Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors
The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered p...
Saved in:
Published in | Cell Vol. 163; no. 3; pp. 734 - 745 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.10.2015
Elsevier Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.
[Display omitted]
•Integrative structural biology reveals the basis of rapid nuclear transport•Transient binding of disordered nucleoporins leaves their plasticity unaffected•Multiple minimalistic low-affinity binding motifs create a polyvalent complex•A highly reactive and dynamic surface permits an ultrafast binding mechanism
Intrinsically disordered nucleoporins (Nups) engage rapidly with nuclear transport receptors through many minimalistic, weakly binding motifs. These Nups form polyvalent complexes while retaining conformational plasticity thus ensuring both rapid and specific transport. |
---|---|
AbstractList | The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. [Display omitted] •Integrative structural biology reveals the basis of rapid nuclear transport•Transient binding of disordered nucleoporins leaves their plasticity unaffected•Multiple minimalistic low-affinity binding motifs create a polyvalent complex•A highly reactive and dynamic surface permits an ultrafast binding mechanism Intrinsically disordered nucleoporins (Nups) engage rapidly with nuclear transport receptors through many minimalistic, weakly binding motifs. These Nups form polyvalent complexes while retaining conformational plasticity thus ensuring both rapid and specific transport. The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. • Integrative structural biology reveals the basis of rapid nuclear transport • Transient binding of disordered nucleoporins leaves their plasticity unaffected • Multiple minimalistic low-affinity binding motifs create a polyvalent complex • A highly reactive and dynamic surface permits an ultrafast binding mechanism Intrinsically disordered nucleoporins (Nups) engage rapidly with nuclear transport receptors through many minimalistic, weakly binding motifs. These Nups form polyvalent complexes while retaining conformational plasticity thus ensuring both rapid and specific transport. The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. |
Author | Shammas, Sarah L. Tyagi, Swati Clarke, Jane Mercadante, Davide Milles, Sigrid Jensen, Malene Ringkjøbing Aramburu, Iker Valle Banterle, Niccolò Koehler, Christine Blackledge, Martin Lemke, Edward A. Gräter, Frauke |
AuthorAffiliation | 7 Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK 2 Molecular Biomechanics group, HITS gGmbH, Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany 3 IWR – Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany 5 CNRS, IBS, F-38044 Grenoble, France 4 University Grenoble Alpes, IBS, F-38044 Grenoble, France 1 Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany 6 CEA, IBS, F-38044 Grenoble, France |
AuthorAffiliation_xml | – name: 1 Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany – name: 2 Molecular Biomechanics group, HITS gGmbH, Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany – name: 5 CNRS, IBS, F-38044 Grenoble, France – name: 3 IWR – Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany – name: 4 University Grenoble Alpes, IBS, F-38044 Grenoble, France – name: 6 CEA, IBS, F-38044 Grenoble, France – name: 7 Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK |
Author_xml | – sequence: 1 givenname: Sigrid surname: Milles fullname: Milles, Sigrid organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany – sequence: 2 givenname: Davide surname: Mercadante fullname: Mercadante, Davide organization: Molecular Biomechanics group, HITS gGmbH, Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany – sequence: 3 givenname: Iker Valle surname: Aramburu fullname: Aramburu, Iker Valle organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany – sequence: 4 givenname: Malene Ringkjøbing surname: Jensen fullname: Jensen, Malene Ringkjøbing organization: University Grenoble Alpes, IBS, F-38044 Grenoble, France – sequence: 5 givenname: Niccolò surname: Banterle fullname: Banterle, Niccolò organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany – sequence: 6 givenname: Christine surname: Koehler fullname: Koehler, Christine organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany – sequence: 7 givenname: Swati surname: Tyagi fullname: Tyagi, Swati organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany – sequence: 8 givenname: Jane surname: Clarke fullname: Clarke, Jane organization: Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK – sequence: 9 givenname: Sarah L. surname: Shammas fullname: Shammas, Sarah L. organization: Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK – sequence: 10 givenname: Martin surname: Blackledge fullname: Blackledge, Martin email: martin.blackledge@ibs.fr organization: University Grenoble Alpes, IBS, F-38044 Grenoble, France – sequence: 11 givenname: Frauke surname: Gräter fullname: Gräter, Frauke email: frauke.graeter@h-its.org organization: Molecular Biomechanics group, HITS gGmbH, Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany – sequence: 12 givenname: Edward A. surname: Lemke fullname: Lemke, Edward A. email: lemke@embl.de organization: Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26456112$$D View this record in MEDLINE/PubMed https://hal.univ-grenoble-alpes.fr/hal-01235362$$DView record in HAL |
BookMark | eNqFUk1v1DAUtFAR3Rb-AAeUIxwS_BnHEkKqKqCVVoBQe-JgOc4L9SprL7Z3Uf89jtIi6KH4Ymk8M-89zztBRz54QOglwQ3BpH27aSxMU0MxEQ1WDebyCVoRrGTNiaRHaIWxonXXSn6MTlLaYIw7IcQzdExbLlpC6Ap9_zqZlJ11-bYKY2V8dT3laMYCVpc-QzQ2u-CrHvIvAF993tsJwi5E51NhDwtgYnUVjU8Fz9U3sLDLIabn6OlopgQv7u5TdP3xw9X5Rb3-8uny_GxdW9F1ueZMyV6N0BtmJGOqJ5IIbjsBox0GQ1o2KEP4wAUwJssZjO2BGzMwQYzo2Sl6v_ju9v0WBgu-TDDpXXRbE291ME7_--Ldjf4RDpq3lCrWFoM3i8HNA9nF2VrPGCaUCdbSAync13fFYvi5h5T11qU5B-Mh7JOm5ZcpVoTK_1JLSFJ1Ere0UF_9PcKfJu6DKoRuIdgYUoow6hKZmaMpE7lJE6znndAbPRfQ805orHTZiSKlD6T37o-K3i0iKMEdHESdrANvYXARbNZDcI_JfwPkttFX |
CitedBy_id | crossref_primary_10_1016_j_molcel_2019_01_032 crossref_primary_10_1073_pnas_2304036120 crossref_primary_10_1016_j_semcdb_2017_05_007 crossref_primary_10_1016_j_abb_2019_07_011 crossref_primary_10_1021_acs_jpcb_3c01619 crossref_primary_10_1073_pnas_1608762113 crossref_primary_10_1146_annurev_physiol_042222_025920 crossref_primary_10_1038_s41556_021_00815_6 crossref_primary_10_3389_fmolb_2020_00110 crossref_primary_10_1021_acs_biomac_8b00556 crossref_primary_10_1021_acsnano_7b08044 crossref_primary_10_1002_anie_202403941 crossref_primary_10_1080_07388551_2024_2425989 crossref_primary_10_26508_lsa_201800142 crossref_primary_10_1016_j_gene_2021_145621 crossref_primary_10_1038_nrm_2016_147 crossref_primary_10_3389_fcell_2021_708702 crossref_primary_10_1016_j_tibs_2015_11_001 crossref_primary_10_1016_j_bbagen_2020_129609 crossref_primary_10_1038_nature26003 crossref_primary_10_1371_journal_pbio_3000318 crossref_primary_10_1016_j_jmb_2018_07_011 crossref_primary_10_1042_BST20240507 crossref_primary_10_1007_s00018_017_2560_7 crossref_primary_10_1073_pnas_2007670117 crossref_primary_10_1016_j_cis_2022_102777 crossref_primary_10_1074_jbc_AC117_001037 crossref_primary_10_1063_5_0080480 crossref_primary_10_1091_mbc_E24_05_0224 crossref_primary_10_7554_eLife_14119 crossref_primary_10_1016_j_bpj_2017_05_024 crossref_primary_10_1021_jacs_1c00811 crossref_primary_10_3389_fmolb_2016_00052 crossref_primary_10_3389_fmolb_2016_00054 crossref_primary_10_1016_j_semcdb_2017_05_021 crossref_primary_10_1038_s41598_021_81920_2 crossref_primary_10_1038_s41594_023_01159_5 crossref_primary_10_1042_BST20220494 crossref_primary_10_1038_s41467_020_20194_0 crossref_primary_10_1002_anie_201813354 crossref_primary_10_1080_09553002_2020_1815889 crossref_primary_10_1016_j_pnmrs_2022_04_002 crossref_primary_10_1073_pnas_2021074118 crossref_primary_10_1016_j_ceb_2018_01_006 crossref_primary_10_3389_fmolb_2017_00012 crossref_primary_10_1140_epje_s10189_021_00136_4 crossref_primary_10_3390_v12091014 crossref_primary_10_1021_acs_biochem_7b00552 crossref_primary_10_1002_cphc_201701187 crossref_primary_10_1021_jacs_7b06659 crossref_primary_10_1016_j_physrep_2021_03_003 crossref_primary_10_1038_s41392_023_01649_4 crossref_primary_10_1074_jbc_M116_724393 crossref_primary_10_1186_s12915_023_01580_8 crossref_primary_10_1126_sciadv_aaz7095 crossref_primary_10_1016_j_cell_2017_09_033 crossref_primary_10_1016_j_coviro_2020_05_006 crossref_primary_10_1038_nchembio_1972 crossref_primary_10_1016_j_cell_2018_03_003 crossref_primary_10_1016_j_pnmrs_2018_07_001 crossref_primary_10_1515_hsz_2023_0155 crossref_primary_10_3390_biom9040146 crossref_primary_10_1016_j_celrep_2020_108484 crossref_primary_10_1063_5_0244227 crossref_primary_10_1016_j_bbamcr_2021_119205 crossref_primary_10_1038_s41556_021_00697_8 crossref_primary_10_1021_acschembio_6b00507 crossref_primary_10_1039_D1SC02653D crossref_primary_10_1016_j_ceb_2020_04_003 crossref_primary_10_1016_j_sbi_2023_102724 crossref_primary_10_1016_j_sbi_2016_06_006 crossref_primary_10_3390_v12080834 crossref_primary_10_1126_sciadv_adi6539 crossref_primary_10_1042_BST20190941 crossref_primary_10_1016_j_csbj_2021_06_031 crossref_primary_10_1039_C7ME00006E crossref_primary_10_1016_j_pbi_2020_10_006 crossref_primary_10_1093_nar_gky612 crossref_primary_10_1002_ange_202403941 crossref_primary_10_1016_j_cell_2016_01_034 crossref_primary_10_3390_life13040855 crossref_primary_10_1002_pro_4317 crossref_primary_10_1146_annurev_biochem_062917_011901 crossref_primary_10_7554_eLife_28716 crossref_primary_10_1021_jacs_1c06264 crossref_primary_10_1073_pnas_1704692114 crossref_primary_10_1016_j_bpj_2017_10_016 crossref_primary_10_1016_j_str_2020_09_010 crossref_primary_10_1016_j_celrep_2018_03_022 crossref_primary_10_1016_j_molcel_2021_03_031 crossref_primary_10_1016_j_str_2023_09_011 crossref_primary_10_1016_j_cell_2018_05_045 crossref_primary_10_1016_j_cell_2016_05_004 crossref_primary_10_1007_s12274_022_4647_1 crossref_primary_10_1002_1873_3468_14209 crossref_primary_10_1016_j_ymeth_2024_01_008 crossref_primary_10_1242_jcs_184184 crossref_primary_10_1016_j_bbrc_2022_03_056 crossref_primary_10_1021_acs_chemrev_1c01023 crossref_primary_10_1042_BST20200357 crossref_primary_10_1007_s12551_017_0346_7 crossref_primary_10_1083_jcb_202108107 crossref_primary_10_1007_s00018_017_2561_6 crossref_primary_10_1016_j_jmb_2018_02_015 crossref_primary_10_1242_jcs_185710 crossref_primary_10_1007_s00018_022_04486_w crossref_primary_10_1038_s41467_020_18859_x crossref_primary_10_1016_j_jmb_2018_05_012 crossref_primary_10_1021_acs_biochem_1c00465 crossref_primary_10_1016_j_str_2018_01_010 crossref_primary_10_1111_febs_15205 crossref_primary_10_1038_s41594_022_00811_w crossref_primary_10_1016_j_ceb_2017_05_003 crossref_primary_10_3390_polym12102282 crossref_primary_10_1038_s41467_020_17407_x crossref_primary_10_1103_PhysRevE_101_042404 crossref_primary_10_1038_s41586_023_05990_0 crossref_primary_10_1038_s41467_021_22293_y crossref_primary_10_1186_s13024_021_00475_y crossref_primary_10_1016_j_jmb_2016_01_002 crossref_primary_10_1021_acs_chemrev_3c00955 crossref_primary_10_1126_science_abm9798 crossref_primary_10_3390_biomedicines9101451 crossref_primary_10_1021_acsnano_0c02895 crossref_primary_10_3390_ijms21228615 crossref_primary_10_7554_eLife_60416 crossref_primary_10_1042_BCJ20200828 crossref_primary_10_1063_1_4981211 crossref_primary_10_1126_sciadv_aat7778 crossref_primary_10_1016_j_tibs_2017_08_007 crossref_primary_10_1016_j_sbi_2023_102659 crossref_primary_10_1038_s41467_023_42232_3 crossref_primary_10_3390_cells12121637 crossref_primary_10_1186_s12964_015_0125_7 crossref_primary_10_15252_msb_20167412 crossref_primary_10_1002_cphc_202000264 crossref_primary_10_3390_biom9030081 crossref_primary_10_1242_jcs_247874 crossref_primary_10_1021_jacs_3c06965 crossref_primary_10_1038_s41467_019_13274_3 crossref_primary_10_1073_pnas_1904997116 crossref_primary_10_1016_j_bpj_2021_01_039 crossref_primary_10_1038_s41467_017_01057_7 crossref_primary_10_1016_j_sbi_2023_102742 crossref_primary_10_3390_ijms24044028 crossref_primary_10_1016_j_bpj_2019_11_024 crossref_primary_10_1016_j_bpj_2019_11_026 crossref_primary_10_1016_j_jmb_2017_06_005 crossref_primary_10_1038_s41598_019_57064_9 crossref_primary_10_1016_j_jmb_2016_02_023 crossref_primary_10_1038_s41467_018_05928_5 crossref_primary_10_7554_eLife_55963 crossref_primary_10_1073_pnas_2106690118 crossref_primary_10_1099_jgv_0_001960 crossref_primary_10_1016_j_sbi_2018_09_008 crossref_primary_10_1016_j_sbi_2018_09_007 crossref_primary_10_1016_j_ijbiomac_2021_01_218 crossref_primary_10_1002_ange_201813354 crossref_primary_10_1038_s41467_020_15007_3 crossref_primary_10_1016_j_celrep_2024_114793 crossref_primary_10_1038_s41580_023_00673_0 crossref_primary_10_1073_pnas_1522663113 crossref_primary_10_15252_embj_2021109952 crossref_primary_10_1080_19491034_2023_2240139 crossref_primary_10_1083_jcb_202010141 crossref_primary_10_1039_D2SC00028H crossref_primary_10_1016_j_sbi_2017_06_007 crossref_primary_10_1038_s41467_022_28821_8 crossref_primary_10_1146_annurev_biophys_101122_071930 crossref_primary_10_1074_jbc_REV120_012413 crossref_primary_10_1042_EBC20220056 crossref_primary_10_1083_jcb_201907157 crossref_primary_10_1091_mbc_E21_04_0161 crossref_primary_10_1021_acs_chemrev_1c00790 crossref_primary_10_3390_ijms25179387 crossref_primary_10_1016_j_pnmrs_2017_06_001 crossref_primary_10_1083_jcb_201702092 crossref_primary_10_1039_C8CP06803H crossref_primary_10_1016_j_bbapap_2019_04_005 crossref_primary_10_1103_PhysRevE_101_022420 crossref_primary_10_1038_s41467_024_50212_4 crossref_primary_10_1016_j_sbi_2021_04_004 crossref_primary_10_1016_j_bbapap_2019_04_007 crossref_primary_10_1016_j_sbi_2019_12_006 crossref_primary_10_1002_1873_3468_12762 crossref_primary_10_1038_nnano_2016_62 crossref_primary_10_1103_PhysRevE_100_042414 crossref_primary_10_3390_molecules23113008 crossref_primary_10_1103_PhysRevLett_129_048003 crossref_primary_10_1038_nature25762 crossref_primary_10_1083_jcb_201910211 crossref_primary_10_1016_j_bbapap_2017_06_008 crossref_primary_10_3390_biom12010027 crossref_primary_10_1083_jcb_201601004 crossref_primary_10_1093_nar_gkw1019 crossref_primary_10_1074_jbc_AC117_001649 crossref_primary_10_1016_j_ymeth_2021_03_018 crossref_primary_10_15252_msb_202110584 crossref_primary_10_1021_jacs_0c02088 crossref_primary_10_1073_pnas_1702226114 crossref_primary_10_1021_acs_jpcb_2c03837 crossref_primary_10_1016_j_sbi_2019_11_001 crossref_primary_10_1016_j_sbi_2017_02_003 crossref_primary_10_1038_srep29991 crossref_primary_10_1038_s41467_023_41304_8 crossref_primary_10_1016_j_neuint_2017_01_020 crossref_primary_10_3390_ijms221910898 crossref_primary_10_1002_1873_3468_14725 crossref_primary_10_3390_cells13010071 crossref_primary_10_1371_journal_pone_0217897 crossref_primary_10_1016_j_ceb_2024_102407 crossref_primary_10_1016_j_neuint_2017_01_022 crossref_primary_10_1016_j_semcdb_2017_06_026 crossref_primary_10_1021_acs_chemrev_5b00548 crossref_primary_10_1016_j_jmb_2018_04_003 crossref_primary_10_3389_fcell_2023_1245939 |
Cites_doi | 10.1083/jcb.200411005 10.1016/j.sbi.2007.12.003 10.1016/j.sbi.2008.12.003 10.1007/s10858-013-9715-0 10.1016/j.tcb.2010.05.001 10.1016/j.bpj.2011.08.025 10.1038/nrm1589 10.1021/jm2009937 10.1038/emboj.2013.239 10.7554/eLife.10027 10.1021/jp404267e 10.1016/j.tibs.2010.04.009 10.1016/j.cell.2007.06.024 10.1038/nnano.2014.103 10.1016/j.cell.2013.02.042 10.1021/jp102156t 10.1016/j.tibs.2007.10.003 10.1016/j.str.2005.09.007 10.1083/jcb.200303085 10.1016/j.jmb.2003.08.050 10.1083/jcb.152.2.411 10.1016/j.cell.2013.10.055 10.1002/bies.200800159 10.1074/jbc.M112.394064 10.1074/mcp.M111.013656 10.1371/journal.pcbi.1002049 10.7554/eLife.04052 10.1002/anie.201403694 10.1073/pnas.1208440109 10.1073/pnas.1405815111 10.1038/nature07600 10.1021/ja909973n 10.1146/annurev-biochem-060109-151030 10.1007/s10858-011-9567-4 10.1073/pnas.1419528112 10.1073/pnas.0802647105 10.1093/nar/gkq501 10.1126/science.1145980 10.1038/msb.2013.4 10.1529/biophysj.105.075507 10.1093/bioinformatics/bts172 10.1073/pnas.0437902100 10.1083/jcb.201404124 10.1016/j.bpj.2014.12.041 10.1038/27227 10.1073/pnas.160259697 10.1074/mcp.M000035-MCP201 10.1371/journal.pcbi.1003363 10.1016/S0092-8674(00)00014-3 10.1021/acs.jpcb.5b03440 10.1021/ja209936u 10.1016/j.bpj.2013.09.006 10.1146/annurev.biochem.76.052705.161529 10.1093/nar/gkt1047 10.1021/ja511066q |
ContentType | Journal Article |
Copyright | 2015 The Authors Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License 2015 The Authors 2015 |
Copyright_xml | – notice: 2015 The Authors – notice: Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2015 The Authors 2015 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC 5PM |
DOI | 10.1016/j.cell.2015.09.047 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 745 |
ExternalDocumentID | PMC4622936 oai_HAL_hal_01235362v1 26456112 10_1016_j_cell_2015_09_047 S0092867415012647 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U105485808 – fundername: Wellcome Trust grantid: WT/095195 – fundername: Wellcome Trust grantid: 095195 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAHBH AAIKJ AALRI AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 1XC 5PM |
ID | FETCH-LOGICAL-c588t-4397b9feba3a7339b17154c85efcdda163d9a14d45e337777dacbe4aad351a5b3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 18:07:08 EDT 2025 Thu May 29 06:11:35 EDT 2025 Mon Jul 21 10:18:13 EDT 2025 Fri Jul 11 01:02:38 EDT 2025 Mon Jul 21 05:58:56 EDT 2025 Tue Jul 01 02:16:53 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Fri Feb 23 02:30:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c588t-4397b9feba3a7339b17154c85efcdda163d9a14d45e337777dacbe4aad351a5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4622936 Co-first author |
ORCID | 0000-0001-9362-9606 0000-0003-0419-2196 0000-0003-0935-721X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867415012647 |
PMID | 26456112 |
PQID | 1727987062 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4622936 hal_primary_oai_HAL_hal_01235362v1 proquest_miscellaneous_2000209127 proquest_miscellaneous_1727987062 pubmed_primary_26456112 crossref_citationtrail_10_1016_j_cell_2015_09_047 crossref_primary_10_1016_j_cell_2015_09_047 elsevier_sciencedirect_doi_10_1016_j_cell_2015_09_047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-22 |
PublicationDateYYYYMMDD | 2015-10-22 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Cell Press |
References | Tompa, Fuxreiter (bib48) 2008; 33 Arai, Ferreon, Wright (bib2) 2012; 134 Peters (bib36) 2009; 31 Hough, Dutta, Sparks, Temel, Kamal, Tetenbaum-Novatt, Rout, Cowburn (bib18) 2015; 4 Jensen, Salmon, Nodet, Blackledge (bib20) 2010; 132 Wagner, Kapinos, Marshall, Stewart, Lim (bib51) 2015; 108 Cook, Bono, Jinek, Conti (bib9) 2007; 76 Frey, Görlich (bib15) 2007; 130 Bayliss, Littlewood, Stewart (bib3) 2000; 102 Eisele, Labokha, Frey, Görlich, Richter (bib14) 2013; 105 Schoch, Kapinos, Lim (bib40) 2012; 109 Jovanovic-Talisman, Tetenbaum-Novatt, McKenney, Zilman, Peters, Rout, Chait (bib21) 2009; 457 Kragelj, Palencia, Nanao, Maurin, Bouvignies, Blackledge, Jensen (bib23) 2015; 112 Bednenko, Cingolani, Gerace (bib4) 2003; 162 Ganguly, Zhang, Chen (bib16) 2013; 9 Solyom, Schwarten, Geist, Konrat, Willbold, Brutscher (bib45) 2013; 55 Kalinin, Valeri, Antonik, Felekyan, Seidel (bib22) 2010; 114 Tetenbaum-Novatt, Hough, Mironska, McKenney, Rout (bib47) 2012; 11 Brabez, Lynch, Xu, Gillies, Chassaing, Lavielle, Hruby (bib6) 2011; 54 Hoelz, Debler, Blobel (bib17) 2011; 80 Spaar, Dammer, Gabdoulline, Wade, Helms (bib46) 2006; 90 Kramer, Karpen (bib24) 1998; 395 Ziarek, Veldkamp, Zhang, Murray, Kartz, Liang, Su, Baker, Linhardt, Volkman (bib55) 2013; 288 Isgro, Schulten (bib19) 2005; 13 Schneider, Maurin, Communie, Kragelj, Hansen, Ruigrok, Jensen, Blackledge (bib39) 2015; 137 Morrison, Yang, Stewart, Neuhaus (bib31) 2003; 333 Mercadante, Milles, Fuertes, Svergun, Lemke, Gräter (bib28) 2015; 119 Moussavi-Baygi, Jamali, Karimi, Mofrad (bib32) 2011; 7 Bui, von Appen, DiGuilio, Ori, Sparks, Mackmull, Bock, Hagen, Andrés-Pons, Glavy, Beck (bib7) 2013; 155 Otsuka, Iwasaka, Yoneda, Takeyasu, Yoshimura (bib34) 2008; 105 Milles, Lemke (bib30) 2014; 53 Toretsky, Wright (bib49) 2014; 206 Lim, Fahrenkrog, Köser, Schwarz-Herion, Deng, Aebi (bib26) 2007; 318 Rasia, Lescop, Palatnik, Boisbouvier, Brutscher (bib37) 2011; 51 Adams, Wente (bib1) 2013; 152 Shammas, Travis, Clarke (bib42) 2013; 117 Kubitscheck, Grünwald, Hoekstra, Rohleder, Kues, Siebrasse, Peters (bib25) 2005; 168 Ori, Banterle, Iskar, Andrés-Pons, Escher, Khanh Bui, Sparks, Solis-Mezarino, Rinner, Bork (bib33) 2013; 9 Shoemaker, Portman, Wolynes (bib44) 2000; 97 Ben-Efraim, Gerace (bib5) 2001; 152 Lowe, Tang, Yassif, Graf, Huang, Groves, Weis, Liphardt (bib27) 2015; 4 Denning, Patel, Uversky, Fink, Rexach (bib11) 2003; 100 Schuler, Eaton (bib41) 2008; 18 Tu, Fu, Zilman, Musser (bib50) 2013; 32 Dyson, Wright (bib13) 2005; 6 Csermely, Palotai, Nussinov (bib10) 2010; 35 Milles, Lemke (bib29) 2011; 101 Schleicher, Dettmer, Kapinos, Pagliara, Keyser, Jeney, Lim (bib38) 2014; 9 Chekulaeva, Parker, Filipowicz (bib8) 2010; 38 Wright, Dyson (bib53) 2009; 19 Ozenne, Bauer, Salmon, Huang, Jensen, Segard, Bernadó, Charavay, Blackledge (bib35) 2012; 28 Shammas, Travis, Clarke (bib43) 2014; 111 Dinkel, Van Roey, Michael, Davey, Weatheritt, Born, Speck, Krüger, Grebnev, Kuban (bib12) 2014; 42 Wälde, Kehlenbach (bib52) 2010; 20 Yamada, Phillips, Patel, Goldfien, Calestagne-Morelli, Huang, Reza, Acheson, Krishnan, Newsam (bib54) 2010; 9 Solyom (10.1016/j.cell.2015.09.047_bib45) 2013; 55 Wagner (10.1016/j.cell.2015.09.047_bib51) 2015; 108 Kragelj (10.1016/j.cell.2015.09.047_bib23) 2015; 112 Shammas (10.1016/j.cell.2015.09.047_bib43) 2014; 111 Hoelz (10.1016/j.cell.2015.09.047_bib17) 2011; 80 Mercadante (10.1016/j.cell.2015.09.047_bib28) 2015; 119 Morrison (10.1016/j.cell.2015.09.047_bib31) 2003; 333 Dyson (10.1016/j.cell.2015.09.047_bib13) 2005; 6 Tompa (10.1016/j.cell.2015.09.047_bib48) 2008; 33 Milles (10.1016/j.cell.2015.09.047_bib30) 2014; 53 Bui (10.1016/j.cell.2015.09.047_bib7) 2013; 155 Denning (10.1016/j.cell.2015.09.047_bib11) 2003; 100 Dinkel (10.1016/j.cell.2015.09.047_bib12) 2014; 42 Shammas (10.1016/j.cell.2015.09.047_bib42) 2013; 117 Wright (10.1016/j.cell.2015.09.047_bib53) 2009; 19 Eisele (10.1016/j.cell.2015.09.047_bib14) 2013; 105 Jovanovic-Talisman (10.1016/j.cell.2015.09.047_bib21) 2009; 457 Spaar (10.1016/j.cell.2015.09.047_bib46) 2006; 90 Schneider (10.1016/j.cell.2015.09.047_bib39) 2015; 137 Brabez (10.1016/j.cell.2015.09.047_bib6) 2011; 54 Cook (10.1016/j.cell.2015.09.047_bib9) 2007; 76 Bednenko (10.1016/j.cell.2015.09.047_bib4) 2003; 162 Peters (10.1016/j.cell.2015.09.047_bib36) 2009; 31 Milles (10.1016/j.cell.2015.09.047_bib29) 2011; 101 Jensen (10.1016/j.cell.2015.09.047_bib20) 2010; 132 Arai (10.1016/j.cell.2015.09.047_bib2) 2012; 134 Tetenbaum-Novatt (10.1016/j.cell.2015.09.047_bib47) 2012; 11 Moussavi-Baygi (10.1016/j.cell.2015.09.047_bib32) 2011; 7 Ben-Efraim (10.1016/j.cell.2015.09.047_bib5) 2001; 152 Kubitscheck (10.1016/j.cell.2015.09.047_bib25) 2005; 168 Csermely (10.1016/j.cell.2015.09.047_bib10) 2010; 35 Hough (10.1016/j.cell.2015.09.047_bib18) 2015; 4 Frey (10.1016/j.cell.2015.09.047_bib15) 2007; 130 Otsuka (10.1016/j.cell.2015.09.047_bib34) 2008; 105 Chekulaeva (10.1016/j.cell.2015.09.047_bib8) 2010; 38 Kalinin (10.1016/j.cell.2015.09.047_bib22) 2010; 114 Kramer (10.1016/j.cell.2015.09.047_bib24) 1998; 395 Ziarek (10.1016/j.cell.2015.09.047_bib55) 2013; 288 Wälde (10.1016/j.cell.2015.09.047_bib52) 2010; 20 Schleicher (10.1016/j.cell.2015.09.047_bib38) 2014; 9 Schoch (10.1016/j.cell.2015.09.047_bib40) 2012; 109 Lim (10.1016/j.cell.2015.09.047_bib26) 2007; 318 Yamada (10.1016/j.cell.2015.09.047_bib54) 2010; 9 Adams (10.1016/j.cell.2015.09.047_bib1) 2013; 152 Ozenne (10.1016/j.cell.2015.09.047_bib35) 2012; 28 Ori (10.1016/j.cell.2015.09.047_bib33) 2013; 9 Lowe (10.1016/j.cell.2015.09.047_bib27) 2015; 4 Bayliss (10.1016/j.cell.2015.09.047_bib3) 2000; 102 Ganguly (10.1016/j.cell.2015.09.047_bib16) 2013; 9 Rasia (10.1016/j.cell.2015.09.047_bib37) 2011; 51 Shoemaker (10.1016/j.cell.2015.09.047_bib44) 2000; 97 Toretsky (10.1016/j.cell.2015.09.047_bib49) 2014; 206 Isgro (10.1016/j.cell.2015.09.047_bib19) 2005; 13 Schuler (10.1016/j.cell.2015.09.047_bib41) 2008; 18 Tu (10.1016/j.cell.2015.09.047_bib50) 2013; 32 |
References_xml | – volume: 9 start-page: e1003363 year: 2013 ident: bib16 article-title: Electrostatically accelerated encounter and folding for facile recognition of intrinsically disordered proteins publication-title: PLoS Comput. Biol. – volume: 9 start-page: 2205 year: 2010 end-page: 2224 ident: bib54 article-title: A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins publication-title: Mol. Cell. Proteomics – volume: 4 start-page: 4 year: 2015 ident: bib18 article-title: The molecular mechanism of nuclear transport revealed by atomic scale measurements publication-title: eLife – volume: 105 start-page: 16101 year: 2008 end-page: 16106 ident: bib34 article-title: Individual binding pockets of importin-beta for FG-nucleoporins have different binding properties and different sensitivities to RanGTP publication-title: Proc. Natl. Acad. Sci. USA – volume: 53 start-page: 7364 year: 2014 end-page: 7367 ident: bib30 article-title: Mapping multivalency and differential affinities within large intrinsically disordered protein complexes with segmental motion analysis publication-title: Angew. Chem. Int. Ed. Engl. – volume: 457 start-page: 1023 year: 2009 end-page: 1027 ident: bib21 article-title: Artificial nanopores that mimic the transport selectivity of the nuclear pore complex publication-title: Nature – volume: 6 start-page: 197 year: 2005 end-page: 208 ident: bib13 article-title: Intrinsically unstructured proteins and their functions publication-title: Nat. Rev. Mol. Cell Biol. – volume: 137 start-page: 1220 year: 2015 end-page: 1229 ident: bib39 article-title: Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4 year: 2015 ident: bib27 article-title: Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner publication-title: eLife – volume: 20 start-page: 461 year: 2010 end-page: 469 ident: bib52 article-title: The Part and the Whole: functions of nucleoporins in nucleocytoplasmic transport publication-title: Trends Cell Biol. – volume: 28 start-page: 1463 year: 2012 end-page: 1470 ident: bib35 article-title: Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables publication-title: Bioinformatics – volume: 152 start-page: 1218 year: 2013 end-page: 1221 ident: bib1 article-title: Uncovering nuclear pore complexity with innovation publication-title: Cell – volume: 80 start-page: 613 year: 2011 end-page: 643 ident: bib17 article-title: The structure of the nuclear pore complex publication-title: Annu. Rev. Biochem. – volume: 119 start-page: 7975 year: 2015 end-page: 7984 ident: bib28 article-title: Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields publication-title: J. Phys. Chem. B – volume: 54 start-page: 7375 year: 2011 end-page: 7384 ident: bib6 article-title: Design, synthesis, and biological studies of efficient multivalent melanotropin ligands: tools toward melanoma diagnosis and treatment publication-title: J. Med. Chem. – volume: 35 start-page: 539 year: 2010 end-page: 546 ident: bib10 article-title: Induced fit, conformational selection and independent dynamic segments: an extended view of binding events publication-title: Trends Biochem. Sci. – volume: 132 start-page: 1270 year: 2010 end-page: 1272 ident: bib20 article-title: Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 16 year: 2008 end-page: 26 ident: bib41 article-title: Protein folding studied by single-molecule FRET publication-title: Curr. Opin. Struct. Biol. – volume: 51 start-page: 369 year: 2011 end-page: 378 ident: bib37 article-title: Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins publication-title: J. Biomol. NMR – volume: 9 start-page: 648 year: 2013 ident: bib33 article-title: Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines publication-title: Mol. Syst. Biol. – volume: 152 start-page: 411 year: 2001 end-page: 417 ident: bib5 article-title: Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import publication-title: J. Cell Biol. – volume: 105 start-page: 1860 year: 2013 end-page: 1870 ident: bib14 article-title: Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks - Implications for nuclear pore permeability publication-title: Biophys. J. – volume: 11 start-page: 31 year: 2012 end-page: 46 ident: bib47 article-title: Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions publication-title: Mol. Cell. Proteomics – volume: 168 start-page: 233 year: 2005 end-page: 243 ident: bib25 article-title: Nuclear transport of single molecules: dwell times at the nuclear pore complex publication-title: J. Cell Biol. – volume: 108 start-page: 918 year: 2015 end-page: 927 ident: bib51 article-title: Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics publication-title: Biophys. J. – volume: 318 start-page: 640 year: 2007 end-page: 643 ident: bib26 article-title: Nanomechanical basis of selective gating by the nuclear pore complex publication-title: Science – volume: 288 start-page: 737 year: 2013 end-page: 746 ident: bib55 article-title: Heparin oligosaccharides inhibit chemokine (CXC motif) ligand 12 (CXCL12) cardioprotection by binding orthogonal to the dimerization interface, promoting oligomerization, and competing with the chemokine (CXC motif) receptor 4 (CXCR4) N terminus publication-title: J. Biol. Chem. – volume: 155 start-page: 1233 year: 2013 end-page: 1243 ident: bib7 article-title: Integrated structural analysis of the human nuclear pore complex scaffold publication-title: Cell – volume: 117 start-page: 13346 year: 2013 end-page: 13356 ident: bib42 article-title: Remarkably fast coupled folding and binding of the intrinsically disordered transactivation domain of cMyb to CBP KIX publication-title: J. Phys. Chem. B – volume: 55 start-page: 311 year: 2013 end-page: 321 ident: bib45 article-title: BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins publication-title: J. Biomol. NMR – volume: 101 start-page: 1710 year: 2011 end-page: 1719 ident: bib29 article-title: Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153 publication-title: Biophys. J. – volume: 111 start-page: 12055 year: 2014 end-page: 12060 ident: bib43 article-title: Allostery within a transcription coactivator is predominantly mediated through dissociation rate constants publication-title: Proc. Natl. Acad. Sci. USA – volume: 76 start-page: 647 year: 2007 end-page: 671 ident: bib9 article-title: Structural biology of nucleocytoplasmic transport publication-title: Annu. Rev. Biochem. – volume: 134 start-page: 3792 year: 2012 end-page: 3803 ident: bib2 article-title: Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1869 year: 2005 end-page: 1879 ident: bib19 article-title: Binding dynamics of isolated nucleoporin repeat regions to importin-beta publication-title: Structure – volume: 33 start-page: 2 year: 2008 end-page: 8 ident: bib48 article-title: Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions publication-title: Trends Biochem. Sci. – volume: 31 start-page: 466 year: 2009 end-page: 477 ident: bib36 article-title: Translocation through the nuclear pore: Kaps pave the way publication-title: BioEssays – volume: 9 start-page: 525 year: 2014 end-page: 530 ident: bib38 article-title: Selective transport control on molecular velcro made from intrinsically disordered proteins publication-title: Nat. Nanotechnol. – volume: 38 start-page: 6673 year: 2010 end-page: 6683 ident: bib8 article-title: The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression publication-title: Nucleic Acids Res. – volume: 42 start-page: D259 year: 2014 end-page: D266 ident: bib12 article-title: The eukaryotic linear motif resource ELM: 10 years and counting publication-title: Nucleic Acids Res. – volume: 162 start-page: 391 year: 2003 end-page: 401 ident: bib4 article-title: Importin beta contains a COOH-terminal nucleoporin binding region important for nuclear transport publication-title: J. Cell Biol. – volume: 109 start-page: 16911 year: 2012 end-page: 16916 ident: bib40 article-title: Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes publication-title: Proc. Natl. Acad. Sci. USA – volume: 114 start-page: 7983 year: 2010 end-page: 7995 ident: bib22 article-title: Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states publication-title: J. Phys. Chem. B – volume: 19 start-page: 31 year: 2009 end-page: 38 ident: bib53 article-title: Linking folding and binding publication-title: Curr. Opin. Struct. Biol. – volume: 7 start-page: e1002049 year: 2011 ident: bib32 article-title: Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex publication-title: PLoS Comput. Biol. – volume: 97 start-page: 8868 year: 2000 end-page: 8873 ident: bib44 article-title: Speeding molecular recognition by using the folding funnel: the fly-casting mechanism publication-title: Proc. Natl. Acad. Sci. USA – volume: 90 start-page: 1913 year: 2006 end-page: 1924 ident: bib46 article-title: Diffusional encounter of barnase and barstar publication-title: Biophys. J. – volume: 102 start-page: 99 year: 2000 end-page: 108 ident: bib3 article-title: Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking publication-title: Cell – volume: 112 start-page: 3409 year: 2015 end-page: 3414 ident: bib23 article-title: Structure and dynamics of the MKK7-JNK signaling complex publication-title: Proc. Natl. Acad. Sci. USA – volume: 333 start-page: 587 year: 2003 end-page: 603 ident: bib31 article-title: Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats publication-title: J. Mol. Biol. – volume: 130 start-page: 512 year: 2007 end-page: 523 ident: bib15 article-title: A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes publication-title: Cell – volume: 206 start-page: 579 year: 2014 end-page: 588 ident: bib49 article-title: Assemblages: functional units formed by cellular phase separation publication-title: J. Cell Biol. – volume: 32 start-page: 3220 year: 2013 end-page: 3230 ident: bib50 article-title: Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins publication-title: EMBO J. – volume: 395 start-page: 710 year: 1998 end-page: 713 ident: bib24 article-title: Spanning binding sites on allosteric proteins with polymer-linked ligand dimers publication-title: Nature – volume: 100 start-page: 2450 year: 2003 end-page: 2455 ident: bib11 article-title: Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded publication-title: Proc. Natl. Acad. Sci. USA – volume: 168 start-page: 233 year: 2005 ident: 10.1016/j.cell.2015.09.047_bib25 article-title: Nuclear transport of single molecules: dwell times at the nuclear pore complex publication-title: J. Cell Biol. doi: 10.1083/jcb.200411005 – volume: 18 start-page: 16 year: 2008 ident: 10.1016/j.cell.2015.09.047_bib41 article-title: Protein folding studied by single-molecule FRET publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2007.12.003 – volume: 19 start-page: 31 year: 2009 ident: 10.1016/j.cell.2015.09.047_bib53 article-title: Linking folding and binding publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2008.12.003 – volume: 55 start-page: 311 year: 2013 ident: 10.1016/j.cell.2015.09.047_bib45 article-title: BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins publication-title: J. Biomol. NMR doi: 10.1007/s10858-013-9715-0 – volume: 20 start-page: 461 year: 2010 ident: 10.1016/j.cell.2015.09.047_bib52 article-title: The Part and the Whole: functions of nucleoporins in nucleocytoplasmic transport publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2010.05.001 – volume: 101 start-page: 1710 year: 2011 ident: 10.1016/j.cell.2015.09.047_bib29 article-title: Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153 publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.08.025 – volume: 6 start-page: 197 year: 2005 ident: 10.1016/j.cell.2015.09.047_bib13 article-title: Intrinsically unstructured proteins and their functions publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1589 – volume: 54 start-page: 7375 year: 2011 ident: 10.1016/j.cell.2015.09.047_bib6 article-title: Design, synthesis, and biological studies of efficient multivalent melanotropin ligands: tools toward melanoma diagnosis and treatment publication-title: J. Med. Chem. doi: 10.1021/jm2009937 – volume: 32 start-page: 3220 year: 2013 ident: 10.1016/j.cell.2015.09.047_bib50 article-title: Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins publication-title: EMBO J. doi: 10.1038/emboj.2013.239 – volume: 4 start-page: 4 year: 2015 ident: 10.1016/j.cell.2015.09.047_bib18 article-title: The molecular mechanism of nuclear transport revealed by atomic scale measurements publication-title: eLife doi: 10.7554/eLife.10027 – volume: 117 start-page: 13346 year: 2013 ident: 10.1016/j.cell.2015.09.047_bib42 article-title: Remarkably fast coupled folding and binding of the intrinsically disordered transactivation domain of cMyb to CBP KIX publication-title: J. Phys. Chem. B doi: 10.1021/jp404267e – volume: 35 start-page: 539 year: 2010 ident: 10.1016/j.cell.2015.09.047_bib10 article-title: Induced fit, conformational selection and independent dynamic segments: an extended view of binding events publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2010.04.009 – volume: 130 start-page: 512 year: 2007 ident: 10.1016/j.cell.2015.09.047_bib15 article-title: A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes publication-title: Cell doi: 10.1016/j.cell.2007.06.024 – volume: 9 start-page: 525 year: 2014 ident: 10.1016/j.cell.2015.09.047_bib38 article-title: Selective transport control on molecular velcro made from intrinsically disordered proteins publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.103 – volume: 152 start-page: 1218 year: 2013 ident: 10.1016/j.cell.2015.09.047_bib1 article-title: Uncovering nuclear pore complexity with innovation publication-title: Cell doi: 10.1016/j.cell.2013.02.042 – volume: 114 start-page: 7983 year: 2010 ident: 10.1016/j.cell.2015.09.047_bib22 article-title: Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states publication-title: J. Phys. Chem. B doi: 10.1021/jp102156t – volume: 33 start-page: 2 year: 2008 ident: 10.1016/j.cell.2015.09.047_bib48 article-title: Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2007.10.003 – volume: 13 start-page: 1869 year: 2005 ident: 10.1016/j.cell.2015.09.047_bib19 article-title: Binding dynamics of isolated nucleoporin repeat regions to importin-beta publication-title: Structure doi: 10.1016/j.str.2005.09.007 – volume: 162 start-page: 391 year: 2003 ident: 10.1016/j.cell.2015.09.047_bib4 article-title: Importin beta contains a COOH-terminal nucleoporin binding region important for nuclear transport publication-title: J. Cell Biol. doi: 10.1083/jcb.200303085 – volume: 333 start-page: 587 year: 2003 ident: 10.1016/j.cell.2015.09.047_bib31 article-title: Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.08.050 – volume: 152 start-page: 411 year: 2001 ident: 10.1016/j.cell.2015.09.047_bib5 article-title: Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import publication-title: J. Cell Biol. doi: 10.1083/jcb.152.2.411 – volume: 155 start-page: 1233 year: 2013 ident: 10.1016/j.cell.2015.09.047_bib7 article-title: Integrated structural analysis of the human nuclear pore complex scaffold publication-title: Cell doi: 10.1016/j.cell.2013.10.055 – volume: 31 start-page: 466 year: 2009 ident: 10.1016/j.cell.2015.09.047_bib36 article-title: Translocation through the nuclear pore: Kaps pave the way publication-title: BioEssays doi: 10.1002/bies.200800159 – volume: 288 start-page: 737 year: 2013 ident: 10.1016/j.cell.2015.09.047_bib55 article-title: Heparin oligosaccharides inhibit chemokine (CXC motif) ligand 12 (CXCL12) cardioprotection by binding orthogonal to the dimerization interface, promoting oligomerization, and competing with the chemokine (CXC motif) receptor 4 (CXCR4) N terminus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.394064 – volume: 11 start-page: 31 year: 2012 ident: 10.1016/j.cell.2015.09.047_bib47 article-title: Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M111.013656 – volume: 7 start-page: e1002049 year: 2011 ident: 10.1016/j.cell.2015.09.047_bib32 article-title: Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002049 – volume: 4 start-page: 4 year: 2015 ident: 10.1016/j.cell.2015.09.047_bib27 article-title: Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner publication-title: eLife doi: 10.7554/eLife.04052 – volume: 53 start-page: 7364 year: 2014 ident: 10.1016/j.cell.2015.09.047_bib30 article-title: Mapping multivalency and differential affinities within large intrinsically disordered protein complexes with segmental motion analysis publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201403694 – volume: 109 start-page: 16911 year: 2012 ident: 10.1016/j.cell.2015.09.047_bib40 article-title: Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1208440109 – volume: 111 start-page: 12055 year: 2014 ident: 10.1016/j.cell.2015.09.047_bib43 article-title: Allostery within a transcription coactivator is predominantly mediated through dissociation rate constants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1405815111 – volume: 457 start-page: 1023 year: 2009 ident: 10.1016/j.cell.2015.09.047_bib21 article-title: Artificial nanopores that mimic the transport selectivity of the nuclear pore complex publication-title: Nature doi: 10.1038/nature07600 – volume: 132 start-page: 1270 year: 2010 ident: 10.1016/j.cell.2015.09.047_bib20 article-title: Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909973n – volume: 80 start-page: 613 year: 2011 ident: 10.1016/j.cell.2015.09.047_bib17 article-title: The structure of the nuclear pore complex publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060109-151030 – volume: 51 start-page: 369 year: 2011 ident: 10.1016/j.cell.2015.09.047_bib37 article-title: Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins publication-title: J. Biomol. NMR doi: 10.1007/s10858-011-9567-4 – volume: 112 start-page: 3409 year: 2015 ident: 10.1016/j.cell.2015.09.047_bib23 article-title: Structure and dynamics of the MKK7-JNK signaling complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1419528112 – volume: 105 start-page: 16101 year: 2008 ident: 10.1016/j.cell.2015.09.047_bib34 article-title: Individual binding pockets of importin-beta for FG-nucleoporins have different binding properties and different sensitivities to RanGTP publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0802647105 – volume: 38 start-page: 6673 year: 2010 ident: 10.1016/j.cell.2015.09.047_bib8 article-title: The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq501 – volume: 318 start-page: 640 year: 2007 ident: 10.1016/j.cell.2015.09.047_bib26 article-title: Nanomechanical basis of selective gating by the nuclear pore complex publication-title: Science doi: 10.1126/science.1145980 – volume: 9 start-page: 648 year: 2013 ident: 10.1016/j.cell.2015.09.047_bib33 article-title: Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2013.4 – volume: 90 start-page: 1913 year: 2006 ident: 10.1016/j.cell.2015.09.047_bib46 article-title: Diffusional encounter of barnase and barstar publication-title: Biophys. J. doi: 10.1529/biophysj.105.075507 – volume: 28 start-page: 1463 year: 2012 ident: 10.1016/j.cell.2015.09.047_bib35 article-title: Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts172 – volume: 100 start-page: 2450 year: 2003 ident: 10.1016/j.cell.2015.09.047_bib11 article-title: Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0437902100 – volume: 206 start-page: 579 year: 2014 ident: 10.1016/j.cell.2015.09.047_bib49 article-title: Assemblages: functional units formed by cellular phase separation publication-title: J. Cell Biol. doi: 10.1083/jcb.201404124 – volume: 108 start-page: 918 year: 2015 ident: 10.1016/j.cell.2015.09.047_bib51 article-title: Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.12.041 – volume: 395 start-page: 710 year: 1998 ident: 10.1016/j.cell.2015.09.047_bib24 article-title: Spanning binding sites on allosteric proteins with polymer-linked ligand dimers publication-title: Nature doi: 10.1038/27227 – volume: 97 start-page: 8868 year: 2000 ident: 10.1016/j.cell.2015.09.047_bib44 article-title: Speeding molecular recognition by using the folding funnel: the fly-casting mechanism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.160259697 – volume: 9 start-page: 2205 year: 2010 ident: 10.1016/j.cell.2015.09.047_bib54 article-title: A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M000035-MCP201 – volume: 9 start-page: e1003363 year: 2013 ident: 10.1016/j.cell.2015.09.047_bib16 article-title: Electrostatically accelerated encounter and folding for facile recognition of intrinsically disordered proteins publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003363 – volume: 102 start-page: 99 year: 2000 ident: 10.1016/j.cell.2015.09.047_bib3 article-title: Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking publication-title: Cell doi: 10.1016/S0092-8674(00)00014-3 – volume: 119 start-page: 7975 year: 2015 ident: 10.1016/j.cell.2015.09.047_bib28 article-title: Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b03440 – volume: 134 start-page: 3792 year: 2012 ident: 10.1016/j.cell.2015.09.047_bib2 article-title: Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209936u – volume: 105 start-page: 1860 year: 2013 ident: 10.1016/j.cell.2015.09.047_bib14 article-title: Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks - Implications for nuclear pore permeability publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.09.006 – volume: 76 start-page: 647 year: 2007 ident: 10.1016/j.cell.2015.09.047_bib9 article-title: Structural biology of nucleocytoplasmic transport publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.052705.161529 – volume: 42 start-page: D259 year: 2014 ident: 10.1016/j.cell.2015.09.047_bib12 article-title: The eukaryotic linear motif resource ELM: 10 years and counting publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1047 – volume: 137 start-page: 1220 year: 2015 ident: 10.1016/j.cell.2015.09.047_bib39 article-title: Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511066q |
SSID | ssj0008555 |
Score | 2.582624 |
Snippet | The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a... |
SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 734 |
SubjectTerms | Active Transport, Cell Nucleus Biochemistry, Molecular Biology Crystallography, X-Ray fluorescence Fluorescence Resonance Energy Transfer Humans Karyopherins - chemistry Karyopherins - metabolism Life Sciences Models, Molecular nuclear magnetic resonance spectroscopy Nuclear Pore Complex Proteins - chemistry Nuclear Pore Complex Proteins - metabolism Nuclear Proteins - chemistry Nuclear Proteins - metabolism nucleoporins receptors Saccharomyces cerevisiae Structural Biology |
Title | Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors |
URI | https://dx.doi.org/10.1016/j.cell.2015.09.047 https://www.ncbi.nlm.nih.gov/pubmed/26456112 https://www.proquest.com/docview/1727987062 https://www.proquest.com/docview/2000209127 https://hal.univ-grenoble-alpes.fr/hal-01235362 https://pubmed.ncbi.nlm.nih.gov/PMC4622936 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4qCF7Et-uLKN6kaNOkbY4qyiIqHlxY8BCSJsWVpbvoKvjvnUna4vo62FvTpEk7yczX9JsZQg6lAbMkmItsqV2E2i-SzAgAckVmeK6F9WzCm9u02-NXfdGfIeeNLwzSKmvdH3S619Z1yXH9No_HgwH6-EqWp2gRQcmmHD3KE557J77-WauNcyFCFgMJKx9q144zgeOFm-NI7xI-1immWPnZOM0-IkvyOwT9yqT8ZJoul8hijSnpaRj2Mplx1QqZD1km31fJwx0gZCRPT97pqKS6or0h3KaEQuo3BINvA60pW_QWQxyPxsjMe4HaNhToZ9oGQqcANt0Y8_Sskd7lxf15N6pzKkSFyPNJhPjDyNIZnegsSaSJMwBRRS5cWVirAZ1ZqWNuuXBJksFhdWEc19omItbCJOtkrhpVbpNQ-HKzWe4EeulxZ5k-sUWaltylGITQiA6Jm5epijrgOOa9GKqGWfakUAAKBaBOpAIBdMhR22Ycwm38WVs0MlJTk0aBPfiz3QEItO0AI2x3T68VlnnfYTDqb3GH7DfyVrDk8B66cqPXF4WYT-L_YfZ7Heb_8cqYQWcbYY60_cFkBdQaQ-tsavZMDWj6SjV49KG_ecoAn6Vb_3zwbbKAZ2h7Gdshc5PnV7cLoGpi9tCkiT2_dj4ATushaA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4tVKhcUEsfLPRhqt6qCOLYSXxcEGhpl1UPrLRSD5YdO2IrlF3BgsS_ZyZOoi6lHJqj41c89syX5JsZgK_KolmS3EeuND4i7RcpbiUCuSKzIjfS1WzC83E6nIjvUzntwXHrC0O0ykb3B51ea-um5KBZzYPFbEY-vornKVlEVLKpyNbgBaKBjPI3nE2POnWcSxnSGCg8-li98ZwJJC_6Ok78LlkHO6UcK09bp7VLokn-jUEfUyn_sE2nr2CrAZVsEOb9Gnq-2oaNkGby_g38-okQmdjTy3s2L5mp2OQKuymxkNVfBINzA2s4W2xMMY7nC6Lm3WBtFwrMNesioTNEm35BiXrewuT05OJ4GDVJFaJC5vkyIgBiVemtSUyWJMrGGaKoIpe-LJwzCM-cMrFwQvokyfByprBeGOMSGRtpk3ewXs0rvwMMX91clntJbnrCO24OXZGmpfApRSG0sg9xu5i6aCKOU-KLK91Sy35rEoAmAehDpVEAffjWtVmEeBvP1patjPTKrtFoEJ5t9wUF2g1AIbaHg5Gmstp5GK36XdyH_VbeGs8c9WEqP7-90QT6FP0g5v-uw-ufvCrmONj7sEe68XC3ImyNsXW2sntWJrR6p5pd1rG_RcoRoKW7__ngn-Hl8OJ8pEdn4x97sEl3yBBz_gHWl9e3_iMirKX9VJ-gBwMYI6E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasticity+of+an+Ultrafast+Interaction+between+Nucleoporins+and+Nuclear+Transport+Receptors&rft.jtitle=Cell&rft.au=Milles%2C+Sigrid&rft.au=Mercadante%2C+Davide&rft.au=Aramburu%2C+Iker%C2%A0Valle&rft.au=Jensen%2C+Malene%C2%A0Ringkj%C3%B8bing&rft.date=2015-10-22&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=163&rft.issue=3&rft.spage=734&rft.epage=745&rft_id=info:doi/10.1016%2Fj.cell.2015.09.047&rft.externalDocID=S0092867415012647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |