Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing

[Display omitted] Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies. To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced research Vol. 26; pp. 111 - 121
Main Authors Han, Dongsheng, Gao, Peng, Li, Rui, Tan, Ping, Xie, Jiehong, Zhang, Rui, Li, Jinming
Format Journal Article
LanguageEnglish
Published Egypt Elsevier B.V 01.11.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies. To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions. We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples. A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples. Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition.
AbstractList Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies.INTRODUCTIONMicrobiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies.To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions.OBJECTIVESTo systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions.We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples.METHODSWe designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples.A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples.RESULTSA wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples.Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition.CONCLUSIONSWell-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition.
[Display omitted] Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies. To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions. We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples. A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples. Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition.
Introduction: Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies. Objectives: To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions. Methods: We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples. Results: A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples. Conclusions: Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition.
Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies. To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions. We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples. A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples. Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition.
Author Han, Dongsheng
Xie, Jiehong
Tan, Ping
Li, Rui
Gao, Peng
Zhang, Rui
Li, Jinming
Author_xml – sequence: 1
  givenname: Dongsheng
  orcidid: 0000-0002-1892-8603
  surname: Han
  fullname: Han, Dongsheng
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China
– sequence: 2
  givenname: Peng
  surname: Gao
  fullname: Gao, Peng
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China
– sequence: 3
  givenname: Rui
  surname: Li
  fullname: Li, Rui
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China
– sequence: 4
  givenname: Ping
  surname: Tan
  fullname: Tan, Ping
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China
– sequence: 5
  givenname: Jiehong
  surname: Xie
  fullname: Xie, Jiehong
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China
– sequence: 6
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  email: ruizhang@nccl.org.cn
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China
– sequence: 7
  givenname: Jinming
  surname: Li
  fullname: Li, Jinming
  email: jmli@nccl.org.cn
  organization: National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33133687$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARLaU_wAJ5yWYGO34lEkKqqgKVCkg81taNcz31KLGLnVSav8dhyqhlUS_8uuccW-eel9VRiAGr6jWja0aZerddbyHhuqY1XVO9pow-q05q2tIVq2txdNjz-rg6y3lLy-BN0zL2ojrmnHGuGn1S7b7Mw-QthgkTgZwx57EcSHRk9DbFzsNAbBzHOfhpR25TdH7wYUPmvMxM_SDp-9dzssGAJOPvGYNdChB6km_itJkDGXGCUo9F8AHkVfXcwZDx7H49rX59vPx58Xl1_e3T1cX59crKRk8r17NegVTcMQ1YM6YkSGad7lQLTdsXAxQFKzrZ2NbRTvdaW6mdExZ4i8BPq6u9bh9ha26THyHtTARv_l7EtDGQigUDGkFBWYtAhbZCCNcJbqFzzNYaQdpF68Ne63buRuwX2xIMj0QfV4K_MZt4Z7RshNKyCLy9F0ixGJEnM_pscRggYJyzqYVUjeRMtQX65uFbh0f-9a4A6j2gtCnnhO4AYdQsGTFbs2TELBkxVJuSkUJq_iNZP8Hk4_JfPzxNfb-nYunWncdksvWll9j7hHYqdvqn6H8ADFvbGg
CitedBy_id crossref_primary_10_3389_fenvc_2020_570326
crossref_primary_10_3389_frmbi_2022_1092771
crossref_primary_10_1128_spectrum_02932_23
crossref_primary_10_1007_s43657_025_00232_x
crossref_primary_10_1080_10643389_2023_2181620
crossref_primary_10_3389_fmicb_2024_1350164
crossref_primary_10_1128_aem_01094_24
crossref_primary_10_1016_j_scitotenv_2024_176173
crossref_primary_10_1099_acmi_0_000754_v3
crossref_primary_10_1007_s12010_021_03750_2
crossref_primary_10_3389_fmicb_2021_685935
crossref_primary_10_1038_s41598_023_46062_7
crossref_primary_10_3389_fcimb_2023_1183390
crossref_primary_10_1038_s42003_024_06594_8
crossref_primary_10_30699_ijmm_18_3_135
crossref_primary_10_1007_s00203_021_02576_0
crossref_primary_10_1007_s13762_024_05957_2
crossref_primary_10_1080_14737159_2021_2001329
crossref_primary_10_1016_j_isci_2024_108861
crossref_primary_10_1186_s12859_021_04410_2
crossref_primary_10_3389_fimmu_2022_1016440
crossref_primary_10_3390_ijms24021041
crossref_primary_10_1016_j_watres_2022_119189
crossref_primary_10_1186_s40168_021_01048_3
crossref_primary_10_1017_gmb_2023_3
crossref_primary_10_1111_jam_15711
crossref_primary_10_1080_07388551_2023_2254933
crossref_primary_10_3389_fmicb_2021_678319
crossref_primary_10_3389_fcimb_2022_907239
crossref_primary_10_1016_j_clce_2022_100026
crossref_primary_10_1016_j_enzmictec_2025_110619
crossref_primary_10_1094_PBIOMES_05_21_0034_R
crossref_primary_10_3389_fcimb_2022_906303
crossref_primary_10_1016_j_jare_2021_09_011
crossref_primary_10_1016_j_trac_2024_117843
crossref_primary_10_1094_PBIOMES_6_2
crossref_primary_10_3389_fimmu_2023_1114586
crossref_primary_10_1128_msystems_00937_22
crossref_primary_10_3389_fcimb_2022_831186
crossref_primary_10_3390_insects13080719
crossref_primary_10_28996_2618_9801_2024_3_283_302
crossref_primary_10_1111_prd_12393
crossref_primary_10_1016_j_ijfoodmicro_2024_110588
crossref_primary_10_1128_spectrum_01915_21
crossref_primary_10_1016_j_fshw_2021_12_010
Cites_doi 10.1371/journal.pone.0088982
10.1016/j.neubiorev.2020.02.003
10.1128/JCM.42.4.1727-1730.2004
10.1111/nmo.12378
10.1186/s13059-019-1843-8
10.7171/jbt.17-2801-003
10.1038/ncomms7528
10.1128/mSystems.00271-18
10.1111/j.1472-765X.2007.02198.x
10.1038/s41579-018-0029-9
10.1038/s41564-018-0202-y
10.1136/gutjnl-2015-309800
10.3389/fmicb.2016.00200
10.1038/nature08821
10.1128/AEM.02627-17
10.1038/nbt.3960
10.1056/NEJMra1600266
10.1371/journal.pone.0033865
10.1093/nar/gkw984
10.1186/s12866-016-0738-z
10.1038/s41467-017-01973-8
10.3389/fmicb.2019.01084
10.1038/s41396-019-0484-y
10.1016/j.jmii.2013.07.001
10.1186/s12864-015-2194-9
10.1371/journal.pone.0094249
10.1038/nature13568
10.1016/j.ijmm.2016.03.005
10.1111/1462-2920.13023
10.1038/nrmicro.2016.83
10.1038/nbt.3935
10.1016/j.febslet.2014.09.039
10.1186/1471-2164-15-443
10.1038/s41591-019-0406-6
10.1016/j.cell.2019.07.010
10.1111/1755-0998.13011
10.1186/s12866-015-0351-6
10.1038/nbt.3981
10.1128/mSystems.00547-19
10.1016/j.cell.2019.12.025
10.1038/d41586-019-02262-8
10.1111/1462-2920.13463
10.1038/nature11450
10.1155/2014/548683
10.1186/s13059-017-1299-7
10.1186/s13059-018-1616-9
10.1016/j.jmoldx.2019.05.002
10.7717/peerj.8317
10.1016/j.tim.2018.11.003
10.1093/nar/gks808
10.1371/journal.pone.0071360
10.1038/nature11234
10.1128/mSystems.00023-18
10.1126/science.aad3503
10.1007/s13679-019-00352-2
10.1002/biof.1565
10.1016/j.cell.2018.07.038
10.1038/s41587-018-0009-7
10.1186/s12864-015-2063-6
10.1186/s40168-019-0678-6
10.1186/s40168-017-0267-5
10.1038/nmeth.3176
10.1038/s41586-019-1238-8
10.1056/NEJMra1004965
10.1186/s12915-014-0087-z
10.1093/femsec/fiz045
10.1128/mBio.00525-18
10.1016/j.ajog.2018.10.018
10.1016/j.mib.2013.09.008
ContentType Journal Article
Copyright 2020
2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020
Copyright_xml – notice: 2020
– notice: 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
– notice: 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.jare.2020.07.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2090-1224
EndPage 121
ExternalDocumentID oai_doaj_org_article_40a6ccea047c444fb43cabf1c27ea5ca
PMC7584675
33133687
10_1016_j_jare_2020_07_010
S2090123220301697
Genre Journal Article
GroupedDBID --K
0R~
0SF
1B1
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABMAC
ACGFS
ADBBV
ADEZE
AEFWE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
J1W
KQ8
M41
NCXOZ
O-L
O9-
OK1
OZT
RIG
ROL
RPM
SES
SSZ
UNMZH
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c587t-fd1d6a563f17ae21165a51cf7b69a89d20260ac4b58c9f0b7d77c57ff4ca39ea3
IEDL.DBID IXB
ISSN 2090-1232
IngestDate Wed Aug 27 01:25:25 EDT 2025
Thu Aug 21 17:43:59 EDT 2025
Fri Jul 11 04:45:51 EDT 2025
Thu Jan 02 22:54:09 EST 2025
Tue Jul 01 03:01:30 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Fri Feb 23 02:41:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Shotgun metagenomic sequencing
Microbiota
16S rRNA gene sequencing
Microbial community profiling
Microbiome
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-fd1d6a563f17ae21165a51cf7b69a89d20260ac4b58c9f0b7d77c57ff4ca39ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1892-8603
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2090123220301697
PMID 33133687
PQID 2456853169
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_40a6ccea047c444fb43cabf1c27ea5ca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584675
proquest_miscellaneous_2456853169
pubmed_primary_33133687
crossref_primary_10_1016_j_jare_2020_07_010
crossref_citationtrail_10_1016_j_jare_2020_07_010
elsevier_sciencedirect_doi_10_1016_j_jare_2020_07_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Egypt
PublicationPlace_xml – name: Egypt
PublicationTitle Journal of advanced research
PublicationTitleAlternate J Adv Res
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zinter, Mayday, Ryckman, Jelliffe-Pawlowski, DeRisi (b0260) 2019; 7
Tourlousse, Yoshiike, Ohashi, Matsukura, Noda, Sekiguchi (b0055) 2016
Kim, Hofstaedter, Zhao, Mattei, Tanes, Clarke (b0265) 2017; 5
Quince, Walker, Simpson, Loman, Segata (b0255) 2017; 35
Duvallet, Gibbons, Gurry, Irizarry, Alm (b0100) 2017; 8
Wirbel, Pyl, Kartal, Zych, Kashani, Milanese (b0105) 2019; 25
Riva, Borgo, Lassandro, Verduci, Morace, Borghi (b0110) 2017; 19
Parada, Needham, Fuhrman (b0275) 2016; 18
Culbreath, Melanson, Gale, Baker, Li, Saebo (b0345) 2019; 21
Farris, Olson (b0305) 2007; 45
Ghyselinck, Pfeiffer, Heylen, Sessitsch, De Vos (b0285) 2013; 8
Kennedy, Walker, Berry, Duncan, Farquarson, Louis (b0200) 2014; 9
Fouhy, Clooney, Stanton, Claesson, Cotter (b0295) 2016; 16
Allen-Vercoe (b0045) 2013; 16
Klindworth, Pruesse, Schweer, Peplies, Quast, Horn (b0215) 2013; 41
Rintala, Pietilä, Munukka, Eerola, Pursiheimo, Laiho (b0290) 2017; 28
Nelson, Morrison, Benjamino, Grim, Graf (b0300) 2014; 9
Wang, Jia (b0010) 2016; 14
Forster, Kumar, Anonye, Almeida, Viciani, Stares (b0080) 2019; 37
Kioroglou, Mas, Portillo (b0065) 2019; 10
de Goffau, Lager, Salter, Wagner, Kronbichler, Charnock-Jones (b0320) 2018; 3
Eisenhofer, Minich, Marotz, Cooper, Knight, Weyrich (b0330) 2019; 27
Buchfink, Xie, Huson (b0230) 2015; 12
Salter, Cox, Turek, Calus, Cookson, Moffatt (b0245) 2014; 12
Nuzum, Loughman, Szymlek-Gay, Hendy, Teo, Macpherson (b0145) 2020
Ducarmon, Hornung, Geelen, Kuijper, Zwittink (b0210) 2020; 5
Greathouse, Sinha, Vogtmann (b0175) 2019; 20
Walters, Xu, Knight (b0130) 2014; 588
McInnes, Schett (b0025) 2011; 365
Knight, Vrbanac, Taylor, Aksenov, Callewaert, Debelius (b0340) 2018; 16
Proctor, Creasy, Fettweis, Lloyd-Price, Mahurkar, Zhou (b0090) 2019; 569
Han, Sun, Lv, Wang (b0205) 2019; 8
Feng, Liang, Jia, Stadlmayr, Tang, Lan (b0140) 2015; 6
Steen, Crits-Christoph, Carini, DeAngelis, Fierer, Lloyd (b0040) 2019; 13
Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207–14.
Yuan, Cohen, Ravel, Abdo, Forney (b0270) 2012; 7
D'Amore, Ijaz, Schirmer, Kenny, Gregory, Darby (b0280) 2016; 17
Walter, Armet, Finlay, Shanahan (b0170) 2020; 180
Qin, Li, Cai, Li, Zhu, Zhang (b0005) 2012; 490
Bowers, Clum, Tice, Lim, Singh, Ciobanu (b0350) 2015; 16
McIntyre, Ounit, Afshinnekoo, Prill, Hénaff, Alexander (b0315) 2017; 18
Hiergeist, Reischl, Gessner (b0185) 2016; 306
Qiu, Xia, Deng, Jiao, Liu, Li (b0120) 2019; 45
Lynch, Pedersen (b0060) 2016; 375
Qin, Li, Raes, Arumugam, Burgdorf, Manichanh (b0085) 2010; 464
Naseribafrouei, Hestad, Avershina, Sekelja, Linløkken, Wilson (b0030) 2014; 26
Ye, Siddle, Park, Sabeti (b0235) 2019; 178
Costea, Zeller, Sunagawa, Pelletier, Alberti, Levenez (b0225) 2017
Starke, Vahjen, Pieper, Zentek (b0310) 2014; 2014
Qin, Li, Raes, Arumugam, Tims, Vos (b0240) 2010; 464
Weyrich, Farrer, Eisenhofer, Arriola, Young, Selway (b0335) 2019; 19
Sinha, Abu-Ali, Vogtmann, Fodor, Ren, Amir (b0190) 2017; 35
Teng, Hsueh, Huang, Tsai (b0220) 2004; 42
Hornung, Zwittink, Kuijper (b0165) 2019; 95
Pollock, Glendinning, Wisedchanwet, Watson (b0250) 2018; 84
Yu, Feng, Wong, Zhang, Liang, Qin (b0015) 2016; 66
Fischbach (b0035) 2018; 174
Hansen, Rubel, Bailey, Ranciaro, Thompson, Campbell (b0075) 2019; 20
Chen, Hui, Hui, Yeoh, Wong, Chan (b0180) 2019; 4
Brooks, Edwards, Harwich, Rivera, Fettweis, Serrano (b0360) 2015; 15
Falony, Joossens, Vieira-Silva, Wang, Darzi, Faust (b0070) 2016; 352
Vallianou, Stratigou, Christodoulatos, Dalamaga (b0135) 2019; 8
Motley, Picuri, Crowder, Minich, Hofstadler, Eshoo (b0325) 2014; 15
Qin, Yang, Li, Prifti, Chen, Shao (b0020) 2014; 513
Chen, Sun, Jiang, Shen, Li, Hu (b0125) 2020; 8
Yeh, Needham, Sieradzki, Fuhrman (b0355) 2018; 3
Patrone, Vajana, Minuti, Callegari, Federico, Loguercio (b0115) 2016; 7
Yuan (10.1016/j.jare.2020.07.010_b0270) 2012; 7
Vallianou (10.1016/j.jare.2020.07.010_b0135) 2019; 8
Riva (10.1016/j.jare.2020.07.010_b0110) 2017; 19
Zinter (10.1016/j.jare.2020.07.010_b0260) 2019; 7
Walter (10.1016/j.jare.2020.07.010_b0170) 2020; 180
Naseribafrouei (10.1016/j.jare.2020.07.010_b0030) 2014; 26
D'Amore (10.1016/j.jare.2020.07.010_b0280) 2016; 17
Walters (10.1016/j.jare.2020.07.010_b0130) 2014; 588
Nelson (10.1016/j.jare.2020.07.010_b0300) 2014; 9
Qin (10.1016/j.jare.2020.07.010_b0240) 2010; 464
Proctor (10.1016/j.jare.2020.07.010_b0090) 2019; 569
Duvallet (10.1016/j.jare.2020.07.010_b0100) 2017; 8
Yu (10.1016/j.jare.2020.07.010_b0015) 2016; 66
Qin (10.1016/j.jare.2020.07.010_b0005) 2012; 490
Chen (10.1016/j.jare.2020.07.010_b0195) 2015; 48
McInnes (10.1016/j.jare.2020.07.010_b0025) 2011; 365
Steen (10.1016/j.jare.2020.07.010_b0040) 2019; 13
Fouhy (10.1016/j.jare.2020.07.010_b0295) 2016; 16
Feng (10.1016/j.jare.2020.07.010_b0140) 2015; 6
de Goffau (10.1016/j.jare.2020.07.010_b0320) 2018; 3
Fischbach (10.1016/j.jare.2020.07.010_b0035) 2018; 174
Kennedy (10.1016/j.jare.2020.07.010_b0200) 2014; 9
Salter (10.1016/j.jare.2020.07.010_b0245) 2014; 12
Kioroglou (10.1016/j.jare.2020.07.010_b0065) 2019; 10
Starke (10.1016/j.jare.2020.07.010_b0310) 2014; 2014
Sinha (10.1016/j.jare.2020.07.010_b0190) 2017; 35
Ghyselinck (10.1016/j.jare.2020.07.010_b0285) 2013; 8
Ducarmon (10.1016/j.jare.2020.07.010_b0210) 2020; 5
Costea (10.1016/j.jare.2020.07.010_b0225) 2017
Forster (10.1016/j.jare.2020.07.010_b0080) 2019; 37
Motley (10.1016/j.jare.2020.07.010_b0325) 2014; 15
10.1016/j.jare.2020.07.010_b0050
Wirbel (10.1016/j.jare.2020.07.010_b0105) 2019; 25
Culbreath (10.1016/j.jare.2020.07.010_b0345) 2019; 21
Hansen (10.1016/j.jare.2020.07.010_b0075) 2019; 20
Eisenhofer (10.1016/j.jare.2020.07.010_b0330) 2019; 27
Segata (10.1016/j.jare.2020.07.010_b0160) 2019; 572
Teng (10.1016/j.jare.2020.07.010_b0220) 2004; 42
Han (10.1016/j.jare.2020.07.010_b0205) 2019; 8
Buchfink (10.1016/j.jare.2020.07.010_b0230) 2015; 12
Qin (10.1016/j.jare.2020.07.010_b0085) 2010; 464
Nuzum (10.1016/j.jare.2020.07.010_b0145) 2020
Falony (10.1016/j.jare.2020.07.010_b0070) 2016; 352
Ye (10.1016/j.jare.2020.07.010_b0235) 2019; 178
Greathouse (10.1016/j.jare.2020.07.010_b0175) 2019; 20
Qin (10.1016/j.jare.2020.07.010_b0020) 2014; 513
Allen-Vercoe (10.1016/j.jare.2020.07.010_b0045) 2013; 16
Wang (10.1016/j.jare.2020.07.010_b0010) 2016; 14
Quince (10.1016/j.jare.2020.07.010_b0255) 2017; 35
Bowers (10.1016/j.jare.2020.07.010_b0350) 2015; 16
Yeh (10.1016/j.jare.2020.07.010_b0355) 2018; 3
Lynch (10.1016/j.jare.2020.07.010_b0060) 2016; 375
Patrone (10.1016/j.jare.2020.07.010_b0115) 2016; 7
Theis (10.1016/j.jare.2020.07.010_b0150) 2019; 220
Weyrich (10.1016/j.jare.2020.07.010_b0335) 2019; 19
Chen (10.1016/j.jare.2020.07.010_b0180) 2019; 4
Tourlousse (10.1016/j.jare.2020.07.010_b0055) 2016
Klindworth (10.1016/j.jare.2020.07.010_b0215) 2013; 41
Pollock (10.1016/j.jare.2020.07.010_b0250) 2018; 84
Parada (10.1016/j.jare.2020.07.010_b0275) 2016; 18
Hiergeist (10.1016/j.jare.2020.07.010_b0185) 2016; 306
Kim (10.1016/j.jare.2020.07.010_b0265) 2017; 5
Schloss (10.1016/j.jare.2020.07.010_b0095) 2018; 9
McIntyre (10.1016/j.jare.2020.07.010_b0315) 2017; 18
Hornung (10.1016/j.jare.2020.07.010_b0165) 2019; 95
Chen (10.1016/j.jare.2020.07.010_b0125) 2020; 8
Hornung (10.1016/j.jare.2020.07.010_b0155) 2019
Farris (10.1016/j.jare.2020.07.010_b0305) 2007; 45
Brooks (10.1016/j.jare.2020.07.010_b0360) 2015; 15
Rintala (10.1016/j.jare.2020.07.010_b0290) 2017; 28
Qiu (10.1016/j.jare.2020.07.010_b0120) 2019; 45
Knight (10.1016/j.jare.2020.07.010_b0340) 2018; 16
References_xml – volume: 588
  start-page: 4223
  year: 2014
  end-page: 4233
  ident: b0130
  article-title: Meta-analyses of human gut microbes associated with obesity and ibd
  publication-title: Febs Lett
– volume: 95
  year: 2019
  ident: b0165
  article-title: Issues and current standards of controls in microbiome research
  publication-title: FEMS Microbiol Ecol
– volume: 8
  start-page: e8317
  year: 2020
  ident: b0125
  article-title: Alteration of the gut microbiota associated with childhood obesity by 16s rrna gene sequencing
  publication-title: Peerj
– volume: 464
  start-page: 59
  year: 2010
  end-page: 65
  ident: b0085
  article-title: A human gut microbial gene catalogue established by metagenomic sequencing
  publication-title: Nature
– year: 2020
  ident: b0145
  article-title: Gut microbiota differences between healthy older adults and individuals with parkinson's disease: a systematic review
  publication-title: Neurosci Biobehav Rev
– volume: 42
  start-page: 1727
  year: 2004
  end-page: 1730
  ident: b0220
  article-title: Identification of bacteroides thetaiotaomicron on the basis of an unexpected specific amplicon of universal 16s ribosomal dna pcr
  publication-title: J Clin Microbiol
– volume: 37
  start-page: 186
  year: 2019
  end-page: 192
  ident: b0080
  article-title: A human gut bacterial genome and culture collection for improved metagenomic analyses
  publication-title: Nat Biotechnol
– volume: 45
  start-page: 376
  year: 2007
  end-page: 381
  ident: b0305
  article-title: Detection of actinobacteria cultivated from environmental samples reveals bias in universal primers
  publication-title: Lett Appl Microbiol
– year: 2017
  ident: b0225
  article-title: Towards standards for human fecal sample processing in metagenomic studies
  publication-title: Nat Biotechnol
– volume: 174
  start-page: 785
  year: 2018
  end-page: 790
  ident: b0035
  article-title: Microbiome: focus on causation and mechanism
  publication-title: Cell
– volume: 16
  start-page: 123
  year: 2016
  ident: b0295
  article-title: 16s rrna gene sequencing of mock microbial populations- impact of dna extraction method, primer choice and sequencing platform
  publication-title: BMC Microbiol
– volume: 28
  start-page: 19
  year: 2017
  end-page: 30
  ident: b0290
  article-title: Gut microbiota analysis results are highly dependent on the 16s rrna gene target region, whereas the impact of dna extraction is minor
  publication-title: J Biomol Tech: JBT
– volume: 15
  start-page: 443
  year: 2014
  ident: b0325
  article-title: Improved multiple displacement amplification (imda) and ultraclean reagents
  publication-title: BMC Genomics
– volume: 6
  start-page: 6528
  year: 2015
  ident: b0140
  article-title: Gut microbiome development along the colorectal adenoma-carcinoma sequence
  publication-title: Nat Commun
– volume: 365
  start-page: 2205
  year: 2011
  end-page: 2219
  ident: b0025
  article-title: The Pathogenesis of Rheumatoid Arthritis
  publication-title: New Engl. J. Med.
– volume: 8
  start-page: e626
  year: 2019
  ident: b0205
  article-title: Biases from different dna extraction methods in intestine microbiome research based on 16s rdna sequencing: a case in the koi carp, cyprinus carpio var
  publication-title: Koi Microbiologyopen
– volume: 12
  start-page: 59
  year: 2015
  end-page: 60
  ident: b0230
  article-title: Fast and sensitive protein alignment using diamond
  publication-title: Nat Methods
– volume: 18
  year: 2017
  ident: b0315
  article-title: Comprehensive benchmarking and ensemble approaches for metagenomic classifiers
  publication-title: Genome Biol
– volume: 7
  start-page: 62
  year: 2019
  ident: b0260
  article-title: Towards precision quantification of contamination in metagenomic sequencing experiments
  publication-title: Microbiome
– volume: 16
  start-page: 410
  year: 2018
  end-page: 422
  ident: b0340
  article-title: Best practices for analysing microbiomes
  publication-title: Nat Rev Microbiol
– volume: 8
  start-page: 317
  year: 2019
  end-page: 332
  ident: b0135
  article-title: Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives
  publication-title: Curr Obesity Rep
– volume: 8
  start-page: e71360
  year: 2013
  ident: b0285
  article-title: The effect of primer choice and short read sequences on the outcome of 16s rrna gene based diversity studies
  publication-title: Plos One
– volume: 9
  start-page: e94249
  year: 2014
  ident: b0300
  article-title: Analysis, optimization and verification of illumina-generated 16s rrna gene amplicon surveys
  publication-title: Plos One
– volume: 9
  start-page: e88982
  year: 2014
  ident: b0200
  article-title: The impact of different dna extraction kits and laboratories upon the assessment of human gut microbiota composition by 16s rrna gene sequencing
  publication-title: Plos One
– volume: 16
  start-page: 856
  year: 2015
  ident: b0350
  article-title: Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community
  publication-title: BMC Genomics
– volume: 20
  year: 2019
  ident: b0175
  article-title: Dna extraction for human microbiome studies: the issue of standardization
  publication-title: Genome Biol
– volume: 15
  year: 2015
  ident: b0360
  article-title: The truth about metagenomics: quantifying and counteracting bias in 16s rrna studies
  publication-title: BMC Microbiol
– volume: 35
  start-page: 1077
  year: 2017
  end-page: 1086
  ident: b0190
  article-title: Assessment of variation in microbial community amplicon sequencing by the microbiome quality control (mbqc) project consortium
  publication-title: Nat Biotechnol
– volume: 3
  start-page: 851
  year: 2018
  end-page: 853
  ident: b0320
  article-title: Recognizing the reagent microbiome
  publication-title: Nat Microbiol
– volume: 13
  start-page: 3126
  year: 2019
  end-page: 3130
  ident: b0040
  article-title: High proportions of bacteria and archaea across most biomes remain uncultured
  publication-title: ISME J
– volume: 45
  start-page: 892
  year: 2019
  end-page: 901
  ident: b0120
  article-title: Glucorticoid-induced obesity individuals have distinct signatures of the gut microbiome
  publication-title: Biofactors
– volume: 26
  start-page: 1155
  year: 2014
  end-page: 1162
  ident: b0030
  article-title: Correlation between the human fecal microbiota and depression
  publication-title: Neurogastroenterol Motility
– volume: 66
  start-page: 70
  year: 2016
  end-page: 78
  ident: b0015
  article-title: Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer
  publication-title: Gut
– volume: 19
  start-page: 982
  year: 2019
  end-page: 996
  ident: b0335
  article-title: Laboratory contamination over time during low-biomass sample analysis
  publication-title: Mol Ecol Resour
– volume: 21
  start-page: 913
  year: 2019
  end-page: 923
  ident: b0345
  article-title: Validation and retrospective clinical evaluation of a quantitative 16s rrna gene metagenomic sequencing assay for bacterial pathogen detection in body fluids
  publication-title: J Mol Diag
– volume: 14
  start-page: 508
  year: 2016
  end-page: 522
  ident: b0010
  article-title: Metagenome-wide association studies: fine-mining the microbiome
  publication-title: Nat Rev Microbiol
– volume: 17
  start-page: 55
  year: 2016
  ident: b0280
  article-title: A comprehensive benchmarking study of protocols and sequencing platforms for 16s rrna community profiling
  publication-title: BMC Genomics
– volume: 7
  start-page: 200
  year: 2016
  ident: b0115
  article-title: Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass
  publication-title: Front Microbiol
– volume: 178
  start-page: 779
  year: 2019
  end-page: 794
  ident: b0235
  article-title: Benchmarking metagenomics tools for taxonomic classification
  publication-title: Cell
– volume: 25
  start-page: 679
  year: 2019
  end-page: 689
  ident: b0105
  article-title: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer
  publication-title: Nat Med
– volume: 180
  start-page: 221
  year: 2020
  end-page: 232
  ident: b0170
  article-title: Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents
  publication-title: Cell
– volume: 16
  start-page: 625
  year: 2013
  end-page: 629
  ident: b0045
  article-title: Bringing the gut microbiota into focus through microbial culture: recent progress and future perspective
  publication-title: Curr Opin Microbiol
– volume: 306
  start-page: 334
  year: 2016
  end-page: 342
  ident: b0185
  article-title: Multicenter quality assessment of 16s ribosomal dna-sequencing for microbiome analyses reveals high inter-center variability
  publication-title: Int J Med Microbiol
– volume: 352
  start-page: 560
  year: 2016
  end-page: 564
  ident: b0070
  article-title: Population-level analysis of gut microbiome variation
  publication-title: Science
– reference: Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207–14.
– volume: 27
  start-page: 105
  year: 2019
  end-page: 117
  ident: b0330
  article-title: Contamination in low microbial biomass microbiome studies: issues and recommendations
  publication-title: Trends Microbiol
– volume: 490
  start-page: 55
  year: 2012
  end-page: 60
  ident: b0005
  article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes
  publication-title: Nature
– volume: 10
  year: 2019
  ident: b0065
  article-title: Evaluating the effect of qiime balanced default parameters on metataxonomic analysis workflows with a mock community
  publication-title: Front Microbiol
– volume: 12
  start-page: 87
  year: 2014
  ident: b0245
  article-title: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses
  publication-title: BMC Biol
– year: 2016
  ident: b0055
  article-title: Synthetic spike-in standards for high-throughput 16s rrna gene amplicon sequencing
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 1403
  year: 2016
  end-page: 1414
  ident: b0275
  article-title: Every base matters: assessing small subunit rrna primers for marine microbiomes with mock communities, time series and global field samples
  publication-title: Environ Microbiol
– volume: 35
  start-page: 833
  year: 2017
  ident: b0255
  article-title: Shotgun metagenomics, from sampling to analysis
  publication-title: Nat Biotechnol
– volume: 375
  start-page: 2369
  year: 2016
  end-page: 2379
  ident: b0060
  article-title: The human intestinal microbiome in health and disease
  publication-title: N Engl J Med
– volume: 2014
  start-page: 548610
  year: 2014
  end-page: 548683
  ident: b0310
  article-title: The influence of dna extraction procedure and primer set on the bacterial community analysis by pyrosequencing of barcoded 16s rrna gene amplicons
  publication-title: Mol Biol Int
– volume: 4
  year: 2019
  ident: b0180
  article-title: Impact of preservation method and 16s rrna hypervariable region on gut microbiota profiling
  publication-title: Msystems
– volume: 7
  start-page: e33865
  year: 2012
  ident: b0270
  article-title: Evaluation of methods for the extraction and purification of DNA from the human microbiome
  publication-title: Plos One
– volume: 464
  start-page: 59
  year: 2010
  end-page: 65
  ident: b0240
  article-title: A human gut microbial gene catalogue established by metagenomic sequencing
  publication-title: Nature
– volume: 20
  year: 2019
  ident: b0075
  article-title: Population structure of human gut bacteria in a diverse cohort from rural tanzania and botswana
  publication-title: Genome Biol
– volume: 569
  start-page: 641
  year: 2019
  end-page: 648
  ident: b0090
  article-title: The integrative human microbiome project
  publication-title: Nature
– volume: 19
  start-page: 95
  year: 2017
  end-page: 105
  ident: b0110
  article-title: Pediatric obesity is associated with an altered gut microbiota and discordant shifts in firmicutes populations
  publication-title: Environ Microbiol
– volume: 84
  year: 2018
  ident: b0250
  article-title: The madness of microbiome: attempting to find consensus “best practice” for 16s microbiome studies
  publication-title: Appl Environ Microbiol
– volume: 5
  start-page: 14
  year: 2017
  end-page: 52
  ident: b0265
  article-title: Optimizing methods and dodging pitfalls in microbiome research
  publication-title: Microbiome
– volume: 8
  year: 2017
  ident: b0100
  article-title: Meta-analysis of gut microbiome studies identifies disease-specific and shared responses
  publication-title: Nat Commun
– volume: 5
  year: 2020
  ident: b0210
  article-title: Toward standards in clinical microbiota studies: comparison of three dna extraction methods and two bioinformatic pipelines
  publication-title: Msystems
– volume: 513
  start-page: 59
  year: 2014
  end-page: 64
  ident: b0020
  article-title: Alterations of the human gut microbiome in liver cirrhosis
  publication-title: Nature
– volume: 41
  start-page: e1
  year: 2013
  ident: b0215
  article-title: Evaluation of general 16s ribosomal rna gene pcr primers for classical and next-generation sequencing-based diversity studies
  publication-title: Nucleic Acids Res
– volume: 3
  start-page: e18
  year: 2018
  end-page: e23
  ident: b0355
  article-title: Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run
  publication-title: Msystems
– volume: 9
  start-page: e88982
  year: 2014
  ident: 10.1016/j.jare.2020.07.010_b0200
  article-title: The impact of different dna extraction kits and laboratories upon the assessment of human gut microbiota composition by 16s rrna gene sequencing
  publication-title: Plos One
  doi: 10.1371/journal.pone.0088982
– year: 2020
  ident: 10.1016/j.jare.2020.07.010_b0145
  article-title: Gut microbiota differences between healthy older adults and individuals with parkinson's disease: a systematic review
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2020.02.003
– volume: 42
  start-page: 1727
  year: 2004
  ident: 10.1016/j.jare.2020.07.010_b0220
  article-title: Identification of bacteroides thetaiotaomicron on the basis of an unexpected specific amplicon of universal 16s ribosomal dna pcr
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.42.4.1727-1730.2004
– volume: 26
  start-page: 1155
  year: 2014
  ident: 10.1016/j.jare.2020.07.010_b0030
  article-title: Correlation between the human fecal microbiota and depression
  publication-title: Neurogastroenterol Motility
  doi: 10.1111/nmo.12378
– volume: 20
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0175
  article-title: Dna extraction for human microbiome studies: the issue of standardization
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1843-8
– volume: 28
  start-page: 19
  year: 2017
  ident: 10.1016/j.jare.2020.07.010_b0290
  article-title: Gut microbiota analysis results are highly dependent on the 16s rrna gene target region, whereas the impact of dna extraction is minor
  publication-title: J Biomol Tech: JBT
  doi: 10.7171/jbt.17-2801-003
– volume: 6
  start-page: 6528
  year: 2015
  ident: 10.1016/j.jare.2020.07.010_b0140
  article-title: Gut microbiome development along the colorectal adenoma-carcinoma sequence
  publication-title: Nat Commun
  doi: 10.1038/ncomms7528
– volume: 4
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0180
  article-title: Impact of preservation method and 16s rrna hypervariable region on gut microbiota profiling
  publication-title: Msystems
  doi: 10.1128/mSystems.00271-18
– volume: 45
  start-page: 376
  year: 2007
  ident: 10.1016/j.jare.2020.07.010_b0305
  article-title: Detection of actinobacteria cultivated from environmental samples reveals bias in universal primers
  publication-title: Lett Appl Microbiol
  doi: 10.1111/j.1472-765X.2007.02198.x
– volume: 16
  start-page: 410
  year: 2018
  ident: 10.1016/j.jare.2020.07.010_b0340
  article-title: Best practices for analysing microbiomes
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0029-9
– volume: 3
  start-page: 851
  year: 2018
  ident: 10.1016/j.jare.2020.07.010_b0320
  article-title: Recognizing the reagent microbiome
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-018-0202-y
– volume: 66
  start-page: 70
  year: 2016
  ident: 10.1016/j.jare.2020.07.010_b0015
  article-title: Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309800
– volume: 7
  start-page: 200
  year: 2016
  ident: 10.1016/j.jare.2020.07.010_b0115
  article-title: Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.00200
– volume: 464
  start-page: 59
  year: 2010
  ident: 10.1016/j.jare.2020.07.010_b0240
  article-title: A human gut microbial gene catalogue established by metagenomic sequencing
  publication-title: Nature
  doi: 10.1038/nature08821
– volume: 84
  year: 2018
  ident: 10.1016/j.jare.2020.07.010_b0250
  article-title: The madness of microbiome: attempting to find consensus “best practice” for 16s microbiome studies
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02627-17
– year: 2017
  ident: 10.1016/j.jare.2020.07.010_b0225
  article-title: Towards standards for human fecal sample processing in metagenomic studies
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3960
– volume: 375
  start-page: 2369
  year: 2016
  ident: 10.1016/j.jare.2020.07.010_b0060
  article-title: The human intestinal microbiome in health and disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1600266
– volume: 7
  start-page: e33865
  year: 2012
  ident: 10.1016/j.jare.2020.07.010_b0270
  article-title: Evaluation of methods for the extraction and purification of DNA from the human microbiome
  publication-title: Plos One
  doi: 10.1371/journal.pone.0033865
– year: 2016
  ident: 10.1016/j.jare.2020.07.010_b0055
  article-title: Synthetic spike-in standards for high-throughput 16s rrna gene amplicon sequencing
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw984
– volume: 16
  start-page: 123
  year: 2016
  ident: 10.1016/j.jare.2020.07.010_b0295
  article-title: 16s rrna gene sequencing of mock microbial populations- impact of dna extraction method, primer choice and sequencing platform
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-016-0738-z
– volume: 8
  year: 2017
  ident: 10.1016/j.jare.2020.07.010_b0100
  article-title: Meta-analysis of gut microbiome studies identifies disease-specific and shared responses
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01973-8
– year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0155
  article-title: Response to: 'circulating microbiome in blood of different circulatory compartments' by Schierwagen et al.
  publication-title: Gut
– volume: 10
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0065
  article-title: Evaluating the effect of qiime balanced default parameters on metataxonomic analysis workflows with a mock community
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.01084
– volume: 13
  start-page: 3126
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0040
  article-title: High proportions of bacteria and archaea across most biomes remain uncultured
  publication-title: ISME J
  doi: 10.1038/s41396-019-0484-y
– volume: 48
  start-page: 80
  year: 2015
  ident: 10.1016/j.jare.2020.07.010_b0195
  article-title: Kocuria kristinae: a true pathogen in pediatric patients
  publication-title: J Microbiol Immunol Infect
  doi: 10.1016/j.jmii.2013.07.001
– volume: 17
  start-page: 55
  year: 2016
  ident: 10.1016/j.jare.2020.07.010_b0280
  article-title: A comprehensive benchmarking study of protocols and sequencing platforms for 16s rrna community profiling
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2194-9
– volume: 9
  start-page: e94249
  year: 2014
  ident: 10.1016/j.jare.2020.07.010_b0300
  article-title: Analysis, optimization and verification of illumina-generated 16s rrna gene amplicon surveys
  publication-title: Plos One
  doi: 10.1371/journal.pone.0094249
– volume: 513
  start-page: 59
  year: 2014
  ident: 10.1016/j.jare.2020.07.010_b0020
  article-title: Alterations of the human gut microbiome in liver cirrhosis
  publication-title: Nature
  doi: 10.1038/nature13568
– volume: 306
  start-page: 334
  year: 2016
  ident: 10.1016/j.jare.2020.07.010_b0185
  article-title: Multicenter quality assessment of 16s ribosomal dna-sequencing for microbiome analyses reveals high inter-center variability
  publication-title: Int J Med Microbiol
  doi: 10.1016/j.ijmm.2016.03.005
– volume: 18
  start-page: 1403
  year: 2016
  ident: 10.1016/j.jare.2020.07.010_b0275
  article-title: Every base matters: assessing small subunit rrna primers for marine microbiomes with mock communities, time series and global field samples
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13023
– volume: 14
  start-page: 508
  year: 2016
  ident: 10.1016/j.jare.2020.07.010_b0010
  article-title: Metagenome-wide association studies: fine-mining the microbiome
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2016.83
– volume: 35
  start-page: 833
  year: 2017
  ident: 10.1016/j.jare.2020.07.010_b0255
  article-title: Shotgun metagenomics, from sampling to analysis
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3935
– volume: 588
  start-page: 4223
  year: 2014
  ident: 10.1016/j.jare.2020.07.010_b0130
  article-title: Meta-analyses of human gut microbes associated with obesity and ibd
  publication-title: Febs Lett
  doi: 10.1016/j.febslet.2014.09.039
– volume: 15
  start-page: 443
  year: 2014
  ident: 10.1016/j.jare.2020.07.010_b0325
  article-title: Improved multiple displacement amplification (imda) and ultraclean reagents
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-443
– volume: 25
  start-page: 679
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0105
  article-title: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0406-6
– volume: 178
  start-page: 779
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0235
  article-title: Benchmarking metagenomics tools for taxonomic classification
  publication-title: Cell
  doi: 10.1016/j.cell.2019.07.010
– volume: 19
  start-page: 982
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0335
  article-title: Laboratory contamination over time during low-biomass sample analysis
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.13011
– volume: 15
  year: 2015
  ident: 10.1016/j.jare.2020.07.010_b0360
  article-title: The truth about metagenomics: quantifying and counteracting bias in 16s rrna studies
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-015-0351-6
– volume: 35
  start-page: 1077
  year: 2017
  ident: 10.1016/j.jare.2020.07.010_b0190
  article-title: Assessment of variation in microbial community amplicon sequencing by the microbiome quality control (mbqc) project consortium
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3981
– volume: 5
  year: 2020
  ident: 10.1016/j.jare.2020.07.010_b0210
  article-title: Toward standards in clinical microbiota studies: comparison of three dna extraction methods and two bioinformatic pipelines
  publication-title: Msystems
  doi: 10.1128/mSystems.00547-19
– volume: 180
  start-page: 221
  year: 2020
  ident: 10.1016/j.jare.2020.07.010_b0170
  article-title: Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents
  publication-title: Cell
  doi: 10.1016/j.cell.2019.12.025
– volume: 572
  start-page: 317
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0160
  article-title: No bacteria found in healthy placentas
  publication-title: Nature
  doi: 10.1038/d41586-019-02262-8
– volume: 19
  start-page: 95
  year: 2017
  ident: 10.1016/j.jare.2020.07.010_b0110
  article-title: Pediatric obesity is associated with an altered gut microbiota and discordant shifts in firmicutes populations
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13463
– volume: 490
  start-page: 55
  year: 2012
  ident: 10.1016/j.jare.2020.07.010_b0005
  article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature11450
– volume: 2014
  start-page: 548610
  year: 2014
  ident: 10.1016/j.jare.2020.07.010_b0310
  article-title: The influence of dna extraction procedure and primer set on the bacterial community analysis by pyrosequencing of barcoded 16s rrna gene amplicons
  publication-title: Mol Biol Int
  doi: 10.1155/2014/548683
– volume: 18
  year: 2017
  ident: 10.1016/j.jare.2020.07.010_b0315
  article-title: Comprehensive benchmarking and ensemble approaches for metagenomic classifiers
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1299-7
– volume: 20
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0075
  article-title: Population structure of human gut bacteria in a diverse cohort from rural tanzania and botswana
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1616-9
– volume: 21
  start-page: 913
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0345
  article-title: Validation and retrospective clinical evaluation of a quantitative 16s rrna gene metagenomic sequencing assay for bacterial pathogen detection in body fluids
  publication-title: J Mol Diag
  doi: 10.1016/j.jmoldx.2019.05.002
– volume: 8
  start-page: e8317
  year: 2020
  ident: 10.1016/j.jare.2020.07.010_b0125
  article-title: Alteration of the gut microbiota associated with childhood obesity by 16s rrna gene sequencing
  publication-title: Peerj
  doi: 10.7717/peerj.8317
– volume: 8
  start-page: e626
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0205
  article-title: Biases from different dna extraction methods in intestine microbiome research based on 16s rdna sequencing: a case in the koi carp, cyprinus carpio var
  publication-title: Koi Microbiologyopen
– volume: 27
  start-page: 105
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0330
  article-title: Contamination in low microbial biomass microbiome studies: issues and recommendations
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2018.11.003
– volume: 41
  start-page: e1
  year: 2013
  ident: 10.1016/j.jare.2020.07.010_b0215
  article-title: Evaluation of general 16s ribosomal rna gene pcr primers for classical and next-generation sequencing-based diversity studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks808
– volume: 8
  start-page: e71360
  year: 2013
  ident: 10.1016/j.jare.2020.07.010_b0285
  article-title: The effect of primer choice and short read sequences on the outcome of 16s rrna gene based diversity studies
  publication-title: Plos One
  doi: 10.1371/journal.pone.0071360
– ident: 10.1016/j.jare.2020.07.010_b0050
  doi: 10.1038/nature11234
– volume: 3
  start-page: e18
  year: 2018
  ident: 10.1016/j.jare.2020.07.010_b0355
  article-title: Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run
  publication-title: Msystems
  doi: 10.1128/mSystems.00023-18
– volume: 352
  start-page: 560
  year: 2016
  ident: 10.1016/j.jare.2020.07.010_b0070
  article-title: Population-level analysis of gut microbiome variation
  publication-title: Science
  doi: 10.1126/science.aad3503
– volume: 8
  start-page: 317
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0135
  article-title: Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives
  publication-title: Curr Obesity Rep
  doi: 10.1007/s13679-019-00352-2
– volume: 45
  start-page: 892
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0120
  article-title: Glucorticoid-induced obesity individuals have distinct signatures of the gut microbiome
  publication-title: Biofactors
  doi: 10.1002/biof.1565
– volume: 174
  start-page: 785
  year: 2018
  ident: 10.1016/j.jare.2020.07.010_b0035
  article-title: Microbiome: focus on causation and mechanism
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.038
– volume: 37
  start-page: 186
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0080
  article-title: A human gut bacterial genome and culture collection for improved metagenomic analyses
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-018-0009-7
– volume: 464
  start-page: 59
  year: 2010
  ident: 10.1016/j.jare.2020.07.010_b0085
  article-title: A human gut microbial gene catalogue established by metagenomic sequencing
  publication-title: Nature
  doi: 10.1038/nature08821
– volume: 16
  start-page: 856
  year: 2015
  ident: 10.1016/j.jare.2020.07.010_b0350
  article-title: Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2063-6
– volume: 7
  start-page: 62
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0260
  article-title: Towards precision quantification of contamination in metagenomic sequencing experiments
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0678-6
– volume: 5
  start-page: 14
  year: 2017
  ident: 10.1016/j.jare.2020.07.010_b0265
  article-title: Optimizing methods and dodging pitfalls in microbiome research
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0267-5
– volume: 12
  start-page: 59
  year: 2015
  ident: 10.1016/j.jare.2020.07.010_b0230
  article-title: Fast and sensitive protein alignment using diamond
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3176
– volume: 569
  start-page: 641
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0090
  article-title: The integrative human microbiome project
  publication-title: Nature
  doi: 10.1038/s41586-019-1238-8
– volume: 365
  start-page: 2205
  year: 2011
  ident: 10.1016/j.jare.2020.07.010_b0025
  article-title: The Pathogenesis of Rheumatoid Arthritis
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMra1004965
– volume: 12
  start-page: 87
  year: 2014
  ident: 10.1016/j.jare.2020.07.010_b0245
  article-title: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses
  publication-title: BMC Biol
  doi: 10.1186/s12915-014-0087-z
– volume: 95
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0165
  article-title: Issues and current standards of controls in microbiome research
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fiz045
– volume: 9
  year: 2018
  ident: 10.1016/j.jare.2020.07.010_b0095
  article-title: Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research
  publication-title: Mbio
  doi: 10.1128/mBio.00525-18
– volume: 220
  start-page: 261
  year: 2019
  ident: 10.1016/j.jare.2020.07.010_b0150
  article-title: Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time pcr, 16s rrna gene sequencing, and metagenomics
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2018.10.018
– volume: 16
  start-page: 625
  year: 2013
  ident: 10.1016/j.jare.2020.07.010_b0045
  article-title: Bringing the gut microbiota into focus through microbial culture: recent progress and future perspective
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2013.09.008
SSID ssj0000388911
Score 2.3950176
Snippet [Display omitted] Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily...
Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the...
Introduction: Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111
SubjectTerms 16S rRNA gene sequencing
Microbial community profiling
Microbiome
Microbiota
Shotgun metagenomic sequencing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQhQLLS0biAEIRcfw-loqqqkQPQKXerPGr3Ypm0W720H-PH9lVtkjlwjV2nIzns2cSz3yD0HsWNfGcxSbt_6FhRPpG6ega4h31NHShLT9zvp2Jk3N2esEvJqW-ckxYpQeuE_eZtSCcC9Ay6Rhj0TLqwEbiOhmAu-IaJZs3-ZgqezBVSpfiu6kxhx_QbsyYqcFd17DMHJldW5g7c_rsxCoV8v4d4_S383k3hnJilI4fo0ejN4kPqxT76EHon6D9cb2u8IeRVPrjU3RbMm3zMGGJYUvHiRcR38wLGVMax9VskeEW11LeyazhHBh_iYn4gZffzw5xwlvAY_x1boDe49XVYrhc9_gmDJA5X9OAky4H6Pz468-jk2Ysu9A4ruTQRE-8AC5oJBJCl_l5gBMXpRUalPZdpiEDxyxXTsfWSi-l4zJG5oDqAPQZ2usXfXiBMGUdKG-p9a1lYAXEyJUOAdJ1IYKcIbKZduNGTvJcGuOX2QSfXZusKpNVZVppkqpm6NP2nt-VkePe3l-yNrc9M5t2uZAwZkaMmX9hbIb4BgtmdEyqw5GGmt_78Hcb4Ji0avNRDPRhsV6ZfNycHCUi9Aw9r0DaviKlhFKh0uTIHYjtyLDb0s-vCjO4LO4kf_k_hH6FHmZRat7la7Q3LNfhTXLABvu2rLU_vgoyhQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing
URI https://dx.doi.org/10.1016/j.jare.2020.07.010
https://www.ncbi.nlm.nih.gov/pubmed/33133687
https://www.proquest.com/docview/2456853169
https://pubmed.ncbi.nlm.nih.gov/PMC7584675
https://doaj.org/article/40a6ccea047c444fb43cabf1c27ea5ca
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7rLLsHavbGugATtsGIzY1ss-psWKYsV6aFcsN4HWI03ROkXiHPrvJ8pKkGxADztapmhZpEhCIj8R8pn7urCC-yzYf5fxQtmsqr3JCmuYZa50edzM-Xkhz675j4mY7JGTdS0MplUm29_b9GitU8sozeboYTYbXZV5HQOCEqN6WWNFOeNVLOKbHG_2WRDtpI7X8CJ9hh1S7Uyf5nULC0TLLPOI4YmFtFv-KcL477ipf8PQv7Mpt9zT6UvyIsWVdNwP_YDsufaQHKSVu6RfErz011fkMdbcIhu3oLAB5qRzT-9nEZYp8DF93Uj3SPtLvYODo5giP6WFvKKLy4sxDZrnaMrExhfQWrq8mXfTVUvvXQeI_hoYbpG8Jten33-dnGXpAobMiEp1mbeFlSAk84UCVyJSD4jCeNXIGqralghIBoY3ojK1zxtllTJCec8NsNoBe0P223nr3hHKeAmVbVhj84ZDI8F7UdXOQWiX0qkBKdbTrk1CJ8dLMu70Og3tVqOoNIpK50oHUQ3It02fhx6b40nqY5TmhhJxtWPDfDHVSbE0z0Ea4yDnynDOfcOZgcYXplQOhIEBEWtd0DtqGljNnvz4p7Xi6LB-8VAGWjdfLTUePIeQKSjwgLztFWkzRMYKxmQVJkftqNjOP-y-aWc3ESNcxcBSvP_P8X4gz_GpL7r8SPa7xcodheira4bk2fj88vf5MO5eDONi-wMQAzOk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa67rBdhnXP7KkBO2wYjNrWyz62xYp0a3NYWyA3gdYjTbE6ReIc-u8nykqQbEAPu-pByyJFEhL5kZDP3NeFFdxnQf-7jBfKZlXtTVZYwyxzpcvjZc7ZSA4v-Y-xGO-Qo1UuDIZVJt3f6_SorVPLftrN_dvpdP-8zOvoEJTo1ctaPSAPgzegsH7DyfhwfdGCcCd1rMOLEzKckZJn-jiva5gjXGaZRxBPzKTdMFARx3_LTv3rh_4dTrlhn46fkifJsaQH_dr3yI5rn5G9dHQX9EvCl_76nNzFpFsk4-YU1sicdObpzTTiMgU6pk8c6e5oX9U7WDiKMfITWshzOv81OqBB9BxNodjYAa2li6tZN1m29MZ1gPCvgeDGkBfk8vj7xdEwSxUYMiMq1WXeFlaCkMwXClyJUD0gCuNVI2uoalsiIhkY3ojK1D5vlFXKCOU9N8BqB-wl2W1nrXtNKOMlVLZhjc0bDo0E70VVOwehXUqnBqRYbbs2CZ4cq2T81qs4tGuNrNLIKp0rHVg1IN_Wc257cI57Rx8iN9cjEVg7NszmE50kS_McpDEOcq4M59w3nBlofGFK5UAYGBCxkgW9JaeB1PTej39aCY4OBxhfZaB1s-VC48tz8JmCBA_Iq16Q1ktkrGBMVmFz1JaIbf3Ddk87vYog4Sp6luLNf673I3k0vDg71acno59vyWPs6TMw35Hdbr5074Mr1jUf4lH7A5ZvNCs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicenter+assessment+of+microbial+community+profiling+using+16S+rRNA+gene+sequencing+and+shotgun+metagenomic+sequencing&rft.jtitle=Journal+of+advanced+research&rft.au=Han%2C+Dongsheng&rft.au=Gao%2C+Peng&rft.au=Li%2C+Rui&rft.au=Tan%2C+Ping&rft.date=2020-11-01&rft.issn=2090-1232&rft.volume=26&rft.spage=111&rft_id=info:doi/10.1016%2Fj.jare.2020.07.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon