基于雾气浓度估计的图像去雾算法

根据雾气浓度的视觉特征,提出一种雾气浓度估计模型.在此基础上,结合大气散射模型,提出一种新的图像去雾算法.首先,基于雾气浓度估计模型计算出雾气浓度量化图,利用模糊聚类算法在量化图中识别出雾气最浓区域并估计出全球光;然后,对量化图中的“非雾气最浓”区域再次进行聚类处理,根据文中所提最优透射率评价指标估计出每个聚类单元的透射率,将全球光与透射图以及有雾图像导入散射模型,便可达到去雾的目的;最后,针对去雾后图像较实际场景偏暗,提出一种基于小波域的多尺度锐化算法进行增强处理,以改善其主观视觉质量.实验结果表明,本文算法与现有主流算法相比,具有更好的去雾效果,并且其计算速度也相对较快....

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 42; no. 9; pp. 1367 - 1379
Main Author 鞠铭烨 张登银 纪应天
Format Journal Article
LanguageChinese
Published 南京邮电大学物联网学院 南京 210003 2016
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2016.c150525

Cover

Loading…
Abstract 根据雾气浓度的视觉特征,提出一种雾气浓度估计模型.在此基础上,结合大气散射模型,提出一种新的图像去雾算法.首先,基于雾气浓度估计模型计算出雾气浓度量化图,利用模糊聚类算法在量化图中识别出雾气最浓区域并估计出全球光;然后,对量化图中的“非雾气最浓”区域再次进行聚类处理,根据文中所提最优透射率评价指标估计出每个聚类单元的透射率,将全球光与透射图以及有雾图像导入散射模型,便可达到去雾的目的;最后,针对去雾后图像较实际场景偏暗,提出一种基于小波域的多尺度锐化算法进行增强处理,以改善其主观视觉质量.实验结果表明,本文算法与现有主流算法相比,具有更好的去雾效果,并且其计算速度也相对较快.
AbstractList 根据雾气浓度的视觉特征,提出一种雾气浓度估计模型.在此基础上,结合大气散射模型,提出一种新的图像去雾算法.首先,基于雾气浓度估计模型计算出雾气浓度量化图,利用模糊聚类算法在量化图中识别出雾气最浓区域并估计出全球光;然后,对量化图中的“非雾气最浓”区域再次进行聚类处理,根据文中所提最优透射率评价指标估计出每个聚类单元的透射率,将全球光与透射图以及有雾图像导入散射模型,便可达到去雾的目的;最后,针对去雾后图像较实际场景偏暗,提出一种基于小波域的多尺度锐化算法进行增强处理,以改善其主观视觉质量.实验结果表明,本文算法与现有主流算法相比,具有更好的去雾效果,并且其计算速度也相对较快.
根据雾气浓度的视觉特征,提出一种雾气浓度估计模型。在此基础上,结合大气散射模型,提出一种新的图像去雾算法。首先,基于雾气浓度估计模型计算出雾气浓度量化图,利用模糊聚类算法在量化图中识别出雾气最浓区域并估计出全球光;然后,对量化图中的“非雾气最浓”区域再次进行聚类处理,根据文中所提最优透射率评价指标估计出每个聚类单元的透射率,将全球光与透射图以及有雾图像导入散射模型,便可达到去雾的目的;最后,针对去雾后图像较实际场景偏暗,提出一种基于小波域的多尺度锐化算法进行增强处理,以改善其主观视觉质量。实验结果表明,本文算法与现有主流算法相比,具有更好的去雾效果,并且其计算速度也相对较快。
Abstract_FL This paper proposes a haze thickness estimation model based on visual characteristics of haze thickness, and combines this model with atmosphere scattering model to present an innovative image dehazing algorithm. First, a haze thickness quantitative map is calculated via the haze thickness estimation model, from which the thickest area is identified by the fuzzy clustering algorithm and global atmospheric light is estimated. After that, the algorithm carries on clustering processing towards the non-thickest area in the quantitative map, and estimates the transmission of each cluster unit according to the optimized transmission evaluation index mentioned in this paper. The haze-free image can be restored from scattering model with global light, refined transmission map and original hazy image. At last, we propose a multi-scale sharpening algorithm based on wavelet domain to make up for the defect that the haze-free image is dark-look so as to improve the visual effect. Several numerical experiments demonstrate that the proposed method outperforms the mainstream dehazing algorithms in daze removal effect at a much lower implementation cost.
Author 鞠铭烨 张登银 纪应天
AuthorAffiliation 南京邮电大学物联网学院,南京210003
AuthorAffiliation_xml – name: 南京邮电大学物联网学院 南京 210003
Author_FL JU Ming-Ye
JI Ying-Tian
ZHANG Deng-Yin
Author_FL_xml – sequence: 1
  fullname: JU Ming-Ye
– sequence: 2
  fullname: ZHANG Deng-Yin
– sequence: 3
  fullname: JI Ying-Tian
Author_xml – sequence: 1
  fullname: 鞠铭烨 张登银 纪应天
BookMark eNotj7tKA0EYhQeJ4BrzBHYWdrv-M7P_XEoJ3iBgof0ye5lc0I3uIl5arZNCRTCF2FiGgNhEydNkE30LV2J1ivPxHc4qqaTdNCFknYJHBVd8q-MZk3sMqPAiioAMl4hDlfRdCkxXiAMMfdenKFZILc_bIVDpS804OMQtXsbTce9nMJmNHmYf98X4bfo1-h6-zp_visGkuO0Xvc-ynQ-fZu-Pa2TZmpM8qf1nlRzt7hzX993G4d5BfbvhRqiUy6hWcax4ElolEsVAAoaaCR4hM-hrnnATWxEaiKyWCnmCVPmhlBItjWNeJZsL66VJrUmbQad7kaXlXnATt67Cv6OgAVQJbizAqNVNm-ftEj3L2qcmuw6E0BqoQsl_AYqlY4c
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2016.c150525
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Image Haze Removal Algorithm Based on Haze Thickness Estimation
DocumentTitle_FL Image Haze Removal Algorithm Based on Haze Thickness Estimation
EISSN 1874-1029
EndPage 1379
ExternalDocumentID zdhxb201609008
669901857
GrantInformation_xml – fundername: 国家自然科学基金; 江苏省高校自然科学研究重大项目; 江苏省产学研前瞻性联合研究项目(BY2014014)资助Supported by National Natural Science Foundation of China; Key University Science Research Project of Jiangsu Province; Prospective Joint Research Project of Jiangsu Province
  funderid: (61571241); (15KJA510002); (61571241); (15KJA510002); (BY2014014)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c588-2198dd83ebf86e820705b9263c52a5493e3adf6ba0cf97853e5184b7775f1dd3
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:15:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 图像去雾
atmosphere scattering model
大气散射模型
haze thickness estimation model
fuzzy clustering
模糊聚类
雾气浓度估计模型
Image daze removal
导向滤波器
guided filter
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c588-2198dd83ebf86e820705b9263c52a5493e3adf6ba0cf97853e5184b7775f1dd3
Notes Image daze removal, fuzzy clustering, haze thickness estimation model, guided filter, atmosphere scattering model
This paper proposes a haze thickness estimation model based on visual characteristics of haze thickness, and combines this model with atmosphere scattering model to present an innovative image dehazing algorithm. First, a haze thickness quantitative map is calculated via the haze thickness estimation model, from which the thickest area is identified by the fuzzy clustering algorithm and global atmospheric light is estimated. After that, the algorithm carries on clustering processing towards the non-thickest area in the quantitative map, and estimates the transmission of each cluster unit according to the optimized transmission evaluation index mentioned in this paper. The haze-free image can be restored from scattering model with global light, refined transmission map and original hazy image. At last, we propose a multi- scale sharpening algorithm based on wavelet domain to make up for the defect t
PageCount 13
ParticipantIDs wanfang_journals_zdhxb201609008
chongqing_primary_669901857
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2016
Publisher 南京邮电大学物联网学院 南京 210003
Publisher_xml – name: 南京邮电大学物联网学院 南京 210003
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.1245162
Snippet ...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1367
SubjectTerms 图像去雾
大气散射模型
导向滤波器
模糊聚类
雾气浓度估计模型
Title 基于雾气浓度估计的图像去雾算法
URI http://lib.cqvip.com/qk/90250X/201609/669901857.html
https://d.wanfangdata.com.cn/periodical/zdhxb201609008
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btRAcHUkDRSIpwjhkYKtIgfb632V68MhQkBDQOlOfuaqC4-LhK6FOhSAkEiB0lBGkRDNgfI1uQv8BTNr391KQQhorPHu7OzOjj2PtXeWkFsF-NQyCHNP-gXzwEIxT4ui8lSqwoCpKkoF7h1-8FCsPY7ubfCNVmvP-Wtpu5-t5IPf7iv5H6lCGcgVd8n-g2SnRKEAYJAvXEHCcP0rGdOEU71KY0OTCK8qoYmmOqYxAILGPtWRBQCNITLgGGGR21ibKGoSagKaSKqheWQJ1s05VYyqVQskNI4dyhJbaWkpM1qfXjlxcJGmAgRjG0J3ygJtqgUC5o4dgLBVfCJtSxsG4luAIRZ0Av0btWyH3bZ1MEg9GQmjsVjGImTJNLxpy4CJqNHuaka9zbJRdxCqehhO1papVsdKRmAomjWRRl9HofNcakf5YvY5x5AHrD6m5oSRAJXDrJVIU0zYHoiVPLDn-c1s4vRPRSHww6Hi8hSZD6UMQHHO343vPzEznxPH5yhJrkEPOj6V4Jjzb3Yv8cu186kZ7hmbxXAQIWJKx-k9JvgXTszOgS3OMGau3Q2O6ZfsQmIzfU1qLWTy9kkWMYVId6u3-QwcI7tPrVelvU3HpVo_R842sdCSqR_s86Q16F4gZ5wMmReJN_o0PBru_Nw9HB-8G399Oxp-Pvp-8GN_7_jj69Hu4ejVm9HON6g93v8w_vL-Enm0mqy317zmhA8v5_guB1oVhWJlVilRgi8qfZ7pULCchymPNCtZWlQiS_280hIcy5IHKsqklLwKioJdJnO9rV55hSylJUxzWYW5n4aRyiGIr1iZ8zIr8rTMwmyBLE7Z7jyt87h0prJdIDebieg0b_eLzqDovsxw5nwNbvLVP7ZfJKcRs16Zu0bm-s-3y-vgq_azG83T8gvxSXA1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%9B%BE%E6%B0%94%E6%B5%93%E5%BA%A6%E4%BC%B0%E8%AE%A1%E7%9A%84%E5%9B%BE%E5%83%8F%E5%8E%BB%E9%9B%BE%E7%AE%97%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E9%9E%A0%E9%93%AD%E7%83%A8+%E5%BC%A0%E7%99%BB%E9%93%B6+%E7%BA%AA%E5%BA%94%E5%A4%A9&rft.date=2016&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=42&rft.issue=9&rft.spage=1367&rft.epage=1379&rft_id=info:doi/10.16383%2Fj.aas.2016.c150525&rft.externalDocID=669901857
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg