Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3'-fluoro-3'-deoxy-thymidine ([18F]FLT) PET imaging
Current biomarkers are unable to adequately predict vaccine-induced immune protection in humans with infectious disease or cancer. However, timely and adequate assessment of antigen-specific immune responses is critical for successful vaccine development. Therefore, we have developed a method for th...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 45; pp. 18396 - 18399 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.11.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Current biomarkers are unable to adequately predict vaccine-induced immune protection in humans with infectious disease or cancer. However, timely and adequate assessment of antigen-specific immune responses is critical for successful vaccine development. Therefore, we have developed a method for the direct assessment of immune responses in vivo in a clinical setting. Melanoma patients with lymph node (LN) metastases received dendritic cell (DC) vaccine therapy, injected intranodally, followed by [18F]-labeled 3'-fluoro-3'-deoxy-thymidine ([18F]FLT) PET at varying time points after vaccination. Control LNs received saline or DCs without antigen. De novo immune responses were readily visualized in treated LNs early after the prime vaccination, and these signals persisted for up to 3 wk. This selective [18F]FLT uptake was markedly absent in control LNs, although tracer uptake in treated LNs increased profoundly with as little as 4.5 x 105 DCs. Immunohistochemical staining confirmed injected DC dispersion to T-cell areas and resultant activation of CD4+ and CD8+ T cells. The level of LN tracer uptake significantly correlates to the level of circulating antigen-specific IgG antibodies and antigen-specific proliferation of T cells in peripheral blood. Furthermore, this correlation was not observed with [18F]-labeled fluoro-2-deoxy-2-D-glucose. Therefore, [18F]FLT PET offers a sensitive tool to study the kinetics, localization, and involvement of lymphocyte subsets in response to vaccination. This technique allows for early discrimination of responding from nonresponding patients in anti-cancer vaccination and aid physicians in individualized decisionmaking. |
---|---|
AbstractList | Current biomarkers are unable to adequately predict vaccine-induced immune protection in humans with infectious disease or cancer. However, timely and adequate assessment of antigenspecific immune responses is critical for successful vaccine development. Therefore, we have developed a method for the direct assessment of immune responses in vivo in a clinical setting. Melanoma patients with lymph node (LN) metastases received dendritic cell (DC) vaccine therapy, injected intranodally, followed by [¹ɸF]-labeled 3'-fluoro-3'-deoxy-thymidine ([¹ɸF] FLT) PET at varying time points after vaccination. Control LNs received saline or DCs without antigen. De novo immune responses were readily visualized in treated LNs early after the prime vaccination, and these signals persisted for up to 3 wk. This selective [¹ɸF]FLT uptake was markedly absent in control LNs, although tracer uptake in treated LNs increased profoundly with as little as 4.5 × 10⁵ DCs. Immunohistochemical staining confirmed injected DC dispersion to T-cell areas and resultant activation of CD4⁺ and CD8⁺ T cells. The level of LN tracer uptake significantly correlates to the level of circulating antigen-specific IgG antibodies and antigen-specific proliferation of T cells in peripheral blood. Furthermore, this correlation was not observed with [¹ɸF]-labeled fluoro-2-deoxy-2-D-glucose. Therefore, [¹ɸF]FLT PET offers a sensitive tool to study the kinetics, localization, and involvement of lymphocyte subsets in response to vaccination. This technique allows for early discrimination of responding from nonresponding patients in anti-cancer vaccination and aid physicians in individualized decisionmaking. Current biomarkers are unable to adequately predict vaccine-induced immune protection in humans with infectious disease or cancer. However, timely and adequate assessment of antigen-specific immune responses is critical for successful vaccine development. Therefore, we have developed a method for the direct assessment of immune responses in vivo in a clinical setting. Melanoma patients with lymph node (LN) metastases received dendritic cell (DC) vaccine therapy, injected intranodally, followed by [18F]-labeled 3'-fluoro-3'-deoxy-thymidine ([18F]FLT) PET at varying time points after vaccination. Control LNs received saline or DCs without antigen. De novo immune responses were readily visualized in treated LNs early after the prime vaccination, and these signals persisted for up to 3 wk. This selective [18F]FLT uptake was markedly absent in control LNs, although tracer uptake in treated LNs increased profoundly with as little as 4.5 x 105 DCs. Immunohistochemical staining confirmed injected DC dispersion to T-cell areas and resultant activation of CD4+ and CD8+ T cells. The level of LN tracer uptake significantly correlates to the level of circulating antigen-specific IgG antibodies and antigen-specific proliferation of T cells in peripheral blood. Furthermore, this correlation was not observed with [18F]-labeled fluoro-2-deoxy-2-D-glucose. Therefore, [18F]FLT PET offers a sensitive tool to study the kinetics, localization, and involvement of lymphocyte subsets in response to vaccination. This technique allows for early discrimination of responding from nonresponding patients in anti-cancer vaccination and aid physicians in individualized decisionmaking. Current biomarkers are unable to adequately predict vaccine-induced immune protection in humans with infectious disease or cancer. However, timely and adequate assessment of antigen-specific immune responses is critical for successful vaccine development. Therefore, we have developed a method for the direct assessment of immune responses in vivo in a clinical setting. Melanoma patients with lymph node (LN) metastases received dendritic cell (DC) vaccine therapy, injected intranodally, followed by [ 18 F]-labeled 3′-fluoro-3′-deoxy-thymidine ([ 18 F]FLT) PET at varying time points after vaccination. Control LNs received saline or DCs without antigen. De novo immune responses were readily visualized in treated LNs early after the prime vaccination, and these signals persisted for up to 3 wk. This selective [ 18 F]FLT uptake was markedly absent in control LNs, although tracer uptake in treated LNs increased profoundly with as little as 4.5 × 10 5 DCs. Immunohistochemical staining confirmed injected DC dispersion to T-cell areas and resultant activation of CD4 + and CD8 + T cells. The level of LN tracer uptake significantly correlates to the level of circulating antigen-specific IgG antibodies and antigen-specific proliferation of T cells in peripheral blood. Furthermore, this correlation was not observed with [ 18 F]-labeled fluoro-2-deoxy-2- d -glucose. Therefore, [ 18 F]FLT PET offers a sensitive tool to study the kinetics, localization, and involvement of lymphocyte subsets in response to vaccination. This technique allows for early discrimination of responding from nonresponding patients in anti-cancer vaccination and aid physicians in individualized decisionmaking. Current biomarkers are unable to adequately predict vaccine-induced immune protection in humans with infectious disease or cancer. However, timely and adequate assessment of antigen-specific immune responses is critical for successful vaccine development. Therefore, we have developed a method for the direct assessment of immune responses in vivo in a clinical setting. Melanoma patients with lymph node (LN) metastases received dendritic cell (DC) vaccine therapy, injected intranodally, followed by [ 18 F]-labeled 3′-fluoro-3′-deoxy-thymidine ([ 18 F]FLT) PET at varying time points after vaccination. Control LNs received saline or DCs without antigen. De novo immune responses were readily visualized in treated LNs early after the prime vaccination, and these signals persisted for up to 3 wk. This selective [ 18 F]FLT uptake was markedly absent in control LNs, although tracer uptake in treated LNs increased profoundly with as little as 4.5 × 10 5 DCs. Immunohistochemical staining confirmed injected DC dispersion to T-cell areas and resultant activation of CD4 + and CD8 + T cells. The level of LN tracer uptake significantly correlates to the level of circulating antigen-specific IgG antibodies and antigen-specific proliferation of T cells in peripheral blood. Furthermore, this correlation was not observed with [ 18 F]-labeled fluoro-2-deoxy-2- d -glucose. Therefore, [ 18 F]FLT PET offers a sensitive tool to study the kinetics, localization, and involvement of lymphocyte subsets in response to vaccination. This technique allows for early discrimination of responding from nonresponding patients in anti-cancer vaccination and aid physicians in individualized decisionmaking. Current biomarkers are unable to adequately predict vaccine-induced immune protection in humans with infectious disease or cancer. However, timely and adequate assessment of antigen-specific immune responses is critical for successful vaccine development. Therefore, we have developed a method for the direct assessment of immune responses in vivo in a clinical setting. Melanoma patients with lymph node (LN) metastases received dendritic cell (DC) vaccine therapy, injected intranodally, followed by [...]-labeled 3'-fluoro-3'-deoxy-thymidine ([...]FLT) PET at varying time points after vaccination. Control LNs received saline or DCs without antigen. De novo immune responses were readily visualized in treated LNs early after the prime vaccination, and these signals persisted for up to 3 wk. This selective [...]FLT uptake was markedly absent in control LNs, although tracer uptake in treated LNs increased profoundly with as little as 4.5 x ... DCs. Immunohistochemical staining confirmed injected DC dispersion to T-cell areas and resultant activation of CD4+ and CD8+ T cells. The level of LN tracer uptake significantly correlates to the level of circulating antigen-specific IgG antibodies and antigen-specific proliferation of T cells in peripheral blood. Furthermore, this correlation was not observed with [...]-labeled fluoro-2-deoxy-2-d-glucose. Therefore, [...]FLT PET offers a sensitive tool to study the kinetics, localization, and involvement of lymphocyte subsets in response to vaccination. This technique allows for early discrimination of responding from nonresponding patients in anti-cancer vaccination and aid physicians in individualized decisionmaking. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Aarntzen, Erik H. J. G Lesterhuis, W. Joost Bonenkamp, Johannes J van Rossum, Michelle M Windhorst, Albert D Troost, Esther G Figdor, Carl G Mus, Roel D De Wilt, Johannes H. W Boerman, Otto C Jacobs, Joannes F. M Oyen, Wim J. G Srinivas, Mangala Blokx, Willeke A. M Punt, Cornelis J. A de Vries, I. Jolanda M |
Author_xml | – sequence: 1 fullname: Aarntzen, Erik H. J. G – sequence: 2 fullname: Srinivas, Mangala – sequence: 3 fullname: De Wilt, Johannes H. W – sequence: 4 fullname: Jacobs, Joannes F. M – sequence: 5 fullname: Lesterhuis, W. Joost – sequence: 6 fullname: Windhorst, Albert D – sequence: 7 fullname: Troost, Esther G – sequence: 8 fullname: Bonenkamp, Johannes J – sequence: 9 fullname: van Rossum, Michelle M – sequence: 10 fullname: Blokx, Willeke A. M – sequence: 11 fullname: Mus, Roel D – sequence: 12 fullname: Boerman, Otto C – sequence: 13 fullname: Punt, Cornelis J. A – sequence: 14 fullname: Figdor, Carl G – sequence: 15 fullname: Oyen, Wim J. G – sequence: 16 fullname: de Vries, I. Jolanda M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22025695$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk9vEzEQxS1URP_AmRNgcSkctp2x11n7goSqBJAigUR6Qshydr2po42d2rsR-QJ8bhwSUkA-2Nb7zdOMn8_JiQ_eEvIc4Qqh4tdrb9IVInIoBYJ8RM4QFBajUsEJOQNgVSFLVp6S85SWAKCEhCfklDFgYqTEGfk5NrHbUtdY37vW1aZ3wdPQUpPvC-uLtLb1TqButRq8pdGmdfDJJuo83bhNoPMt_YZy8r3ozNx2tqH8smi7IcRQ5FNjw49t0d9tV65xuf7Nb3Yynb2lX8az7GoWzi-ekset6ZJ9dtgvyO1kPLv5WEw_f_h0835a1ELKvuCqRlGVlWAc60oKVRkuWzSATCrG6kZKhtjYOSt5Nc_LVsoiCFAVEygafkHe7X3Xw3xlmzpPHU2n1zH3Ebc6GKf_Vby704uw0ZyhACizweXBIIb7waZer1yqbdcZb8OQtEIJI1AjzOTr_8hlGKLP02kFXOziExm63kN1DClF2x5bQdA7RO8S1g8J54qXf09w5P9EmgF6AHaVD3ZSl0Kj5GqUkRd7ZJn6EI9MiVyw_FBZf7XXWxO0WUSX9O1XBljmHyRzL5L_As2Zvww |
CitedBy_id | crossref_primary_10_3390_ijms232416109 crossref_primary_10_3390_vaccines9060579 crossref_primary_10_1038_s41698_022_00263_x crossref_primary_10_1073_pnas_2105390118 crossref_primary_10_1007_s12410_018_9452_6 crossref_primary_10_1002_adfm_201806485 crossref_primary_10_1002_mrm_27018 crossref_primary_10_1016_j_addr_2023_114865 crossref_primary_10_2967_jnumed_114_153338 crossref_primary_10_3389_fimmu_2022_1113924 crossref_primary_10_1186_s12885_017_3626_5 crossref_primary_10_3389_fimmu_2020_604967 crossref_primary_10_1172_JCI162962 crossref_primary_10_1097_RLU_0000000000002967 crossref_primary_10_4110_in_2016_16_1_33 crossref_primary_10_2217_mmt_14_10 crossref_primary_10_1016_j_parint_2013_09_001 crossref_primary_10_1002_eji_201344337 crossref_primary_10_1007_s10269_015_2535_y crossref_primary_10_1158_1078_0432_CCR_11_3198 crossref_primary_10_3390_biomedicines10051074 crossref_primary_10_1002_cncr_28860 crossref_primary_10_1007_s00018_012_1159_2 crossref_primary_10_1158_1078_0432_CCR_12_1879 crossref_primary_10_2967_jnumed_112_106146 crossref_primary_10_2217_imt_2018_0002 crossref_primary_10_1002_JLB_1MR0520_014RR crossref_primary_10_1158_2326_6066_CIR_20_0678 crossref_primary_10_1073_pnas_1316922111 crossref_primary_10_1136_jitc_2022_004708 crossref_primary_10_1158_1078_0432_CCR_15_1399 crossref_primary_10_1016_j_canlet_2021_06_028 crossref_primary_10_4161_onci_19533 crossref_primary_10_1016_j_molonc_2014_11_009 crossref_primary_10_1136_jitc_2022_004902 crossref_primary_10_1002_cmmi_1561 crossref_primary_10_1053_j_semnuclmed_2020_06_001 crossref_primary_10_1186_2051_1426_1_14 crossref_primary_10_1586_1744666X_2015_987663 crossref_primary_10_1016_j_trecan_2018_03_009 crossref_primary_10_18632_oncotarget_9580 crossref_primary_10_2967_jnumed_112_112201 crossref_primary_10_1186_s12967_020_02656_7 crossref_primary_10_4236_ami_2015_52002 crossref_primary_10_1038_nrc3258 crossref_primary_10_1016_j_cpet_2014_03_005 crossref_primary_10_1148_rg_2020200070 crossref_primary_10_1586_14737140_2014_921571 crossref_primary_10_1371_journal_pone_0053081 crossref_primary_10_1186_s40425_019_0516_1 crossref_primary_10_1148_radiol_12122648 crossref_primary_10_1007_s12149_022_01782_0 crossref_primary_10_18632_oncotarget_17397 crossref_primary_10_3109_1547691X_2013_766287 |
Cites_doi | 10.1016/S0140-6736(10)60359-5 10.1056/NEJMoa1003466 10.1038/nrd3500 10.1158/0008-5472.CAN-08-3920 10.1038/nm1039 10.1200/JCO.2001.19.16.3635 10.1200/JCO.2005.06.478 10.1038/3337 10.1038/nm.f.1774 10.1002/ijc.22385 10.1056/NEJMoa1001294 10.1056/NEJMoa1012863 10.1038/nri1710 10.1038/nbt1154 10.1016/S0140-6736(08)61591-3 10.1056/NEJMoa0810097 10.1056/NEJMoa0908492 10.2967/jnumed.106.037473 10.1016/j.critrevonc.2007.12.007 10.1038/nri1592 10.1172/JCI41250 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Nov 8, 2011 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Nov 8, 2011 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.1113045108 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts Virology and AIDS Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 18399 |
ExternalDocumentID | 2509232251 10_1073_pnas_1113045108 22025695 108_45_18396 41352725 US201400081118 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c588t-39c157475231c78597a38f1a0128922cd88211deb2437b7b7e79e1050972515d3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:27:42 EDT 2024 Fri Oct 25 07:17:50 EDT 2024 Thu Oct 10 18:32:33 EDT 2024 Thu Nov 21 21:36:06 EST 2024 Sat Sep 28 07:50:04 EDT 2024 Wed Nov 11 00:29:41 EST 2020 Fri Feb 02 07:04:39 EST 2024 Wed Dec 27 19:25:37 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c588t-39c157475231c78597a38f1a0128922cd88211deb2437b7b7e79e1050972515d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 2Present address: Academic Medical Center, Department of Medical Oncology, 1105 AZ, Amsterdam, The Netherlands. 1M.S. and J.H.W.D.W. contributed equally to this work. Edited by Owen N. Witte, Howard Hughes Medical Institute, University of California, Los Angeles, CA, and approved September 23, 2011 (received for review August 16, 2011) Author contributions: E.H.J.G.A., C.J.A.P., C.G.F., W.J.G.O., and I.J.M.d.V. designed research; E.H.J.G.A., J.H.W.D.W., J.F.M.J., A.D.W., E.G.T., J.J.B., M.M.v.R., W.A.M.B., R.D.M., O.C.B., C.J.A.P., C.G.F., W.J.G.O., and I.J.M.d.V. performed research; E.H.J.G.A., M.S., W.J.L., O.C.B., C.J.A.P., C.G.F., W.J.G.O., and I.J.M.d.V. analyzed data; and E.H.J.G.A., M.S., J.F.M.J., W.J.L., O.C.B., C.J.A.P., C.G.F., W.J.G.O., and I.J.M.d.V. wrote the paper. |
OpenAccessLink | https://europepmc.org/articles/pmc3215004?pdf=render |
PMID | 22025695 |
PQID | 903510735 |
PQPubID | 42026 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_918060961 pnas_primary_108_45_18396 proquest_journals_903510735 crossref_primary_10_1073_pnas_1113045108 jstor_primary_41352725 pubmed_primary_22025695 fao_agris_US201400081118 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3215004 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2011-11-08 |
PublicationDateYYYYMMDD | 2011-11-08 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 21631324 - N Engl J Med. 2011 Jun 2;364(22):2119-27 20525992 - N Engl J Med. 2010 Aug 19;363(8):711-23 11504745 - J Clin Oncol. 2001 Aug 15;19(16):3635-48 20488517 - Lancet. 2010 May 29;375(9729):1920-37 19012954 - Lancet. 2008 Nov 29;372(9653):1881-93 21804596 - Nat Rev Drug Discov. 2011 Aug;10(8):591-600 15122249 - Nat Med. 2004 May;10(5):475-80 18535580 - Nat Med. 2008 Jun;14(6):623-8 16258544 - Nat Biotechnol. 2005 Nov;23(11):1407-13 9809561 - Nat Med. 1998 Nov;4(11):1334-6 18262431 - Crit Rev Oncol Hematol. 2008 May;66(2):118-34 19843557 - N Engl J Med. 2009 Dec 3;361(23):2209-20 17475960 - J Nucl Med. 2007 May;48(5):726-35 16239903 - Nat Rev Immunol. 2005 Nov;5(11):844-52 19890126 - N Engl J Med. 2009 Nov 5;361(19):1838-47 20484820 - J Clin Invest. 2010 Jun;120(6):2005-15 15803149 - Nat Rev Immunol. 2005 Apr;5(4):296-306 19318559 - Cancer Res. 2009 Apr 1;69(7):2927-34 16110035 - J Clin Oncol. 2005 Aug 20;23(24):5779-87 20818862 - N Engl J Med. 2010 Jul 29;363(5):411-22 15585917 - Methods Mol Med. 2005;109:113-26 17163419 - Int J Cancer. 2007 Mar 1;120(5):978-84 de Vries IJ (e_1_3_3_19_2) 2005; 109 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_17_2 e_1_3_3_9_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_11_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_10_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_3_2 doi: 10.1016/S0140-6736(10)60359-5 – ident: e_1_3_3_6_2 doi: 10.1056/NEJMoa1003466 – ident: e_1_3_3_8_2 doi: 10.1038/nrd3500 – volume: 109 start-page: 113 year: 2005 ident: e_1_3_3_19_2 article-title: Phenotypical and functional characterization of clinical-grade dendritic cells publication-title: Methods Mol Med contributor: fullname: de Vries IJ – ident: e_1_3_3_21_2 doi: 10.1158/0008-5472.CAN-08-3920 – ident: e_1_3_3_20_2 doi: 10.1038/nm1039 – ident: e_1_3_3_16_2 doi: 10.1200/JCO.2001.19.16.3635 – ident: e_1_3_3_17_2 doi: 10.1200/JCO.2005.06.478 – ident: e_1_3_3_12_2 doi: 10.1038/3337 – ident: e_1_3_3_11_2 doi: 10.1038/nm.f.1774 – ident: e_1_3_3_22_2 doi: 10.1002/ijc.22385 – ident: e_1_3_3_5_2 doi: 10.1056/NEJMoa1001294 – ident: e_1_3_3_7_2 doi: 10.1056/NEJMoa1012863 – ident: e_1_3_3_14_2 doi: 10.1038/nri1710 – ident: e_1_3_3_18_2 doi: 10.1038/nbt1154 – ident: e_1_3_3_1_2 doi: 10.1016/S0140-6736(08)61591-3 – ident: e_1_3_3_4_2 doi: 10.1056/NEJMoa0810097 – ident: e_1_3_3_2_2 doi: 10.1056/NEJMoa0908492 – ident: e_1_3_3_13_2 doi: 10.2967/jnumed.106.037473 – ident: e_1_3_3_9_2 doi: 10.1016/j.critrevonc.2007.12.007 – ident: e_1_3_3_10_2 doi: 10.1038/nri1592 – ident: e_1_3_3_15_2 doi: 10.1172/JCI41250 |
SSID | ssj0009580 |
Score | 2.3638415 |
Snippet | Current biomarkers are unable to adequately predict vaccine-induced immune protection in humans with infectious disease or cancer. However, timely and adequate... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 18396 |
SubjectTerms | Antibodies Antigens Antigens, Neoplasm - immunology Biological Sciences biomarkers Cancer Cancer Vaccines - administration & dosage Cancer Vaccines - immunology CD4 antigen CD4-Positive T-Lymphocytes - immunology CD8 antigen CD8-positive T-lymphocytes CD8-Positive T-Lymphocytes - immunology Cell activation Cell proliferation Computed tomography decision making Dendritic cells Dideoxynucleosides Fluorodeoxyglucose F18 Humans image analysis Imaging Immune response Immune system Immunization Immunoglobulin G immunohistochemistry Infectious diseases Kinetics lymph Lymph nodes Lymphatic Metastasis - diagnostic imaging Lymphatic Metastasis - immunology Lymphocytes Lymphocytes T Medical treatment Melanoma Melanoma - diagnostic imaging Melanoma - immunology Melanoma - pathology Metastases metastasis patients Peripheral blood physicians Positron emission tomography Positron-Emission Tomography - methods Radiopharmaceuticals T cell receptors T lymphocytes Tomography Tracers Vaccination vaccine development Vaccines |
Title | Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3'-fluoro-3'-deoxy-thymidine ([18F]FLT) PET imaging |
URI | https://www.jstor.org/stable/41352725 http://www.pnas.org/content/108/45/18396.abstract https://www.ncbi.nlm.nih.gov/pubmed/22025695 https://www.proquest.com/docview/903510735 https://search.proquest.com/docview/918060961 https://pubmed.ncbi.nlm.nih.gov/PMC3215004 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBbZnHopTds0TtqgQw-bg7KRZVvysYQsoTQl0F0IlCIkWW4NWXvZn9Dccs7j9JH6JJ3R2k5Seip7WZA0a3ZG-masmW8IeW8EKN06zkwoySkyy0zsSmatcoCIaV4aLBS--JydT5OPV-nVFkm7WpiQtO9sdVxfz47r6kfIrZzP3KjLExtdXpwKwClQ7mhABuAbdiF6z7SrNnUnMRy_SZx0fD5SjOa1WeIZgbeD_ARb9cUxYj42l3iESoPSNF16InKewqp_-Z9_p1E-wqXxC_K8dSjph82D75AtX78kO-2WXdJhyyt99IrcBzJjWhVtglDQCW1KCn8ucnIyrLrEAVph0Yini03-LEipanpT3TTU3tKvXI2_MbAdwKuCit93v1h5vW4WDQvfC9_8vGWg_VkFqOjpMMwff5oc0cuzCUgOXZFek-n4bHJ6ztpWDMylSq2YyB1PIfKAsJU7qSAKMUKV3CC85XHsCnDUOS8gTE-EtPDxMvccuWUkOFBpIXbJdt3Ufo_QrJA-k4UU3kK0JHKbGQUQaQx3RpqijMiwU4Webxg3dLgpl0KjKvSDAiOyB6rS5juch3r6JcZoEX0cCJoishv014sAsE5jeJiIREHKg2ilk1Sjo5hF5KDTsm638lLneNcKPw4raT8KexAvVkztmzVM4eokw945EXmzMYlefGdgEZFPjKWfgPTeT0fA6gPNd2vl-_-98oA8C2_Aw0vwt2R7tVj7d-BCrewhAlh6GDbOH0F7GGg |
link.rule.ids | 230,315,729,782,786,887,27931,27932,53798,53800 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB615QAXRIHSUH584LA9uFvHm9g5oqqrBXarSuxKlRCynMQpkbrJan8qeuPM4_BIPAkz3mTbIk4ol0i2J1Fm7G8mnvkM8M5KVHqaCW59SU4ep9yGWcHTVGeIiFFSWCoUHp3Fg0nv40V0sQVRWwvjk_aztDyqrqZHVfnN51bOplm3zRPrno9OJOIUKre7DQ8ifJZug_QN165eV56EuAD3wl7L6KNkd1bZBa0StD8ojumwvjAk1KfjJe7g0nZh6zZBkVhPcdS_PNC_EynvIFP_CTxuXEr2fv3qu7Dlqqew20zaBes0zNKHz-CnpzNmZd6kCHmtsLpg-HmJlZNT3SU1sJLKRhybrzNoUUpZsevyumbpDfsidP8rR-tBxMqZ_P3jFy-uVvW85v4-d_X3G476n5aIi451fP_-cHzIzk_HKNmfi_QcJv3T8cmAN4cx8CzSesllkokIYw8MXEWmNMYhVupCWAK4JAyzHF11IXIM1HtSpXg5lThB7DIKXagol3uwU9WV2wcW58rFKlfSpRgvySSNrUaQtFZkVtm8CKDTqsLM1pwbxu-VK2lIFeZWgQHso6qMvcQV0Uw-hxQvkpeDYVMAe15_GxEI11GILxNA4KXcitamFxlyFeMADlotm2YyL0xCu634cBzJNq04C2lrxVauXmEXoY9jOj0ngBdrk9iIbw0sAHXPWDYdiOD7fgvavSf6buz85X-PfAsPB-PR0Aw_nH06gEf-f7j_Jf4KdpbzlXuNDtUyfeOnzx-bqhrc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXRIHSUB4-cNge3F3HSZwcUWlUoK1WYleqhJDlxE6J1E1W-6jojTM_h5_EL2HGeXSLOKG9rGR7NtoZ-5uJZ74h5K0WoPQs50y7khwTZUz7ecGyLM4BEcOk0FgofHYenUyDjxfhxUarL5e0n2flYXU1O6zKby63cj7Lh12e2HB8diQAp0C5w7kphlvkPuzZ0agL1Hu-3bipPvHhEA78oGP1kWI4r_QSTwq8I-QjbNjn-4j82GJiA5u2Cl13SYrIfAqr_uWF_p1MuYFO6WPyqHUr6bvm8XfIPVs9ITvtxl3SQcsuffCU_HSUxrQ0bZqQ0wytCwp_MTJzMqy9xAFaYumIpYsmixaklBW9Lq9rmt3QLzxOvzKwIEAtQ8XvH79YcbWuFzVz342tv98wsIFZCdho6cDNT08nB3R8PAHJrjfSMzJNjydHJ6xtyMDyMI5XTCQ5DyH-gOCV5zKGWESLuOAaQS7x_dyAu865gWA9EDKDj5WJ5cgwI8GNCo3YJdtVXdk9QiMjbSSNFDaDmEkkWaRjAEqtea6lNoVHBp0q1Lzh3VDuvlwKhapQtwr0yB6oSulLOBXV9LOPMSN6OhA6eWTX6a8XAZAd-vAwHvGclFvRsQpChe5i5JH9Tsuq3dBLleCNK_w4rKT9KOxEvF7Rla3XMIXHowg76HjkeWMSvfjOwDwi7xhLPwFJvu-OgO07su_W1l_898o35MH4fapOP5x_2icP3Stx91b8JdleLdb2FfhUq-y12z1_AHvvG90 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+identification+of+antigen-specific+immune+responses+in+vivo+by+%5B18F%5D-labeled+3%27-fluoro-3%27-deoxy-thymidine+%28%5B18F%5DFLT%29+PET+imaging&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Aarntzen%2C+Erik+HJG&rft.au=Srinivas%2C+Mangala&rft.au=De+Wilt%2C+Johannes+HW&rft.au=Jacobs%2C+Joannes+FM&rft.date=2011-11-08&rft.issn=0027-8424&rft.volume=108&rft.issue=45&rft.spage=18396&rft.epage=18399&rft_id=info:doi/10.1073%2Fpnas.1113045108&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F45.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F45.cover.gif |