An Alternative Splicing Switch Regulates Embryonic Stem Cell Pluripotency and Reprogramming
Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription fac...
Saved in:
Published in | Cell Vol. 147; no. 1; pp. 132 - 146 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
30.09.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2011.08.023 |
Cover
Loading…
Abstract | Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency, including
OCT4,
NANOG,
NR5A2, and
GDF3, while concomitantly repressing genes required for ESC differentiation. This isoform also promotes the maintenance of ESC pluripotency and contributes to efficient reprogramming of somatic cells into induced pluripotent stem cells. These results reveal a pivotal role for an AS event in the regulation of pluripotency through the control of critical ESC-specific transcriptional programs.
[Display omitted]
► An ESC-specific splicing switch in FOXP1 transcripts produces the FOXP1-ES isoform ► FOXP1-ES has distinct DNA-binding properties compared to the canonical FOXP1 isoform ► FOXP1-ES stimulates key pluripotency genes and represses many differentiation genes ► FOXP1-ES is required for ESC pluripotency and efficient iPSC reprogramming
Alternative splicing produces an ESC-specific isoform of FOXP1 that represses genes responsible for differentiation and directly stimulates production of pluripotency genes, including
Oct4 and
Nanog |
---|---|
AbstractList | Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency, including OCT4, NANOG, NR5A2, and GDF3, while concomitantly repressing genes required for ESC differentiation. This isoform also promotes the maintenance of ESC pluripotency and contributes to efficient reprogramming of somatic cells into induced pluripotent stem cells. These results reveal a pivotal role for an AS event in the regulation of pluripotency through the control of critical ESC-specific transcriptional programs. Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency, including OCT4, NANOG, NR5A2, and GDF3, while concomitantly repressing genes required for ESC differentiation. This isoform also promotes the maintenance of ESC pluripotency and contributes to efficient reprogramming of somatic cells into induced pluripotent stem cells. These results reveal a pivotal role for an AS event in the regulation of pluripotency through the control of critical ESC-specific transcriptional programs.Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency, including OCT4, NANOG, NR5A2, and GDF3, while concomitantly repressing genes required for ESC differentiation. This isoform also promotes the maintenance of ESC pluripotency and contributes to efficient reprogramming of somatic cells into induced pluripotent stem cells. These results reveal a pivotal role for an AS event in the regulation of pluripotency through the control of critical ESC-specific transcriptional programs. Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency, including OCT4, NANOG, NR5A2, and GDF3, while concomitantly repressing genes required for ESC differentiation. This isoform also promotes the maintenance of ESC pluripotency and contributes to efficient reprogramming of somatic cells into induced pluripotent stem cells. These results reveal a pivotal role for an AS event in the regulation of pluripotency through the control of critical ESC-specific transcriptional programs. [Display omitted] ► An ESC-specific splicing switch in FOXP1 transcripts produces the FOXP1-ES isoform ► FOXP1-ES has distinct DNA-binding properties compared to the canonical FOXP1 isoform ► FOXP1-ES stimulates key pluripotency genes and represses many differentiation genes ► FOXP1-ES is required for ESC pluripotency and efficient iPSC reprogramming Alternative splicing produces an ESC-specific isoform of FOXP1 that represses genes responsible for differentiation and directly stimulates production of pluripotency genes, including Oct4 and Nanog |
Author | Slobodeniuc, Valentina Blencowe, Benjamin J. Hughes, Timothy R. Wrana, Jeffrey L. Sung, Hoon-Ki Wang, Xinchen Nedelec, Stephane Talukder, Shaheynoor Gabut, Mathieu Mazzoni, Esteban O. Woltjen, Knut Zandstra, Peter W. Pan, Qun Alvarez, Manuel O'Hanlon, Dave Nagy, Andras Wichterle, Hynek Samavarchi-Tehrani, Payman |
Author_xml | – sequence: 1 givenname: Mathieu surname: Gabut fullname: Gabut, Mathieu organization: Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada – sequence: 2 givenname: Payman surname: Samavarchi-Tehrani fullname: Samavarchi-Tehrani, Payman organization: Center for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada – sequence: 3 givenname: Xinchen surname: Wang fullname: Wang, Xinchen organization: Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada – sequence: 4 givenname: Valentina surname: Slobodeniuc fullname: Slobodeniuc, Valentina organization: Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada – sequence: 5 givenname: Dave surname: O'Hanlon fullname: O'Hanlon, Dave organization: Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada – sequence: 6 givenname: Hoon-Ki surname: Sung fullname: Sung, Hoon-Ki organization: Center for Stem Cells and Tissue Engineering, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada – sequence: 7 givenname: Manuel surname: Alvarez fullname: Alvarez, Manuel organization: The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada – sequence: 8 givenname: Shaheynoor surname: Talukder fullname: Talukder, Shaheynoor organization: Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada – sequence: 9 givenname: Qun surname: Pan fullname: Pan, Qun organization: Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada – sequence: 10 givenname: Esteban O. surname: Mazzoni fullname: Mazzoni, Esteban O. organization: Columbia University Medical Center, 630 West 168 th Street, New York, NY 10032, USA – sequence: 11 givenname: Stephane surname: Nedelec fullname: Nedelec, Stephane organization: Columbia University Medical Center, 630 West 168 th Street, New York, NY 10032, USA – sequence: 12 givenname: Hynek surname: Wichterle fullname: Wichterle, Hynek organization: Columbia University Medical Center, 630 West 168 th Street, New York, NY 10032, USA – sequence: 13 givenname: Knut surname: Woltjen fullname: Woltjen, Knut organization: Center for Stem Cells and Tissue Engineering, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada – sequence: 14 givenname: Timothy R. surname: Hughes fullname: Hughes, Timothy R. organization: Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada – sequence: 15 givenname: Peter W. surname: Zandstra fullname: Zandstra, Peter W. organization: The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada – sequence: 16 givenname: Andras surname: Nagy fullname: Nagy, Andras organization: Center for Stem Cells and Tissue Engineering, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada – sequence: 17 givenname: Jeffrey L. surname: Wrana fullname: Wrana, Jeffrey L. organization: Center for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada – sequence: 18 givenname: Benjamin J. surname: Blencowe fullname: Blencowe, Benjamin J. email: b.blencowe@utoronto.ca organization: Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21924763$$D View this record in MEDLINE/PubMed https://hal.science/hal-03830239$$DView record in HAL |
BookMark | eNqFkU-P0zAQxS20iO0ufAEOkBtwSBg7TuJIXKpqYZEqgSh74mA5yaTrKn-K7Rb12zMhyx44lNNIo9-beTPvil0M44CMveSQcOD5-11SY9clAjhPQCUg0idswaEsYskLccEWAKWIVV7IS3bl_Q4AVJZlz9il4KWQRZ4u2I_lEC27gG4wwR4x2uw7W9thG21-2VDfR99we-hMQB_d9JU7jYOto03APlrR6uhrd3B2PwYc6lNkhobwvRu3zvQ9zXjOnram8_jioV6zu48331e38frLp8-r5TquM6VCLLhIuYQqJX-SWqZqEVtlIJWoMMNStrxtpFGSStmArEyTNpIj5thAXqbX7N089950eu9sb9xJj8bq2-VaTz1IVUrfKY-c2DczSz5_HtAH3Vs_vdEMOB68LqHgRS5l-V9SlfmfNyoi354lBR0Ggud5RuirB_RQ9dg8uv0bCAFiBmo3eu-wfUQ46Cl1vdPTaD2lrkFpuotE6h9RbQPlOQ7BGdudl76epa0Ztdk66_XdhoCcLHOADIj4MBNIER4tOu1rS4FjYx3WQTejPbfgNwNaz3c |
CitedBy_id | crossref_primary_10_1186_1471_2407_14_840 crossref_primary_10_4252_wjsc_v13_i10_1394 crossref_primary_10_1172_JCI68836 crossref_primary_10_1038_s41467_023_36037_7 crossref_primary_10_1016_j_molcel_2011_08_014 crossref_primary_10_1186_s40104_018_0260_2 crossref_primary_10_1038_leu_2012_86 crossref_primary_10_1186_1471_2164_14_331 crossref_primary_10_3389_fnmol_2019_00115 crossref_primary_10_3389_fnmol_2023_1237874 crossref_primary_10_1371_journal_pone_0143235 crossref_primary_10_1126_sciadv_aba1190 crossref_primary_10_1093_nar_gkac154 crossref_primary_10_1002_pmic_201500379 crossref_primary_10_1101_gad_215400_113 crossref_primary_10_3109_08830185_2013_816698 crossref_primary_10_1089_scd_2021_0309 crossref_primary_10_1016_j_scr_2017_05_010 crossref_primary_10_1016_j_tig_2014_05_005 crossref_primary_10_1007_s12217_015_9469_2 crossref_primary_10_1073_pnas_1307202110 crossref_primary_10_1080_15476286_2018_1502587 crossref_primary_10_1038_nsmb_2660 crossref_primary_10_3390_ijms16011755 crossref_primary_10_3390_ijms232315242 crossref_primary_10_1038_s41576_022_00514_4 crossref_primary_10_3389_fcell_2021_673873 crossref_primary_10_1016_j_molcel_2017_01_011 crossref_primary_10_1074_jbc_M113_526269 crossref_primary_10_1038_s41467_023_44126_w crossref_primary_10_1080_15476286_2017_1294308 crossref_primary_10_1371_journal_pgen_1007828 crossref_primary_10_1016_j_gde_2013_07_004 crossref_primary_10_1016_j_gde_2014_09_012 crossref_primary_10_1371_journal_pone_0079118 crossref_primary_10_1038_s41592_025_02623_4 crossref_primary_10_1186_1471_2105_12_452 crossref_primary_10_1016_j_devcel_2018_10_001 crossref_primary_10_2139_ssrn_4102878 crossref_primary_10_1016_j_stem_2014_04_002 crossref_primary_10_1007_s12041_018_0898_8 crossref_primary_10_3892_mmr_2017_6907 crossref_primary_10_1080_15476286_2020_1733800 crossref_primary_10_32607_actanaturae_11583 crossref_primary_10_1182_blood_2015_08_662635 crossref_primary_10_1146_annurev_biochem_060614_034242 crossref_primary_10_1038_ncb2839 crossref_primary_10_1080_15476286_2019_1673657 crossref_primary_10_1016_j_stemcr_2015_04_009 crossref_primary_10_1371_journal_pone_0100648 crossref_primary_10_1016_j_bbrc_2018_08_136 crossref_primary_10_1261_rna_078879_121 crossref_primary_10_3389_fmolb_2018_00012 crossref_primary_10_1016_j_taap_2016_06_009 crossref_primary_10_7554_eLife_16797 crossref_primary_10_1038_s41556_018_0067_6 crossref_primary_10_1051_medsci_2012283008 crossref_primary_10_1093_clinchem_hvad197 crossref_primary_10_1371_journal_pone_0127671 crossref_primary_10_3390_v13122409 crossref_primary_10_1093_nar_gks504 crossref_primary_10_18632_oncotarget_749 crossref_primary_10_1111_jcmm_15835 crossref_primary_10_1186_s13059_021_02273_7 crossref_primary_10_1016_j_ydbio_2014_12_007 crossref_primary_10_1098_rsob_220206 crossref_primary_10_1038_ncomms4930 crossref_primary_10_1371_journal_pone_0085851 crossref_primary_10_1089_scd_2017_0283 crossref_primary_10_1242_dev_200373 crossref_primary_10_1073_pnas_2002499117 crossref_primary_10_1007_s10616_013_9649_0 crossref_primary_10_1016_j_stem_2024_04_001 crossref_primary_10_1016_j_ydbio_2012_08_013 crossref_primary_10_1016_j_pbi_2022_102232 crossref_primary_10_1038_onc_2012_288 crossref_primary_10_1007_s00125_023_05882_y crossref_primary_10_1016_j_gene_2014_06_034 crossref_primary_10_1016_j_molcel_2019_09_017 crossref_primary_10_1016_j_semcdb_2017_08_008 crossref_primary_10_3390_ijms18010231 crossref_primary_10_1126_scisignal_2005654 crossref_primary_10_15252_msb_20156278 crossref_primary_10_1002_eji_201847660 crossref_primary_10_7554_eLife_41279 crossref_primary_10_1111_cas_13186 crossref_primary_10_1002_humu_23303 crossref_primary_10_1002_stem_2864 crossref_primary_10_1038_ncb2851 crossref_primary_10_1530_JME_17_0049 crossref_primary_10_1210_me_2016_1008 crossref_primary_10_1016_j_stem_2020_01_005 crossref_primary_10_1016_j_bbrc_2016_01_019 crossref_primary_10_1016_j_molcel_2021_03_033 crossref_primary_10_1186_2044_5040_2_21 crossref_primary_10_1038_s41388_021_01742_4 crossref_primary_10_1002_jcp_24437 crossref_primary_10_1182_blood_2012_10_462846 crossref_primary_10_1186_s13059_016_1077_y crossref_primary_10_1073_pnas_1524677113 crossref_primary_10_1186_s13059_018_1512_3 crossref_primary_10_3390_genes5010235 crossref_primary_10_1038_s41467_024_53822_0 crossref_primary_10_2459_JCM_0000000000000536 crossref_primary_10_1016_j_tranon_2016_01_006 crossref_primary_10_1186_s12864_015_2068_1 crossref_primary_10_1101_gad_316984_118 crossref_primary_10_1038_nrg3106 crossref_primary_10_1093_nar_gkw095 crossref_primary_10_15252_embr_202153191 crossref_primary_10_1186_gb_2013_14_10_r119 crossref_primary_10_1038_s41467_019_09649_1 crossref_primary_10_15252_embj_201489947 crossref_primary_10_1038_nrm3525 crossref_primary_10_1002_cne_24430 crossref_primary_10_1016_j_gene_2015_08_013 crossref_primary_10_1111_age_12936 crossref_primary_10_32604_phyton_2023_029482 crossref_primary_10_1038_srep09758 crossref_primary_10_1101_gr_279640_124 crossref_primary_10_1016_j_molcel_2013_06_012 crossref_primary_10_1016_j_devcel_2020_09_025 crossref_primary_10_1186_s13619_021_00078_4 crossref_primary_10_1016_j_molcel_2022_06_036 crossref_primary_10_1089_scd_2023_0037 crossref_primary_10_1038_ncomms3480 crossref_primary_10_1038_s41591_024_03073_9 crossref_primary_10_1016_j_bbrc_2020_01_140 crossref_primary_10_1186_1479_7364_8_3 crossref_primary_10_1002_stem_3248 crossref_primary_10_1007_s11515_015_1368_9 crossref_primary_10_1586_epr_12_30 crossref_primary_10_1038_s41594_024_01292_9 crossref_primary_10_15252_emmm_201505495 crossref_primary_10_1242_dev_186841 crossref_primary_10_1002_jcp_31066 crossref_primary_10_1016_j_tcb_2015_12_003 crossref_primary_10_1002_rmb2_12346 crossref_primary_10_1371_journal_pone_0211652 crossref_primary_10_4161_cc_21281 crossref_primary_10_1038_s41467_020_15189_w crossref_primary_10_1038_s41580_022_00545_z crossref_primary_10_1186_s13059_021_02372_5 crossref_primary_10_1038_s44318_024_00323_x crossref_primary_10_1016_j_ejmech_2023_115513 crossref_primary_10_1016_j_scr_2013_07_007 crossref_primary_10_1016_j_sbi_2013_03_006 crossref_primary_10_1016_j_ceb_2012_03_005 crossref_primary_10_1016_j_gene_2013_08_030 crossref_primary_10_1038_s41594_023_01155_9 crossref_primary_10_1186_s12943_016_0579_2 crossref_primary_10_1038_s41556_021_00678_x crossref_primary_10_1063_5_0004611 crossref_primary_10_1182_blood_2014_01_553412 crossref_primary_10_1186_s13287_023_03376_7 crossref_primary_10_1016_j_chembiol_2021_04_018 crossref_primary_10_3389_fgene_2021_613808 crossref_primary_10_1002_wrna_1468 crossref_primary_10_1126_science_1261417 crossref_primary_10_1093_genetics_iyaf025 crossref_primary_10_1186_s13578_021_00581_w crossref_primary_10_1039_C5MB00640F crossref_primary_10_1002_stem_1889 crossref_primary_10_20900_rmf20190005 crossref_primary_10_1007_s11515_014_1326_y crossref_primary_10_1073_pnas_2305187120 crossref_primary_10_1007_s40778_023_00227_2 crossref_primary_10_1371_journal_pgen_1002998 crossref_primary_10_3389_fimmu_2023_1123344 crossref_primary_10_3390_ijms17040530 crossref_primary_10_1038_nrg_2016_156 crossref_primary_10_1016_j_molcel_2012_05_039 crossref_primary_10_1128_MCB_00488_16 crossref_primary_10_1016_j_stemcr_2016_12_002 crossref_primary_10_1371_journal_pone_0153782 crossref_primary_10_1016_j_celrep_2016_03_025 crossref_primary_10_1016_j_celrep_2025_115384 crossref_primary_10_18632_oncotarget_11577 crossref_primary_10_1093_bfgp_elu046 crossref_primary_10_1038_s41467_023_42558_y crossref_primary_10_1039_C6MB00388E crossref_primary_10_1002_sctm_20_0227 crossref_primary_10_1016_j_cell_2014_09_054 crossref_primary_10_1534_genetics_114_164434 crossref_primary_10_1016_j_cell_2015_07_001 crossref_primary_10_1016_j_celrep_2015_02_058 crossref_primary_10_1038_s41467_017_01216_w crossref_primary_10_1074_jbc_M112_378034 crossref_primary_10_1016_j_gep_2022_119302 crossref_primary_10_1038_s41467_019_08949_w crossref_primary_10_1186_s12864_019_5438_2 crossref_primary_10_1371_journal_pone_0080566 crossref_primary_10_1016_j_molcel_2024_05_024 crossref_primary_10_1111_nyas_12981 crossref_primary_10_1016_j_gde_2017_06_010 crossref_primary_10_3390_biology11060941 crossref_primary_10_1038_nature12270 crossref_primary_10_1186_s12864_024_10530_9 crossref_primary_10_1242_dev_182170 crossref_primary_10_1309_LM7IHV2NJI1PHMXC crossref_primary_10_1111_jcmm_15792 crossref_primary_10_1186_1755_8794_6_21 crossref_primary_10_1016_j_ddmod_2012_02_003 crossref_primary_10_1074_jbc_M115_681627 crossref_primary_10_1016_j_celrep_2013_09_016 crossref_primary_10_1016_j_isci_2022_104289 crossref_primary_10_1038_s41467_022_35775_4 crossref_primary_10_1002_pmic_201200161 crossref_primary_10_1038_mtna_2015_35 crossref_primary_10_1242_jcs_095968 crossref_primary_10_1016_j_cell_2011_09_004 crossref_primary_10_3389_fcell_2021_638815 crossref_primary_10_1038_s41467_018_06230_0 crossref_primary_10_15252_embr_201745657 crossref_primary_10_1016_j_ceb_2017_12_002 crossref_primary_10_1111_cpr_13655 crossref_primary_10_1038_s42003_020_01181_z crossref_primary_10_1051_medsci_2012285002 crossref_primary_10_1186_gb_2012_13_3_r19 crossref_primary_10_1242_jcs_101097 crossref_primary_10_1016_j_celrep_2017_11_096 crossref_primary_10_1101_gad_328492_119 crossref_primary_10_1371_journal_pone_0101520 crossref_primary_10_1038_nature12253 crossref_primary_10_3389_fgene_2021_676971 crossref_primary_10_1016_j_leukres_2020_106296 crossref_primary_10_1016_j_stem_2014_08_010 crossref_primary_10_3389_fnmol_2024_1483901 crossref_primary_10_1089_dna_2017_3780 crossref_primary_10_1093_nar_gkaa067 crossref_primary_10_3390_ijms24021555 crossref_primary_10_1016_j_bbagrm_2014_04_012 crossref_primary_10_1038_cdd_2013_81 crossref_primary_10_1101_gr_178426_114 crossref_primary_10_18632_oncotarget_6510 crossref_primary_10_1038_srep30852 crossref_primary_10_1093_nar_gkac327 crossref_primary_10_1172_JCI89511 crossref_primary_10_1242_bio_060415 crossref_primary_10_1126_scisignal_aaa7112 crossref_primary_10_3389_fcell_2021_709498 crossref_primary_10_1101_gad_255109_114 crossref_primary_10_3390_biomedicines1010049 crossref_primary_10_1016_j_arr_2024_102234 crossref_primary_10_3390_cells9010034 crossref_primary_10_1139_o2012_019 crossref_primary_10_1182_blood_2016_10_747436 crossref_primary_10_1101_gad_318451_118 crossref_primary_10_1038_s41590_018_0291_z crossref_primary_10_1007_s00412_013_0407_z crossref_primary_10_1007_s11515_012_1198_y crossref_primary_10_3724_SP_J_1206_2011_00465 crossref_primary_10_7554_eLife_09268 crossref_primary_10_1371_journal_pone_0102873 crossref_primary_10_1016_j_stem_2014_07_005 crossref_primary_10_1242_dev_157404 crossref_primary_10_1371_journal_pcbi_1002603 crossref_primary_10_1371_journal_pgen_1008782 crossref_primary_10_1186_s12864_017_3600_2 crossref_primary_10_1186_s13046_020_01682_z crossref_primary_10_1038_s41598_020_57974_z crossref_primary_10_1002_bies_201600157 crossref_primary_10_1016_j_ceb_2012_12_004 crossref_primary_10_1016_j_molcel_2023_03_001 crossref_primary_10_1016_j_stem_2012_10_003 crossref_primary_10_1038_oncsis_2016_80 crossref_primary_10_1093_nar_gkx1165 crossref_primary_10_1016_j_stemcr_2016_09_007 crossref_primary_10_1002_1873_3468_15014 crossref_primary_10_1002_stem_2366 crossref_primary_10_1051_medsci_2012284014 |
Cites_doi | 10.1038/nbt1246 10.1073/pnas.0912260107 10.1038/sj.emboj.7601896 10.1016/j.ymeth.2009.03.001 10.1128/MCB.24.2.809-822.2004 10.1073/pnas.0914114107 10.1093/nar/gkq1303 10.1016/j.molcel.2004.12.004 10.1371/journal.pone.0000253 10.1016/j.scr.2008.11.004 10.1016/j.cell.2006.07.024 10.1093/nar/gki439 10.1371/journal.pone.0002904 10.1016/j.cell.2008.06.019 10.1016/j.immuni.2010.06.013 10.1517/14728222.11.7.955 10.1074/jbc.M207174200 10.1038/ng.259 10.1016/j.cell.2008.04.043 10.1101/gad.1929210 10.1016/j.ymeth.2008.03.003 10.1128/MCB.00419-10 10.1038/ni1358 10.1016/j.stem.2010.04.015 10.1038/nature07863 10.1038/nmeth.1226 10.1182/blood-2007-09-115113 10.1016/j.cell.2008.02.039 10.1016/j.cell.2008.05.024 10.1126/science.1162327 10.1038/nn1402 10.1371/journal.pcbi.0030196 10.1038/ng.600 10.1038/nmeth.1246 10.1073/pnas.0801017105 10.1371/journal.pone.0008109 10.1016/j.ygeno.2010.01.002 10.1101/gad.1606907 10.1038/nprot.2007.249 10.1634/stemcells.2008-0530 10.1111/j.1365-2443.2009.01281.x 10.1016/j.cell.2005.04.027 10.1007/978-3-662-09728-1_5 10.1186/gb-2009-10-3-r25 10.1186/1471-2164-9-155 10.1634/stemcells.2007-1037 10.1016/S0092-8674(02)00835-8 10.1016/j.cell.2009.07.039 10.1016/j.str.2005.10.005 10.1093/bioinformatics/bth088 10.1101/gad.1890410 10.1242/dev.01287 10.1073/pnas.0502132102 10.1042/BJ20060387 10.1111/j.1471-4159.2010.06650.x 10.1016/j.neuron.2008.06.025 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7TM 8FD FR3 P64 RC3 1XC |
DOI | 10.1016/j.cell.2011.08.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 146 |
ExternalDocumentID | oai_HAL_hal_03830239v1 21924763 10_1016_j_cell_2011_08_023 US201600010050 S0092867411009494 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research – fundername: Howard Hughes Medical Institute – fundername: NINDS NIH HHS grantid: P01 NS055923 |
GroupedDBID | --- --K -DZ -ET -~X .-4 .55 .GJ .HR 0R~ 0WA 1CY 1RT 1VV 1~5 29B 2FS 2KS 2WC 3EH 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 62- 6I. 6J9 6TJ 7-5 85S 9M8 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAQXK AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABEFU ABJNI ABMAC ABMWF ABOCM ABTAH ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV ADMUD AEFWE AENEX AETEA AEXQZ AFDAS AFTJW AGHFR AGHSJ AGKMS AHHHB AHPSJ AI. AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FGOYB FIRID G-2 G8K HH5 HVGLF HZ~ H~9 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 MVM N9A NCXOZ O-L O9- OHT OK1 OMK OZT P2P PUQ R2- RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UBW UHB UKR UPT VH1 VQA WH7 WQ6 X7M XFK YYP YYQ YZZ ZA5 ZCA ZGI ZHY ZKB ZY4 ABPTK AEQTP FBQ AAHBH AAMRU AAYWO AAYXX ABDGV ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7S9 L.6 7X8 7TM 8FD FR3 P64 RC3 1XC UMC |
ID | FETCH-LOGICAL-c588t-2123140b30004c58abfeef8a034e8e5e94f1fd4a841fd9d04bad3d41ee6ed0693 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Fri May 09 12:27:14 EDT 2025 Fri Jul 11 11:24:03 EDT 2025 Fri Jul 11 03:17:27 EDT 2025 Sun Aug 24 02:58:54 EDT 2025 Mon Jul 21 05:47:50 EDT 2025 Tue Jul 01 03:52:01 EDT 2025 Thu Apr 24 23:01:10 EDT 2025 Wed Dec 27 19:07:45 EST 2023 Fri Feb 23 02:28:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2011 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c588t-2123140b30004c58abfeef8a034e8e5e94f1fd4a841fd9d04bad3d41ee6ed0693 |
Notes | http://dx.doi.org/10.1016/j.cell.2011.08.023 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ORCID | 0000-0001-8044-2498 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867411009494 |
PMID | 21924763 |
PQID | 2000021665 |
PQPubID | 24069 |
PageCount | 15 |
ParticipantIDs | hal_primary_oai_HAL_hal_03830239v1 proquest_miscellaneous_907176449 proquest_miscellaneous_896219248 proquest_miscellaneous_2000021665 pubmed_primary_21924763 crossref_primary_10_1016_j_cell_2011_08_023 crossref_citationtrail_10_1016_j_cell_2011_08_023 fao_agris_US201600010050 elsevier_sciencedirect_doi_10_1016_j_cell_2011_08_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-30 |
PublicationDateYYYYMMDD | 2011-09-30 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Silva, Nichols, Theunissen, Guo, van Oosten, Barrandon, Wray, Yamanaka, Chambers, Smith (bib36) 2009; 138 Woltjen, Michael, Mohseni, Desai, Mileikovsky, Hämäläinen, Cowling, Wang, Liu, Gertsenstein (bib41) 2009; 458 Rao, O'Connell, Chaudhuri, Garcia-Flores, Geiger, Baltimore (bib29) 2010; 33 Takahashi, Yamanaka (bib38) 2006; 126 Wang, Weidenfeld, Lu, Maika, Kuziel, Morrisey, Tucker (bib39) 2004; 131 Wu, Habegger, Noisa, Szekely, Qiu, Hutchison, Raha, Egholm, Lin, Weissman (bib43) 2010; 107 Kunarso, Chia, Jeyakani, Hwang, Lu, Chan, Ng, Bourque (bib21) 2010; 42 Mayshar, Rom, Chumakov, Kronman, Yayon, Benvenisty (bib24) 2008; 26 Lam, van Bakel, Cote, van der Ven, Hughes (bib22) 2011; 39 Schmidt, Wilson, Spyrou, Brown, Hadfield, Odom (bib35) 2009; 48 Kim, Chu, Shen, Wang, Orkin (bib15) 2008; 132 Koon, Ippolito, Banham, Tucker (bib18) 2007; 11 Mortazavi, Williams, McCue, Schaeffer, Wold (bib25) 2008; 5 Demir, Dickson (bib9) 2005; 121 Kunarso, Wong, Stanton, Lipovich (bib20) 2008; 9 Berger, Philippakis, Qureshi, He, Estep, Bulyk (bib3) 2006; 24 Hu, Wang, Borde, Nardone, Maika, Allred, Tucker, Rao (bib13) 2006; 7 Kubo, Shimizu, Taya, Kawamoto, Michida, Kaneko, Igarashi, Nishimura, Segoshi, Shimazu (bib19) 2009; 14 Dasen, De Camilli, Wang, Tucker, Jessell (bib8) 2008; 134 Pan, Shai, Misquitta, Zhang, Saltzman, Mohammad, Babak, Siu, Hughes, Morris (bib26) 2004; 16 Rousso, Gaber, Wellik, Morrisey, Novitch (bib31) 2008; 59 Jaeger, Chan, Berger, Stottmann, Hughes, Bulyk (bib14) 2010; 95 Stroud, Wu, Bates, Han, Nowick, Paabo, Tong, Chen (bib37) 2006; 14 Calarco, Xing, Cáceres, Calarco, Xiao, Pan, Lee, Preuss, Blencowe (bib6) 2007; 21 Samavarchi-Tehrani, Golipour, David, Sung, Beyer, Datti, Woltjen, Nagy, Wrana (bib34) 2010; 7 Rao, Zhen, Roumiantsev, McDonald, Yuan, Orkin (bib30) 2010; 30 Konstantoulas, Parmar, Li (bib17) 2010; 113 Hellman, Fried (bib12) 2007; 2 Koh, Sundrud, Rao (bib16) 2009; 4 Pritsker, Doniger, Kramer, Westcot, Lemischka (bib28) 2005; 102 Berger, Badis, Gehrke, Talukder, Philippakis, Peña-Castillo, Alleyne, Mnaimneh, Botvinnik, Chan (bib4) 2008; 133 Salomonis, Schlieve, Pereira, Wahlquist, Colas, Zambon, Vranizan, Spindler, Pico, Cline (bib33) 2010; 107 Chen, Xu, Yuan, Fang, Huss, Vega, Wong, Orlov, Zhang, Jiang (bib7) 2008; 133 Fic, Juge, Soret, Tazi (bib10) 2007; 2 Atlasi, Mowla, Ziaee, Gokhale, Andrews (bib1) 2008; 26 Brown, Ashe, Leich, Burek, Barrans, Fenton, Jack, Pulford, Rosenwald, Banham (bib5) 2008; 111 Rowan, Siggers, Lachke, Yue, Bulyk, Maas (bib32) 2010; 24 Workman, Yin, Corcoran, Ideker, Stormo, Benos (bib42) 2005; 33 Zhang, Li, Yuan, Tian, Weidenfeld, Yang, Liu, Chokas, Morrisey (bib45) 2010; 24 Badis, Berger, Philippakis, Talukder, Gehrke, Jaeger, Chan, Metzler, Vedenko, Chen (bib2) 2009; 324 Pan, Shai, Lee, Frey, Blencowe (bib27) 2008; 40 Yeo, Xu, Liang, Muotri, Carson, Coufal, Gage (bib44) 2007; 3 Förch, Valcárcel (bib11) 2003; 31 Li, Weidenfeld, Morrisey (bib23) 2004; 24 Wijchers, Burbach, Smidt (bib40) 2006; 397 Yeo (10.1016/j.cell.2011.08.023_bib44) 2007; 3 Kim (10.1016/j.cell.2011.08.023_bib15) 2008; 132 Calarco (10.1016/j.cell.2011.08.023_bib6) 2007; 21 Li (10.1016/j.cell.2011.08.023_bib23) 2004; 24 Hellman (10.1016/j.cell.2011.08.023_bib12) 2007; 2 Rao (10.1016/j.cell.2011.08.023_bib30) 2010; 30 Kunarso (10.1016/j.cell.2011.08.023_bib20) 2008; 9 Konstantoulas (10.1016/j.cell.2011.08.023_bib17) 2010; 113 Jaeger (10.1016/j.cell.2011.08.023_bib14) 2010; 95 Rao (10.1016/j.cell.2011.08.023_bib29) 2010; 33 Rowan (10.1016/j.cell.2011.08.023_bib32) 2010; 24 Brown (10.1016/j.cell.2011.08.023_bib5) 2008; 111 Kubo (10.1016/j.cell.2011.08.023_bib19) 2009; 14 Kunarso (10.1016/j.cell.2011.08.023_bib21) 2010; 42 10.1016/j.cell.2011.08.023_bib46 10.1016/j.cell.2011.08.023_bib48 10.1016/j.cell.2011.08.023_bib47 Berger (10.1016/j.cell.2011.08.023_bib4) 2008; 133 Workman (10.1016/j.cell.2011.08.023_bib42) 2005; 33 Pan (10.1016/j.cell.2011.08.023_bib26) 2004; 16 Wu (10.1016/j.cell.2011.08.023_bib43) 2010; 107 Salomonis (10.1016/j.cell.2011.08.023_bib33) 2010; 107 10.1016/j.cell.2011.08.023_bib49 Pritsker (10.1016/j.cell.2011.08.023_bib28) 2005; 102 Förch (10.1016/j.cell.2011.08.023_bib11) 2003; 31 Badis (10.1016/j.cell.2011.08.023_bib2) 2009; 324 Zhang (10.1016/j.cell.2011.08.023_bib45) 2010; 24 10.1016/j.cell.2011.08.023_bib53 10.1016/j.cell.2011.08.023_bib52 10.1016/j.cell.2011.08.023_bib55 10.1016/j.cell.2011.08.023_bib54 10.1016/j.cell.2011.08.023_bib57 10.1016/j.cell.2011.08.023_bib56 Fic (10.1016/j.cell.2011.08.023_bib10) 2007; 2 Koon (10.1016/j.cell.2011.08.023_bib18) 2007; 11 Chen (10.1016/j.cell.2011.08.023_bib7) 2008; 133 10.1016/j.cell.2011.08.023_bib51 Demir (10.1016/j.cell.2011.08.023_bib9) 2005; 121 Stroud (10.1016/j.cell.2011.08.023_bib37) 2006; 14 10.1016/j.cell.2011.08.023_bib50 Berger (10.1016/j.cell.2011.08.023_bib3) 2006; 24 Takahashi (10.1016/j.cell.2011.08.023_bib38) 2006; 126 Wang (10.1016/j.cell.2011.08.023_bib39) 2004; 131 Koh (10.1016/j.cell.2011.08.023_bib16) 2009; 4 Hu (10.1016/j.cell.2011.08.023_bib13) 2006; 7 Atlasi (10.1016/j.cell.2011.08.023_bib1) 2008; 26 Dasen (10.1016/j.cell.2011.08.023_bib8) 2008; 134 Woltjen (10.1016/j.cell.2011.08.023_bib41) 2009; 458 Samavarchi-Tehrani (10.1016/j.cell.2011.08.023_bib34) 2010; 7 Pan (10.1016/j.cell.2011.08.023_bib27) 2008; 40 Schmidt (10.1016/j.cell.2011.08.023_bib35) 2009; 48 Lam (10.1016/j.cell.2011.08.023_bib22) 2011; 39 Mayshar (10.1016/j.cell.2011.08.023_bib24) 2008; 26 Rousso (10.1016/j.cell.2011.08.023_bib31) 2008; 59 Silva (10.1016/j.cell.2011.08.023_bib36) 2009; 138 Mortazavi (10.1016/j.cell.2011.08.023_bib25) 2008; 5 Wijchers (10.1016/j.cell.2011.08.023_bib40) 2006; 397 21962502 - Cell. 2011 Sep 30;147(1):22-4 |
References_xml | – volume: 133 start-page: 1266 year: 2008 end-page: 1276 ident: bib4 article-title: Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences publication-title: Cell – volume: 59 start-page: 226 year: 2008 end-page: 240 ident: bib31 article-title: Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons publication-title: Neuron – volume: 324 start-page: 1720 year: 2009 end-page: 1723 ident: bib2 article-title: Diversity and complexity in DNA recognition by transcription factors publication-title: Science – volume: 132 start-page: 1049 year: 2008 end-page: 1061 ident: bib15 article-title: An extended transcriptional network for pluripotency of embryonic stem cells publication-title: Cell – volume: 33 start-page: W389 year: 2005 end-page: W392 ident: bib42 article-title: enoLOGOS: a versatile web tool for energy normalized sequence logos publication-title: Nucleic Acids Res. – volume: 14 start-page: 407 year: 2009 end-page: 424 ident: bib19 article-title: Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry publication-title: Genes Cells – volume: 24 start-page: 1746 year: 2010 end-page: 1757 ident: bib45 article-title: Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms publication-title: Genes Dev. – volume: 4 start-page: e8109 year: 2009 ident: bib16 article-title: Domain requirements and sequence specificity of DNA binding for the forkhead transcription factor FOXP3 publication-title: PLoS ONE – volume: 2 start-page: e253 year: 2007 ident: bib10 article-title: Eye development under the control of SRp55/B52-mediated alternative splicing of eyeless publication-title: PLoS ONE – volume: 31 start-page: 127 year: 2003 end-page: 151 ident: bib11 article-title: Splicing regulation in Drosophila sex determination publication-title: Prog. Mol. Subcell. Biol. – volume: 14 start-page: 159 year: 2006 end-page: 166 ident: bib37 article-title: Structure of the forkhead domain of FOXP2 bound to DNA publication-title: Structure – volume: 11 start-page: 955 year: 2007 end-page: 965 ident: bib18 article-title: FOXP1: a potential therapeutic target in cancer publication-title: Expert Opin. Ther. Targets – volume: 40 start-page: 1413 year: 2008 end-page: 1415 ident: bib27 article-title: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing publication-title: Nat. Genet. – volume: 39 start-page: 4680 year: 2011 end-page: 4690 ident: bib22 article-title: Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays publication-title: Nucleic Acids Res. – volume: 24 start-page: 809 year: 2004 end-page: 822 ident: bib23 article-title: Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions publication-title: Mol. Cell. Biol. – volume: 138 start-page: 722 year: 2009 end-page: 737 ident: bib36 article-title: Nanog is the gateway to the pluripotent ground state publication-title: Cell – volume: 121 start-page: 785 year: 2005 end-page: 794 ident: bib9 article-title: fruitless splicing specifies male courtship behavior in Drosophila publication-title: Cell – volume: 42 start-page: 631 year: 2010 end-page: 634 ident: bib21 article-title: Transposable elements have rewired the core regulatory network of human embryonic stem cells publication-title: Nat. Genet. – volume: 7 start-page: 64 year: 2010 end-page: 77 ident: bib34 article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming publication-title: Cell Stem Cell – volume: 24 start-page: 1429 year: 2006 end-page: 1435 ident: bib3 article-title: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities publication-title: Nat. Biotechnol. – volume: 26 start-page: 3068 year: 2008 end-page: 3074 ident: bib1 article-title: OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells publication-title: Stem Cells – volume: 24 start-page: 980 year: 2010 end-page: 985 ident: bib32 article-title: Precise temporal control of the eye regulatory gene Pax6 via enhancer-binding site affinity publication-title: Genes Dev. – volume: 26 start-page: 767 year: 2008 end-page: 774 ident: bib24 article-title: Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal publication-title: Stem Cells – volume: 107 start-page: 10514 year: 2010 end-page: 10519 ident: bib33 article-title: Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation publication-title: Proc. Natl. Acad. Sci. USA – volume: 48 start-page: 240 year: 2009 end-page: 248 ident: bib35 article-title: ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions publication-title: Methods – volume: 126 start-page: 663 year: 2006 end-page: 676 ident: bib38 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 458 start-page: 766 year: 2009 end-page: 770 ident: bib41 article-title: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells publication-title: Nature – volume: 5 start-page: 621 year: 2008 end-page: 628 ident: bib25 article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq publication-title: Nat. Methods – volume: 102 start-page: 14290 year: 2005 end-page: 14295 ident: bib28 article-title: Diversification of stem cell molecular repertoire by alternative splicing publication-title: Proc. Natl. Acad. Sci. USA – volume: 134 start-page: 304 year: 2008 end-page: 316 ident: bib8 article-title: Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1 publication-title: Cell – volume: 21 start-page: 2963 year: 2007 end-page: 2975 ident: bib6 article-title: Global analysis of alternative splicing differences between humans and chimpanzees publication-title: Genes Dev. – volume: 133 start-page: 1106 year: 2008 end-page: 1117 ident: bib7 article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells publication-title: Cell – volume: 9 start-page: 155 year: 2008 ident: bib20 article-title: Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency publication-title: BMC Genomics – volume: 30 start-page: 5364 year: 2010 end-page: 5380 ident: bib30 article-title: Differential roles of Sall4 isoforms in embryonic stem cell pluripotency publication-title: Mol. Cell. Biol. – volume: 16 start-page: 929 year: 2004 end-page: 941 ident: bib26 article-title: Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform publication-title: Mol. Cell – volume: 397 start-page: 233 year: 2006 end-page: 246 ident: bib40 article-title: In control of biology: of mice, men and Foxes publication-title: Biochem. J. – volume: 131 start-page: 4477 year: 2004 end-page: 4487 ident: bib39 article-title: Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation publication-title: Development – volume: 33 start-page: 48 year: 2010 end-page: 59 ident: bib29 article-title: MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1 publication-title: Immunity – volume: 3 start-page: 1951 year: 2007 end-page: 1967 ident: bib44 article-title: Alternative splicing events identified in human embryonic stem cells and neural progenitors publication-title: PLoS Comput. Biol. – volume: 7 start-page: 819 year: 2006 end-page: 826 ident: bib13 article-title: Foxp1 is an essential transcriptional regulator of B cell development publication-title: Nat. Immunol. – volume: 2 start-page: 1849 year: 2007 end-page: 1861 ident: bib12 article-title: Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions publication-title: Nat. Protoc. – volume: 111 start-page: 2816 year: 2008 end-page: 2824 ident: bib5 article-title: Potentially oncogenic B-cell activation-induced smaller isoforms of FOXP1 are highly expressed in the activated B cell-like subtype of DLBCL publication-title: Blood – volume: 95 start-page: 185 year: 2010 end-page: 195 ident: bib14 article-title: Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites publication-title: Genomics – volume: 113 start-page: 836 year: 2010 end-page: 847 ident: bib17 article-title: FoxP1 promotes midbrain identity in embryonic stem cell-derived dopamine neurons by regulating Pitx3 publication-title: J. Neurochem. – volume: 107 start-page: 5254 year: 2010 end-page: 5259 ident: bib43 article-title: Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 1429 year: 2006 ident: 10.1016/j.cell.2011.08.023_bib3 article-title: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities publication-title: Nat. Biotechnol. doi: 10.1038/nbt1246 – volume: 107 start-page: 10514 year: 2010 ident: 10.1016/j.cell.2011.08.023_bib33 article-title: Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0912260107 – ident: 10.1016/j.cell.2011.08.023_bib51 doi: 10.1038/sj.emboj.7601896 – volume: 48 start-page: 240 year: 2009 ident: 10.1016/j.cell.2011.08.023_bib35 article-title: ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions publication-title: Methods doi: 10.1016/j.ymeth.2009.03.001 – volume: 24 start-page: 809 year: 2004 ident: 10.1016/j.cell.2011.08.023_bib23 article-title: Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.2.809-822.2004 – volume: 107 start-page: 5254 year: 2010 ident: 10.1016/j.cell.2011.08.023_bib43 article-title: Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0914114107 – volume: 39 start-page: 4680 year: 2011 ident: 10.1016/j.cell.2011.08.023_bib22 article-title: Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1303 – volume: 16 start-page: 929 year: 2004 ident: 10.1016/j.cell.2011.08.023_bib26 article-title: Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.12.004 – volume: 2 start-page: e253 year: 2007 ident: 10.1016/j.cell.2011.08.023_bib10 article-title: Eye development under the control of SRp55/B52-mediated alternative splicing of eyeless publication-title: PLoS ONE doi: 10.1371/journal.pone.0000253 – ident: 10.1016/j.cell.2011.08.023_bib49 doi: 10.1016/j.scr.2008.11.004 – volume: 126 start-page: 663 year: 2006 ident: 10.1016/j.cell.2011.08.023_bib38 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 33 start-page: W389 issue: Web Server issue year: 2005 ident: 10.1016/j.cell.2011.08.023_bib42 article-title: enoLOGOS: a versatile web tool for energy normalized sequence logos publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki439 – ident: 10.1016/j.cell.2011.08.023_bib47 doi: 10.1371/journal.pone.0002904 – volume: 134 start-page: 304 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib8 article-title: Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1 publication-title: Cell doi: 10.1016/j.cell.2008.06.019 – volume: 33 start-page: 48 year: 2010 ident: 10.1016/j.cell.2011.08.023_bib29 article-title: MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1 publication-title: Immunity doi: 10.1016/j.immuni.2010.06.013 – volume: 11 start-page: 955 year: 2007 ident: 10.1016/j.cell.2011.08.023_bib18 article-title: FOXP1: a potential therapeutic target in cancer publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728222.11.7.955 – ident: 10.1016/j.cell.2011.08.023_bib54 doi: 10.1074/jbc.M207174200 – volume: 40 start-page: 1413 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib27 article-title: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing publication-title: Nat. Genet. doi: 10.1038/ng.259 – volume: 133 start-page: 1106 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib7 article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2008.04.043 – volume: 24 start-page: 1746 year: 2010 ident: 10.1016/j.cell.2011.08.023_bib45 article-title: Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms publication-title: Genes Dev. doi: 10.1101/gad.1929210 – ident: 10.1016/j.cell.2011.08.023_bib52 doi: 10.1016/j.ymeth.2008.03.003 – volume: 30 start-page: 5364 year: 2010 ident: 10.1016/j.cell.2011.08.023_bib30 article-title: Differential roles of Sall4 isoforms in embryonic stem cell pluripotency publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00419-10 – volume: 7 start-page: 819 year: 2006 ident: 10.1016/j.cell.2011.08.023_bib13 article-title: Foxp1 is an essential transcriptional regulator of B cell development publication-title: Nat. Immunol. doi: 10.1038/ni1358 – volume: 7 start-page: 64 year: 2010 ident: 10.1016/j.cell.2011.08.023_bib34 article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.015 – volume: 458 start-page: 766 year: 2009 ident: 10.1016/j.cell.2011.08.023_bib41 article-title: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells publication-title: Nature doi: 10.1038/nature07863 – volume: 5 start-page: 621 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib25 article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq publication-title: Nat. Methods doi: 10.1038/nmeth.1226 – volume: 111 start-page: 2816 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib5 article-title: Potentially oncogenic B-cell activation-induced smaller isoforms of FOXP1 are highly expressed in the activated B cell-like subtype of DLBCL publication-title: Blood doi: 10.1182/blood-2007-09-115113 – volume: 132 start-page: 1049 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib15 article-title: An extended transcriptional network for pluripotency of embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2008.02.039 – volume: 133 start-page: 1266 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib4 article-title: Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences publication-title: Cell doi: 10.1016/j.cell.2008.05.024 – volume: 324 start-page: 1720 year: 2009 ident: 10.1016/j.cell.2011.08.023_bib2 article-title: Diversity and complexity in DNA recognition by transcription factors publication-title: Science doi: 10.1126/science.1162327 – ident: 10.1016/j.cell.2011.08.023_bib56 doi: 10.1038/nn1402 – volume: 3 start-page: 1951 year: 2007 ident: 10.1016/j.cell.2011.08.023_bib44 article-title: Alternative splicing events identified in human embryonic stem cells and neural progenitors publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030196 – ident: 10.1016/j.cell.2011.08.023_bib50 – volume: 42 start-page: 631 year: 2010 ident: 10.1016/j.cell.2011.08.023_bib21 article-title: Transposable elements have rewired the core regulatory network of human embryonic stem cells publication-title: Nat. Genet. doi: 10.1038/ng.600 – ident: 10.1016/j.cell.2011.08.023_bib53 doi: 10.1038/nmeth.1246 – ident: 10.1016/j.cell.2011.08.023_bib55 doi: 10.1073/pnas.0801017105 – volume: 4 start-page: e8109 year: 2009 ident: 10.1016/j.cell.2011.08.023_bib16 article-title: Domain requirements and sequence specificity of DNA binding for the forkhead transcription factor FOXP3 publication-title: PLoS ONE doi: 10.1371/journal.pone.0008109 – volume: 95 start-page: 185 year: 2010 ident: 10.1016/j.cell.2011.08.023_bib14 article-title: Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites publication-title: Genomics doi: 10.1016/j.ygeno.2010.01.002 – volume: 21 start-page: 2963 year: 2007 ident: 10.1016/j.cell.2011.08.023_bib6 article-title: Global analysis of alternative splicing differences between humans and chimpanzees publication-title: Genes Dev. doi: 10.1101/gad.1606907 – volume: 2 start-page: 1849 year: 2007 ident: 10.1016/j.cell.2011.08.023_bib12 article-title: Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.249 – volume: 26 start-page: 3068 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib1 article-title: OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells publication-title: Stem Cells doi: 10.1634/stemcells.2008-0530 – volume: 14 start-page: 407 year: 2009 ident: 10.1016/j.cell.2011.08.023_bib19 article-title: Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry publication-title: Genes Cells doi: 10.1111/j.1365-2443.2009.01281.x – volume: 121 start-page: 785 year: 2005 ident: 10.1016/j.cell.2011.08.023_bib9 article-title: fruitless splicing specifies male courtship behavior in Drosophila publication-title: Cell doi: 10.1016/j.cell.2005.04.027 – volume: 31 start-page: 127 year: 2003 ident: 10.1016/j.cell.2011.08.023_bib11 article-title: Splicing regulation in Drosophila sex determination publication-title: Prog. Mol. Subcell. Biol. doi: 10.1007/978-3-662-09728-1_5 – ident: 10.1016/j.cell.2011.08.023_bib48 doi: 10.1186/gb-2009-10-3-r25 – volume: 9 start-page: 155 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib20 article-title: Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency publication-title: BMC Genomics doi: 10.1186/1471-2164-9-155 – volume: 26 start-page: 767 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib24 article-title: Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal publication-title: Stem Cells doi: 10.1634/stemcells.2007-1037 – ident: 10.1016/j.cell.2011.08.023_bib57 doi: 10.1016/S0092-8674(02)00835-8 – volume: 138 start-page: 722 year: 2009 ident: 10.1016/j.cell.2011.08.023_bib36 article-title: Nanog is the gateway to the pluripotent ground state publication-title: Cell doi: 10.1016/j.cell.2009.07.039 – volume: 14 start-page: 159 year: 2006 ident: 10.1016/j.cell.2011.08.023_bib37 article-title: Structure of the forkhead domain of FOXP2 bound to DNA publication-title: Structure doi: 10.1016/j.str.2005.10.005 – ident: 10.1016/j.cell.2011.08.023_bib46 doi: 10.1093/bioinformatics/bth088 – volume: 24 start-page: 980 year: 2010 ident: 10.1016/j.cell.2011.08.023_bib32 article-title: Precise temporal control of the eye regulatory gene Pax6 via enhancer-binding site affinity publication-title: Genes Dev. doi: 10.1101/gad.1890410 – volume: 131 start-page: 4477 year: 2004 ident: 10.1016/j.cell.2011.08.023_bib39 article-title: Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation publication-title: Development doi: 10.1242/dev.01287 – volume: 102 start-page: 14290 year: 2005 ident: 10.1016/j.cell.2011.08.023_bib28 article-title: Diversification of stem cell molecular repertoire by alternative splicing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0502132102 – volume: 397 start-page: 233 year: 2006 ident: 10.1016/j.cell.2011.08.023_bib40 article-title: In control of biology: of mice, men and Foxes publication-title: Biochem. J. doi: 10.1042/BJ20060387 – volume: 113 start-page: 836 year: 2010 ident: 10.1016/j.cell.2011.08.023_bib17 article-title: FoxP1 promotes midbrain identity in embryonic stem cell-derived dopamine neurons by regulating Pitx3 publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2010.06650.x – volume: 59 start-page: 226 year: 2008 ident: 10.1016/j.cell.2011.08.023_bib31 article-title: Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons publication-title: Neuron doi: 10.1016/j.neuron.2008.06.025 – reference: 21962502 - Cell. 2011 Sep 30;147(1):22-4 |
SSID | ssj0008555 |
Score | 2.5163045 |
Snippet | Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an... |
SourceID | hal proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 132 |
SubjectTerms | Alternative Splicing Animals Cellular Reprogramming Differentiation DNA - metabolism Embryo cells embryonic stem cells Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Evolution Forkhead protein Forkhead Transcription Factors - metabolism Foxp1 protein Gene expression Gene Expression Regulation, Developmental genes Genes, Homeobox Humans induced pluripotent stem cells Life Sciences Mice Oct-4 protein Pluripotent Stem Cells - cytology Pluripotent Stem Cells - metabolism Protein Isoforms - metabolism proteomics Repressor Proteins - metabolism Somatic cells Stem cells transcription (genetics) Transcription factors |
Title | An Alternative Splicing Switch Regulates Embryonic Stem Cell Pluripotency and Reprogramming |
URI | https://dx.doi.org/10.1016/j.cell.2011.08.023 https://www.ncbi.nlm.nih.gov/pubmed/21924763 https://www.proquest.com/docview/2000021665 https://www.proquest.com/docview/896219248 https://www.proquest.com/docview/907176449 https://hal.science/hal-03830239 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahsxUKSBQi-l72zTBrX0VpZoV49KR9ckmNKWUtdg6EFIK23jYq9DYif47ztjaV16cA697IIYPXZGmod2HoS8C6ERTQvWiYuywtsqWToW65IpV4UmytYYjHf-8lWNJuLTVE4PyLCPhUG3ysz7E0_fcuvccpqxeXo5m2GMr6m1AolYoXucwZygHCbDIL7pxx031lKmKgYGTj5A58CZ5OOFl-N_03jWfJ9wute6JTwv0FdynyK6FUjnj8jDrEnSQVrsY3IQuyfkfqotuXlKfg46Opjn676bSMf4oxrkFB3fzoBS9HsqQh-v6dnCX20wQy4dr-KCDmG19Nt8DdxkiQr1hrouAHj25FrAGM_I5Pzsx3BU5koKZSO1XpUon8CS8hxVOGhyvo2x1Y5xEXWU0Yi2aoNwWsDLBCa8CzyIKkYVA1OGPyeH3bKLR4SCQeW1B6QarwRrtXFMBSdbroWvP3hfkKpHoW1ymnGsdjG3vT_Zb4tot4h2iyUwa16Q97s-lynJxp3QsqeM_WerWJACd_Y7AjJa9wu4p52Ma8ythyYxk6wgb4G2u7kx5fZo8NliG-OYIY2bm6ogb3rSWziDOLzr4nJ9jaU8UVdSShaE7oHRRtVo7Or9IAZta9BPTUFepJ21W9G2K4iCl__57cfkQboMR0eXV-RwdbWOr0GbWvkTlGXyZHto_gBZbxpU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8LQNIfaC-F7Gl0G8oWhOYnv2Y6k2ddBNiK5SJR4sO3agqE2nrR3qv-euSYt46B54SSTrnDh39n3lPgA-hFCKskLrxEWZkbdKpo7HPOXKZaGMsjKG8p3PL1RvKD6P5GgHuutcGAqrbHl_w9NX3LodOWqxeXQ1HlOOr8m1QomYUXicEbtwD7WBY-rfcDb6tGHHWsqmjYHBo4_gbeZME-RF3vG_dTzzYpt02q3cDK8_KVhymya6kkinj-Bhq0qyTrPax7AT6ydwv2kuuXwK3zs160xaf99tZAP6U42Cig1-j5FU7FvThT7esJOpv15SiVw2mMcp6-Jq2dfJAtnJjDTqJXN1QPA2lGuKz3gGw9OTy24vbVsppKXUep6SgEJTyhekw-GQ81WMlXa8EFFHGY2osioIpwXeTODCu1AEkcWoYuDKFM9hr57V8QAYWlRee0Sq8UrwShvHVXCyKrTw-bH3CWRrFNqyrTNO7S4mdh1Q9ssS2i2h3VIPzLxI4ONmzlVTZeNOaLmmjP1nr1gUA3fOO0AyWvcD2acdDnIqrkc2MZc8gfdI2827qeZ2r9O3NMYLKpFWmNssgXdr0ls8hPR4V8fZ4oZ6eZKypJRMgG2B0UblZO3q7SCGjGtUUE0CL5qdtVnRairKgsP__Pa38KB3ed63_bOLLy9hv_GMU9TLK9ibXy_ia1St5v7N6uj8AeIzHI0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+alternative+splicing+switch+regulates+embryonic+stem+cell+pluripotency+and+reprogramming&rft.jtitle=Cell&rft.au=Gabut%2C+Mathieu&rft.au=Samavarchi-Tehrani%2C+Payman&rft.au=Wang%2C+Xinchen&rft.au=Slobodeniuc%2C+Valentina&rft.date=2011-09-30&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=147&rft.issue=1&rft.spage=132&rft_id=info:doi/10.1016%2Fj.cell.2011.08.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |