14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers
Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DN...
Saved in:
Published in | Nucleic acids research Vol. 36; no. 18; pp. 5983 - 5991 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.10.2008
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 0305-1048 1362-4962 1362-4962 |
DOI | 10.1093/nar/gkn598 |
Cover
Loading…
Abstract | Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, ε and γ. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM. |
---|---|
AbstractList | Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, epsilon and gamma. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM. Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, ε and γ. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM. Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, ɛ and γ . We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo , then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer–dimer dissociation constant from its normal value of 120–150 nM. Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, epsilon and gamma. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM.Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, epsilon and gamma. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM. Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, ɛ and γ. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM. Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, [varepsilon] and γ. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM. |
Author | Jaulent, Agnes M. Rajagopalan, Sridharan Fersht, Alan R. Veprintsev, Dmitry B. Wells, Mark |
AuthorAffiliation | MRC Laboratory of Molecular Biology and MRC Centre for Protein Engineering, Hills Road, Cambridge, CB2 0QH, UK |
AuthorAffiliation_xml | – name: MRC Laboratory of Molecular Biology and MRC Centre for Protein Engineering, Hills Road, Cambridge, CB2 0QH, UK |
Author_xml | – sequence: 1 fullname: Rajagopalan, Sridharan – sequence: 2 fullname: Jaulent, Agnes M – sequence: 3 fullname: Wells, Mark – sequence: 4 fullname: Veprintsev, Dmitry B – sequence: 5 fullname: Fersht, Alan R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18812399$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFDEcxYNU7Lb64gfQQdAHYWzul5dCrZeVVn1oC-JLSGYy27SzyZpki_32zjh10SLWp5Dkdw7JOf8dsBVicAA8RvAVgorsBZP2FpeBKXkPzBDhuKaK4y0wgwSyGkEqt8FOzhcQIooYfQC2kZQIE6Vm4ATRmtSkMk3xV6b4GKrYVW8-HVTWh9aHxbhdMVLZ68qFcxOa8cyXXJmcY-MniQ8lVsWVZJYu5Yfgfmf67B7drLvg7N3b08N5ffz5_YfDg-O6YVKWGjdKUaJMhzrMMWmsYo7yFjFHjGhbgYjsOssNtpZ0BAsqnLCQWjt-y8GW7IL9yXe1tkvXNi4MD-j1KvmlSdc6Gq__vAn-XC_ilcaMc6nQYPDixiDFb2uXi1763Li-N8HFddZccY6pEHeCVCKIoIR3gkgxTplQ_wFSNRQ0Oj67BV7EdQpDrhpDyBWEkg7Qk9-T2ETwq-cBgBPQpJhzcp1ufPnZ3RCM7zWCehwlPYySnkZpkLy8Jdm4_g1-PsFxvfo3V0-cz8V935AmXWouiGB6_uWr5vNTMX999FEfDfzTie9M1GaRfNZnJxgiAhFjCHNKfgDGo-52 |
CODEN | NARHAD |
CitedBy_id | crossref_primary_10_1074_jbc_M113_474049 crossref_primary_10_1158_0008_5472_CAN_10_0070 crossref_primary_10_1093_nar_gkq800 crossref_primary_10_1128_JVI_00465_18 crossref_primary_10_1002_cphc_202200537 crossref_primary_10_1093_nar_gkp033 crossref_primary_10_1002_jor_22598 crossref_primary_10_1074_mcp_M113_030254 crossref_primary_10_1016_j_jmb_2011_03_047 crossref_primary_10_1021_acs_jmedchem_9b01942 crossref_primary_10_1186_1471_2164_10_628 crossref_primary_10_3390_ijms23169078 crossref_primary_10_1128_MCB_01226_12 crossref_primary_10_1038_s41598_023_35533_6 crossref_primary_10_1016_j_febslet_2012_10_048 crossref_primary_10_1038_onc_2010_285 crossref_primary_10_1074_jbc_M110_174698 crossref_primary_10_4155_fmc_15_138 crossref_primary_10_15252_msb_20145168 crossref_primary_10_1073_pnas_1001069107 crossref_primary_10_1002_1873_3468_12723 crossref_primary_10_1021_acsmedchemlett_1c00088 crossref_primary_10_1073_pnas_0907840106 crossref_primary_10_1038_celldisc_2015_42 crossref_primary_10_1093_protein_gzq074 crossref_primary_10_1038_emboj_2011_16 crossref_primary_10_3390_cancers13102422 crossref_primary_10_1073_pnas_1311126110 crossref_primary_10_1039_D1SC00396H crossref_primary_10_1038_s41420_020_00362_3 crossref_primary_10_1016_j_pbiomolbio_2019_08_008 crossref_primary_10_1101_gad_340976_120 crossref_primary_10_1074_mcp_M900286_MCP200 crossref_primary_10_3389_fmolb_2023_1215550 crossref_primary_10_1074_jbc_M109_006429 crossref_primary_10_1016_j_str_2011_12_001 crossref_primary_10_1021_bi100564w crossref_primary_10_1182_blood_2017_09_742650 crossref_primary_10_1016_j_vetpar_2013_07_028 crossref_primary_10_1021_jacs_7b07939 crossref_primary_10_1186_s12885_019_6017_2 crossref_primary_10_1073_pnas_1003689107 crossref_primary_10_1007_s00726_010_0497_3 crossref_primary_10_1038_onc_2009_490 crossref_primary_10_1074_jbc_M901351200 crossref_primary_10_1038_s41598_018_20466_2 crossref_primary_10_1039_D2OB00902A crossref_primary_10_1002_bip_22772 crossref_primary_10_4161_psb_22672 crossref_primary_10_1021_cr400713r crossref_primary_10_1016_j_celrep_2013_04_017 crossref_primary_10_1016_j_febslet_2010_02_065 crossref_primary_10_1073_pnas_2021456118 crossref_primary_10_1002_anie_201107616 crossref_primary_10_1016_j_semcdb_2011_09_001 crossref_primary_10_1038_cdd_2009_139 crossref_primary_10_1038_s41388_018_0348_3 crossref_primary_10_1038_onc_2010_266 crossref_primary_10_3109_10409230903401507 crossref_primary_10_1016_j_pep_2015_11_002 crossref_primary_10_1016_j_molcel_2010_01_041 crossref_primary_10_3389_fmolb_2022_875208 crossref_primary_10_1128_MCB_00715_10 crossref_primary_10_1021_acschembio_9b00893 crossref_primary_10_1021_acs_biochem_4c00248 crossref_primary_10_3390_ijms232214480 crossref_primary_10_1038_srep31758 crossref_primary_10_1016_j_devcel_2015_03_015 crossref_primary_10_1002_ange_201107616 crossref_primary_10_1016_j_jmb_2011_11_007 crossref_primary_10_3389_fchem_2014_00009 crossref_primary_10_1371_journal_pone_0041742 crossref_primary_10_1007_s12013_022_01067_3 crossref_primary_10_1021_bi501129g crossref_primary_10_1074_mcp_M110_005157 crossref_primary_10_1021_jacs_0c02151 crossref_primary_10_1515_hsz_2019_0405 crossref_primary_10_1371_journal_pone_0038060 crossref_primary_10_1038_nchembio_2026 crossref_primary_10_1093_jmcb_mjab047 crossref_primary_10_1093_nar_gkp1041 crossref_primary_10_1016_j_bbagrm_2013_04_004 crossref_primary_10_1016_j_pneurobio_2019_101729 crossref_primary_10_1371_journal_pone_0133307 |
Cites_doi | 10.1128/MCB.23.20.7096-7107.2003 10.1038/nrc1455 10.1158/0008-5472.CAN-1305-2 10.1073/pnas.0501459102 10.1016/j.str.2005.01.020 10.1016/j.jmb.2004.06.071 10.1593/neo.07511 10.1016/S0092-8674(00)80487-0 10.1016/S0092-8674(00)81067-3 10.1074/jbc.273.26.16305 10.1016/S0898-6568(97)00119-8 10.1042/BJ20031332 10.1091/mbc.E04-08-0689 10.1073/pnas.0710017104 10.1016/S0092-8674(00)81871-1 10.1093/emboj/18.7.1805 10.1146/annurev.biochem.77.060806.091238 10.1016/S0092-8674(00)00171-9 10.1016/S1097-2765(00)80363-9 10.1016/S0092-8674(00)80416-X 10.1016/j.jmb.2004.07.042 10.1038/542 10.1073/pnas.95.25.14675 10.1074/jbc.M309732200 10.1074/jbc.M604209200 10.1038/nrc2012 10.1016/S0006-3495(00)76713-0 10.1038/35042675 |
ContentType | Journal Article |
Copyright | 2008 The Author(s) 2008 2008 The Author(s) |
Copyright_xml | – notice: 2008 The Author(s) 2008 – notice: 2008 The Author(s) |
DBID | FBQ BSCLL TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7TO 7S9 L.6 7X8 5PM |
DOI | 10.1093/nar/gkn598 |
DatabaseName | AGRIS Istex Oxford Academic CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Oncogenes and Growth Factors Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Oncogenes and Growth Factors Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Oncogenes and Growth Factors Abstracts MEDLINE - Academic Genetics Abstracts Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 5991 |
ExternalDocumentID | PMC2566891 1575872431 18812399 10_1093_nar_gkn598 10.1093/nar/gkn598 ark_67375_HXZ_6HT7HBKM_K US201301551264 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U105474168 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUTJ ADBBV ADHZD AEGXH AEKPW AENEX AENZO AEQTP AFFNX AFPKN AFRAH AFULF AFYAG AGKRT AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FBQ FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OJZSN OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XFK XSB XSW YSK ZA5 ZKX ZXP ~91 ~D7 ~KM 0R~ AAHBH ABEJV ABGNP ABIME ABNGD ABPIB ABXVV ABZEO ACUKT ACVCV ACZBC AEHUL AFSHK AGMDO AGQPQ AMNDL APJGH BSCLL OVT ACMRT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7TO 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c588t-2c99439af1f2623cb95e46d15e3a7dd7138ffb6a2bb3f32747e7b04bb0305e0d3 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:16:08 EDT 2025 Thu Jul 10 23:59:32 EDT 2025 Fri Jul 11 08:54:40 EDT 2025 Thu Jul 10 23:46:09 EDT 2025 Fri Jul 11 12:16:52 EDT 2025 Mon Jun 30 08:52:49 EDT 2025 Mon Jul 21 05:47:08 EDT 2025 Tue Jul 01 01:40:48 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Wed Aug 28 03:25:03 EDT 2024 Tue Aug 05 16:49:17 EDT 2025 Wed Dec 27 19:29:24 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://creativecommons.org/licenses/by-nc/2.0/uk This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c588t-2c99439af1f2623cb95e46d15e3a7dd7138ffb6a2bb3f32747e7b04bb0305e0d3 |
Notes | ArticleID:gkn598 istex:71111DA4A14D94A9123B0772C3BE814FC7BCB66E ark:/67375/HXZ-6HT7HBKM-K ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkn598 |
PMID | 18812399 |
PQID | 200690084 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2566891 proquest_miscellaneous_69662477 proquest_miscellaneous_48101080 proquest_miscellaneous_19564579 proquest_miscellaneous_19493990 proquest_journals_200690084 pubmed_primary_18812399 crossref_citationtrail_10_1093_nar_gkn598 crossref_primary_10_1093_nar_gkn598 oup_primary_10_1093_nar_gkn598 istex_primary_ark_67375_HXZ_6HT7HBKM_K fao_agris_US201301551264 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-01 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2008 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | (26_30084109) 2007; 104 Nikolova (17_6256453) 1998; 95 (2_31863576) 2000; 103 Toledo (9_23037421) 2006; 6 (1_31548878) 1997; 88 Waterman (11_6033284) 1998; 19 Schuck (21_6488365) 2000; 78 Meek (7_6021748) 1998; 10 Bode (8_18492480) 2004; 4 Unger (6_10785631) 1999; 18 Yang (27_17834909) 2003; 23 (18_22227651) 2006; 281 Lee (28_29521631) 2007; 9 Weinberg (22_18307073) 2004; 342 Yap (23_18262291) 2004; 64 Mackintosh (12_18380612) 2004; 381 Joerger (4_31242020) 2008; 77 Rittinger (15_10965541) 1999; 4 (13_31531580) 1996; 84 (3_31548881) 2000; 408 Friedler (19_18812020) 2005; 13 (5_31723662) 1997; 91 (20_19688988) 2005; 102 (10_18769271) 2005; 16 Weinberg (25_18297705) 2004; 341 (14_31548184) 1997; 91 (16_19567828) 2004; 279 Petosa (24_6048448) 1998; 273 |
References_xml | – volume: 23 start-page: 7096 issn: 0270-7306 issue: 20 year: 2003 ident: 27_17834909 publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.23.20.7096-7107.2003 – volume: 4 start-page: 793 issn: 1474-175X issue: 10 year: 2004 ident: 8_18492480 publication-title: Nature reviews. Cancer doi: 10.1038/nrc1455 – volume: 64 start-page: 4749 issn: 0008-5472 issue: 14 year: 2004 ident: 23_18262291 publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-1305-2 – volume: 102 start-page: 4735 issn: 0027-8424 issue: 13 year: 2005 ident: 20_19688988 publication-title: PNAS doi: 10.1073/pnas.0501459102 – volume: 13 start-page: 629 issn: 0969-2126 issue: 4 year: 2005 ident: 19_18812020 publication-title: Structure (London) doi: 10.1016/j.str.2005.01.020 – volume: 341 start-page: 1145 issn: 0022-2836 issue: 5 year: 2004 ident: 25_18297705 publication-title: Journal of molecular biology doi: 10.1016/j.jmb.2004.06.071 – volume: 9 start-page: 690 issn: 1522-8002 issue: 9 year: 2007 ident: 28_29521631 publication-title: Neoplasia (New York, N.Y.) doi: 10.1593/neo.07511 – volume: 91 start-page: 961 issn: 0092-8674 year: 1997 ident: 14_31548184 doi: 10.1016/S0092-8674(00)80487-0 – volume: 84 start-page: 889 issn: 0092-8674 year: 1996 ident: 13_31531580 doi: 10.1016/S0092-8674(00)81067-3 – volume: 273 start-page: 16305 issn: 0021-9258 issue: 26 year: 1998 ident: 24_6048448 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.273.26.16305 – volume: 10 start-page: 159 issn: 0898-6568 issue: 3 year: 1998 ident: 7_6021748 publication-title: Cellular signalling doi: 10.1016/S0898-6568(97)00119-8 – volume: 381 start-page: 329 issn: 0264-6021 issue: Pt 2 year: 2004 ident: 12_18380612 publication-title: The Biochemical journal doi: 10.1042/BJ20031332 – volume: 16 start-page: 1684 issn: 1059-1524 issue: 4 year: 2005 ident: 10_18769271 publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.E04-08-0689 – volume: 104 start-page: 20826 issn: 0027-8424 issue: 52 year: 2007 ident: 26_30084109 publication-title: PNAS doi: 10.1073/pnas.0710017104 – volume: 88 start-page: 323 issn: 0092-8674 year: 1997 ident: 1_31548878 doi: 10.1016/S0092-8674(00)81871-1 – volume: 18 start-page: 1805 issn: 0261-4189 issue: 7 year: 1999 ident: 6_10785631 publication-title: The EMBO Journal doi: 10.1093/emboj/18.7.1805 – volume: 77 start-page: 557 issn: 0066-4154 year: 2008 ident: 4_31242020 publication-title: Annual review of biochemistry doi: 10.1146/annurev.biochem.77.060806.091238 – volume: 103 start-page: 691 issn: 0092-8674 year: 2000 ident: 2_31863576 doi: 10.1016/S0092-8674(00)00171-9 – volume: 4 start-page: 153 issn: 1097-2765 issue: 2 year: 1999 ident: 15_10965541 publication-title: Molecular cell doi: 10.1016/S1097-2765(00)80363-9 – volume: 91 start-page: 325 issn: 0092-8674 year: 1997 ident: 5_31723662 doi: 10.1016/S0092-8674(00)80416-X – volume: 342 start-page: 801 issn: 0022-2836 issue: 3 year: 2004 ident: 22_18307073 publication-title: Journal of molecular biology doi: 10.1016/j.jmb.2004.07.042 – volume: 19 start-page: 175 issn: 1061-4036 issue: 2 year: 1998 ident: 11_6033284 publication-title: Nature genetics doi: 10.1038/542 – volume: 95 start-page: 14675 issn: 0027-8424 issue: 25 year: 1998 ident: 17_6256453 publication-title: PNAS doi: 10.1073/pnas.95.25.14675 – volume: 279 start-page: 1291 issn: 0021-9258 issue: 2 year: 2004 ident: 16_19567828 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M309732200 – volume: 281 start-page: 21934 issn: 0021-9258 issue: 31 year: 2006 ident: 18_22227651 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M604209200 – volume: 6 start-page: 909 issn: 1474-175X issue: 12 year: 2006 ident: 9_23037421 publication-title: Nature reviews. Cancer doi: 10.1038/nrc2012 – volume: 78 start-page: 1606 issn: 0006-3495 issue: 3 year: 2000 ident: 21_6488365 publication-title: Biophysical Journal doi: 10.1016/S0006-3495(00)76713-0 – volume: 408 start-page: 307 issn: 1476-4687 year: 2000 ident: 3_31548881 doi: 10.1038/35042675 |
SSID | ssj0014154 |
Score | 2.2542927 |
Snippet | Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain... |
SourceID | pubmedcentral proquest pubmed crossref oup istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5983 |
SubjectTerms | 14-3-3 Proteins - chemistry 14-3-3 Proteins - metabolism acetylation Base Sequence Binding Sites Deoxyribonucleic acid dissociation DNA DNA - chemistry DNA - metabolism DNA damage Fluorescence Polarization Molecular Biology neoplasms Peptides Peptides - metabolism Phosphopeptides - metabolism Phosphorylation post-translational modification Protein Binding Protein Structure, Tertiary proteins serine Tumor Suppressor Protein p53 - chemistry Tumor Suppressor Protein p53 - metabolism ultracentrifugation |
Title | 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers |
URI | https://api.istex.fr/ark:/67375/HXZ-6HT7HBKM-K/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/18812399 https://www.proquest.com/docview/200690084 https://www.proquest.com/docview/19493990 https://www.proquest.com/docview/19564579 https://www.proquest.com/docview/48101080 https://www.proquest.com/docview/69662477 https://pubmed.ncbi.nlm.nih.gov/PMC2566891 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9wwELVaLu2lKtCWFLq11Aqph4gkdvxx3NKiqAh6YFda9WLZiQMrWgdtglT-fcf5gkVAb0k8URK_JPPsGb9B6DPhidFxScMCvGdIKSlCwUoGWzxiojBCtxNuJ6csm9Mfi3TRJ9HUD4TwJTlwenVwfulS6Zf0gvf1Cvmzn4sxVgAuqBOJajU1qRhESNdOXXM7z0tdARn1_fj33sK2O_zyfprkHb9z9Bq96gkjnnYIb6Jn1m2h7amDwfKfG7yP2xTOdm58C704HMq3baOzmIYkJNgvXOimXXFV4m-nU2yW7UoWv3uVEmxusHUXXnYDji2bGutbxPDSNRVubONTuFb1GzQ_-j47zMK-gkKYp0I0YZJLCYxDl3GZAM_JjUwtZUWcWqJ5UcAAVZSlYToxhpTED1AtNxE1xnemjQryFm24ytkdhHNmuPXkMC0INZERcZ4yEtucaZNzKwL0Zehglffy4r7KxW_VhbmJAjBUB0aAPo22V52oxoNWO4CT0ufwt1Pzs8THWD3BAwoXoP0WvPFsvbr0GWo8Vdnil2LZjGdfj0_UcYAmgO6TF9kdgFf911v70pxM-koDAfo4tgJ8Ppaina2uaxVLKoHbRU9ZeKEeLh-3oF5cDRj74xYMBqMJ5TxA77pX8fZJBDAzuIEA8bWXdDTwsuHrLW550cqHA8llQsbv_9c1u-hlMoj_xntoo1ld2w_AwBozaWcuJu1n-A_pKy2W |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=14-3-3+activation+of+DNA+binding+of+p53+by+enhancing+its+association+into+tetramers&rft.jtitle=Nucleic+acids+research&rft.au=Rajagopalan%2C+Sridharan&rft.au=Jaulent%2C+Agnes+M&rft.au=Wells%2C+Mark&rft.au=Veprintsev%2C+Dmitry+B&rft.date=2008-10-01&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=36&rft.issue=18&rft.spage=5983&rft.epage=5991&rft_id=info:doi/10.1093%2Fnar%2Fgkn598&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |