Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors

The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered p...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 163; no. 3; pp. 734 - 745
Main Authors Milles, Sigrid, Mercadante, Davide, Aramburu, Iker Valle, Jensen, Malene Ringkjøbing, Banterle, Niccolò, Koehler, Christine, Tyagi, Swati, Clarke, Jane, Shammas, Sarah L., Blackledge, Martin, Gräter, Frauke, Lemke, Edward A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.10.2015
Elsevier
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. [Display omitted] •Integrative structural biology reveals the basis of rapid nuclear transport•Transient binding of disordered nucleoporins leaves their plasticity unaffected•Multiple minimalistic low-affinity binding motifs create a polyvalent complex•A highly reactive and dynamic surface permits an ultrafast binding mechanism Intrinsically disordered nucleoporins (Nups) engage rapidly with nuclear transport receptors through many minimalistic, weakly binding motifs. These Nups form polyvalent complexes while retaining conformational plasticity thus ensuring both rapid and specific transport.
AbstractList The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.
The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. [Display omitted] •Integrative structural biology reveals the basis of rapid nuclear transport•Transient binding of disordered nucleoporins leaves their plasticity unaffected•Multiple minimalistic low-affinity binding motifs create a polyvalent complex•A highly reactive and dynamic surface permits an ultrafast binding mechanism Intrinsically disordered nucleoporins (Nups) engage rapidly with nuclear transport receptors through many minimalistic, weakly binding motifs. These Nups form polyvalent complexes while retaining conformational plasticity thus ensuring both rapid and specific transport.
The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.
The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. • Integrative structural biology reveals the basis of rapid nuclear transport • Transient binding of disordered nucleoporins leaves their plasticity unaffected • Multiple minimalistic low-affinity binding motifs create a polyvalent complex • A highly reactive and dynamic surface permits an ultrafast binding mechanism Intrinsically disordered nucleoporins (Nups) engage rapidly with nuclear transport receptors through many minimalistic, weakly binding motifs. These Nups form polyvalent complexes while retaining conformational plasticity thus ensuring both rapid and specific transport.
The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.
Author Shammas, Sarah L.
Tyagi, Swati
Clarke, Jane
Mercadante, Davide
Milles, Sigrid
Jensen, Malene Ringkjøbing
Aramburu, Iker Valle
Banterle, Niccolò
Koehler, Christine
Blackledge, Martin
Lemke, Edward A.
Gräter, Frauke
AuthorAffiliation 7 Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
2 Molecular Biomechanics group, HITS gGmbH, Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
3 IWR – Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany
5 CNRS, IBS, F-38044 Grenoble, France
4 University Grenoble Alpes, IBS, F-38044 Grenoble, France
1 Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
6 CEA, IBS, F-38044 Grenoble, France
AuthorAffiliation_xml – name: 1 Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
– name: 2 Molecular Biomechanics group, HITS gGmbH, Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
– name: 5 CNRS, IBS, F-38044 Grenoble, France
– name: 3 IWR – Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany
– name: 4 University Grenoble Alpes, IBS, F-38044 Grenoble, France
– name: 6 CEA, IBS, F-38044 Grenoble, France
– name: 7 Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
Author_xml – sequence: 1
  givenname: Sigrid
  surname: Milles
  fullname: Milles, Sigrid
  organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
– sequence: 2
  givenname: Davide
  surname: Mercadante
  fullname: Mercadante, Davide
  organization: Molecular Biomechanics group, HITS gGmbH, Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
– sequence: 3
  givenname: Iker Valle
  surname: Aramburu
  fullname: Aramburu, Iker Valle
  organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
– sequence: 4
  givenname: Malene Ringkjøbing
  surname: Jensen
  fullname: Jensen, Malene Ringkjøbing
  organization: University Grenoble Alpes, IBS, F-38044 Grenoble, France
– sequence: 5
  givenname: Niccolò
  surname: Banterle
  fullname: Banterle, Niccolò
  organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
– sequence: 6
  givenname: Christine
  surname: Koehler
  fullname: Koehler, Christine
  organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
– sequence: 7
  givenname: Swati
  surname: Tyagi
  fullname: Tyagi, Swati
  organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
– sequence: 8
  givenname: Jane
  surname: Clarke
  fullname: Clarke, Jane
  organization: Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
– sequence: 9
  givenname: Sarah L.
  surname: Shammas
  fullname: Shammas, Sarah L.
  organization: Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
– sequence: 10
  givenname: Martin
  surname: Blackledge
  fullname: Blackledge, Martin
  email: martin.blackledge@ibs.fr
  organization: University Grenoble Alpes, IBS, F-38044 Grenoble, France
– sequence: 11
  givenname: Frauke
  surname: Gräter
  fullname: Gräter, Frauke
  email: frauke.graeter@h-its.org
  organization: Molecular Biomechanics group, HITS gGmbH, Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
– sequence: 12
  givenname: Edward A.
  surname: Lemke
  fullname: Lemke, Edward A.
  email: lemke@embl.de
  organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26456112$$D View this record in MEDLINE/PubMed
https://hal.univ-grenoble-alpes.fr/hal-01235362$$DView record in HAL
BookMark eNqFUk1v1DAUtFAR3Rb-AAeUIxwS_BnHEkKqKqCVVoBQe-JgOc4L9SprL7Z3Uf89jtIi6KH4Ymk8M-89zztBRz54QOglwQ3BpH27aSxMU0MxEQ1WDebyCVoRrGTNiaRHaIWxonXXSn6MTlLaYIw7IcQzdExbLlpC6Ap9_zqZlJ11-bYKY2V8dT3laMYCVpc-QzQ2u-CrHvIvAF993tsJwi5E51NhDwtgYnUVjU8Fz9U3sLDLIabn6OlopgQv7u5TdP3xw9X5Rb3-8uny_GxdW9F1ueZMyV6N0BtmJGOqJ5IIbjsBox0GQ1o2KEP4wAUwJssZjO2BGzMwQYzo2Sl6v_ju9v0WBgu-TDDpXXRbE291ME7_--Ldjf4RDpq3lCrWFoM3i8HNA9nF2VrPGCaUCdbSAync13fFYvi5h5T11qU5B-Mh7JOm5ZcpVoTK_1JLSFJ1Ere0UF_9PcKfJu6DKoRuIdgYUoow6hKZmaMpE7lJE6znndAbPRfQ805orHTZiSKlD6T37o-K3i0iKMEdHESdrANvYXARbNZDcI_JfwPkttFX
CitedBy_id crossref_primary_10_1016_j_molcel_2019_01_032
crossref_primary_10_1073_pnas_2304036120
crossref_primary_10_1016_j_semcdb_2017_05_007
crossref_primary_10_1016_j_abb_2019_07_011
crossref_primary_10_1021_acs_jpcb_3c01619
crossref_primary_10_1073_pnas_1608762113
crossref_primary_10_1146_annurev_physiol_042222_025920
crossref_primary_10_1038_s41556_021_00815_6
crossref_primary_10_3389_fmolb_2020_00110
crossref_primary_10_1021_acs_biomac_8b00556
crossref_primary_10_1021_acsnano_7b08044
crossref_primary_10_1002_anie_202403941
crossref_primary_10_1080_07388551_2024_2425989
crossref_primary_10_26508_lsa_201800142
crossref_primary_10_1016_j_gene_2021_145621
crossref_primary_10_1038_nrm_2016_147
crossref_primary_10_3389_fcell_2021_708702
crossref_primary_10_1016_j_tibs_2015_11_001
crossref_primary_10_1016_j_bbagen_2020_129609
crossref_primary_10_1038_nature26003
crossref_primary_10_1371_journal_pbio_3000318
crossref_primary_10_1016_j_jmb_2018_07_011
crossref_primary_10_1042_BST20240507
crossref_primary_10_1007_s00018_017_2560_7
crossref_primary_10_1073_pnas_2007670117
crossref_primary_10_1016_j_cis_2022_102777
crossref_primary_10_1074_jbc_AC117_001037
crossref_primary_10_1063_5_0080480
crossref_primary_10_1091_mbc_E24_05_0224
crossref_primary_10_7554_eLife_14119
crossref_primary_10_1016_j_bpj_2017_05_024
crossref_primary_10_1021_jacs_1c00811
crossref_primary_10_3389_fmolb_2016_00052
crossref_primary_10_3389_fmolb_2016_00054
crossref_primary_10_1016_j_semcdb_2017_05_021
crossref_primary_10_1038_s41598_021_81920_2
crossref_primary_10_1038_s41594_023_01159_5
crossref_primary_10_1042_BST20220494
crossref_primary_10_1038_s41467_020_20194_0
crossref_primary_10_1002_anie_201813354
crossref_primary_10_1080_09553002_2020_1815889
crossref_primary_10_1016_j_pnmrs_2022_04_002
crossref_primary_10_1073_pnas_2021074118
crossref_primary_10_1016_j_ceb_2018_01_006
crossref_primary_10_3389_fmolb_2017_00012
crossref_primary_10_1140_epje_s10189_021_00136_4
crossref_primary_10_3390_v12091014
crossref_primary_10_1021_acs_biochem_7b00552
crossref_primary_10_1002_cphc_201701187
crossref_primary_10_1021_jacs_7b06659
crossref_primary_10_1016_j_physrep_2021_03_003
crossref_primary_10_1038_s41392_023_01649_4
crossref_primary_10_1074_jbc_M116_724393
crossref_primary_10_1186_s12915_023_01580_8
crossref_primary_10_1126_sciadv_aaz7095
crossref_primary_10_1016_j_cell_2017_09_033
crossref_primary_10_1016_j_coviro_2020_05_006
crossref_primary_10_1038_nchembio_1972
crossref_primary_10_1016_j_cell_2018_03_003
crossref_primary_10_1016_j_pnmrs_2018_07_001
crossref_primary_10_1515_hsz_2023_0155
crossref_primary_10_3390_biom9040146
crossref_primary_10_1016_j_celrep_2020_108484
crossref_primary_10_1063_5_0244227
crossref_primary_10_1016_j_bbamcr_2021_119205
crossref_primary_10_1038_s41556_021_00697_8
crossref_primary_10_1021_acschembio_6b00507
crossref_primary_10_1039_D1SC02653D
crossref_primary_10_1016_j_ceb_2020_04_003
crossref_primary_10_1016_j_sbi_2023_102724
crossref_primary_10_1016_j_sbi_2016_06_006
crossref_primary_10_3390_v12080834
crossref_primary_10_1126_sciadv_adi6539
crossref_primary_10_1042_BST20190941
crossref_primary_10_1016_j_csbj_2021_06_031
crossref_primary_10_1039_C7ME00006E
crossref_primary_10_1016_j_pbi_2020_10_006
crossref_primary_10_1093_nar_gky612
crossref_primary_10_1002_ange_202403941
crossref_primary_10_1016_j_cell_2016_01_034
crossref_primary_10_3390_life13040855
crossref_primary_10_1002_pro_4317
crossref_primary_10_1146_annurev_biochem_062917_011901
crossref_primary_10_7554_eLife_28716
crossref_primary_10_1021_jacs_1c06264
crossref_primary_10_1073_pnas_1704692114
crossref_primary_10_1016_j_bpj_2017_10_016
crossref_primary_10_1016_j_str_2020_09_010
crossref_primary_10_1016_j_celrep_2018_03_022
crossref_primary_10_1016_j_molcel_2021_03_031
crossref_primary_10_1016_j_str_2023_09_011
crossref_primary_10_1016_j_cell_2018_05_045
crossref_primary_10_1016_j_cell_2016_05_004
crossref_primary_10_1007_s12274_022_4647_1
crossref_primary_10_1002_1873_3468_14209
crossref_primary_10_1016_j_ymeth_2024_01_008
crossref_primary_10_1242_jcs_184184
crossref_primary_10_1016_j_bbrc_2022_03_056
crossref_primary_10_1021_acs_chemrev_1c01023
crossref_primary_10_1042_BST20200357
crossref_primary_10_1007_s12551_017_0346_7
crossref_primary_10_1083_jcb_202108107
crossref_primary_10_1007_s00018_017_2561_6
crossref_primary_10_1016_j_jmb_2018_02_015
crossref_primary_10_1242_jcs_185710
crossref_primary_10_1007_s00018_022_04486_w
crossref_primary_10_1038_s41467_020_18859_x
crossref_primary_10_1016_j_jmb_2018_05_012
crossref_primary_10_1021_acs_biochem_1c00465
crossref_primary_10_1016_j_str_2018_01_010
crossref_primary_10_1111_febs_15205
crossref_primary_10_1038_s41594_022_00811_w
crossref_primary_10_1016_j_ceb_2017_05_003
crossref_primary_10_3390_polym12102282
crossref_primary_10_1038_s41467_020_17407_x
crossref_primary_10_1103_PhysRevE_101_042404
crossref_primary_10_1038_s41586_023_05990_0
crossref_primary_10_1038_s41467_021_22293_y
crossref_primary_10_1186_s13024_021_00475_y
crossref_primary_10_1016_j_jmb_2016_01_002
crossref_primary_10_1021_acs_chemrev_3c00955
crossref_primary_10_1126_science_abm9798
crossref_primary_10_3390_biomedicines9101451
crossref_primary_10_1021_acsnano_0c02895
crossref_primary_10_3390_ijms21228615
crossref_primary_10_7554_eLife_60416
crossref_primary_10_1042_BCJ20200828
crossref_primary_10_1063_1_4981211
crossref_primary_10_1126_sciadv_aat7778
crossref_primary_10_1016_j_tibs_2017_08_007
crossref_primary_10_1016_j_sbi_2023_102659
crossref_primary_10_1038_s41467_023_42232_3
crossref_primary_10_3390_cells12121637
crossref_primary_10_1186_s12964_015_0125_7
crossref_primary_10_15252_msb_20167412
crossref_primary_10_1002_cphc_202000264
crossref_primary_10_3390_biom9030081
crossref_primary_10_1242_jcs_247874
crossref_primary_10_1021_jacs_3c06965
crossref_primary_10_1038_s41467_019_13274_3
crossref_primary_10_1073_pnas_1904997116
crossref_primary_10_1016_j_bpj_2021_01_039
crossref_primary_10_1038_s41467_017_01057_7
crossref_primary_10_1016_j_sbi_2023_102742
crossref_primary_10_3390_ijms24044028
crossref_primary_10_1016_j_bpj_2019_11_024
crossref_primary_10_1016_j_bpj_2019_11_026
crossref_primary_10_1016_j_jmb_2017_06_005
crossref_primary_10_1038_s41598_019_57064_9
crossref_primary_10_1016_j_jmb_2016_02_023
crossref_primary_10_1038_s41467_018_05928_5
crossref_primary_10_7554_eLife_55963
crossref_primary_10_1073_pnas_2106690118
crossref_primary_10_1099_jgv_0_001960
crossref_primary_10_1016_j_sbi_2018_09_008
crossref_primary_10_1016_j_sbi_2018_09_007
crossref_primary_10_1016_j_ijbiomac_2021_01_218
crossref_primary_10_1002_ange_201813354
crossref_primary_10_1038_s41467_020_15007_3
crossref_primary_10_1016_j_celrep_2024_114793
crossref_primary_10_1038_s41580_023_00673_0
crossref_primary_10_1073_pnas_1522663113
crossref_primary_10_15252_embj_2021109952
crossref_primary_10_1080_19491034_2023_2240139
crossref_primary_10_1083_jcb_202010141
crossref_primary_10_1039_D2SC00028H
crossref_primary_10_1016_j_sbi_2017_06_007
crossref_primary_10_1038_s41467_022_28821_8
crossref_primary_10_1146_annurev_biophys_101122_071930
crossref_primary_10_1074_jbc_REV120_012413
crossref_primary_10_1042_EBC20220056
crossref_primary_10_1083_jcb_201907157
crossref_primary_10_1091_mbc_E21_04_0161
crossref_primary_10_1021_acs_chemrev_1c00790
crossref_primary_10_3390_ijms25179387
crossref_primary_10_1016_j_pnmrs_2017_06_001
crossref_primary_10_1083_jcb_201702092
crossref_primary_10_1039_C8CP06803H
crossref_primary_10_1016_j_bbapap_2019_04_005
crossref_primary_10_1103_PhysRevE_101_022420
crossref_primary_10_1038_s41467_024_50212_4
crossref_primary_10_1016_j_sbi_2021_04_004
crossref_primary_10_1016_j_bbapap_2019_04_007
crossref_primary_10_1016_j_sbi_2019_12_006
crossref_primary_10_1002_1873_3468_12762
crossref_primary_10_1038_nnano_2016_62
crossref_primary_10_1103_PhysRevE_100_042414
crossref_primary_10_3390_molecules23113008
crossref_primary_10_1103_PhysRevLett_129_048003
crossref_primary_10_1038_nature25762
crossref_primary_10_1083_jcb_201910211
crossref_primary_10_1016_j_bbapap_2017_06_008
crossref_primary_10_3390_biom12010027
crossref_primary_10_1083_jcb_201601004
crossref_primary_10_1093_nar_gkw1019
crossref_primary_10_1074_jbc_AC117_001649
crossref_primary_10_1016_j_ymeth_2021_03_018
crossref_primary_10_15252_msb_202110584
crossref_primary_10_1021_jacs_0c02088
crossref_primary_10_1073_pnas_1702226114
crossref_primary_10_1021_acs_jpcb_2c03837
crossref_primary_10_1016_j_sbi_2019_11_001
crossref_primary_10_1016_j_sbi_2017_02_003
crossref_primary_10_1038_srep29991
crossref_primary_10_1038_s41467_023_41304_8
crossref_primary_10_1016_j_neuint_2017_01_020
crossref_primary_10_3390_ijms221910898
crossref_primary_10_1002_1873_3468_14725
crossref_primary_10_3390_cells13010071
crossref_primary_10_1371_journal_pone_0217897
crossref_primary_10_1016_j_ceb_2024_102407
crossref_primary_10_1016_j_neuint_2017_01_022
crossref_primary_10_1016_j_semcdb_2017_06_026
crossref_primary_10_1021_acs_chemrev_5b00548
crossref_primary_10_1016_j_jmb_2018_04_003
crossref_primary_10_3389_fcell_2023_1245939
Cites_doi 10.1083/jcb.200411005
10.1016/j.sbi.2007.12.003
10.1016/j.sbi.2008.12.003
10.1007/s10858-013-9715-0
10.1016/j.tcb.2010.05.001
10.1016/j.bpj.2011.08.025
10.1038/nrm1589
10.1021/jm2009937
10.1038/emboj.2013.239
10.7554/eLife.10027
10.1021/jp404267e
10.1016/j.tibs.2010.04.009
10.1016/j.cell.2007.06.024
10.1038/nnano.2014.103
10.1016/j.cell.2013.02.042
10.1021/jp102156t
10.1016/j.tibs.2007.10.003
10.1016/j.str.2005.09.007
10.1083/jcb.200303085
10.1016/j.jmb.2003.08.050
10.1083/jcb.152.2.411
10.1016/j.cell.2013.10.055
10.1002/bies.200800159
10.1074/jbc.M112.394064
10.1074/mcp.M111.013656
10.1371/journal.pcbi.1002049
10.7554/eLife.04052
10.1002/anie.201403694
10.1073/pnas.1208440109
10.1073/pnas.1405815111
10.1038/nature07600
10.1021/ja909973n
10.1146/annurev-biochem-060109-151030
10.1007/s10858-011-9567-4
10.1073/pnas.1419528112
10.1073/pnas.0802647105
10.1093/nar/gkq501
10.1126/science.1145980
10.1038/msb.2013.4
10.1529/biophysj.105.075507
10.1093/bioinformatics/bts172
10.1073/pnas.0437902100
10.1083/jcb.201404124
10.1016/j.bpj.2014.12.041
10.1038/27227
10.1073/pnas.160259697
10.1074/mcp.M000035-MCP201
10.1371/journal.pcbi.1003363
10.1016/S0092-8674(00)00014-3
10.1021/acs.jpcb.5b03440
10.1021/ja209936u
10.1016/j.bpj.2013.09.006
10.1146/annurev.biochem.76.052705.161529
10.1093/nar/gkt1047
10.1021/ja511066q
ContentType Journal Article
Copyright 2015 The Authors
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
2015 The Authors 2015
Copyright_xml – notice: 2015 The Authors
– notice: Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2015 The Authors 2015
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
5PM
DOI 10.1016/j.cell.2015.09.047
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA



MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 745
ExternalDocumentID PMC4622936
oai_HAL_hal_01235362v1
26456112
10_1016_j_cell_2015_09_047
S0092867415012647
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U105485808
– fundername: Wellcome Trust
  grantid: WT/095195
– fundername: Wellcome Trust
  grantid: 095195
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAHBH
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
1XC
5PM
ID FETCH-LOGICAL-c588t-4397b9feba3a7339b17154c85efcdda163d9a14d45e337777dacbe4aad351a5b3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:07:08 EDT 2025
Thu May 29 06:11:35 EDT 2025
Mon Jul 21 10:18:13 EDT 2025
Fri Jul 11 01:02:38 EDT 2025
Mon Jul 21 05:58:56 EDT 2025
Tue Jul 01 02:16:53 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Fri Feb 23 02:30:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by/4.0
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-4397b9feba3a7339b17154c85efcdda163d9a14d45e337777dacbe4aad351a5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4622936
Co-first author
ORCID 0000-0001-9362-9606
0000-0003-0419-2196
0000-0003-0935-721X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867415012647
PMID 26456112
PQID 1727987062
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4622936
hal_primary_oai_HAL_hal_01235362v1
proquest_miscellaneous_2000209127
proquest_miscellaneous_1727987062
pubmed_primary_26456112
crossref_citationtrail_10_1016_j_cell_2015_09_047
crossref_primary_10_1016_j_cell_2015_09_047
elsevier_sciencedirect_doi_10_1016_j_cell_2015_09_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-22
PublicationDateYYYYMMDD 2015-10-22
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2015
Publisher Elsevier Inc
Elsevier
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Cell Press
References Tompa, Fuxreiter (bib48) 2008; 33
Arai, Ferreon, Wright (bib2) 2012; 134
Peters (bib36) 2009; 31
Hough, Dutta, Sparks, Temel, Kamal, Tetenbaum-Novatt, Rout, Cowburn (bib18) 2015; 4
Jensen, Salmon, Nodet, Blackledge (bib20) 2010; 132
Wagner, Kapinos, Marshall, Stewart, Lim (bib51) 2015; 108
Cook, Bono, Jinek, Conti (bib9) 2007; 76
Frey, Görlich (bib15) 2007; 130
Bayliss, Littlewood, Stewart (bib3) 2000; 102
Eisele, Labokha, Frey, Görlich, Richter (bib14) 2013; 105
Schoch, Kapinos, Lim (bib40) 2012; 109
Jovanovic-Talisman, Tetenbaum-Novatt, McKenney, Zilman, Peters, Rout, Chait (bib21) 2009; 457
Kragelj, Palencia, Nanao, Maurin, Bouvignies, Blackledge, Jensen (bib23) 2015; 112
Bednenko, Cingolani, Gerace (bib4) 2003; 162
Ganguly, Zhang, Chen (bib16) 2013; 9
Solyom, Schwarten, Geist, Konrat, Willbold, Brutscher (bib45) 2013; 55
Kalinin, Valeri, Antonik, Felekyan, Seidel (bib22) 2010; 114
Tetenbaum-Novatt, Hough, Mironska, McKenney, Rout (bib47) 2012; 11
Brabez, Lynch, Xu, Gillies, Chassaing, Lavielle, Hruby (bib6) 2011; 54
Hoelz, Debler, Blobel (bib17) 2011; 80
Spaar, Dammer, Gabdoulline, Wade, Helms (bib46) 2006; 90
Kramer, Karpen (bib24) 1998; 395
Ziarek, Veldkamp, Zhang, Murray, Kartz, Liang, Su, Baker, Linhardt, Volkman (bib55) 2013; 288
Isgro, Schulten (bib19) 2005; 13
Schneider, Maurin, Communie, Kragelj, Hansen, Ruigrok, Jensen, Blackledge (bib39) 2015; 137
Morrison, Yang, Stewart, Neuhaus (bib31) 2003; 333
Mercadante, Milles, Fuertes, Svergun, Lemke, Gräter (bib28) 2015; 119
Moussavi-Baygi, Jamali, Karimi, Mofrad (bib32) 2011; 7
Bui, von Appen, DiGuilio, Ori, Sparks, Mackmull, Bock, Hagen, Andrés-Pons, Glavy, Beck (bib7) 2013; 155
Otsuka, Iwasaka, Yoneda, Takeyasu, Yoshimura (bib34) 2008; 105
Milles, Lemke (bib30) 2014; 53
Toretsky, Wright (bib49) 2014; 206
Lim, Fahrenkrog, Köser, Schwarz-Herion, Deng, Aebi (bib26) 2007; 318
Rasia, Lescop, Palatnik, Boisbouvier, Brutscher (bib37) 2011; 51
Adams, Wente (bib1) 2013; 152
Shammas, Travis, Clarke (bib42) 2013; 117
Kubitscheck, Grünwald, Hoekstra, Rohleder, Kues, Siebrasse, Peters (bib25) 2005; 168
Ori, Banterle, Iskar, Andrés-Pons, Escher, Khanh Bui, Sparks, Solis-Mezarino, Rinner, Bork (bib33) 2013; 9
Shoemaker, Portman, Wolynes (bib44) 2000; 97
Ben-Efraim, Gerace (bib5) 2001; 152
Lowe, Tang, Yassif, Graf, Huang, Groves, Weis, Liphardt (bib27) 2015; 4
Denning, Patel, Uversky, Fink, Rexach (bib11) 2003; 100
Schuler, Eaton (bib41) 2008; 18
Tu, Fu, Zilman, Musser (bib50) 2013; 32
Dyson, Wright (bib13) 2005; 6
Csermely, Palotai, Nussinov (bib10) 2010; 35
Milles, Lemke (bib29) 2011; 101
Schleicher, Dettmer, Kapinos, Pagliara, Keyser, Jeney, Lim (bib38) 2014; 9
Chekulaeva, Parker, Filipowicz (bib8) 2010; 38
Wright, Dyson (bib53) 2009; 19
Ozenne, Bauer, Salmon, Huang, Jensen, Segard, Bernadó, Charavay, Blackledge (bib35) 2012; 28
Shammas, Travis, Clarke (bib43) 2014; 111
Dinkel, Van Roey, Michael, Davey, Weatheritt, Born, Speck, Krüger, Grebnev, Kuban (bib12) 2014; 42
Wälde, Kehlenbach (bib52) 2010; 20
Yamada, Phillips, Patel, Goldfien, Calestagne-Morelli, Huang, Reza, Acheson, Krishnan, Newsam (bib54) 2010; 9
Solyom (10.1016/j.cell.2015.09.047_bib45) 2013; 55
Wagner (10.1016/j.cell.2015.09.047_bib51) 2015; 108
Kragelj (10.1016/j.cell.2015.09.047_bib23) 2015; 112
Shammas (10.1016/j.cell.2015.09.047_bib43) 2014; 111
Hoelz (10.1016/j.cell.2015.09.047_bib17) 2011; 80
Mercadante (10.1016/j.cell.2015.09.047_bib28) 2015; 119
Morrison (10.1016/j.cell.2015.09.047_bib31) 2003; 333
Dyson (10.1016/j.cell.2015.09.047_bib13) 2005; 6
Tompa (10.1016/j.cell.2015.09.047_bib48) 2008; 33
Milles (10.1016/j.cell.2015.09.047_bib30) 2014; 53
Bui (10.1016/j.cell.2015.09.047_bib7) 2013; 155
Denning (10.1016/j.cell.2015.09.047_bib11) 2003; 100
Dinkel (10.1016/j.cell.2015.09.047_bib12) 2014; 42
Shammas (10.1016/j.cell.2015.09.047_bib42) 2013; 117
Wright (10.1016/j.cell.2015.09.047_bib53) 2009; 19
Eisele (10.1016/j.cell.2015.09.047_bib14) 2013; 105
Jovanovic-Talisman (10.1016/j.cell.2015.09.047_bib21) 2009; 457
Spaar (10.1016/j.cell.2015.09.047_bib46) 2006; 90
Schneider (10.1016/j.cell.2015.09.047_bib39) 2015; 137
Brabez (10.1016/j.cell.2015.09.047_bib6) 2011; 54
Cook (10.1016/j.cell.2015.09.047_bib9) 2007; 76
Bednenko (10.1016/j.cell.2015.09.047_bib4) 2003; 162
Peters (10.1016/j.cell.2015.09.047_bib36) 2009; 31
Milles (10.1016/j.cell.2015.09.047_bib29) 2011; 101
Jensen (10.1016/j.cell.2015.09.047_bib20) 2010; 132
Arai (10.1016/j.cell.2015.09.047_bib2) 2012; 134
Tetenbaum-Novatt (10.1016/j.cell.2015.09.047_bib47) 2012; 11
Moussavi-Baygi (10.1016/j.cell.2015.09.047_bib32) 2011; 7
Ben-Efraim (10.1016/j.cell.2015.09.047_bib5) 2001; 152
Kubitscheck (10.1016/j.cell.2015.09.047_bib25) 2005; 168
Csermely (10.1016/j.cell.2015.09.047_bib10) 2010; 35
Hough (10.1016/j.cell.2015.09.047_bib18) 2015; 4
Frey (10.1016/j.cell.2015.09.047_bib15) 2007; 130
Otsuka (10.1016/j.cell.2015.09.047_bib34) 2008; 105
Chekulaeva (10.1016/j.cell.2015.09.047_bib8) 2010; 38
Kalinin (10.1016/j.cell.2015.09.047_bib22) 2010; 114
Kramer (10.1016/j.cell.2015.09.047_bib24) 1998; 395
Ziarek (10.1016/j.cell.2015.09.047_bib55) 2013; 288
Wälde (10.1016/j.cell.2015.09.047_bib52) 2010; 20
Schleicher (10.1016/j.cell.2015.09.047_bib38) 2014; 9
Schoch (10.1016/j.cell.2015.09.047_bib40) 2012; 109
Lim (10.1016/j.cell.2015.09.047_bib26) 2007; 318
Yamada (10.1016/j.cell.2015.09.047_bib54) 2010; 9
Adams (10.1016/j.cell.2015.09.047_bib1) 2013; 152
Ozenne (10.1016/j.cell.2015.09.047_bib35) 2012; 28
Ori (10.1016/j.cell.2015.09.047_bib33) 2013; 9
Lowe (10.1016/j.cell.2015.09.047_bib27) 2015; 4
Bayliss (10.1016/j.cell.2015.09.047_bib3) 2000; 102
Ganguly (10.1016/j.cell.2015.09.047_bib16) 2013; 9
Rasia (10.1016/j.cell.2015.09.047_bib37) 2011; 51
Shoemaker (10.1016/j.cell.2015.09.047_bib44) 2000; 97
Toretsky (10.1016/j.cell.2015.09.047_bib49) 2014; 206
Isgro (10.1016/j.cell.2015.09.047_bib19) 2005; 13
Schuler (10.1016/j.cell.2015.09.047_bib41) 2008; 18
Tu (10.1016/j.cell.2015.09.047_bib50) 2013; 32
References_xml – volume: 9
  start-page: e1003363
  year: 2013
  ident: bib16
  article-title: Electrostatically accelerated encounter and folding for facile recognition of intrinsically disordered proteins
  publication-title: PLoS Comput. Biol.
– volume: 9
  start-page: 2205
  year: 2010
  end-page: 2224
  ident: bib54
  article-title: A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins
  publication-title: Mol. Cell. Proteomics
– volume: 4
  start-page: 4
  year: 2015
  ident: bib18
  article-title: The molecular mechanism of nuclear transport revealed by atomic scale measurements
  publication-title: eLife
– volume: 105
  start-page: 16101
  year: 2008
  end-page: 16106
  ident: bib34
  article-title: Individual binding pockets of importin-beta for FG-nucleoporins have different binding properties and different sensitivities to RanGTP
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 53
  start-page: 7364
  year: 2014
  end-page: 7367
  ident: bib30
  article-title: Mapping multivalency and differential affinities within large intrinsically disordered protein complexes with segmental motion analysis
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 457
  start-page: 1023
  year: 2009
  end-page: 1027
  ident: bib21
  article-title: Artificial nanopores that mimic the transport selectivity of the nuclear pore complex
  publication-title: Nature
– volume: 6
  start-page: 197
  year: 2005
  end-page: 208
  ident: bib13
  article-title: Intrinsically unstructured proteins and their functions
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 137
  start-page: 1220
  year: 2015
  end-page: 1229
  ident: bib39
  article-title: Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4
  year: 2015
  ident: bib27
  article-title: Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner
  publication-title: eLife
– volume: 20
  start-page: 461
  year: 2010
  end-page: 469
  ident: bib52
  article-title: The Part and the Whole: functions of nucleoporins in nucleocytoplasmic transport
  publication-title: Trends Cell Biol.
– volume: 28
  start-page: 1463
  year: 2012
  end-page: 1470
  ident: bib35
  article-title: Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables
  publication-title: Bioinformatics
– volume: 152
  start-page: 1218
  year: 2013
  end-page: 1221
  ident: bib1
  article-title: Uncovering nuclear pore complexity with innovation
  publication-title: Cell
– volume: 80
  start-page: 613
  year: 2011
  end-page: 643
  ident: bib17
  article-title: The structure of the nuclear pore complex
  publication-title: Annu. Rev. Biochem.
– volume: 119
  start-page: 7975
  year: 2015
  end-page: 7984
  ident: bib28
  article-title: Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields
  publication-title: J. Phys. Chem. B
– volume: 54
  start-page: 7375
  year: 2011
  end-page: 7384
  ident: bib6
  article-title: Design, synthesis, and biological studies of efficient multivalent melanotropin ligands: tools toward melanoma diagnosis and treatment
  publication-title: J. Med. Chem.
– volume: 35
  start-page: 539
  year: 2010
  end-page: 546
  ident: bib10
  article-title: Induced fit, conformational selection and independent dynamic segments: an extended view of binding events
  publication-title: Trends Biochem. Sci.
– volume: 132
  start-page: 1270
  year: 2010
  end-page: 1272
  ident: bib20
  article-title: Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 16
  year: 2008
  end-page: 26
  ident: bib41
  article-title: Protein folding studied by single-molecule FRET
  publication-title: Curr. Opin. Struct. Biol.
– volume: 51
  start-page: 369
  year: 2011
  end-page: 378
  ident: bib37
  article-title: Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins
  publication-title: J. Biomol. NMR
– volume: 9
  start-page: 648
  year: 2013
  ident: bib33
  article-title: Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines
  publication-title: Mol. Syst. Biol.
– volume: 152
  start-page: 411
  year: 2001
  end-page: 417
  ident: bib5
  article-title: Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import
  publication-title: J. Cell Biol.
– volume: 105
  start-page: 1860
  year: 2013
  end-page: 1870
  ident: bib14
  article-title: Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks - Implications for nuclear pore permeability
  publication-title: Biophys. J.
– volume: 11
  start-page: 31
  year: 2012
  end-page: 46
  ident: bib47
  article-title: Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions
  publication-title: Mol. Cell. Proteomics
– volume: 168
  start-page: 233
  year: 2005
  end-page: 243
  ident: bib25
  article-title: Nuclear transport of single molecules: dwell times at the nuclear pore complex
  publication-title: J. Cell Biol.
– volume: 108
  start-page: 918
  year: 2015
  end-page: 927
  ident: bib51
  article-title: Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics
  publication-title: Biophys. J.
– volume: 318
  start-page: 640
  year: 2007
  end-page: 643
  ident: bib26
  article-title: Nanomechanical basis of selective gating by the nuclear pore complex
  publication-title: Science
– volume: 288
  start-page: 737
  year: 2013
  end-page: 746
  ident: bib55
  article-title: Heparin oligosaccharides inhibit chemokine (CXC motif) ligand 12 (CXCL12) cardioprotection by binding orthogonal to the dimerization interface, promoting oligomerization, and competing with the chemokine (CXC motif) receptor 4 (CXCR4) N terminus
  publication-title: J. Biol. Chem.
– volume: 155
  start-page: 1233
  year: 2013
  end-page: 1243
  ident: bib7
  article-title: Integrated structural analysis of the human nuclear pore complex scaffold
  publication-title: Cell
– volume: 117
  start-page: 13346
  year: 2013
  end-page: 13356
  ident: bib42
  article-title: Remarkably fast coupled folding and binding of the intrinsically disordered transactivation domain of cMyb to CBP KIX
  publication-title: J. Phys. Chem. B
– volume: 55
  start-page: 311
  year: 2013
  end-page: 321
  ident: bib45
  article-title: BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins
  publication-title: J. Biomol. NMR
– volume: 101
  start-page: 1710
  year: 2011
  end-page: 1719
  ident: bib29
  article-title: Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153
  publication-title: Biophys. J.
– volume: 111
  start-page: 12055
  year: 2014
  end-page: 12060
  ident: bib43
  article-title: Allostery within a transcription coactivator is predominantly mediated through dissociation rate constants
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 76
  start-page: 647
  year: 2007
  end-page: 671
  ident: bib9
  article-title: Structural biology of nucleocytoplasmic transport
  publication-title: Annu. Rev. Biochem.
– volume: 134
  start-page: 3792
  year: 2012
  end-page: 3803
  ident: bib2
  article-title: Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1869
  year: 2005
  end-page: 1879
  ident: bib19
  article-title: Binding dynamics of isolated nucleoporin repeat regions to importin-beta
  publication-title: Structure
– volume: 33
  start-page: 2
  year: 2008
  end-page: 8
  ident: bib48
  article-title: Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions
  publication-title: Trends Biochem. Sci.
– volume: 31
  start-page: 466
  year: 2009
  end-page: 477
  ident: bib36
  article-title: Translocation through the nuclear pore: Kaps pave the way
  publication-title: BioEssays
– volume: 9
  start-page: 525
  year: 2014
  end-page: 530
  ident: bib38
  article-title: Selective transport control on molecular velcro made from intrinsically disordered proteins
  publication-title: Nat. Nanotechnol.
– volume: 38
  start-page: 6673
  year: 2010
  end-page: 6683
  ident: bib8
  article-title: The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: D259
  year: 2014
  end-page: D266
  ident: bib12
  article-title: The eukaryotic linear motif resource ELM: 10 years and counting
  publication-title: Nucleic Acids Res.
– volume: 162
  start-page: 391
  year: 2003
  end-page: 401
  ident: bib4
  article-title: Importin beta contains a COOH-terminal nucleoporin binding region important for nuclear transport
  publication-title: J. Cell Biol.
– volume: 109
  start-page: 16911
  year: 2012
  end-page: 16916
  ident: bib40
  article-title: Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 114
  start-page: 7983
  year: 2010
  end-page: 7995
  ident: bib22
  article-title: Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states
  publication-title: J. Phys. Chem. B
– volume: 19
  start-page: 31
  year: 2009
  end-page: 38
  ident: bib53
  article-title: Linking folding and binding
  publication-title: Curr. Opin. Struct. Biol.
– volume: 7
  start-page: e1002049
  year: 2011
  ident: bib32
  article-title: Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex
  publication-title: PLoS Comput. Biol.
– volume: 97
  start-page: 8868
  year: 2000
  end-page: 8873
  ident: bib44
  article-title: Speeding molecular recognition by using the folding funnel: the fly-casting mechanism
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 90
  start-page: 1913
  year: 2006
  end-page: 1924
  ident: bib46
  article-title: Diffusional encounter of barnase and barstar
  publication-title: Biophys. J.
– volume: 102
  start-page: 99
  year: 2000
  end-page: 108
  ident: bib3
  article-title: Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking
  publication-title: Cell
– volume: 112
  start-page: 3409
  year: 2015
  end-page: 3414
  ident: bib23
  article-title: Structure and dynamics of the MKK7-JNK signaling complex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 333
  start-page: 587
  year: 2003
  end-page: 603
  ident: bib31
  article-title: Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats
  publication-title: J. Mol. Biol.
– volume: 130
  start-page: 512
  year: 2007
  end-page: 523
  ident: bib15
  article-title: A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes
  publication-title: Cell
– volume: 206
  start-page: 579
  year: 2014
  end-page: 588
  ident: bib49
  article-title: Assemblages: functional units formed by cellular phase separation
  publication-title: J. Cell Biol.
– volume: 32
  start-page: 3220
  year: 2013
  end-page: 3230
  ident: bib50
  article-title: Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins
  publication-title: EMBO J.
– volume: 395
  start-page: 710
  year: 1998
  end-page: 713
  ident: bib24
  article-title: Spanning binding sites on allosteric proteins with polymer-linked ligand dimers
  publication-title: Nature
– volume: 100
  start-page: 2450
  year: 2003
  end-page: 2455
  ident: bib11
  article-title: Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 168
  start-page: 233
  year: 2005
  ident: 10.1016/j.cell.2015.09.047_bib25
  article-title: Nuclear transport of single molecules: dwell times at the nuclear pore complex
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200411005
– volume: 18
  start-page: 16
  year: 2008
  ident: 10.1016/j.cell.2015.09.047_bib41
  article-title: Protein folding studied by single-molecule FRET
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2007.12.003
– volume: 19
  start-page: 31
  year: 2009
  ident: 10.1016/j.cell.2015.09.047_bib53
  article-title: Linking folding and binding
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2008.12.003
– volume: 55
  start-page: 311
  year: 2013
  ident: 10.1016/j.cell.2015.09.047_bib45
  article-title: BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-013-9715-0
– volume: 20
  start-page: 461
  year: 2010
  ident: 10.1016/j.cell.2015.09.047_bib52
  article-title: The Part and the Whole: functions of nucleoporins in nucleocytoplasmic transport
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2010.05.001
– volume: 101
  start-page: 1710
  year: 2011
  ident: 10.1016/j.cell.2015.09.047_bib29
  article-title: Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.08.025
– volume: 6
  start-page: 197
  year: 2005
  ident: 10.1016/j.cell.2015.09.047_bib13
  article-title: Intrinsically unstructured proteins and their functions
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1589
– volume: 54
  start-page: 7375
  year: 2011
  ident: 10.1016/j.cell.2015.09.047_bib6
  article-title: Design, synthesis, and biological studies of efficient multivalent melanotropin ligands: tools toward melanoma diagnosis and treatment
  publication-title: J. Med. Chem.
  doi: 10.1021/jm2009937
– volume: 32
  start-page: 3220
  year: 2013
  ident: 10.1016/j.cell.2015.09.047_bib50
  article-title: Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.239
– volume: 4
  start-page: 4
  year: 2015
  ident: 10.1016/j.cell.2015.09.047_bib18
  article-title: The molecular mechanism of nuclear transport revealed by atomic scale measurements
  publication-title: eLife
  doi: 10.7554/eLife.10027
– volume: 117
  start-page: 13346
  year: 2013
  ident: 10.1016/j.cell.2015.09.047_bib42
  article-title: Remarkably fast coupled folding and binding of the intrinsically disordered transactivation domain of cMyb to CBP KIX
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp404267e
– volume: 35
  start-page: 539
  year: 2010
  ident: 10.1016/j.cell.2015.09.047_bib10
  article-title: Induced fit, conformational selection and independent dynamic segments: an extended view of binding events
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2010.04.009
– volume: 130
  start-page: 512
  year: 2007
  ident: 10.1016/j.cell.2015.09.047_bib15
  article-title: A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes
  publication-title: Cell
  doi: 10.1016/j.cell.2007.06.024
– volume: 9
  start-page: 525
  year: 2014
  ident: 10.1016/j.cell.2015.09.047_bib38
  article-title: Selective transport control on molecular velcro made from intrinsically disordered proteins
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.103
– volume: 152
  start-page: 1218
  year: 2013
  ident: 10.1016/j.cell.2015.09.047_bib1
  article-title: Uncovering nuclear pore complexity with innovation
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.042
– volume: 114
  start-page: 7983
  year: 2010
  ident: 10.1016/j.cell.2015.09.047_bib22
  article-title: Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp102156t
– volume: 33
  start-page: 2
  year: 2008
  ident: 10.1016/j.cell.2015.09.047_bib48
  article-title: Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2007.10.003
– volume: 13
  start-page: 1869
  year: 2005
  ident: 10.1016/j.cell.2015.09.047_bib19
  article-title: Binding dynamics of isolated nucleoporin repeat regions to importin-beta
  publication-title: Structure
  doi: 10.1016/j.str.2005.09.007
– volume: 162
  start-page: 391
  year: 2003
  ident: 10.1016/j.cell.2015.09.047_bib4
  article-title: Importin beta contains a COOH-terminal nucleoporin binding region important for nuclear transport
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200303085
– volume: 333
  start-page: 587
  year: 2003
  ident: 10.1016/j.cell.2015.09.047_bib31
  article-title: Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2003.08.050
– volume: 152
  start-page: 411
  year: 2001
  ident: 10.1016/j.cell.2015.09.047_bib5
  article-title: Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.152.2.411
– volume: 155
  start-page: 1233
  year: 2013
  ident: 10.1016/j.cell.2015.09.047_bib7
  article-title: Integrated structural analysis of the human nuclear pore complex scaffold
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.055
– volume: 31
  start-page: 466
  year: 2009
  ident: 10.1016/j.cell.2015.09.047_bib36
  article-title: Translocation through the nuclear pore: Kaps pave the way
  publication-title: BioEssays
  doi: 10.1002/bies.200800159
– volume: 288
  start-page: 737
  year: 2013
  ident: 10.1016/j.cell.2015.09.047_bib55
  article-title: Heparin oligosaccharides inhibit chemokine (CXC motif) ligand 12 (CXCL12) cardioprotection by binding orthogonal to the dimerization interface, promoting oligomerization, and competing with the chemokine (CXC motif) receptor 4 (CXCR4) N terminus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.394064
– volume: 11
  start-page: 31
  year: 2012
  ident: 10.1016/j.cell.2015.09.047_bib47
  article-title: Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M111.013656
– volume: 7
  start-page: e1002049
  year: 2011
  ident: 10.1016/j.cell.2015.09.047_bib32
  article-title: Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002049
– volume: 4
  start-page: 4
  year: 2015
  ident: 10.1016/j.cell.2015.09.047_bib27
  article-title: Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner
  publication-title: eLife
  doi: 10.7554/eLife.04052
– volume: 53
  start-page: 7364
  year: 2014
  ident: 10.1016/j.cell.2015.09.047_bib30
  article-title: Mapping multivalency and differential affinities within large intrinsically disordered protein complexes with segmental motion analysis
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201403694
– volume: 109
  start-page: 16911
  year: 2012
  ident: 10.1016/j.cell.2015.09.047_bib40
  article-title: Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1208440109
– volume: 111
  start-page: 12055
  year: 2014
  ident: 10.1016/j.cell.2015.09.047_bib43
  article-title: Allostery within a transcription coactivator is predominantly mediated through dissociation rate constants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1405815111
– volume: 457
  start-page: 1023
  year: 2009
  ident: 10.1016/j.cell.2015.09.047_bib21
  article-title: Artificial nanopores that mimic the transport selectivity of the nuclear pore complex
  publication-title: Nature
  doi: 10.1038/nature07600
– volume: 132
  start-page: 1270
  year: 2010
  ident: 10.1016/j.cell.2015.09.047_bib20
  article-title: Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909973n
– volume: 80
  start-page: 613
  year: 2011
  ident: 10.1016/j.cell.2015.09.047_bib17
  article-title: The structure of the nuclear pore complex
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060109-151030
– volume: 51
  start-page: 369
  year: 2011
  ident: 10.1016/j.cell.2015.09.047_bib37
  article-title: Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-011-9567-4
– volume: 112
  start-page: 3409
  year: 2015
  ident: 10.1016/j.cell.2015.09.047_bib23
  article-title: Structure and dynamics of the MKK7-JNK signaling complex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1419528112
– volume: 105
  start-page: 16101
  year: 2008
  ident: 10.1016/j.cell.2015.09.047_bib34
  article-title: Individual binding pockets of importin-beta for FG-nucleoporins have different binding properties and different sensitivities to RanGTP
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0802647105
– volume: 38
  start-page: 6673
  year: 2010
  ident: 10.1016/j.cell.2015.09.047_bib8
  article-title: The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq501
– volume: 318
  start-page: 640
  year: 2007
  ident: 10.1016/j.cell.2015.09.047_bib26
  article-title: Nanomechanical basis of selective gating by the nuclear pore complex
  publication-title: Science
  doi: 10.1126/science.1145980
– volume: 9
  start-page: 648
  year: 2013
  ident: 10.1016/j.cell.2015.09.047_bib33
  article-title: Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2013.4
– volume: 90
  start-page: 1913
  year: 2006
  ident: 10.1016/j.cell.2015.09.047_bib46
  article-title: Diffusional encounter of barnase and barstar
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.075507
– volume: 28
  start-page: 1463
  year: 2012
  ident: 10.1016/j.cell.2015.09.047_bib35
  article-title: Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts172
– volume: 100
  start-page: 2450
  year: 2003
  ident: 10.1016/j.cell.2015.09.047_bib11
  article-title: Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0437902100
– volume: 206
  start-page: 579
  year: 2014
  ident: 10.1016/j.cell.2015.09.047_bib49
  article-title: Assemblages: functional units formed by cellular phase separation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201404124
– volume: 108
  start-page: 918
  year: 2015
  ident: 10.1016/j.cell.2015.09.047_bib51
  article-title: Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.12.041
– volume: 395
  start-page: 710
  year: 1998
  ident: 10.1016/j.cell.2015.09.047_bib24
  article-title: Spanning binding sites on allosteric proteins with polymer-linked ligand dimers
  publication-title: Nature
  doi: 10.1038/27227
– volume: 97
  start-page: 8868
  year: 2000
  ident: 10.1016/j.cell.2015.09.047_bib44
  article-title: Speeding molecular recognition by using the folding funnel: the fly-casting mechanism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.160259697
– volume: 9
  start-page: 2205
  year: 2010
  ident: 10.1016/j.cell.2015.09.047_bib54
  article-title: A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M000035-MCP201
– volume: 9
  start-page: e1003363
  year: 2013
  ident: 10.1016/j.cell.2015.09.047_bib16
  article-title: Electrostatically accelerated encounter and folding for facile recognition of intrinsically disordered proteins
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003363
– volume: 102
  start-page: 99
  year: 2000
  ident: 10.1016/j.cell.2015.09.047_bib3
  article-title: Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00014-3
– volume: 119
  start-page: 7975
  year: 2015
  ident: 10.1016/j.cell.2015.09.047_bib28
  article-title: Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b03440
– volume: 134
  start-page: 3792
  year: 2012
  ident: 10.1016/j.cell.2015.09.047_bib2
  article-title: Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209936u
– volume: 105
  start-page: 1860
  year: 2013
  ident: 10.1016/j.cell.2015.09.047_bib14
  article-title: Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks - Implications for nuclear pore permeability
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.09.006
– volume: 76
  start-page: 647
  year: 2007
  ident: 10.1016/j.cell.2015.09.047_bib9
  article-title: Structural biology of nucleocytoplasmic transport
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052705.161529
– volume: 42
  start-page: D259
  year: 2014
  ident: 10.1016/j.cell.2015.09.047_bib12
  article-title: The eukaryotic linear motif resource ELM: 10 years and counting
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1047
– volume: 137
  start-page: 1220
  year: 2015
  ident: 10.1016/j.cell.2015.09.047_bib39
  article-title: Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511066q
SSID ssj0008555
Score 2.582624
Snippet The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 734
SubjectTerms Active Transport, Cell Nucleus
Biochemistry, Molecular Biology
Crystallography, X-Ray
fluorescence
Fluorescence Resonance Energy Transfer
Humans
Karyopherins - chemistry
Karyopherins - metabolism
Life Sciences
Models, Molecular
nuclear magnetic resonance spectroscopy
Nuclear Pore Complex Proteins - chemistry
Nuclear Pore Complex Proteins - metabolism
Nuclear Proteins - chemistry
Nuclear Proteins - metabolism
nucleoporins
receptors
Saccharomyces cerevisiae
Structural Biology
Title Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors
URI https://dx.doi.org/10.1016/j.cell.2015.09.047
https://www.ncbi.nlm.nih.gov/pubmed/26456112
https://www.proquest.com/docview/1727987062
https://www.proquest.com/docview/2000209127
https://hal.univ-grenoble-alpes.fr/hal-01235362
https://pubmed.ncbi.nlm.nih.gov/PMC4622936
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4qCF7Et-uLKN6kaNOkbY4qyiIqHlxY8BCSJsWVpbvoKvjvnUna4vo62FvTpEk7yczX9JsZQg6lAbMkmItsqV2E2i-SzAgAckVmeK6F9WzCm9u02-NXfdGfIeeNLwzSKmvdH3S619Z1yXH9No_HgwH6-EqWp2gRQcmmHD3KE557J77-WauNcyFCFgMJKx9q144zgeOFm-NI7xI-1immWPnZOM0-IkvyOwT9yqT8ZJoul8hijSnpaRj2Mplx1QqZD1km31fJwx0gZCRPT97pqKS6or0h3KaEQuo3BINvA60pW_QWQxyPxsjMe4HaNhToZ9oGQqcANt0Y8_Sskd7lxf15N6pzKkSFyPNJhPjDyNIZnegsSaSJMwBRRS5cWVirAZ1ZqWNuuXBJksFhdWEc19omItbCJOtkrhpVbpNQ-HKzWe4EeulxZ5k-sUWaltylGITQiA6Jm5epijrgOOa9GKqGWfakUAAKBaBOpAIBdMhR22Ycwm38WVs0MlJTk0aBPfiz3QEItO0AI2x3T68VlnnfYTDqb3GH7DfyVrDk8B66cqPXF4WYT-L_YfZ7Heb_8cqYQWcbYY60_cFkBdQaQ-tsavZMDWj6SjV49KG_ecoAn6Vb_3zwbbKAZ2h7Gdshc5PnV7cLoGpi9tCkiT2_dj4ATushaA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4tVKhcUEsfLPRhqt6qCOLYSXxcEGhpl1UPrLRSD5YdO2IrlF3BgsS_ZyZOoi6lHJqj41c89syX5JsZgK_KolmS3EeuND4i7RcpbiUCuSKzIjfS1WzC83E6nIjvUzntwXHrC0O0ykb3B51ea-um5KBZzYPFbEY-vornKVlEVLKpyNbgBaKBjPI3nE2POnWcSxnSGCg8-li98ZwJJC_6Ok78LlkHO6UcK09bp7VLokn-jUEfUyn_sE2nr2CrAZVsEOb9Gnq-2oaNkGby_g38-okQmdjTy3s2L5mp2OQKuymxkNVfBINzA2s4W2xMMY7nC6Lm3WBtFwrMNesioTNEm35BiXrewuT05OJ4GDVJFaJC5vkyIgBiVemtSUyWJMrGGaKoIpe-LJwzCM-cMrFwQvokyfByprBeGOMSGRtpk3ewXs0rvwMMX91clntJbnrCO24OXZGmpfApRSG0sg9xu5i6aCKOU-KLK91Sy35rEoAmAehDpVEAffjWtVmEeBvP1patjPTKrtFoEJ5t9wUF2g1AIbaHg5Gmstp5GK36XdyH_VbeGs8c9WEqP7-90QT6FP0g5v-uw-ufvCrmONj7sEe68XC3ImyNsXW2sntWJrR6p5pd1rG_RcoRoKW7__ngn-Hl8OJ8pEdn4x97sEl3yBBz_gHWl9e3_iMirKX9VJ-gBwMYI6E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasticity+of+an+Ultrafast+Interaction+between+Nucleoporins+and+Nuclear+Transport+Receptors&rft.jtitle=Cell&rft.au=Milles%2C+Sigrid&rft.au=Mercadante%2C+Davide&rft.au=Aramburu%2C+Iker%C2%A0Valle&rft.au=Jensen%2C+Malene%C2%A0Ringkj%C3%B8bing&rft.date=2015-10-22&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=163&rft.issue=3&rft.spage=734&rft.epage=745&rft_id=info:doi/10.1016%2Fj.cell.2015.09.047&rft.externalDocID=S0092867415012647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon