基于函数型数据分析方法的人体动态行为识别
人体运动过程中,肢体的运动是连续的,而对应的运动捕捉数据是离散的.为了更好地分析人体日常运动行为的连续性与周期性,本文提出了一种基于函数型数据分析(Functional data analysis,FDA)的人体动态行为识别方法.首先,利用函数型数据分析方法,将可穿戴式运动捕捉系统采集的人体周期行为数据函数化,通过函数准确地定义数据的连续性与周期性;然后,根据导函数信息确定一个运动周期的起始点,并近似地提取出一个运动周期的数据序列;最后,根据不同行为一个周期内的曲线特征差异,利用支持向量机对动态行为进行分类识别.实验结果表明,本文的算法既能够较好地描述人体动态行为的连续性与周期性,又使得运动数...
Saved in:
Published in | 自动化学报 Vol. 43; no. 5; pp. 866 - 876 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
安庆师范大学数学与计算科学学院 安庆 246133
2017
智能感知与计算安徽省高校重点实验室 安庆 246133%智能感知与计算安徽省高校重点实验室 安庆 246133 安庆师范大学计算机与信息学院 安庆 246133 |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.16383/j.aas.2017.c160120 |
Cover
Loading…
Abstract | 人体运动过程中,肢体的运动是连续的,而对应的运动捕捉数据是离散的.为了更好地分析人体日常运动行为的连续性与周期性,本文提出了一种基于函数型数据分析(Functional data analysis,FDA)的人体动态行为识别方法.首先,利用函数型数据分析方法,将可穿戴式运动捕捉系统采集的人体周期行为数据函数化,通过函数准确地定义数据的连续性与周期性;然后,根据导函数信息确定一个运动周期的起始点,并近似地提取出一个运动周期的数据序列;最后,根据不同行为一个周期内的曲线特征差异,利用支持向量机对动态行为进行分类识别.实验结果表明,本文的算法既能够较好地描述人体动态行为的连续性与周期性,又使得运动数据在标定的统一起始点处对齐,且在WARD数据集与自采集数据集上均取得了较好的识别率,分别达到97.5%与98.75%. |
---|---|
AbstractList | 人体运动过程中,肢体的运动是连续的,而对应的运动捕捉数据是离散的.为了更好地分析人体日常运动行为的连续性与周期性,本文提出了一种基于函数型数据分析(Functional data analysis,FDA)的人体动态行为识别方法.首先,利用函数型数据分析方法,将可穿戴式运动捕捉系统采集的人体周期行为数据函数化,通过函数准确地定义数据的连续性与周期性;然后,根据导函数信息确定一个运动周期的起始点,并近似地提取出一个运动周期的数据序列;最后,根据不同行为一个周期内的曲线特征差异,利用支持向量机对动态行为进行分类识别.实验结果表明,本文的算法既能够较好地描述人体动态行为的连续性与周期性,又使得运动数据在标定的统一起始点处对齐,且在WARD数据集与自采集数据集上均取得了较好的识别率,分别达到97.5%与98.75%. 人体运动过程中,肢体的运动是连续的,而对应的运动捕捉数据是离散的.为了更好地分析人体日常运动行为的连续性与周期性,本文提出了一种基于函数型数据分析(Functional data analysis,FDA)的人体动态行为识别方法.首先,利用函数型数据分析方法,将可穿戴式运动捕捉系统采集的人体周期行为数据函数化,通过函数准确地定义数据的连续性与周期性;然后,根据导函数信息确定一个运动周期的起始点,并近似地提取出一个运动周期的数据序列;最后,根据不同行为一个周期内的曲线特征差异,利用支持向量机对动态行为进行分类识别.实验结果表明,本文的算法既能够较好地描述人体动态行为的连续性与周期性,又使得运动数据在标定的统一起始点处对齐,且在WARD数据集与自采集数据集上均取得了较好的识别率,分别达到97.5%与98.75%. |
Abstract_FL | In human motion, limb movement is continuous. However, the corresponding motion capture data is discrete. This paper explores a method for human dynamic action recognition based on functional data analysis (FDA) so as to analyze the continuity and periodicity of daily action. Firstly, we transform the periodic data collected by the wearable motion capture system into functional data using FDA, and then define the continuity and periodicity of data exactly by using function properties. Secondly, we determine the initial point of a motion period according to the derivative information, and then extract the data series representing a period of motion. Finally, we utilize support vector machine (SVM) to classify the dynamic action according to the different characteristics of the curves about different actions in a period. The experimental result indicates that our algorithm can describe the continuity and periodicity of human dynamic action, and align the motion data at the uniform start point we determined. At the same time, desirable recognition rates, such as 97.5%and 98.75%, can be achieved based on WARD and our database using our algorithm. |
Author | 苏本跃 蒋京 汤庆丰 盛敏 |
AuthorAffiliation | 安庆师范大学计算机与信息学院,安庆246133 智能感知与计算安徽省高校重点实验室,安庆246133 安庆师范大学数学与计算科学学院,安庆246133 |
AuthorAffiliation_xml | – name: 安庆师范大学计算机与信息学院 安庆 246133;智能感知与计算安徽省高校重点实验室 安庆 246133%智能感知与计算安徽省高校重点实验室 安庆 246133;安庆师范大学数学与计算科学学院 安庆 246133 |
Author_FL | JIANG Jing SU Ben-Yue TANG Qing-Feng SHENG Min |
Author_FL_xml | – sequence: 1 fullname: SU Ben-Yue – sequence: 2 fullname: JIANG Jing – sequence: 3 fullname: TANG Qing-Feng – sequence: 4 fullname: SHENG Min |
Author_xml | – sequence: 1 fullname: 苏本跃 蒋京 汤庆丰 盛敏 |
BookMark | eNotj7tKA0EYhQeJYIx5AjsLu13nn392ZhZsJHiDgE36MHvLBd1oFvFSKYQYvCFILCwidoKggo0u5G121zyGK7E5p_k4l3lSCDuhT8giUBMEKlxpm1pHJqMgTRcEBUZnSBGU5AZQZhdIkTKLGxwsMUfKUdRycpJLmyEtktX0KU7i2_RinA0_0tFVrtnNWzroZ6O77OE7-xz-PPaSOE7G9-nlS3Z2Pnm-Tr7iyXs_HbwukNlA70Z--d9LpLaxXqtsGdWdze3KWtVwLaUMbaEjEX3FHC8fwmxPCgyksgGlr7gWDoIrBEcqLSU96nHUllCgNErBIcASWZ7GHukw0GGj3u4cdsO8sH7qNY-dv-PUoqBycGkKus1O2Dho5eh-t7Wnuyd1IRkITm2Fv39zbHA |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.2017.c160120 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Human Dynamic Action Recognition Based on Functional Data Analysis |
DocumentTitle_FL | Human Dynamic Action Recognition Based on Functional Data Analysis |
EISSN | 1874-1029 |
EndPage | 876 |
ExternalDocumentID | zdhxb201705018 672164098 |
GrantInformation_xml | – fundername: 国家自然科学基金; 国家科技支撑课题; 安徽省高校自然科学研究重点项目; 情感计算与先进智能机器安徽省重点实验室开放课题(ACAIM160102) 资助Supported by National Natural Science Foundation of China; National Science and Technology Support Program; Natural Science Research Funds of Educa-tion Department of Anhui Province; Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine funderid: (11471093); (2014BAH13F 02); (KJ2014A142); (11471093); (2014BAH13F02); (KJ2014A142); (ACAIM160102) |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c588-a53b733e82bd25429d763f789137e84a6b31c664307587d0d43a56818a37641f3 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 10:01:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Dynamic action recognition periodic action continuity and periodicity wearable motion capture system 可穿戴式运动捕捉系统 动态行为识别 周期行为 functional data analysis (FDA) 连续性与周期性 函数型数据分析 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c588-a53b733e82bd25429d763f789137e84a6b31c664307587d0d43a56818a37641f3 |
Notes | Dynamic action recognition, continuity and periodicity, periodic action, functional data analysis (FDA) wearable motion capture system In human motion, limb movement is continuous. However, the corresponding motion capture data is discrete. This paper explores a method for human dynamic action recognition based on functional data analysis (FDA) so as to analyze the continuity and periodicity of daily action. Firstly, we transform the periodic data collected by the wearable motion capture system into functional data using FDA, and then define the continuity and periodicity of data exactly by using function properties. Secondly, we determine the initial point of a motion period according to the derivative information, and then extract the data series representing a period of motion. Finally, we utilize support vector machine (SVM) to classify the dynamic action according to the different characteristics of the curves about different actions in a period. The experimental result indicates that our algorithm can de |
PageCount | 11 |
ParticipantIDs | wanfang_journals_zdhxb201705018 chongqing_primary_672164098 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 自动化学报 |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2017 |
Publisher | 安庆师范大学数学与计算科学学院 安庆 246133 智能感知与计算安徽省高校重点实验室 安庆 246133%智能感知与计算安徽省高校重点实验室 安庆 246133 安庆师范大学计算机与信息学院 安庆 246133 |
Publisher_xml | – name: 安庆师范大学数学与计算科学学院 安庆 246133 – name: 安庆师范大学计算机与信息学院 安庆 246133 – name: 智能感知与计算安徽省高校重点实验室 安庆 246133%智能感知与计算安徽省高校重点实验室 安庆 246133 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.1650026 |
Snippet | 人体运动过程中,肢体的运动是连续的,而对应的运动捕捉数据是离散的.为了更好地分析人体日常运动行为的连续性与周期性,本文提出了一种基于函数型数据分析(Functional data... 人体运动过程中,肢体的运动是连续的,而对应的运动捕捉数据是离散的.为了更好地分析人体日常运动行为的连续性与周期性,本文提出了一种基于函数型数据分析(Functional data... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 866 |
SubjectTerms | 函数型数据分析 动态行为识别 可穿戴式运动捕捉系统 周期行为 连续性与周期性 |
Title | 基于函数型数据分析方法的人体动态行为识别 |
URI | http://lib.cqvip.com/qk/90250X/201705/672164098.html https://d.wanfangdata.com.cn/periodical/zdhxb201705018 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxMNT2ogfxE2v96MGcytbNZpNNwEv2dZ9F1FOV3h778bY9vfrRgvSkILX4hSD14KHiTRBU8KIP-m_ee_ZnOJPdvpfSgh-whGwymUxmdjMz2WSWkCuc51HB8shLA557IQ-1l8mSeYXPC81EEZR2N-Gt23L-TnhjUSyOHdlwdi2trWaz-fqh50r-R6pQBnLFU7L_INkhUiiAPMgXUpAwpH8lY5oIqps0NjQJMVUJloB7H8_RRFItaOxbmISq2CmRVM1RUwErqqStSqi2VVrSWGMm5gifRFQD5rDuou5rjmpumxtqlEXog01KE0UNo6phYZQFhpKm7cL2ZWLXGsZaoNYYB5XA5trCGyDS0oZVYu_RsI1iqpqW2AY1DSyJI6q4C6IDO2ZL9Ci-pB0XoyZE_MgxuUeqPwKBEcd4VQxTTXdlpDoCap9iSyJwVju4BOKCcSKNDaDIwoTURPvGMxRMXWIpQOEpRAgcBBIgoyObAXKYAzzMaKo1NcHMQTpmMHxfFfmjnuTBQffQiXY1UsidN0846kVJuc9SkYcqQZhSudWCaYoB6Vk0mzOJh6RHOn-4E3O9WH6UBTaoks_UETIRgLvlj5OJ6_HNu2ZkWIMdqh1NIDRM9o7hKAUGNhzdR_h53vmeDvecjxxV_GuBdBYiBOPgNuNCQGVDCYwpZVdHa-7U8cJwZFcPjgvjoiyvdJbug7VnD991yrSz5NiJCyfI8drBmzbV23qSjK0vnyLHnLCfp8m1_odur_u6_2xnsPWtv_0C0sGrL_3NjcH2m8G7n4PvW7_eP-11u72dt_3nnwaPn-x-fNn70d39utHf_HyGLDSThca8V__FxMsFzFep4FnEeVsFWRHgz-EK4FQZ4e6AqK3CVGac5RL8ArDdVVT4RchTDAqoUlD9ISv5WTLeWem0z5HpkrE2CEq1tQrCsp1m0DzImQrSMgLPIp8kU0M2tO5VwWpaEqNzhb5Wk-RyzZhWPYU9bO2X_vk_QkyRo5ivliAvkPHVB2vti2CUr2aX6ifmN04wqMM |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%87%BD%E6%95%B0%E5%9E%8B%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90%E6%96%B9%E6%B3%95%E7%9A%84%E4%BA%BA%E4%BD%93%E5%8A%A8%E6%80%81%E8%A1%8C%E4%B8%BA%E8%AF%86%E5%88%AB&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E8%8B%8F%E6%9C%AC%E8%B7%83&rft.au=%E8%92%8B%E4%BA%AC&rft.au=%E6%B1%A4%E5%BA%86%E4%B8%B0&rft.au=%E7%9B%9B%E6%95%8F&rft.date=2017&rft.pub=%E5%AE%89%E5%BA%86%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6%E6%95%B0%E5%AD%A6%E4%B8%8E%E8%AE%A1%E7%AE%97%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2+%E5%AE%89%E5%BA%86+246133&rft.issn=0254-4156&rft.volume=43&rft.issue=5&rft.spage=866&rft.epage=876&rft_id=info:doi/10.16383%2Fj.aas.2017.c160120&rft.externalDocID=zdhxb201705018 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |