Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing
[Display omitted] Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies. To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16...
Saved in:
Published in | Journal of advanced research Vol. 26; pp. 111 - 121 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Egypt
Elsevier B.V
01.11.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies.
To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions.
We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples.
A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples.
Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition. |
---|---|
AbstractList | Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies.INTRODUCTIONMicrobiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies.To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions.OBJECTIVESTo systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions.We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples.METHODSWe designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples.A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples.RESULTSA wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples.Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition.CONCLUSIONSWell-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition. [Display omitted] Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies. To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions. We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples. A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples. Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition. Introduction: Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies. Objectives: To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions. Methods: We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples. Results: A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples. Conclusions: Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition. Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies. To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions. We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples. A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples. Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition. |
Author | Han, Dongsheng Xie, Jiehong Tan, Ping Li, Rui Gao, Peng Zhang, Rui Li, Jinming |
Author_xml | – sequence: 1 givenname: Dongsheng orcidid: 0000-0002-1892-8603 surname: Han fullname: Han, Dongsheng organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China – sequence: 2 givenname: Peng surname: Gao fullname: Gao, Peng organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China – sequence: 3 givenname: Rui surname: Li fullname: Li, Rui organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China – sequence: 4 givenname: Ping surname: Tan fullname: Tan, Ping organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China – sequence: 5 givenname: Jiehong surname: Xie fullname: Xie, Jiehong organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China – sequence: 6 givenname: Rui surname: Zhang fullname: Zhang, Rui email: ruizhang@nccl.org.cn organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China – sequence: 7 givenname: Jinming surname: Li fullname: Li, Jinming email: jmli@nccl.org.cn organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33133687$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARLaU_wAJ5yWYGO34lEkKqqgKVCkg81taNcz31KLGLnVSav8dhyqhlUS_8uuccW-eel9VRiAGr6jWja0aZerddbyHhuqY1XVO9pow-q05q2tIVq2txdNjz-rg6y3lLy-BN0zL2ojrmnHGuGn1S7b7Mw-QthgkTgZwx57EcSHRk9DbFzsNAbBzHOfhpR25TdH7wYUPmvMxM_SDp-9dzssGAJOPvGYNdChB6km_itJkDGXGCUo9F8AHkVfXcwZDx7H49rX59vPx58Xl1_e3T1cX59crKRk8r17NegVTcMQ1YM6YkSGad7lQLTdsXAxQFKzrZ2NbRTvdaW6mdExZ4i8BPq6u9bh9ha26THyHtTARv_l7EtDGQigUDGkFBWYtAhbZCCNcJbqFzzNYaQdpF68Ne63buRuwX2xIMj0QfV4K_MZt4Z7RshNKyCLy9F0ixGJEnM_pscRggYJyzqYVUjeRMtQX65uFbh0f-9a4A6j2gtCnnhO4AYdQsGTFbs2TELBkxVJuSkUJq_iNZP8Hk4_JfPzxNfb-nYunWncdksvWll9j7hHYqdvqn6H8ADFvbGg |
CitedBy_id | crossref_primary_10_3389_fenvc_2020_570326 crossref_primary_10_3389_frmbi_2022_1092771 crossref_primary_10_1128_spectrum_02932_23 crossref_primary_10_1007_s43657_025_00232_x crossref_primary_10_1080_10643389_2023_2181620 crossref_primary_10_3389_fmicb_2024_1350164 crossref_primary_10_1128_aem_01094_24 crossref_primary_10_1016_j_scitotenv_2024_176173 crossref_primary_10_1099_acmi_0_000754_v3 crossref_primary_10_1007_s12010_021_03750_2 crossref_primary_10_3389_fmicb_2021_685935 crossref_primary_10_1038_s41598_023_46062_7 crossref_primary_10_3389_fcimb_2023_1183390 crossref_primary_10_1038_s42003_024_06594_8 crossref_primary_10_30699_ijmm_18_3_135 crossref_primary_10_1007_s00203_021_02576_0 crossref_primary_10_1007_s13762_024_05957_2 crossref_primary_10_1080_14737159_2021_2001329 crossref_primary_10_1016_j_isci_2024_108861 crossref_primary_10_1186_s12859_021_04410_2 crossref_primary_10_3389_fimmu_2022_1016440 crossref_primary_10_3390_ijms24021041 crossref_primary_10_1016_j_watres_2022_119189 crossref_primary_10_1186_s40168_021_01048_3 crossref_primary_10_1017_gmb_2023_3 crossref_primary_10_1111_jam_15711 crossref_primary_10_1080_07388551_2023_2254933 crossref_primary_10_3389_fmicb_2021_678319 crossref_primary_10_3389_fcimb_2022_907239 crossref_primary_10_1016_j_clce_2022_100026 crossref_primary_10_1016_j_enzmictec_2025_110619 crossref_primary_10_1094_PBIOMES_05_21_0034_R crossref_primary_10_3389_fcimb_2022_906303 crossref_primary_10_1016_j_jare_2021_09_011 crossref_primary_10_1016_j_trac_2024_117843 crossref_primary_10_1094_PBIOMES_6_2 crossref_primary_10_3389_fimmu_2023_1114586 crossref_primary_10_1128_msystems_00937_22 crossref_primary_10_3389_fcimb_2022_831186 crossref_primary_10_3390_insects13080719 crossref_primary_10_28996_2618_9801_2024_3_283_302 crossref_primary_10_1111_prd_12393 crossref_primary_10_1016_j_ijfoodmicro_2024_110588 crossref_primary_10_1128_spectrum_01915_21 crossref_primary_10_1016_j_fshw_2021_12_010 |
Cites_doi | 10.1371/journal.pone.0088982 10.1016/j.neubiorev.2020.02.003 10.1128/JCM.42.4.1727-1730.2004 10.1111/nmo.12378 10.1186/s13059-019-1843-8 10.7171/jbt.17-2801-003 10.1038/ncomms7528 10.1128/mSystems.00271-18 10.1111/j.1472-765X.2007.02198.x 10.1038/s41579-018-0029-9 10.1038/s41564-018-0202-y 10.1136/gutjnl-2015-309800 10.3389/fmicb.2016.00200 10.1038/nature08821 10.1128/AEM.02627-17 10.1038/nbt.3960 10.1056/NEJMra1600266 10.1371/journal.pone.0033865 10.1093/nar/gkw984 10.1186/s12866-016-0738-z 10.1038/s41467-017-01973-8 10.3389/fmicb.2019.01084 10.1038/s41396-019-0484-y 10.1016/j.jmii.2013.07.001 10.1186/s12864-015-2194-9 10.1371/journal.pone.0094249 10.1038/nature13568 10.1016/j.ijmm.2016.03.005 10.1111/1462-2920.13023 10.1038/nrmicro.2016.83 10.1038/nbt.3935 10.1016/j.febslet.2014.09.039 10.1186/1471-2164-15-443 10.1038/s41591-019-0406-6 10.1016/j.cell.2019.07.010 10.1111/1755-0998.13011 10.1186/s12866-015-0351-6 10.1038/nbt.3981 10.1128/mSystems.00547-19 10.1016/j.cell.2019.12.025 10.1038/d41586-019-02262-8 10.1111/1462-2920.13463 10.1038/nature11450 10.1155/2014/548683 10.1186/s13059-017-1299-7 10.1186/s13059-018-1616-9 10.1016/j.jmoldx.2019.05.002 10.7717/peerj.8317 10.1016/j.tim.2018.11.003 10.1093/nar/gks808 10.1371/journal.pone.0071360 10.1038/nature11234 10.1128/mSystems.00023-18 10.1126/science.aad3503 10.1007/s13679-019-00352-2 10.1002/biof.1565 10.1016/j.cell.2018.07.038 10.1038/s41587-018-0009-7 10.1186/s12864-015-2063-6 10.1186/s40168-019-0678-6 10.1186/s40168-017-0267-5 10.1038/nmeth.3176 10.1038/s41586-019-1238-8 10.1056/NEJMra1004965 10.1186/s12915-014-0087-z 10.1093/femsec/fiz045 10.1128/mBio.00525-18 10.1016/j.ajog.2018.10.018 10.1016/j.mib.2013.09.008 |
ContentType | Journal Article |
Copyright | 2020 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020 |
Copyright_xml | – notice: 2020 – notice: 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. – notice: 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.jare.2020.07.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2090-1224 |
EndPage | 121 |
ExternalDocumentID | oai_doaj_org_article_40a6ccea047c444fb43cabf1c27ea5ca PMC7584675 33133687 10_1016_j_jare_2020_07_010 S2090123220301697 |
Genre | Journal Article |
GroupedDBID | --K 0R~ 0SF 1B1 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABMAC ACGFS ADBBV ADEZE AEFWE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV E3Z EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB J1W KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL RPM SES SSZ UNMZH XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c587t-fd1d6a563f17ae21165a51cf7b69a89d20260ac4b58c9f0b7d77c57ff4ca39ea3 |
IEDL.DBID | IXB |
ISSN | 2090-1232 |
IngestDate | Wed Aug 27 01:25:25 EDT 2025 Thu Aug 21 17:43:59 EDT 2025 Fri Jul 11 04:45:51 EDT 2025 Thu Jan 02 22:54:09 EST 2025 Tue Jul 01 03:01:30 EDT 2025 Thu Apr 24 22:57:14 EDT 2025 Fri Feb 23 02:41:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Shotgun metagenomic sequencing Microbiota 16S rRNA gene sequencing Microbial community profiling Microbiome |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c587t-fd1d6a563f17ae21165a51cf7b69a89d20260ac4b58c9f0b7d77c57ff4ca39ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1892-8603 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2090123220301697 |
PMID | 33133687 |
PQID | 2456853169 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_40a6ccea047c444fb43cabf1c27ea5ca pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584675 proquest_miscellaneous_2456853169 pubmed_primary_33133687 crossref_primary_10_1016_j_jare_2020_07_010 crossref_citationtrail_10_1016_j_jare_2020_07_010 elsevier_sciencedirect_doi_10_1016_j_jare_2020_07_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Egypt |
PublicationPlace_xml | – name: Egypt |
PublicationTitle | Journal of advanced research |
PublicationTitleAlternate | J Adv Res |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zinter, Mayday, Ryckman, Jelliffe-Pawlowski, DeRisi (b0260) 2019; 7 Tourlousse, Yoshiike, Ohashi, Matsukura, Noda, Sekiguchi (b0055) 2016 Kim, Hofstaedter, Zhao, Mattei, Tanes, Clarke (b0265) 2017; 5 Quince, Walker, Simpson, Loman, Segata (b0255) 2017; 35 Duvallet, Gibbons, Gurry, Irizarry, Alm (b0100) 2017; 8 Wirbel, Pyl, Kartal, Zych, Kashani, Milanese (b0105) 2019; 25 Riva, Borgo, Lassandro, Verduci, Morace, Borghi (b0110) 2017; 19 Parada, Needham, Fuhrman (b0275) 2016; 18 Culbreath, Melanson, Gale, Baker, Li, Saebo (b0345) 2019; 21 Farris, Olson (b0305) 2007; 45 Ghyselinck, Pfeiffer, Heylen, Sessitsch, De Vos (b0285) 2013; 8 Kennedy, Walker, Berry, Duncan, Farquarson, Louis (b0200) 2014; 9 Fouhy, Clooney, Stanton, Claesson, Cotter (b0295) 2016; 16 Allen-Vercoe (b0045) 2013; 16 Klindworth, Pruesse, Schweer, Peplies, Quast, Horn (b0215) 2013; 41 Rintala, Pietilä, Munukka, Eerola, Pursiheimo, Laiho (b0290) 2017; 28 Nelson, Morrison, Benjamino, Grim, Graf (b0300) 2014; 9 Wang, Jia (b0010) 2016; 14 Forster, Kumar, Anonye, Almeida, Viciani, Stares (b0080) 2019; 37 Kioroglou, Mas, Portillo (b0065) 2019; 10 de Goffau, Lager, Salter, Wagner, Kronbichler, Charnock-Jones (b0320) 2018; 3 Eisenhofer, Minich, Marotz, Cooper, Knight, Weyrich (b0330) 2019; 27 Buchfink, Xie, Huson (b0230) 2015; 12 Salter, Cox, Turek, Calus, Cookson, Moffatt (b0245) 2014; 12 Nuzum, Loughman, Szymlek-Gay, Hendy, Teo, Macpherson (b0145) 2020 Ducarmon, Hornung, Geelen, Kuijper, Zwittink (b0210) 2020; 5 Greathouse, Sinha, Vogtmann (b0175) 2019; 20 Walters, Xu, Knight (b0130) 2014; 588 McInnes, Schett (b0025) 2011; 365 Knight, Vrbanac, Taylor, Aksenov, Callewaert, Debelius (b0340) 2018; 16 Proctor, Creasy, Fettweis, Lloyd-Price, Mahurkar, Zhou (b0090) 2019; 569 Han, Sun, Lv, Wang (b0205) 2019; 8 Feng, Liang, Jia, Stadlmayr, Tang, Lan (b0140) 2015; 6 Steen, Crits-Christoph, Carini, DeAngelis, Fierer, Lloyd (b0040) 2019; 13 Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207–14. Yuan, Cohen, Ravel, Abdo, Forney (b0270) 2012; 7 D'Amore, Ijaz, Schirmer, Kenny, Gregory, Darby (b0280) 2016; 17 Walter, Armet, Finlay, Shanahan (b0170) 2020; 180 Qin, Li, Cai, Li, Zhu, Zhang (b0005) 2012; 490 Bowers, Clum, Tice, Lim, Singh, Ciobanu (b0350) 2015; 16 McIntyre, Ounit, Afshinnekoo, Prill, Hénaff, Alexander (b0315) 2017; 18 Hiergeist, Reischl, Gessner (b0185) 2016; 306 Qiu, Xia, Deng, Jiao, Liu, Li (b0120) 2019; 45 Lynch, Pedersen (b0060) 2016; 375 Qin, Li, Raes, Arumugam, Burgdorf, Manichanh (b0085) 2010; 464 Naseribafrouei, Hestad, Avershina, Sekelja, Linløkken, Wilson (b0030) 2014; 26 Ye, Siddle, Park, Sabeti (b0235) 2019; 178 Costea, Zeller, Sunagawa, Pelletier, Alberti, Levenez (b0225) 2017 Starke, Vahjen, Pieper, Zentek (b0310) 2014; 2014 Qin, Li, Raes, Arumugam, Tims, Vos (b0240) 2010; 464 Weyrich, Farrer, Eisenhofer, Arriola, Young, Selway (b0335) 2019; 19 Sinha, Abu-Ali, Vogtmann, Fodor, Ren, Amir (b0190) 2017; 35 Teng, Hsueh, Huang, Tsai (b0220) 2004; 42 Hornung, Zwittink, Kuijper (b0165) 2019; 95 Pollock, Glendinning, Wisedchanwet, Watson (b0250) 2018; 84 Yu, Feng, Wong, Zhang, Liang, Qin (b0015) 2016; 66 Fischbach (b0035) 2018; 174 Hansen, Rubel, Bailey, Ranciaro, Thompson, Campbell (b0075) 2019; 20 Chen, Hui, Hui, Yeoh, Wong, Chan (b0180) 2019; 4 Brooks, Edwards, Harwich, Rivera, Fettweis, Serrano (b0360) 2015; 15 Falony, Joossens, Vieira-Silva, Wang, Darzi, Faust (b0070) 2016; 352 Vallianou, Stratigou, Christodoulatos, Dalamaga (b0135) 2019; 8 Motley, Picuri, Crowder, Minich, Hofstadler, Eshoo (b0325) 2014; 15 Qin, Yang, Li, Prifti, Chen, Shao (b0020) 2014; 513 Chen, Sun, Jiang, Shen, Li, Hu (b0125) 2020; 8 Yeh, Needham, Sieradzki, Fuhrman (b0355) 2018; 3 Patrone, Vajana, Minuti, Callegari, Federico, Loguercio (b0115) 2016; 7 Yuan (10.1016/j.jare.2020.07.010_b0270) 2012; 7 Vallianou (10.1016/j.jare.2020.07.010_b0135) 2019; 8 Riva (10.1016/j.jare.2020.07.010_b0110) 2017; 19 Zinter (10.1016/j.jare.2020.07.010_b0260) 2019; 7 Walter (10.1016/j.jare.2020.07.010_b0170) 2020; 180 Naseribafrouei (10.1016/j.jare.2020.07.010_b0030) 2014; 26 D'Amore (10.1016/j.jare.2020.07.010_b0280) 2016; 17 Walters (10.1016/j.jare.2020.07.010_b0130) 2014; 588 Nelson (10.1016/j.jare.2020.07.010_b0300) 2014; 9 Qin (10.1016/j.jare.2020.07.010_b0240) 2010; 464 Proctor (10.1016/j.jare.2020.07.010_b0090) 2019; 569 Duvallet (10.1016/j.jare.2020.07.010_b0100) 2017; 8 Yu (10.1016/j.jare.2020.07.010_b0015) 2016; 66 Qin (10.1016/j.jare.2020.07.010_b0005) 2012; 490 Chen (10.1016/j.jare.2020.07.010_b0195) 2015; 48 McInnes (10.1016/j.jare.2020.07.010_b0025) 2011; 365 Steen (10.1016/j.jare.2020.07.010_b0040) 2019; 13 Fouhy (10.1016/j.jare.2020.07.010_b0295) 2016; 16 Feng (10.1016/j.jare.2020.07.010_b0140) 2015; 6 de Goffau (10.1016/j.jare.2020.07.010_b0320) 2018; 3 Fischbach (10.1016/j.jare.2020.07.010_b0035) 2018; 174 Kennedy (10.1016/j.jare.2020.07.010_b0200) 2014; 9 Salter (10.1016/j.jare.2020.07.010_b0245) 2014; 12 Kioroglou (10.1016/j.jare.2020.07.010_b0065) 2019; 10 Starke (10.1016/j.jare.2020.07.010_b0310) 2014; 2014 Sinha (10.1016/j.jare.2020.07.010_b0190) 2017; 35 Ghyselinck (10.1016/j.jare.2020.07.010_b0285) 2013; 8 Ducarmon (10.1016/j.jare.2020.07.010_b0210) 2020; 5 Costea (10.1016/j.jare.2020.07.010_b0225) 2017 Forster (10.1016/j.jare.2020.07.010_b0080) 2019; 37 Motley (10.1016/j.jare.2020.07.010_b0325) 2014; 15 10.1016/j.jare.2020.07.010_b0050 Wirbel (10.1016/j.jare.2020.07.010_b0105) 2019; 25 Culbreath (10.1016/j.jare.2020.07.010_b0345) 2019; 21 Hansen (10.1016/j.jare.2020.07.010_b0075) 2019; 20 Eisenhofer (10.1016/j.jare.2020.07.010_b0330) 2019; 27 Segata (10.1016/j.jare.2020.07.010_b0160) 2019; 572 Teng (10.1016/j.jare.2020.07.010_b0220) 2004; 42 Han (10.1016/j.jare.2020.07.010_b0205) 2019; 8 Buchfink (10.1016/j.jare.2020.07.010_b0230) 2015; 12 Qin (10.1016/j.jare.2020.07.010_b0085) 2010; 464 Nuzum (10.1016/j.jare.2020.07.010_b0145) 2020 Falony (10.1016/j.jare.2020.07.010_b0070) 2016; 352 Ye (10.1016/j.jare.2020.07.010_b0235) 2019; 178 Greathouse (10.1016/j.jare.2020.07.010_b0175) 2019; 20 Qin (10.1016/j.jare.2020.07.010_b0020) 2014; 513 Allen-Vercoe (10.1016/j.jare.2020.07.010_b0045) 2013; 16 Wang (10.1016/j.jare.2020.07.010_b0010) 2016; 14 Quince (10.1016/j.jare.2020.07.010_b0255) 2017; 35 Bowers (10.1016/j.jare.2020.07.010_b0350) 2015; 16 Yeh (10.1016/j.jare.2020.07.010_b0355) 2018; 3 Lynch (10.1016/j.jare.2020.07.010_b0060) 2016; 375 Patrone (10.1016/j.jare.2020.07.010_b0115) 2016; 7 Theis (10.1016/j.jare.2020.07.010_b0150) 2019; 220 Weyrich (10.1016/j.jare.2020.07.010_b0335) 2019; 19 Chen (10.1016/j.jare.2020.07.010_b0180) 2019; 4 Tourlousse (10.1016/j.jare.2020.07.010_b0055) 2016 Klindworth (10.1016/j.jare.2020.07.010_b0215) 2013; 41 Pollock (10.1016/j.jare.2020.07.010_b0250) 2018; 84 Parada (10.1016/j.jare.2020.07.010_b0275) 2016; 18 Hiergeist (10.1016/j.jare.2020.07.010_b0185) 2016; 306 Kim (10.1016/j.jare.2020.07.010_b0265) 2017; 5 Schloss (10.1016/j.jare.2020.07.010_b0095) 2018; 9 McIntyre (10.1016/j.jare.2020.07.010_b0315) 2017; 18 Hornung (10.1016/j.jare.2020.07.010_b0165) 2019; 95 Chen (10.1016/j.jare.2020.07.010_b0125) 2020; 8 Hornung (10.1016/j.jare.2020.07.010_b0155) 2019 Farris (10.1016/j.jare.2020.07.010_b0305) 2007; 45 Brooks (10.1016/j.jare.2020.07.010_b0360) 2015; 15 Rintala (10.1016/j.jare.2020.07.010_b0290) 2017; 28 Qiu (10.1016/j.jare.2020.07.010_b0120) 2019; 45 Knight (10.1016/j.jare.2020.07.010_b0340) 2018; 16 |
References_xml | – volume: 588 start-page: 4223 year: 2014 end-page: 4233 ident: b0130 article-title: Meta-analyses of human gut microbes associated with obesity and ibd publication-title: Febs Lett – volume: 95 year: 2019 ident: b0165 article-title: Issues and current standards of controls in microbiome research publication-title: FEMS Microbiol Ecol – volume: 8 start-page: e8317 year: 2020 ident: b0125 article-title: Alteration of the gut microbiota associated with childhood obesity by 16s rrna gene sequencing publication-title: Peerj – volume: 464 start-page: 59 year: 2010 end-page: 65 ident: b0085 article-title: A human gut microbial gene catalogue established by metagenomic sequencing publication-title: Nature – year: 2020 ident: b0145 article-title: Gut microbiota differences between healthy older adults and individuals with parkinson's disease: a systematic review publication-title: Neurosci Biobehav Rev – volume: 42 start-page: 1727 year: 2004 end-page: 1730 ident: b0220 article-title: Identification of bacteroides thetaiotaomicron on the basis of an unexpected specific amplicon of universal 16s ribosomal dna pcr publication-title: J Clin Microbiol – volume: 37 start-page: 186 year: 2019 end-page: 192 ident: b0080 article-title: A human gut bacterial genome and culture collection for improved metagenomic analyses publication-title: Nat Biotechnol – volume: 45 start-page: 376 year: 2007 end-page: 381 ident: b0305 article-title: Detection of actinobacteria cultivated from environmental samples reveals bias in universal primers publication-title: Lett Appl Microbiol – year: 2017 ident: b0225 article-title: Towards standards for human fecal sample processing in metagenomic studies publication-title: Nat Biotechnol – volume: 174 start-page: 785 year: 2018 end-page: 790 ident: b0035 article-title: Microbiome: focus on causation and mechanism publication-title: Cell – volume: 16 start-page: 123 year: 2016 ident: b0295 article-title: 16s rrna gene sequencing of mock microbial populations- impact of dna extraction method, primer choice and sequencing platform publication-title: BMC Microbiol – volume: 28 start-page: 19 year: 2017 end-page: 30 ident: b0290 article-title: Gut microbiota analysis results are highly dependent on the 16s rrna gene target region, whereas the impact of dna extraction is minor publication-title: J Biomol Tech: JBT – volume: 15 start-page: 443 year: 2014 ident: b0325 article-title: Improved multiple displacement amplification (imda) and ultraclean reagents publication-title: BMC Genomics – volume: 6 start-page: 6528 year: 2015 ident: b0140 article-title: Gut microbiome development along the colorectal adenoma-carcinoma sequence publication-title: Nat Commun – volume: 365 start-page: 2205 year: 2011 end-page: 2219 ident: b0025 article-title: The Pathogenesis of Rheumatoid Arthritis publication-title: New Engl. J. Med. – volume: 8 start-page: e626 year: 2019 ident: b0205 article-title: Biases from different dna extraction methods in intestine microbiome research based on 16s rdna sequencing: a case in the koi carp, cyprinus carpio var publication-title: Koi Microbiologyopen – volume: 12 start-page: 59 year: 2015 end-page: 60 ident: b0230 article-title: Fast and sensitive protein alignment using diamond publication-title: Nat Methods – volume: 18 year: 2017 ident: b0315 article-title: Comprehensive benchmarking and ensemble approaches for metagenomic classifiers publication-title: Genome Biol – volume: 7 start-page: 62 year: 2019 ident: b0260 article-title: Towards precision quantification of contamination in metagenomic sequencing experiments publication-title: Microbiome – volume: 16 start-page: 410 year: 2018 end-page: 422 ident: b0340 article-title: Best practices for analysing microbiomes publication-title: Nat Rev Microbiol – volume: 8 start-page: 317 year: 2019 end-page: 332 ident: b0135 article-title: Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives publication-title: Curr Obesity Rep – volume: 8 start-page: e71360 year: 2013 ident: b0285 article-title: The effect of primer choice and short read sequences on the outcome of 16s rrna gene based diversity studies publication-title: Plos One – volume: 9 start-page: e94249 year: 2014 ident: b0300 article-title: Analysis, optimization and verification of illumina-generated 16s rrna gene amplicon surveys publication-title: Plos One – volume: 9 start-page: e88982 year: 2014 ident: b0200 article-title: The impact of different dna extraction kits and laboratories upon the assessment of human gut microbiota composition by 16s rrna gene sequencing publication-title: Plos One – volume: 16 start-page: 856 year: 2015 ident: b0350 article-title: Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community publication-title: BMC Genomics – volume: 20 year: 2019 ident: b0175 article-title: Dna extraction for human microbiome studies: the issue of standardization publication-title: Genome Biol – volume: 15 year: 2015 ident: b0360 article-title: The truth about metagenomics: quantifying and counteracting bias in 16s rrna studies publication-title: BMC Microbiol – volume: 35 start-page: 1077 year: 2017 end-page: 1086 ident: b0190 article-title: Assessment of variation in microbial community amplicon sequencing by the microbiome quality control (mbqc) project consortium publication-title: Nat Biotechnol – volume: 3 start-page: 851 year: 2018 end-page: 853 ident: b0320 article-title: Recognizing the reagent microbiome publication-title: Nat Microbiol – volume: 13 start-page: 3126 year: 2019 end-page: 3130 ident: b0040 article-title: High proportions of bacteria and archaea across most biomes remain uncultured publication-title: ISME J – volume: 45 start-page: 892 year: 2019 end-page: 901 ident: b0120 article-title: Glucorticoid-induced obesity individuals have distinct signatures of the gut microbiome publication-title: Biofactors – volume: 26 start-page: 1155 year: 2014 end-page: 1162 ident: b0030 article-title: Correlation between the human fecal microbiota and depression publication-title: Neurogastroenterol Motility – volume: 66 start-page: 70 year: 2016 end-page: 78 ident: b0015 article-title: Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer publication-title: Gut – volume: 19 start-page: 982 year: 2019 end-page: 996 ident: b0335 article-title: Laboratory contamination over time during low-biomass sample analysis publication-title: Mol Ecol Resour – volume: 21 start-page: 913 year: 2019 end-page: 923 ident: b0345 article-title: Validation and retrospective clinical evaluation of a quantitative 16s rrna gene metagenomic sequencing assay for bacterial pathogen detection in body fluids publication-title: J Mol Diag – volume: 14 start-page: 508 year: 2016 end-page: 522 ident: b0010 article-title: Metagenome-wide association studies: fine-mining the microbiome publication-title: Nat Rev Microbiol – volume: 17 start-page: 55 year: 2016 ident: b0280 article-title: A comprehensive benchmarking study of protocols and sequencing platforms for 16s rrna community profiling publication-title: BMC Genomics – volume: 7 start-page: 200 year: 2016 ident: b0115 article-title: Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass publication-title: Front Microbiol – volume: 178 start-page: 779 year: 2019 end-page: 794 ident: b0235 article-title: Benchmarking metagenomics tools for taxonomic classification publication-title: Cell – volume: 25 start-page: 679 year: 2019 end-page: 689 ident: b0105 article-title: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer publication-title: Nat Med – volume: 180 start-page: 221 year: 2020 end-page: 232 ident: b0170 article-title: Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents publication-title: Cell – volume: 16 start-page: 625 year: 2013 end-page: 629 ident: b0045 article-title: Bringing the gut microbiota into focus through microbial culture: recent progress and future perspective publication-title: Curr Opin Microbiol – volume: 306 start-page: 334 year: 2016 end-page: 342 ident: b0185 article-title: Multicenter quality assessment of 16s ribosomal dna-sequencing for microbiome analyses reveals high inter-center variability publication-title: Int J Med Microbiol – volume: 352 start-page: 560 year: 2016 end-page: 564 ident: b0070 article-title: Population-level analysis of gut microbiome variation publication-title: Science – reference: Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207–14. – volume: 27 start-page: 105 year: 2019 end-page: 117 ident: b0330 article-title: Contamination in low microbial biomass microbiome studies: issues and recommendations publication-title: Trends Microbiol – volume: 490 start-page: 55 year: 2012 end-page: 60 ident: b0005 article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes publication-title: Nature – volume: 10 year: 2019 ident: b0065 article-title: Evaluating the effect of qiime balanced default parameters on metataxonomic analysis workflows with a mock community publication-title: Front Microbiol – volume: 12 start-page: 87 year: 2014 ident: b0245 article-title: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses publication-title: BMC Biol – year: 2016 ident: b0055 article-title: Synthetic spike-in standards for high-throughput 16s rrna gene amplicon sequencing publication-title: Nucleic Acids Res – volume: 18 start-page: 1403 year: 2016 end-page: 1414 ident: b0275 article-title: Every base matters: assessing small subunit rrna primers for marine microbiomes with mock communities, time series and global field samples publication-title: Environ Microbiol – volume: 35 start-page: 833 year: 2017 ident: b0255 article-title: Shotgun metagenomics, from sampling to analysis publication-title: Nat Biotechnol – volume: 375 start-page: 2369 year: 2016 end-page: 2379 ident: b0060 article-title: The human intestinal microbiome in health and disease publication-title: N Engl J Med – volume: 2014 start-page: 548610 year: 2014 end-page: 548683 ident: b0310 article-title: The influence of dna extraction procedure and primer set on the bacterial community analysis by pyrosequencing of barcoded 16s rrna gene amplicons publication-title: Mol Biol Int – volume: 4 year: 2019 ident: b0180 article-title: Impact of preservation method and 16s rrna hypervariable region on gut microbiota profiling publication-title: Msystems – volume: 7 start-page: e33865 year: 2012 ident: b0270 article-title: Evaluation of methods for the extraction and purification of DNA from the human microbiome publication-title: Plos One – volume: 464 start-page: 59 year: 2010 end-page: 65 ident: b0240 article-title: A human gut microbial gene catalogue established by metagenomic sequencing publication-title: Nature – volume: 20 year: 2019 ident: b0075 article-title: Population structure of human gut bacteria in a diverse cohort from rural tanzania and botswana publication-title: Genome Biol – volume: 569 start-page: 641 year: 2019 end-page: 648 ident: b0090 article-title: The integrative human microbiome project publication-title: Nature – volume: 19 start-page: 95 year: 2017 end-page: 105 ident: b0110 article-title: Pediatric obesity is associated with an altered gut microbiota and discordant shifts in firmicutes populations publication-title: Environ Microbiol – volume: 84 year: 2018 ident: b0250 article-title: The madness of microbiome: attempting to find consensus “best practice” for 16s microbiome studies publication-title: Appl Environ Microbiol – volume: 5 start-page: 14 year: 2017 end-page: 52 ident: b0265 article-title: Optimizing methods and dodging pitfalls in microbiome research publication-title: Microbiome – volume: 8 year: 2017 ident: b0100 article-title: Meta-analysis of gut microbiome studies identifies disease-specific and shared responses publication-title: Nat Commun – volume: 5 year: 2020 ident: b0210 article-title: Toward standards in clinical microbiota studies: comparison of three dna extraction methods and two bioinformatic pipelines publication-title: Msystems – volume: 513 start-page: 59 year: 2014 end-page: 64 ident: b0020 article-title: Alterations of the human gut microbiome in liver cirrhosis publication-title: Nature – volume: 41 start-page: e1 year: 2013 ident: b0215 article-title: Evaluation of general 16s ribosomal rna gene pcr primers for classical and next-generation sequencing-based diversity studies publication-title: Nucleic Acids Res – volume: 3 start-page: e18 year: 2018 end-page: e23 ident: b0355 article-title: Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run publication-title: Msystems – volume: 9 start-page: e88982 year: 2014 ident: 10.1016/j.jare.2020.07.010_b0200 article-title: The impact of different dna extraction kits and laboratories upon the assessment of human gut microbiota composition by 16s rrna gene sequencing publication-title: Plos One doi: 10.1371/journal.pone.0088982 – year: 2020 ident: 10.1016/j.jare.2020.07.010_b0145 article-title: Gut microbiota differences between healthy older adults and individuals with parkinson's disease: a systematic review publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2020.02.003 – volume: 42 start-page: 1727 year: 2004 ident: 10.1016/j.jare.2020.07.010_b0220 article-title: Identification of bacteroides thetaiotaomicron on the basis of an unexpected specific amplicon of universal 16s ribosomal dna pcr publication-title: J Clin Microbiol doi: 10.1128/JCM.42.4.1727-1730.2004 – volume: 26 start-page: 1155 year: 2014 ident: 10.1016/j.jare.2020.07.010_b0030 article-title: Correlation between the human fecal microbiota and depression publication-title: Neurogastroenterol Motility doi: 10.1111/nmo.12378 – volume: 20 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0175 article-title: Dna extraction for human microbiome studies: the issue of standardization publication-title: Genome Biol doi: 10.1186/s13059-019-1843-8 – volume: 28 start-page: 19 year: 2017 ident: 10.1016/j.jare.2020.07.010_b0290 article-title: Gut microbiota analysis results are highly dependent on the 16s rrna gene target region, whereas the impact of dna extraction is minor publication-title: J Biomol Tech: JBT doi: 10.7171/jbt.17-2801-003 – volume: 6 start-page: 6528 year: 2015 ident: 10.1016/j.jare.2020.07.010_b0140 article-title: Gut microbiome development along the colorectal adenoma-carcinoma sequence publication-title: Nat Commun doi: 10.1038/ncomms7528 – volume: 4 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0180 article-title: Impact of preservation method and 16s rrna hypervariable region on gut microbiota profiling publication-title: Msystems doi: 10.1128/mSystems.00271-18 – volume: 45 start-page: 376 year: 2007 ident: 10.1016/j.jare.2020.07.010_b0305 article-title: Detection of actinobacteria cultivated from environmental samples reveals bias in universal primers publication-title: Lett Appl Microbiol doi: 10.1111/j.1472-765X.2007.02198.x – volume: 16 start-page: 410 year: 2018 ident: 10.1016/j.jare.2020.07.010_b0340 article-title: Best practices for analysing microbiomes publication-title: Nat Rev Microbiol doi: 10.1038/s41579-018-0029-9 – volume: 3 start-page: 851 year: 2018 ident: 10.1016/j.jare.2020.07.010_b0320 article-title: Recognizing the reagent microbiome publication-title: Nat Microbiol doi: 10.1038/s41564-018-0202-y – volume: 66 start-page: 70 year: 2016 ident: 10.1016/j.jare.2020.07.010_b0015 article-title: Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer publication-title: Gut doi: 10.1136/gutjnl-2015-309800 – volume: 7 start-page: 200 year: 2016 ident: 10.1016/j.jare.2020.07.010_b0115 article-title: Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass publication-title: Front Microbiol doi: 10.3389/fmicb.2016.00200 – volume: 464 start-page: 59 year: 2010 ident: 10.1016/j.jare.2020.07.010_b0240 article-title: A human gut microbial gene catalogue established by metagenomic sequencing publication-title: Nature doi: 10.1038/nature08821 – volume: 84 year: 2018 ident: 10.1016/j.jare.2020.07.010_b0250 article-title: The madness of microbiome: attempting to find consensus “best practice” for 16s microbiome studies publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02627-17 – year: 2017 ident: 10.1016/j.jare.2020.07.010_b0225 article-title: Towards standards for human fecal sample processing in metagenomic studies publication-title: Nat Biotechnol doi: 10.1038/nbt.3960 – volume: 375 start-page: 2369 year: 2016 ident: 10.1016/j.jare.2020.07.010_b0060 article-title: The human intestinal microbiome in health and disease publication-title: N Engl J Med doi: 10.1056/NEJMra1600266 – volume: 7 start-page: e33865 year: 2012 ident: 10.1016/j.jare.2020.07.010_b0270 article-title: Evaluation of methods for the extraction and purification of DNA from the human microbiome publication-title: Plos One doi: 10.1371/journal.pone.0033865 – year: 2016 ident: 10.1016/j.jare.2020.07.010_b0055 article-title: Synthetic spike-in standards for high-throughput 16s rrna gene amplicon sequencing publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw984 – volume: 16 start-page: 123 year: 2016 ident: 10.1016/j.jare.2020.07.010_b0295 article-title: 16s rrna gene sequencing of mock microbial populations- impact of dna extraction method, primer choice and sequencing platform publication-title: BMC Microbiol doi: 10.1186/s12866-016-0738-z – volume: 8 year: 2017 ident: 10.1016/j.jare.2020.07.010_b0100 article-title: Meta-analysis of gut microbiome studies identifies disease-specific and shared responses publication-title: Nat Commun doi: 10.1038/s41467-017-01973-8 – year: 2019 ident: 10.1016/j.jare.2020.07.010_b0155 article-title: Response to: 'circulating microbiome in blood of different circulatory compartments' by Schierwagen et al. publication-title: Gut – volume: 10 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0065 article-title: Evaluating the effect of qiime balanced default parameters on metataxonomic analysis workflows with a mock community publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01084 – volume: 13 start-page: 3126 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0040 article-title: High proportions of bacteria and archaea across most biomes remain uncultured publication-title: ISME J doi: 10.1038/s41396-019-0484-y – volume: 48 start-page: 80 year: 2015 ident: 10.1016/j.jare.2020.07.010_b0195 article-title: Kocuria kristinae: a true pathogen in pediatric patients publication-title: J Microbiol Immunol Infect doi: 10.1016/j.jmii.2013.07.001 – volume: 17 start-page: 55 year: 2016 ident: 10.1016/j.jare.2020.07.010_b0280 article-title: A comprehensive benchmarking study of protocols and sequencing platforms for 16s rrna community profiling publication-title: BMC Genomics doi: 10.1186/s12864-015-2194-9 – volume: 9 start-page: e94249 year: 2014 ident: 10.1016/j.jare.2020.07.010_b0300 article-title: Analysis, optimization and verification of illumina-generated 16s rrna gene amplicon surveys publication-title: Plos One doi: 10.1371/journal.pone.0094249 – volume: 513 start-page: 59 year: 2014 ident: 10.1016/j.jare.2020.07.010_b0020 article-title: Alterations of the human gut microbiome in liver cirrhosis publication-title: Nature doi: 10.1038/nature13568 – volume: 306 start-page: 334 year: 2016 ident: 10.1016/j.jare.2020.07.010_b0185 article-title: Multicenter quality assessment of 16s ribosomal dna-sequencing for microbiome analyses reveals high inter-center variability publication-title: Int J Med Microbiol doi: 10.1016/j.ijmm.2016.03.005 – volume: 18 start-page: 1403 year: 2016 ident: 10.1016/j.jare.2020.07.010_b0275 article-title: Every base matters: assessing small subunit rrna primers for marine microbiomes with mock communities, time series and global field samples publication-title: Environ Microbiol doi: 10.1111/1462-2920.13023 – volume: 14 start-page: 508 year: 2016 ident: 10.1016/j.jare.2020.07.010_b0010 article-title: Metagenome-wide association studies: fine-mining the microbiome publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.83 – volume: 35 start-page: 833 year: 2017 ident: 10.1016/j.jare.2020.07.010_b0255 article-title: Shotgun metagenomics, from sampling to analysis publication-title: Nat Biotechnol doi: 10.1038/nbt.3935 – volume: 588 start-page: 4223 year: 2014 ident: 10.1016/j.jare.2020.07.010_b0130 article-title: Meta-analyses of human gut microbes associated with obesity and ibd publication-title: Febs Lett doi: 10.1016/j.febslet.2014.09.039 – volume: 15 start-page: 443 year: 2014 ident: 10.1016/j.jare.2020.07.010_b0325 article-title: Improved multiple displacement amplification (imda) and ultraclean reagents publication-title: BMC Genomics doi: 10.1186/1471-2164-15-443 – volume: 25 start-page: 679 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0105 article-title: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer publication-title: Nat Med doi: 10.1038/s41591-019-0406-6 – volume: 178 start-page: 779 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0235 article-title: Benchmarking metagenomics tools for taxonomic classification publication-title: Cell doi: 10.1016/j.cell.2019.07.010 – volume: 19 start-page: 982 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0335 article-title: Laboratory contamination over time during low-biomass sample analysis publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.13011 – volume: 15 year: 2015 ident: 10.1016/j.jare.2020.07.010_b0360 article-title: The truth about metagenomics: quantifying and counteracting bias in 16s rrna studies publication-title: BMC Microbiol doi: 10.1186/s12866-015-0351-6 – volume: 35 start-page: 1077 year: 2017 ident: 10.1016/j.jare.2020.07.010_b0190 article-title: Assessment of variation in microbial community amplicon sequencing by the microbiome quality control (mbqc) project consortium publication-title: Nat Biotechnol doi: 10.1038/nbt.3981 – volume: 5 year: 2020 ident: 10.1016/j.jare.2020.07.010_b0210 article-title: Toward standards in clinical microbiota studies: comparison of three dna extraction methods and two bioinformatic pipelines publication-title: Msystems doi: 10.1128/mSystems.00547-19 – volume: 180 start-page: 221 year: 2020 ident: 10.1016/j.jare.2020.07.010_b0170 article-title: Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents publication-title: Cell doi: 10.1016/j.cell.2019.12.025 – volume: 572 start-page: 317 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0160 article-title: No bacteria found in healthy placentas publication-title: Nature doi: 10.1038/d41586-019-02262-8 – volume: 19 start-page: 95 year: 2017 ident: 10.1016/j.jare.2020.07.010_b0110 article-title: Pediatric obesity is associated with an altered gut microbiota and discordant shifts in firmicutes populations publication-title: Environ Microbiol doi: 10.1111/1462-2920.13463 – volume: 490 start-page: 55 year: 2012 ident: 10.1016/j.jare.2020.07.010_b0005 article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes publication-title: Nature doi: 10.1038/nature11450 – volume: 2014 start-page: 548610 year: 2014 ident: 10.1016/j.jare.2020.07.010_b0310 article-title: The influence of dna extraction procedure and primer set on the bacterial community analysis by pyrosequencing of barcoded 16s rrna gene amplicons publication-title: Mol Biol Int doi: 10.1155/2014/548683 – volume: 18 year: 2017 ident: 10.1016/j.jare.2020.07.010_b0315 article-title: Comprehensive benchmarking and ensemble approaches for metagenomic classifiers publication-title: Genome Biol doi: 10.1186/s13059-017-1299-7 – volume: 20 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0075 article-title: Population structure of human gut bacteria in a diverse cohort from rural tanzania and botswana publication-title: Genome Biol doi: 10.1186/s13059-018-1616-9 – volume: 21 start-page: 913 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0345 article-title: Validation and retrospective clinical evaluation of a quantitative 16s rrna gene metagenomic sequencing assay for bacterial pathogen detection in body fluids publication-title: J Mol Diag doi: 10.1016/j.jmoldx.2019.05.002 – volume: 8 start-page: e8317 year: 2020 ident: 10.1016/j.jare.2020.07.010_b0125 article-title: Alteration of the gut microbiota associated with childhood obesity by 16s rrna gene sequencing publication-title: Peerj doi: 10.7717/peerj.8317 – volume: 8 start-page: e626 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0205 article-title: Biases from different dna extraction methods in intestine microbiome research based on 16s rdna sequencing: a case in the koi carp, cyprinus carpio var publication-title: Koi Microbiologyopen – volume: 27 start-page: 105 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0330 article-title: Contamination in low microbial biomass microbiome studies: issues and recommendations publication-title: Trends Microbiol doi: 10.1016/j.tim.2018.11.003 – volume: 41 start-page: e1 year: 2013 ident: 10.1016/j.jare.2020.07.010_b0215 article-title: Evaluation of general 16s ribosomal rna gene pcr primers for classical and next-generation sequencing-based diversity studies publication-title: Nucleic Acids Res doi: 10.1093/nar/gks808 – volume: 8 start-page: e71360 year: 2013 ident: 10.1016/j.jare.2020.07.010_b0285 article-title: The effect of primer choice and short read sequences on the outcome of 16s rrna gene based diversity studies publication-title: Plos One doi: 10.1371/journal.pone.0071360 – ident: 10.1016/j.jare.2020.07.010_b0050 doi: 10.1038/nature11234 – volume: 3 start-page: e18 year: 2018 ident: 10.1016/j.jare.2020.07.010_b0355 article-title: Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run publication-title: Msystems doi: 10.1128/mSystems.00023-18 – volume: 352 start-page: 560 year: 2016 ident: 10.1016/j.jare.2020.07.010_b0070 article-title: Population-level analysis of gut microbiome variation publication-title: Science doi: 10.1126/science.aad3503 – volume: 8 start-page: 317 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0135 article-title: Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives publication-title: Curr Obesity Rep doi: 10.1007/s13679-019-00352-2 – volume: 45 start-page: 892 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0120 article-title: Glucorticoid-induced obesity individuals have distinct signatures of the gut microbiome publication-title: Biofactors doi: 10.1002/biof.1565 – volume: 174 start-page: 785 year: 2018 ident: 10.1016/j.jare.2020.07.010_b0035 article-title: Microbiome: focus on causation and mechanism publication-title: Cell doi: 10.1016/j.cell.2018.07.038 – volume: 37 start-page: 186 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0080 article-title: A human gut bacterial genome and culture collection for improved metagenomic analyses publication-title: Nat Biotechnol doi: 10.1038/s41587-018-0009-7 – volume: 464 start-page: 59 year: 2010 ident: 10.1016/j.jare.2020.07.010_b0085 article-title: A human gut microbial gene catalogue established by metagenomic sequencing publication-title: Nature doi: 10.1038/nature08821 – volume: 16 start-page: 856 year: 2015 ident: 10.1016/j.jare.2020.07.010_b0350 article-title: Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community publication-title: BMC Genomics doi: 10.1186/s12864-015-2063-6 – volume: 7 start-page: 62 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0260 article-title: Towards precision quantification of contamination in metagenomic sequencing experiments publication-title: Microbiome doi: 10.1186/s40168-019-0678-6 – volume: 5 start-page: 14 year: 2017 ident: 10.1016/j.jare.2020.07.010_b0265 article-title: Optimizing methods and dodging pitfalls in microbiome research publication-title: Microbiome doi: 10.1186/s40168-017-0267-5 – volume: 12 start-page: 59 year: 2015 ident: 10.1016/j.jare.2020.07.010_b0230 article-title: Fast and sensitive protein alignment using diamond publication-title: Nat Methods doi: 10.1038/nmeth.3176 – volume: 569 start-page: 641 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0090 article-title: The integrative human microbiome project publication-title: Nature doi: 10.1038/s41586-019-1238-8 – volume: 365 start-page: 2205 year: 2011 ident: 10.1016/j.jare.2020.07.010_b0025 article-title: The Pathogenesis of Rheumatoid Arthritis publication-title: New Engl. J. Med. doi: 10.1056/NEJMra1004965 – volume: 12 start-page: 87 year: 2014 ident: 10.1016/j.jare.2020.07.010_b0245 article-title: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses publication-title: BMC Biol doi: 10.1186/s12915-014-0087-z – volume: 95 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0165 article-title: Issues and current standards of controls in microbiome research publication-title: FEMS Microbiol Ecol doi: 10.1093/femsec/fiz045 – volume: 9 year: 2018 ident: 10.1016/j.jare.2020.07.010_b0095 article-title: Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research publication-title: Mbio doi: 10.1128/mBio.00525-18 – volume: 220 start-page: 261 year: 2019 ident: 10.1016/j.jare.2020.07.010_b0150 article-title: Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time pcr, 16s rrna gene sequencing, and metagenomics publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2018.10.018 – volume: 16 start-page: 625 year: 2013 ident: 10.1016/j.jare.2020.07.010_b0045 article-title: Bringing the gut microbiota into focus through microbial culture: recent progress and future perspective publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2013.09.008 |
SSID | ssj0000388911 |
Score | 2.3950176 |
Snippet | [Display omitted]
Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily... Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the... Introduction: Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111 |
SubjectTerms | 16S rRNA gene sequencing Microbial community profiling Microbiome Microbiota Shotgun metagenomic sequencing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQhQLLS0biAEIRcfw-loqqqkQPQKXerPGr3Ypm0W720H-PH9lVtkjlwjV2nIzns2cSz3yD0HsWNfGcxSbt_6FhRPpG6ega4h31NHShLT9zvp2Jk3N2esEvJqW-ckxYpQeuE_eZtSCcC9Ay6Rhj0TLqwEbiOhmAu-IaJZs3-ZgqezBVSpfiu6kxhx_QbsyYqcFd17DMHJldW5g7c_rsxCoV8v4d4_S383k3hnJilI4fo0ejN4kPqxT76EHon6D9cb2u8IeRVPrjU3RbMm3zMGGJYUvHiRcR38wLGVMax9VskeEW11LeyazhHBh_iYn4gZffzw5xwlvAY_x1boDe49XVYrhc9_gmDJA5X9OAky4H6Pz468-jk2Ysu9A4ruTQRE-8AC5oJBJCl_l5gBMXpRUalPZdpiEDxyxXTsfWSi-l4zJG5oDqAPQZ2usXfXiBMGUdKG-p9a1lYAXEyJUOAdJ1IYKcIbKZduNGTvJcGuOX2QSfXZusKpNVZVppkqpm6NP2nt-VkePe3l-yNrc9M5t2uZAwZkaMmX9hbIb4BgtmdEyqw5GGmt_78Hcb4Ji0avNRDPRhsV6ZfNycHCUi9Aw9r0DaviKlhFKh0uTIHYjtyLDb0s-vCjO4LO4kf_k_hH6FHmZRat7la7Q3LNfhTXLABvu2rLU_vgoyhQ priority: 102 providerName: Directory of Open Access Journals |
Title | Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing |
URI | https://dx.doi.org/10.1016/j.jare.2020.07.010 https://www.ncbi.nlm.nih.gov/pubmed/33133687 https://www.proquest.com/docview/2456853169 https://pubmed.ncbi.nlm.nih.gov/PMC7584675 https://doaj.org/article/40a6ccea047c444fb43cabf1c27ea5ca |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7rLLsHavbGugATtsGIzY1ss-psWKYsV6aFcsN4HWI03ROkXiHPrvJ8pKkGxADztapmhZpEhCIj8R8pn7urCC-yzYf5fxQtmsqr3JCmuYZa50edzM-Xkhz675j4mY7JGTdS0MplUm29_b9GitU8sozeboYTYbXZV5HQOCEqN6WWNFOeNVLOKbHG_2WRDtpI7X8CJ9hh1S7Uyf5nULC0TLLPOI4YmFtFv-KcL477ipf8PQv7Mpt9zT6UvyIsWVdNwP_YDsufaQHKSVu6RfErz011fkMdbcIhu3oLAB5qRzT-9nEZYp8DF93Uj3SPtLvYODo5giP6WFvKKLy4sxDZrnaMrExhfQWrq8mXfTVUvvXQeI_hoYbpG8Jten33-dnGXpAobMiEp1mbeFlSAk84UCVyJSD4jCeNXIGqralghIBoY3ojK1zxtllTJCec8NsNoBe0P223nr3hHKeAmVbVhj84ZDI8F7UdXOQWiX0qkBKdbTrk1CJ8dLMu70Og3tVqOoNIpK50oHUQ3It02fhx6b40nqY5TmhhJxtWPDfDHVSbE0z0Ea4yDnynDOfcOZgcYXplQOhIEBEWtd0DtqGljNnvz4p7Xi6LB-8VAGWjdfLTUePIeQKSjwgLztFWkzRMYKxmQVJkftqNjOP-y-aWc3ESNcxcBSvP_P8X4gz_GpL7r8SPa7xcodheira4bk2fj88vf5MO5eDONi-wMQAzOk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa67rBdhnXP7KkBO2wYjNrWyz62xYp0a3NYWyA3gdYjTbE6ReIc-u8nykqQbEAPu-pByyJFEhL5kZDP3NeFFdxnQf-7jBfKZlXtTVZYwyxzpcvjZc7ZSA4v-Y-xGO-Qo1UuDIZVJt3f6_SorVPLftrN_dvpdP-8zOvoEJTo1ctaPSAPgzegsH7DyfhwfdGCcCd1rMOLEzKckZJn-jiva5gjXGaZRxBPzKTdMFARx3_LTv3rh_4dTrlhn46fkifJsaQH_dr3yI5rn5G9dHQX9EvCl_76nNzFpFsk4-YU1sicdObpzTTiMgU6pk8c6e5oX9U7WDiKMfITWshzOv81OqBB9BxNodjYAa2li6tZN1m29MZ1gPCvgeDGkBfk8vj7xdEwSxUYMiMq1WXeFlaCkMwXClyJUD0gCuNVI2uoalsiIhkY3ojK1D5vlFXKCOU9N8BqB-wl2W1nrXtNKOMlVLZhjc0bDo0E70VVOwehXUqnBqRYbbs2CZ4cq2T81qs4tGuNrNLIKp0rHVg1IN_Wc257cI57Rx8iN9cjEVg7NszmE50kS_McpDEOcq4M59w3nBlofGFK5UAYGBCxkgW9JaeB1PTej39aCY4OBxhfZaB1s-VC48tz8JmCBA_Iq16Q1ktkrGBMVmFz1JaIbf3Ddk87vYog4Sp6luLNf673I3k0vDg71acno59vyWPs6TMw35Hdbr5074Mr1jUf4lH7A5ZvNCs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicenter+assessment+of+microbial+community+profiling+using+16S+rRNA+gene+sequencing+and+shotgun+metagenomic+sequencing&rft.jtitle=Journal+of+advanced+research&rft.au=Han%2C+Dongsheng&rft.au=Gao%2C+Peng&rft.au=Li%2C+Rui&rft.au=Tan%2C+Ping&rft.date=2020-11-01&rft.issn=2090-1232&rft.volume=26&rft.spage=111&rft_id=info:doi/10.1016%2Fj.jare.2020.07.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon |