35
ExternalDocumentID 1243163
26873465
10_1016_j_aca_2015_12_024
S000326701530091X
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABYKQ
ACBEA
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSK
SSU
SSZ
T5K
TN5
TWZ
UPT
WH7
YK3
ZMT
~02
~G-
.GJ
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FA8
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
MVM
NHB
R2-
RIG
SCB
SEW
SSH
T9H
UQL
VH1
WUQ
XOL
XPP
ZCG
ZXP
ZY4
EFKBS
NPM
7X8
7ST
C1K
SOI
7U5
8FD
L7M
7S9
L.6
AALMO
AAPBV
ABPIF
ABPTK
ABQIS
OTOTI
ID FETCH-LOGICAL-c588t-50469a82f7649f0afa5e9863757e49cd88cc8e56a14abdecb826f646d3b8562f3
IEDL.DBID .~1
ISSN 0003-2670
IngestDate Thu May 18 22:31:13 EDT 2023
Fri Jul 11 13:07:41 EDT 2025
Thu Jul 10 22:50:33 EDT 2025
Thu Jul 10 17:55:22 EDT 2025
Fri Jul 11 11:40:19 EDT 2025
Mon Jul 21 06:05:11 EDT 2025
Tue Jul 01 01:11:30 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Fri Feb 23 02:18:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 1,10-Phenanthroline
Ferrous ammonium sulfate
Silver
Ferrous iron
Spinel
Potassium bromide
Hydrofluoric acid
Nickel
Potentiometry
Ferrous ethylenediammonium sulfate
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-50469a82f7649f0afa5e9863757e49cd88cc8e56a14abdecb826f646d3b8562f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-76RL01830
PNNL-SA-113714
OpenAccessLink https://www.osti.gov/biblio/1355055
PMID 26873465
PQID 1765108963
PQPubID 23479
PageCount 11
ParticipantIDs osti_scitechconnect_1243163
proquest_miscellaneous_2000168379
proquest_miscellaneous_1816072343
proquest_miscellaneous_1790951745
proquest_miscellaneous_1765108963
pubmed_primary_26873465
crossref_primary_10_1016_j_aca_2015_12_024
crossref_citationtrail_10_1016_j_aca_2015_12_024
elsevier_sciencedirect_doi_10_1016_j_aca_2015_12_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-03
PublicationDateYYYYMMDD 2016-03-03
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-03
  day: 03
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: United States
PublicationTitle Analytica chimica acta
PublicationTitleAlternate Anal Chim Acta
PublicationYear 2016
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Rorabacher (bib22) 1991; 63
Tarafder, Thakur (bib27) 2013; 37
Donaldson (bib9) 1969; 41
Dowall, Nowell, Pearson (bib10) 2003
Gladney, Roelandts (bib11) 1988; 12
Banerjee (bib7) 1974; 46
Govindaraju (bib13) 1994; 18
Steele, Torrie (bib25) 1960
Amonette, Scott (bib3) 1991; 92
Kiss (bib15) 1987; 193
Husler, Ferriss, Helean, Bryan, Brady (bib14) 2011; 35
Gladney, Jones, Nickell, Roelandts (bib12) 1992; 16
Komadel, Stucki (bib16) 1988; 36
Matyáš, Vienna, Kimura, Schaible, Tate (bib17) 2010; 222
Matyáš, Vienna, Schaible (bib18) 2011; 227
Smith, Martell (bib33) 1989
Meyrowitz (bib21) 1970; 42
Cochran, Cox (bib30) 1957
Ungethüm (bib28) 1965; 11
Matyáš, Sevigny, Schweiger, Kruger (bib20) 2015; 253
Hey (bib32) 1982; 46
Hey (bib31) 1941; 26
Amonette, Khan, Gan, Stucki, Scott (bib2) 1994
Stucki (bib26) 1981; 45
Wilson (bib29) 1955; 1955
Andrade, Hypolito, Ulbrich, Silva (bib5) 2002; 182
Schafer (bib23) 1966; 91
Amonette, Templeton (bib4) 1998; 46
Abbey (bib1) 1981; 53
Begheijn (bib8) 1979; 104
Ayranci (bib6) 1992; 1992
Schwertmann, Cornell (bib24) 2000
Matyáš, Amonette, Kukkadapu, Schreiber, Kruger (bib19) 2014; 250
Matyáš (10.1016/j.aca.2015.12.024_bib20) 2015; 253
Ungethüm (10.1016/j.aca.2015.12.024_bib28) 1965; 11
Begheijn (10.1016/j.aca.2015.12.024_bib8) 1979; 104
Cochran (10.1016/j.aca.2015.12.024_bib30) 1957
Donaldson (10.1016/j.aca.2015.12.024_bib9) 1969; 41
Smith (10.1016/j.aca.2015.12.024_bib33) 1989
Steele (10.1016/j.aca.2015.12.024_bib25) 1960
Matyáš (10.1016/j.aca.2015.12.024_bib19) 2014; 250
Hey (10.1016/j.aca.2015.12.024_bib31) 1941; 26
Stucki (10.1016/j.aca.2015.12.024_bib26) 1981; 45
Hey (10.1016/j.aca.2015.12.024_bib32) 1982; 46
Kiss (10.1016/j.aca.2015.12.024_bib15) 1987; 193
Andrade (10.1016/j.aca.2015.12.024_bib5) 2002; 182
Wilson (10.1016/j.aca.2015.12.024_bib29) 1955; 1955
Matyáš (10.1016/j.aca.2015.12.024_bib17) 2010; 222
Govindaraju (10.1016/j.aca.2015.12.024_bib13) 1994; 18
Dowall (10.1016/j.aca.2015.12.024_bib10) 2003
Schafer (10.1016/j.aca.2015.12.024_bib23) 1966; 91
Husler (10.1016/j.aca.2015.12.024_bib14) 2011; 35
Gladney (10.1016/j.aca.2015.12.024_bib12) 1992; 16
Tarafder (10.1016/j.aca.2015.12.024_bib27) 2013; 37
Amonette (10.1016/j.aca.2015.12.024_bib3) 1991; 92
Banerjee (10.1016/j.aca.2015.12.024_bib7) 1974; 46
Schwertmann (10.1016/j.aca.2015.12.024_bib24) 2000
Abbey (10.1016/j.aca.2015.12.024_bib1) 1981; 53
Rorabacher (10.1016/j.aca.2015.12.024_bib22) 1991; 63
Meyrowitz (10.1016/j.aca.2015.12.024_bib21) 1970; 42
Gladney (10.1016/j.aca.2015.12.024_bib11) 1988; 12
Amonette (10.1016/j.aca.2015.12.024_bib4) 1998; 46
Matyáš (10.1016/j.aca.2015.12.024_bib18) 2011; 227
Ayranci (10.1016/j.aca.2015.12.024_bib6) 1992; 1992
Komadel (10.1016/j.aca.2015.12.024_bib16) 1988; 36
Amonette (10.1016/j.aca.2015.12.024_bib2) 1994
References_xml – start-page: 83
  year: 1994
  end-page: 113
  ident: bib2
  article-title: Quantitative oxidation-state analysis of soils
  publication-title: Quantitative Methods in Soil Mineralogy
– year: 1957
  ident: bib30
  article-title: Experimental Designs
– volume: 250
  start-page: 147
  year: 2014
  end-page: 156
  ident: bib19
  article-title: The effects of glass doping, temperature, and time on the morphology, composition, and iron redox of spinel crystals
  publication-title: Adv. Mater. Sci. Environ. Energy Technol. III Ceram. Trans.
– volume: 53
  start-page: 528A
  year: 1981
  end-page: 534A
  ident: bib1
  article-title: Reliability in the analysis of rocks and minerals
  publication-title: Anal. Chem.
– volume: 26
  start-page: 116
  year: 1941
  end-page: 118
  ident: bib31
  article-title: The determination of ferrous iron in resistant silicates, Mineral
  publication-title: Mag
– volume: 35
  start-page: 39
  year: 2011
  end-page: 44
  ident: bib14
  article-title: Optimised ferrozine micro-method for the determination of ferrous and ferric iron in rocks and minerals
  publication-title: Geostand. Geoanal. Res.
– volume: 12
  start-page: 63
  year: 1988
  end-page: 118
  ident: bib11
  article-title: 1987 compilation of elemental concentration data for USGS BIR-1, DNC-1 and W-2
  publication-title: Geostand. Newsl.
– volume: 91
  start-page: 755
  year: 1966
  end-page: 762
  ident: bib23
  article-title: The determination of iron(II) oxide in silicate and refractory minerals—I. A review
  publication-title: Analyst
– volume: 182
  start-page: 85
  year: 2002
  end-page: 89
  ident: bib5
  article-title: Iron(II) oxide determination in rocks and minerals
  publication-title: Chem. Geol.
– volume: 46
  start-page: 782
  year: 1974
  end-page: 787
  ident: bib7
  article-title: Direct determination of ferrous iron in silicate rocks and minerals by iodine monochloride
  publication-title: Anal. Chem.
– volume: 227
  start-page: 195
  year: 2011
  end-page: 203
  ident: bib18
  article-title: Determination of Stokes shape factor for single particles and agglomerates
  publication-title: Adv. Mater. Sci. Environ. Nucl. Technol. II Ceram. Trans.
– volume: 193
  start-page: 51
  year: 1987
  end-page: 60
  ident: bib15
  article-title: Integrated scheme for micro-determination of iron oxidation states in silicates and refractory materials
  publication-title: Anal. Chim. Acta
– volume: 37
  start-page: 155
  year: 2013
  end-page: 168
  ident: bib27
  article-title: An optimised 1,10-phenanthroline method for the determination of ferrous and ferric oxides in silicate rocks, soils and minerals
  publication-title: Geostand. Geoanal. Res.
– volume: 46
  start-page: 111
  year: 1982
  end-page: 118
  ident: bib32
  article-title: The determination of ferrous and ferric iron in rocks and minerals; and a note on sulphosalicylic acid as a reagent for Fe and Ti, Mineral
  publication-title: Mag
– volume: 1992
  start-page: 16
  year: 1992
  end-page: 20
  ident: bib6
  article-title: Analysis of the oxidation states of iron in silicate rocks and refractory minerals by fusion disintegration
  publication-title: Kontakte (Darmstad)
– volume: 104
  start-page: 1055
  year: 1979
  end-page: 1061
  ident: bib8
  article-title: Determination of iron(II) in rock, soil, and clay
  publication-title: Analyst
– year: 2000
  ident: bib24
  article-title: Iron Oxides in the Laboratory
– volume: 42
  start-page: 1110
  year: 1970
  end-page: 1113
  ident: bib21
  article-title: New semimicroprocedure for determination of ferrous iron in refractory silicate minerals using a sodium metafluoborate decomposition
  publication-title: Anal. Chem.
– volume: 41
  start-page: 501
  year: 1969
  end-page: 505
  ident: bib9
  article-title: Study of Grove's method for determination of ferrous iron in refractory silicates
  publication-title: Anal. Chem.
– year: 1989
  ident: bib33
  publication-title: Critical Stability Constants, Vol. 4. Inorganic Complexes
– volume: 36
  start-page: 379
  year: 1988
  end-page: 381
  ident: bib16
  article-title: The quantitative assay of minerals for Fe
  publication-title: Clays Clay Miner.
– volume: 253
  start-page: 49
  year: 2015
  end-page: 59
  ident: bib20
  article-title: Research-scale melter: an experimental platform for evaluating crystal accumulation in high-level waste glasses
  publication-title: Adv. Mater. Sci. Environ. Energy Technol. IV Ceram. Trans.
– volume: 18
  start-page: 1
  year: 1994
  end-page: 156
  ident: bib13
  article-title: 1994 compilation of working values and sample description for 383 geostandards
  publication-title: Geostand. Newsl.
– volume: 16
  start-page: 111
  year: 1992
  end-page: 300
  ident: bib12
  article-title: 1988 compilation of elemental concentration data for USGS AGV-1, GSP-1, and G-2
  publication-title: Geostand. Newsl.
– volume: 45
  start-page: 638
  year: 1981
  end-page: 641
  ident: bib26
  article-title: The quantitative assay of minerals for Fe
  publication-title: Soil Sci. Soc. Am. J.
– volume: 222
  start-page: 41
  year: 2010
  end-page: 51
  ident: bib17
  article-title: Development of crystal-tolerant waste glasses
  publication-title: Adv. Mater. Sci. Environ. Nucl. Technol. Ceram. Trans.
– volume: 63
  start-page: 139
  year: 1991
  end-page: 146
  ident: bib22
  article-title: Statistical treatment for rejection of deviant values: critical values of Dixon's “Q” parameter and related subrange ratios at the 95% confidence level
  publication-title: Anal. Chem.
– volume: 46
  start-page: 51
  year: 1998
  end-page: 62
  ident: bib4
  article-title: Improvements to the quantitative assay of nonrefractory minerals for Fe(II) and total Fe using 1,10-phenanthroline
  publication-title: Clays Clay Miner.
– start-page: 321
  year: 2003
  end-page: 337
  ident: bib10
  article-title: Chemical preconcentration procedures for high-precision analysis of Hf-Nd-Sr isotopes in geological materials by plasma ionisation multi-collector mass spectrometry (PIMMS) techniques
  publication-title: Plasma Source Mass Spectrometry: Applications and Emerging Technologies. Special Publication
– volume: 11
  start-page: 500
  year: 1965
  end-page: 505
  ident: bib28
  article-title: Eine neue methode zur bestimmung von eisen(II) in gesteinen and mineralen, in besondere auch in bitumenhaltigen proben
  publication-title: Z. Angew. Geol.
– volume: 1955
  start-page: 56
  year: 1955
  end-page: 58
  ident: bib29
  article-title: A new method for the determination of ferrous iron in rocks and minerals
  publication-title: Bull. Geol. Surv. G. B.
– volume: 92
  start-page: 329
  year: 1991
  end-page: 338
  ident: bib3
  article-title: Determination of ferrous iron in non-refractory silicate minerals—1. An improved semi-micro oxidimetric method
  publication-title: Chem. Geol.
– start-page: 81
  year: 1960
  ident: bib25
  article-title: Principles and Procedures of Statistics with Special Reference to the Biological Sciences
– volume: 46
  start-page: 782
  year: 1974
  ident: 10.1016/j.aca.2015.12.024_bib7
  article-title: Direct determination of ferrous iron in silicate rocks and minerals by iodine monochloride
  publication-title: Anal. Chem.
  doi: 10.1021/ac60342a037
– start-page: 83
  year: 1994
  ident: 10.1016/j.aca.2015.12.024_bib2
  article-title: Quantitative oxidation-state analysis of soils
– volume: 227
  start-page: 195
  year: 2011
  ident: 10.1016/j.aca.2015.12.024_bib18
  article-title: Determination of Stokes shape factor for single particles and agglomerates
  publication-title: Adv. Mater. Sci. Environ. Nucl. Technol. II Ceram. Trans.
– volume: 46
  start-page: 51
  year: 1998
  ident: 10.1016/j.aca.2015.12.024_bib4
  article-title: Improvements to the quantitative assay of nonrefractory minerals for Fe(II) and total Fe using 1,10-phenanthroline
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1998.0460106
– volume: 12
  start-page: 63
  year: 1988
  ident: 10.1016/j.aca.2015.12.024_bib11
  article-title: 1987 compilation of elemental concentration data for USGS BIR-1, DNC-1 and W-2
  publication-title: Geostand. Newsl.
  doi: 10.1111/j.1751-908X.1988.tb00044.x
– volume: 193
  start-page: 51
  year: 1987
  ident: 10.1016/j.aca.2015.12.024_bib15
  article-title: Integrated scheme for micro-determination of iron oxidation states in silicates and refractory materials
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)86137-1
– year: 1957
  ident: 10.1016/j.aca.2015.12.024_bib30
– volume: 45
  start-page: 638
  year: 1981
  ident: 10.1016/j.aca.2015.12.024_bib26
  article-title: The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline. II. A photochemical method
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1981.03615995004500030040x
– volume: 250
  start-page: 147
  year: 2014
  ident: 10.1016/j.aca.2015.12.024_bib19
  article-title: The effects of glass doping, temperature, and time on the morphology, composition, and iron redox of spinel crystals
  publication-title: Adv. Mater. Sci. Environ. Energy Technol. III Ceram. Trans.
– volume: 63
  start-page: 139
  year: 1991
  ident: 10.1016/j.aca.2015.12.024_bib22
  article-title: Statistical treatment for rejection of deviant values: critical values of Dixon's “Q” parameter and related subrange ratios at the 95% confidence level
  publication-title: Anal. Chem.
  doi: 10.1021/ac00002a010
– volume: 53
  start-page: 528A
  year: 1981
  ident: 10.1016/j.aca.2015.12.024_bib1
  article-title: Reliability in the analysis of rocks and minerals
  publication-title: Anal. Chem.
  doi: 10.1021/ac00227a718
– volume: 104
  start-page: 1055
  year: 1979
  ident: 10.1016/j.aca.2015.12.024_bib8
  article-title: Determination of iron(II) in rock, soil, and clay
  publication-title: Analyst
  doi: 10.1039/an9790401055
– volume: 16
  start-page: 111
  year: 1992
  ident: 10.1016/j.aca.2015.12.024_bib12
  article-title: 1988 compilation of elemental concentration data for USGS AGV-1, GSP-1, and G-2
  publication-title: Geostand. Newsl.
  doi: 10.1111/j.1751-908X.1992.tb00492.x
– start-page: 81
  year: 1960
  ident: 10.1016/j.aca.2015.12.024_bib25
– volume: 37
  start-page: 155
  year: 2013
  ident: 10.1016/j.aca.2015.12.024_bib27
  article-title: An optimised 1,10-phenanthroline method for the determination of ferrous and ferric oxides in silicate rocks, soils and minerals
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/j.1751-908X.2012.00183.x
– volume: 1992
  start-page: 16
  year: 1992
  ident: 10.1016/j.aca.2015.12.024_bib6
  article-title: Analysis of the oxidation states of iron in silicate rocks and refractory minerals by fusion disintegration
  publication-title: Kontakte (Darmstad)
– volume: 182
  start-page: 85
  year: 2002
  ident: 10.1016/j.aca.2015.12.024_bib5
  article-title: Iron(II) oxide determination in rocks and minerals
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(01)00274-1
– volume: 26
  start-page: 116
  year: 1941
  ident: 10.1016/j.aca.2015.12.024_bib31
  article-title: The determination of ferrous iron in resistant silicates, Mineral
  publication-title: Mag
– volume: 36
  start-page: 379
  year: 1988
  ident: 10.1016/j.aca.2015.12.024_bib16
  article-title: The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline. III. A rapid photochemical method
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1988.0360415
– volume: 41
  start-page: 501
  year: 1969
  ident: 10.1016/j.aca.2015.12.024_bib9
  article-title: Study of Grove's method for determination of ferrous iron in refractory silicates
  publication-title: Anal. Chem.
  doi: 10.1021/ac60272a003
– volume: 11
  start-page: 500
  year: 1965
  ident: 10.1016/j.aca.2015.12.024_bib28
  article-title: Eine neue methode zur bestimmung von eisen(II) in gesteinen and mineralen, in besondere auch in bitumenhaltigen proben
  publication-title: Z. Angew. Geol.
– volume: 42
  start-page: 1110
  year: 1970
  ident: 10.1016/j.aca.2015.12.024_bib21
  article-title: New semimicroprocedure for determination of ferrous iron in refractory silicate minerals using a sodium metafluoborate decomposition
  publication-title: Anal. Chem.
  doi: 10.1021/ac60291a021
– year: 2000
  ident: 10.1016/j.aca.2015.12.024_bib24
– volume: 222
  start-page: 41
  year: 2010
  ident: 10.1016/j.aca.2015.12.024_bib17
  article-title: Development of crystal-tolerant waste glasses
  publication-title: Adv. Mater. Sci. Environ. Nucl. Technol. Ceram. Trans.
  doi: 10.1002/9780470930991.ch5
– volume: 1955
  start-page: 56
  issue: 9
  year: 1955
  ident: 10.1016/j.aca.2015.12.024_bib29
  article-title: A new method for the determination of ferrous iron in rocks and minerals
  publication-title: Bull. Geol. Surv. G. B.
– start-page: 321
  year: 2003
  ident: 10.1016/j.aca.2015.12.024_bib10
  article-title: Chemical preconcentration procedures for high-precision analysis of Hf-Nd-Sr isotopes in geological materials by plasma ionisation multi-collector mass spectrometry (PIMMS) techniques
– volume: 18
  start-page: 1
  year: 1994
  ident: 10.1016/j.aca.2015.12.024_bib13
  article-title: 1994 compilation of working values and sample description for 383 geostandards
  publication-title: Geostand. Newsl.
  doi: 10.1046/j.1365-2494.1998.53202081.x-i1
– volume: 253
  start-page: 49
  year: 2015
  ident: 10.1016/j.aca.2015.12.024_bib20
  article-title: Research-scale melter: an experimental platform for evaluating crystal accumulation in high-level waste glasses
  publication-title: Adv. Mater. Sci. Environ. Energy Technol. IV Ceram. Trans.
– volume: 91
  start-page: 755
  year: 1966
  ident: 10.1016/j.aca.2015.12.024_bib23
  article-title: The determination of iron(II) oxide in silicate and refractory minerals—I. A review
  publication-title: Analyst
  doi: 10.1039/an9669100755
– volume: 35
  start-page: 39
  year: 2011
  ident: 10.1016/j.aca.2015.12.024_bib14
  article-title: Optimised ferrozine micro-method for the determination of ferrous and ferric iron in rocks and minerals
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/j.1751-908X.2010.00041.x
– volume: 46
  start-page: 111
  year: 1982
  ident: 10.1016/j.aca.2015.12.024_bib32
  article-title: The determination of ferrous and ferric iron in rocks and minerals; and a note on sulphosalicylic acid as a reagent for Fe and Ti, Mineral
  publication-title: Mag
  doi: 10.1180/minmag.1982.046.338.17
– volume: 92
  start-page: 329
  year: 1991
  ident: 10.1016/j.aca.2015.12.024_bib3
  article-title: Determination of ferrous iron in non-refractory silicate minerals—1. An improved semi-micro oxidimetric method
  publication-title: Chem. Geol.
  doi: 10.1016/0009-2541(91)90077-5
– year: 1989
  ident: 10.1016/j.aca.2015.12.024_bib33
SSID ssj0002104
Score 2.28129
Snippet Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant...
SourceID osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25
SubjectTerms 1,10-Phenanthroline
analytical chemistry
Colorimetry
crystals
detection limit
Emission analysis
Ferrous ammonium sulfate
ferrous ammonium sulfate, potassium bromide
Ferrous ethylenediammonium sulfate
Ferrous iron
glass
hybrids
Hydrofluoric acid
Inductively coupled plasma
Iron
lithium
maghemite
magnetite
Nickel
Potassium bromide
Potentiometry
Reagents
Silver
Spectroscopy
Spinel
United States Geological Survey
Title Determination of ferrous and total iron in refractory spinels
URI https://dx.doi.org/10.1016/j.aca.2015.12.024
https://www.ncbi.nlm.nih.gov/pubmed/26873465
https://www.proquest.com/docview/1765108963
https://www.proquest.com/docview/1790951745
https://www.proquest.com/docview/1816072343
https://www.proquest.com/docview/2000168379
https://www.osti.gov/biblio/1243163
Volume 910
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9RAEB5FRwEN4s0RiBaJCsnE3rcLiuggOkCkItJ1q_U-pEOR73S5FDT8dmZ83iCKuKC0NWPZ3-7OfuOdB8A7j4Osba6rqCW1MIu58rH1FZFjH3nHTSZH8fuFXl7Kryu1OoJFyYWhsMrR9h9s-mCtxzunI5qn2_Wacnxr5B4G9zOBRKFZUQa7NDTLP_z-G-aBLo0sXfNIupxsDjFePlDpoUYNfwS5vGtvmm1wud1NQYet6PwRPBw5JDs7vOZjOEr9E7i_KK3bnsLHTyXIhWBnm8xy2u3Qx2e-j2y_QcLNKL2NrXuGb7Ebeu78YtdbpJxX18_g8vzzj8WyGvskVEFZu68U-bje8mwQ71z77FVqrRZGmSTbEK0NwSalfSN9F1Po0KXIWuooOov0J4vnMOs3fXoJLHea-5yNtE2WdVIt7u5NTBqdqoBLnc-hLgi5MBYRp14WV65Ei_10CKojUF3DHYI6h_e3KttDBY0pYVlgd_9MA4cWfkrtmIaIVKj0baAYIdRB7iKQb87hbRk5hwNBJyK-Twi6a4xGm2TbaZmWaKiRakLGUp0-LuTEc_hAr60w7RxeHKbPLR5cWyOkVq_-7_OP4QFe6SE0TryG2X53k94gV9p3J8NiOIF7Z1--LS_-AJFlD-4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5VAuFW-2LWAkuCCFJo5fOfSAWqotfZxaaW_GcWxpUZWsdrdCvfCn-IOdySZFHJoDUq-Jx3K-scffxOMZgI8OlaxMTJNKCSphVsXEVYVLiBy7ipdcR3IUz87V5FJ8n8rpBvzp78JQWGVn-9c2vbXW3ZO9Ds29-WxGd3xT5B4a97MciUI27SIrT8LNL_TblvvHh6jkT5wffbs4mCRdaYHES2NWiSS30BkeNQ4xpi46GQqjci11EIWvjPHeBKlcJlxZBV8iC49KqCovDTKGmGO_j-CxQHNBZRO-_P4bV4I-lOjL9NHw-qPUNqjMecp1lMn2FyQX922GowbX9_2ct937jp7CVkda2dc1Ls9gI9TPYfOgrxX3AvYP-6ga0jNrIothsWiul8zVFVs1yPAZ3adjs5rhKBZtkZ8btpwjx71avoTLB0HvFYzqpg5vgMVScRejFiaLIg2yQDqRVUGhF-fRtvAxpD1C1ndZy6l4xpXtw9N-WgTVEqg24xZBHcPnO5H5OmXHUGPRw27_mXcWt5QhsR1SEYlQrl1PQUkog2QpR4I7hg-95iwqgo5gXB0QdJtphUbQFMNtCuK9WsiBNoYSA_JcDPTDWz5vcl2M4fV6-tzhwZXRuVBy-_8-_z1sTi7OTu3p8fnJDjzBN6qNy8t3YbRaXIe3SNRW5bt2YTD48dAr8RaKNku8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+ferrous+and+total+iron+in+refractory+spinels&rft.jtitle=Analytica+chimica+acta&rft.au=Amonette%2C+JE&rft.au=Matyas%2C+J&rft.date=2016-03-03&rft.issn=0003-2670&rft.volume=910&rft.spage=25&rft.epage=35&rft_id=info:doi/10.1016%2Fj.aca.2015.12.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon