Formulation, inflammation, and RNA sensing impact the immunogenicity of self-amplifying RNA vaccines

To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Nucleic acids Vol. 31; pp. 29 - 42
Main Authors Tregoning, John S., Stirling, David C., Wang, Ziyin, Flight, Katie E., Brown, Jonathan C., Blakney, Anna K., McKay, Paul F., Cunliffe, Robert F., Murugaiah, Valarmathy, Fox, Christopher B., Beattie, Mitchell, Tam, Ying K., Johansson, Cecilia, Shattock, Robin J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 14.03.2023
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response. [Display omitted] RNA vaccines were a vital part of the pandemic response. But further research is required to broaden their usage. In the current study, we investigated the interplay of RNA vaccine-induced inflammation and the downstream adaptive response. We show that acute inflammation after immunization is required for protective antibody responses.
AbstractList To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response.
To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response.To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response.
To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response. [Display omitted] RNA vaccines were a vital part of the pandemic response. But further research is required to broaden their usage. In the current study, we investigated the interplay of RNA vaccine-induced inflammation and the downstream adaptive response. We show that acute inflammation after immunization is required for protective antibody responses.
To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response. RNA vaccines were a vital part of the pandemic response. But further research is required to broaden their usage. In the current study, we investigated the interplay of RNA vaccine-induced inflammation and the downstream adaptive response. We show that acute inflammation after immunization is required for protective antibody responses.
To be effective, RNA vaccines require both translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response.
Author Fox, Christopher B.
Stirling, David C.
Flight, Katie E.
Beattie, Mitchell
Blakney, Anna K.
Brown, Jonathan C.
Tregoning, John S.
McKay, Paul F.
Murugaiah, Valarmathy
Tam, Ying K.
Cunliffe, Robert F.
Shattock, Robin J.
Johansson, Cecilia
Wang, Ziyin
Author_xml – sequence: 1
  givenname: John S.
  orcidid: 0000-0001-8093-8741
  surname: Tregoning
  fullname: Tregoning, John S.
  email: john.tregoning@imperial.ac.uk
  organization: Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
– sequence: 2
  givenname: David C.
  surname: Stirling
  fullname: Stirling, David C.
  organization: Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
– sequence: 3
  givenname: Ziyin
  surname: Wang
  fullname: Wang, Ziyin
  organization: Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
– sequence: 4
  givenname: Katie E.
  surname: Flight
  fullname: Flight, Katie E.
  organization: Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
– sequence: 5
  givenname: Jonathan C.
  surname: Brown
  fullname: Brown, Jonathan C.
  organization: Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
– sequence: 6
  givenname: Anna K.
  surname: Blakney
  fullname: Blakney, Anna K.
  organization: Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
– sequence: 7
  givenname: Paul F.
  surname: McKay
  fullname: McKay, Paul F.
  organization: Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
– sequence: 8
  givenname: Robert F.
  surname: Cunliffe
  fullname: Cunliffe, Robert F.
  organization: Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
– sequence: 9
  givenname: Valarmathy
  surname: Murugaiah
  fullname: Murugaiah, Valarmathy
  organization: Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
– sequence: 10
  givenname: Christopher B.
  surname: Fox
  fullname: Fox, Christopher B.
  organization: IDRI, Seattle, WA, USA
– sequence: 11
  givenname: Mitchell
  surname: Beattie
  fullname: Beattie, Mitchell
  organization: Acuitas Therapeutics, 6190 Agronomy Road, Ste 405, Vancouver, BC, Canada
– sequence: 12
  givenname: Ying K.
  surname: Tam
  fullname: Tam, Ying K.
  organization: Acuitas Therapeutics, 6190 Agronomy Road, Ste 405, Vancouver, BC, Canada
– sequence: 13
  givenname: Cecilia
  surname: Johansson
  fullname: Johansson, Cecilia
  organization: National Heart and Lung Institute, Imperial College London, St. Mary’s Campus, London, UK
– sequence: 14
  givenname: Robin J.
  surname: Shattock
  fullname: Shattock, Robin J.
  organization: Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36589712$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJadI0X6CH4mMPtauRZdmGUgih-QOhhZK7kKXRRostbSV7Yb99tN1tSC7VRSPpvZ-Gee_JiQ8eCfkItAIK4uu6CtPsK0YZqwAqyvgbcsZAsJI1NZy8qE_JRUprmpegwAR7R05r0XR9C-yMmOsQp2VUswv-S-G8HdU0HU_Km-L3z8sioU_Orwo3bZSei_kRczktPqzQO-3mXRFsFo22VNNmdHa3F--NW6W185g-kLdWjQkvjvs5ebj-8XB1W97_urm7urwvddO1c2laYRgow3mrG1HXrVW16FB3ONjBdgYM7W3bKN43QwvCmLbrm6ZByqGv9VCfk7sD1gS1lpvoJhV3Mign_16EuJIqzk6PKKkRquZWWUUNF7wbGABo4DUfLBUDz6zvB9ZmGSY0Gv0c1fgK-vrFu0e5ClvZtz3vqciAz0dADH8WTLOcXNI4jspjWJJkbU5DdD2DLGUHqY4hpYj2-Rugch-2zM3nsOU-bAkgc9jZ9Ollg8-Wf9FmwbeDAPPEtw6jTNqh12hcRD3nmbj_8Z8AzfW-NQ
CitedBy_id crossref_primary_10_1016_j_ymthe_2023_07_006
crossref_primary_10_3389_fmicb_2023_1247041
crossref_primary_10_1073_pnas_2309472120
crossref_primary_10_3390_ph16081088
crossref_primary_10_1016_j_vaccine_2023_12_052
crossref_primary_10_1002_mabi_202300275
crossref_primary_10_1016_j_ymthe_2023_10_006
crossref_primary_10_3390_vaccines11091481
crossref_primary_10_1248_bpb_b23_00689
crossref_primary_10_3390_vaccines12030318
crossref_primary_10_1080_15476286_2024_2333123
crossref_primary_10_1002_jgm_3672
crossref_primary_10_1016_j_ymthe_2023_06_017
crossref_primary_10_37349_emed_2023_00168
Cites_doi 10.1016/j.immuni.2020.03.017
10.1371/journal.ppat.1003118
10.1016/j.immuni.2007.07.013
10.1016/j.ymthe.2017.08.006
10.1016/j.celrep.2021.109504
10.1016/j.immuni.2021.11.001
10.7554/eLife.46149
10.1371/journal.ppat.1005754
10.1016/j.vaccine.2012.01.070
10.1016/j.molimm.2009.11.003
10.1038/s41434-020-00204-y
10.1016/j.cyto.2017.08.009
10.1111/cei.13517
10.1038/s41541-017-0032-6
10.3389/fimmu.2018.00126
10.1038/s41467-020-17409-9
10.3390/vaccines8030433
10.1128/JVI.01675-10
10.1016/j.omtn.2019.08.001
10.4049/jimmunol.1601877
10.1080/21645515.2015.1070998
10.1111/imm.12742
10.1016/j.immuni.2006.08.014
10.1038/s41577-021-00592-1
10.1128/JVI.00333-14
10.1111/cei.13234
10.1016/j.ymthe.2017.11.017
10.1021/acsnano.0c00326
10.1038/s41590-022-01163-9
10.1016/j.eclinm.2021.101262
10.1016/j.ymthe.2018.07.010
10.1084/jem.20181899
10.1016/j.addr.2021.113900
10.1016/j.antiviral.2013.05.007
10.1016/j.omtn.2021.03.008
10.1093/oxfimm/iqac004
10.1016/j.jconrel.2021.08.029
10.1016/j.ymthe.2020.11.011
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.omtn.2022.11.024
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2162-2531
EndPage 42
ExternalDocumentID oai_doaj_org_article_0d6a34fafa0d4648b2111c1434bf06b4
10_1016_j_omtn_2022_11_024
36589712
S216225312200316X
Genre Journal Article
GroupedDBID 0R~
0SF
53G
5VS
6I.
7X7
8FE
8FH
8FI
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFKRA
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
DIK
EBS
FDB
FYUFA
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M41
M48
M7P
M~E
NCXOZ
O9-
OK1
PIMPY
PQQKQ
PROAC
RNTTT
ROL
RPM
SSZ
AAMRU
ADVLN
ALIPV
NPM
3V.
88A
88I
8FJ
AAYXX
ABUWG
ADRAZ
CCPQU
CITATION
DWQXO
EJD
GNUQQ
HMCUK
HYE
IPNFZ
M0L
RIG
UKHRP
7X8
5PM
ID FETCH-LOGICAL-c587t-d76d21ad447c56337fa368ec8ebfbf8d1d09f75a495b716dd789555e04193cb3
IEDL.DBID RPM
ISSN 2162-2531
IngestDate Tue Oct 22 14:52:14 EDT 2024
Tue Sep 17 21:30:31 EDT 2024
Sat Oct 26 04:01:40 EDT 2024
Thu Nov 21 23:30:54 EST 2024
Sat Nov 02 11:56:26 EDT 2024
Fri Feb 23 02:39:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords influenza
MT: Oligonucleotides: Therapies and Applications
sensing
vaccine
inflammation
formulation
pandemic
Language English
License This is an open access article under the CC BY license.
2022 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-d76d21ad447c56337fa368ec8ebfbf8d1d09f75a495b716dd789555e04193cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: UBC, Canada
Present address: UCL, UK
ORCID 0000-0001-8093-8741
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794906/
PMID 36589712
PQID 2760168921
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_0d6a34fafa0d4648b2111c1434bf06b4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9794906
proquest_miscellaneous_2760168921
crossref_primary_10_1016_j_omtn_2022_11_024
pubmed_primary_36589712
elsevier_sciencedirect_doi_10_1016_j_omtn_2022_11_024
PublicationCentury 2000
PublicationDate 2023-03-14
PublicationDateYYYYMMDD 2023-03-14
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular therapy. Nucleic acids
PublicationTitleAlternate Mol Ther Nucleic Acids
PublicationYear 2023
Publisher Elsevier Inc
American Society of Gene & Cell Therapy
Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Society of Gene & Cell Therapy
– name: Elsevier
References Blakney, Zhu, McKay, Bouton, Yeow, Tang, Hu, Samnuan, Grigsby, Shattock, Stevens (bib12) 2020; 14
McKay, Cizmeci, Aldon, Maertzdorf, Weiner, Kaufmann, Lewis, van den Berg, Del Giudice, Shattock (bib32) 2019; 8
Tregoning, Brown, Cheeseman, Flight, Higham, Lemm, Pierce, Stirling, Wang, Pollock (bib2) 2020; 202
Ndeupen, Qin, Jacobsen, Estanbouli, Bouteau, Igyártó (bib22) 2021
Shirai, Kawai, Shibuya, Munakata, Omata, Suzuki, Yoshioka (bib23) 2020; 8
Fischetti, Zhong, Pinder, Tregoning, Shattock (bib31) 2017; 99
Zhong, Haltalli, Holder, Rice, Donaldson, O'Driscoll, Le-Doare, Kampmann, Tregoning (bib41) 2019; 195
Minnaert, Vanluchene, Verbeke, Lentacker, De Smedt, Raemdonck, Sanders, Remaut (bib9) 2021; 176
Groves, McDonald, Langat, Kinnear, Kellam, McCauley, Ellis, Thompson, Elderfield, Parker (bib15) 2018; 9
Tregoning, Flight, Higham, Wang, Pierce (bib1) 2021; 21
Huysmans, Zhong, De Temmerman, Mui, Tam, Mc Cafferty, Gitsels, Vanrompay, Sanders (bib26) 2019; 17
Kandasamy, Suryawanshi, Tundup, Perez, Schmolke, Manicassamy, Manicassamy (bib18) 2016; 12
Liu, Gack (bib7) 2020; 53
Pepini, Pulichino, Carsillo, Carlson, Sari-Sarraf, Ramsauer, Debasitis, Maruggi, Otten, Geall (bib21) 2017; 198
Goritzka, Durant, Pereira, Salek-Ardakani, Openshaw, Johansson (bib39) 2014; 88
Lazear, Lancaster, Wilkins, Suthar, Huang, Vick, Clepper, Thackray, Brassil, Virgin (bib27) 2013; 9
Veazey, Siddiqui, Klein, Buffa, Fischetti, Doyle-Meyers, King, Tregoning, Shattock (bib33) 2015; 11
Liang, Lindgren, Lin, Thompson, Ols, Röhss, John, Hassett, Yuzhakov, Bahl (bib20) 2017; 25
Li, Lee, Grigoryan, Arunachalam, Scott, Trisal, Wimmers, Sanyal, Weidenbacher, Feng (bib34) 2022; 23
McKay, Zhou, Frise, Blakney, Bouton, Wang, Hu, Samnuan, Brown, Kugathasan (bib38) 2022; 3
Blakney, McKay, Bouton, Hu, Samnuan, Shattock (bib29) 2021; 29
Erasmus, Khandhar, Guderian, Granger, Archer, Archer, Gage, Fuerte-Stone, Larson, Lin (bib13) 2018; 26
Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-Based Vaccine Technology and its Mode of Action. Springer Berlin; 1-40.
Lutz, Lazzaro, Habbeddine, Schmidt, Baumhof, Mui, Tam, Madden, Hope, Heidenreich, Fotin-Mleczek (bib19) 2017; 2
Blakney, McKay, Hu, Samnuan, Jain, Brown, Thomas, Rogers, Polra, Sallah (bib14) 2021; 338
Bloom, van den Berg, Arbuthnot (bib11) 2021; 28
Liu, Xu, Hsu, Luo, Xiang, Chuang (bib37) 2010; 47
van Boxel-Dezaire, Rani, Stark (bib8) 2006; 25
Arimori, Nakamura, Yamada, Shibata, Maeda, Kase, Yoshikai (bib16) 2013; 99
Zhang, You, Wang, Cui, Wang, Xu, Li, Yang, Liu, Huang (bib28) 2021; 118
Pollock, Cheeseman, Szubert, Libri, Boffito, Owen, Bern, O'Hara, McFarlane, Lemm (bib5) 2022; 44
Watson, Endsley, Huang (bib24) 2012; 30
Bergamaschi, Terpos, Rosati, Angel, Bear, Stellas, Karaliota, Apostolakou, Bagratuni, Patseas (bib30) 2021; 36
Vogel, Lambert, Kinnear, Busse, Erbar, Reuter, Wicke, Perkovic, Beissert, Haas (bib3) 2018; 26
McDonald, Zhong, Groves, Tregoning (bib10) 2017; 151
Alameh, Tombácz, Bettini, Lederer, Sittplangkoon, Wilmore, Gaudette, Soliman, Pine, Hicks (bib25) 2021; 54
Kumagai, Takeuchi, Kato, Kumar, Matsui, Morii, Aozasa, Kawai, Akira (bib40) 2007; 27
Barrat (bib36) 2018; 215
McKay, Hu, Blakney, Samnuan, Brown, Penn, Zhou, Bouton, Rogers, Polra (bib4) 2020; 11
Seo, Kwon, Song, Byun, Seong, Kawai, Akira, Kweon (bib17) 2010; 84
Davies, Hovdal, Edmunds, Nordberg, Dahlén, Dabkowska, Arteta, Radulescu, Kjellman, Höijer (bib35) 2021; 24
Lutz (10.1016/j.omtn.2022.11.024_bib19) 2017; 2
Davies (10.1016/j.omtn.2022.11.024_bib35) 2021; 24
Bloom (10.1016/j.omtn.2022.11.024_bib11) 2021; 28
Blakney (10.1016/j.omtn.2022.11.024_bib12) 2020; 14
Kumagai (10.1016/j.omtn.2022.11.024_bib40) 2007; 27
Fischetti (10.1016/j.omtn.2022.11.024_bib31) 2017; 99
Vogel (10.1016/j.omtn.2022.11.024_bib3) 2018; 26
Liang (10.1016/j.omtn.2022.11.024_bib20) 2017; 25
van Boxel-Dezaire (10.1016/j.omtn.2022.11.024_bib8) 2006; 25
Alameh (10.1016/j.omtn.2022.11.024_bib25) 2021; 54
Minnaert (10.1016/j.omtn.2022.11.024_bib9) 2021; 176
Groves (10.1016/j.omtn.2022.11.024_bib15) 2018; 9
Ndeupen (10.1016/j.omtn.2022.11.024_bib22) 2021
Kandasamy (10.1016/j.omtn.2022.11.024_bib18) 2016; 12
Barrat (10.1016/j.omtn.2022.11.024_bib36) 2018; 215
Lazear (10.1016/j.omtn.2022.11.024_bib27) 2013; 9
Blakney (10.1016/j.omtn.2022.11.024_bib29) 2021; 29
Tregoning (10.1016/j.omtn.2022.11.024_bib2) 2020; 202
Seo (10.1016/j.omtn.2022.11.024_bib17) 2010; 84
Shirai (10.1016/j.omtn.2022.11.024_bib23) 2020; 8
McDonald (10.1016/j.omtn.2022.11.024_bib10) 2017; 151
Pollock (10.1016/j.omtn.2022.11.024_bib5) 2022; 44
Arimori (10.1016/j.omtn.2022.11.024_bib16) 2013; 99
McKay (10.1016/j.omtn.2022.11.024_bib38) 2022; 3
Blakney (10.1016/j.omtn.2022.11.024_bib14) 2021; 338
Bergamaschi (10.1016/j.omtn.2022.11.024_bib30) 2021; 36
Li (10.1016/j.omtn.2022.11.024_bib34) 2022; 23
Zhang (10.1016/j.omtn.2022.11.024_bib28) 2021; 118
Liu (10.1016/j.omtn.2022.11.024_bib37) 2010; 47
Watson (10.1016/j.omtn.2022.11.024_bib24) 2012; 30
10.1016/j.omtn.2022.11.024_bib6
Tregoning (10.1016/j.omtn.2022.11.024_bib1) 2021; 21
Erasmus (10.1016/j.omtn.2022.11.024_bib13) 2018; 26
Veazey (10.1016/j.omtn.2022.11.024_bib33) 2015; 11
Huysmans (10.1016/j.omtn.2022.11.024_bib26) 2019; 17
Goritzka (10.1016/j.omtn.2022.11.024_bib39) 2014; 88
Pepini (10.1016/j.omtn.2022.11.024_bib21) 2017; 198
McKay (10.1016/j.omtn.2022.11.024_bib32) 2019; 8
Liu (10.1016/j.omtn.2022.11.024_bib7) 2020; 53
Zhong (10.1016/j.omtn.2022.11.024_bib41) 2019; 195
McKay (10.1016/j.omtn.2022.11.024_bib4) 2020; 11
References_xml – volume: 9
  start-page: 126
  year: 2018
  ident: bib15
  article-title: Mouse models of influenza infection with circulating strains to test seasonal vaccine efficacy. Original research frontiers in immunology
  publication-title: Front. Immunol.
  contributor:
    fullname: Parker
– volume: 47
  start-page: 1083
  year: 2010
  end-page: 1090
  ident: bib37
  article-title: A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition
  publication-title: Mol. Immunol.
  contributor:
    fullname: Chuang
– volume: 25
  start-page: 2635
  year: 2017
  end-page: 2647
  ident: bib20
  article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques
  publication-title: Mol. Ther.
  contributor:
    fullname: Bahl
– volume: 99
  start-page: 230
  year: 2013
  end-page: 237
  ident: bib16
  article-title: Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice
  publication-title: Antiviral Res.
  contributor:
    fullname: Yoshikai
– volume: 36
  start-page: 109504
  year: 2021
  ident: bib30
  article-title: Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients
  publication-title: Cell Rep.
  contributor:
    fullname: Patseas
– volume: 12
  start-page: e100574
  year: 2016
  ident: bib18
  article-title: RIG-I signaling is critical for efficient polyfunctional T cell responses during influenza virus infection
  publication-title: PLoS Pathog.
  contributor:
    fullname: Manicassamy
– volume: 8
  start-page: 433
  year: 2020
  ident: bib23
  article-title: Lipid nanoparticle acts as a potential adjuvant for influenza split vaccine without inducing inflammatory responses
  publication-title: Vaccines
  contributor:
    fullname: Yoshioka
– volume: 28
  start-page: 117
  year: 2021
  end-page: 129
  ident: bib11
  article-title: Self-amplifying RNA vaccines for infectious diseases
  publication-title: Gene Ther.
  contributor:
    fullname: Arbuthnot
– volume: 53
  start-page: 26
  year: 2020
  end-page: 42
  ident: bib7
  article-title: Distinct and orchestrated functions of RNA sensors in innate immunity
  publication-title: Immunity
  contributor:
    fullname: Gack
– volume: 27
  start-page: 240
  year: 2007
  end-page: 252
  ident: bib40
  article-title: Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses
  publication-title: Immunity
  contributor:
    fullname: Akira
– volume: 11
  start-page: 3523
  year: 2020
  ident: bib4
  article-title: Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice
  publication-title: Nat. Commun.
  contributor:
    fullname: Polra
– volume: 30
  start-page: 2256
  year: 2012
  end-page: 2272
  ident: bib24
  article-title: Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens
  publication-title: Vaccine
  contributor:
    fullname: Huang
– volume: 24
  start-page: 369
  year: 2021
  end-page: 384
  ident: bib35
  article-title: Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein
  publication-title: Mol. Ther. Nucleic Acids
  contributor:
    fullname: Höijer
– volume: 99
  start-page: 287
  year: 2017
  end-page: 296
  ident: bib31
  article-title: The synergistic effects of combining TLR ligand based adjuvants on the cytokine response are dependent upon p38/JNK signalling
  publication-title: Cytokine
  contributor:
    fullname: Shattock
– volume: 84
  start-page: 12713
  year: 2010
  end-page: 12722
  ident: bib17
  article-title: MyD88 signaling is indispensable for primary influenza A virus infection but dispensable for secondary infection
  publication-title: J. Virol.
  contributor:
    fullname: Kweon
– volume: 202
  start-page: 162
  year: 2020
  end-page: 192
  ident: bib2
  article-title: Vaccines for COVID-19
  publication-title: Clin. Exp. Immunol.
  contributor:
    fullname: Pollock
– volume: 151
  start-page: 451
  year: 2017
  end-page: 463
  ident: bib10
  article-title: Inflammatory responses to influenza vaccination at the extremes of age
  publication-title: Immunology
  contributor:
    fullname: Tregoning
– volume: 88
  start-page: 6128
  year: 2014
  end-page: 6136
  ident: bib39
  article-title: Alpha/beta interferon receptor signaling amplifies early proinflammatory cytokine production in the lung during respiratory syncytial virus infection
  publication-title: J. Virol.
  contributor:
    fullname: Johansson
– volume: 26
  start-page: 446
  year: 2018
  end-page: 455
  ident: bib3
  article-title: Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses
  publication-title: Mol. Ther.
  contributor:
    fullname: Haas
– volume: 176
  start-page: 113900
  year: 2021
  ident: bib9
  article-title: Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: getting the message across
  publication-title: Adv. Drug Deliv. Rev.
  contributor:
    fullname: Remaut
– volume: 54
  start-page: 2877
  year: 2021
  end-page: 2892.e7
  ident: bib25
  article-title: Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses
  publication-title: Immunity
  contributor:
    fullname: Hicks
– volume: 29
  start-page: 1174
  year: 2021
  end-page: 1185
  ident: bib29
  article-title: Innate inhibiting proteins enhance expression and immunogenicity of self-amplifying RNA
  publication-title: Mol. Ther.
  contributor:
    fullname: Shattock
– volume: 23
  start-page: 543
  year: 2022
  end-page: 555
  ident: bib34
  article-title: Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine
  publication-title: Nat. Immunol.
  contributor:
    fullname: Feng
– volume: 215
  start-page: 2964
  year: 2018
  end-page: 2966
  ident: bib36
  article-title: TLR8: No gain, no pain
  publication-title: J. Exp. Med.
  contributor:
    fullname: Barrat
– volume: 25
  start-page: 361
  year: 2006
  end-page: 372
  ident: bib8
  article-title: Complex modulation of cell type-specific signaling in response to type I interferons
  publication-title: Immunity
  contributor:
    fullname: Stark
– volume: 338
  start-page: 201
  year: 2021
  end-page: 210
  ident: bib14
  article-title: Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines
  publication-title: J. Control. Release
  contributor:
    fullname: Sallah
– volume: 17
  start-page: 867
  year: 2019
  end-page: 878
  ident: bib26
  article-title: Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin
  publication-title: Mol. Ther. Nucleic Acids
  contributor:
    fullname: Sanders
– volume: 9
  start-page: e1003118
  year: 2013
  ident: bib27
  article-title: IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling
  publication-title: PLoS Pathog.
  contributor:
    fullname: Virgin
– volume: 118
  year: 2021
  ident: bib28
  article-title: Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Huang
– volume: 3
  start-page: iqac004
  year: 2022
  ident: bib38
  article-title: Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets
  publication-title: Oxford Open Immunol.
  contributor:
    fullname: Kugathasan
– volume: 26
  start-page: 2507
  year: 2018
  end-page: 2522
  ident: bib13
  article-title: A nanostructured lipid carrier for delivery of a replicating viral RNA provides single, low-dose protection against Zika
  publication-title: Mol. Ther.
  contributor:
    fullname: Lin
– volume: 8
  start-page: e46149
  year: 2019
  ident: bib32
  article-title: Identification of potential biomarkers of vaccine inflammation in mice
  publication-title: Elife
  contributor:
    fullname: Shattock
– volume: 21
  start-page: 626
  year: 2021
  end-page: 636
  ident: bib1
  article-title: Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape
  publication-title: Nat. Rev. Immunol.
  contributor:
    fullname: Pierce
– volume: 195
  start-page: 139
  year: 2019
  end-page: 152
  ident: bib41
  article-title: The impact of timing of maternal influenza immunization on infant antibody levels at birth
  publication-title: Clin. Exp. Immunol.
  contributor:
    fullname: Tregoning
– volume: 14
  start-page: 5711
  year: 2020
  end-page: 5727
  ident: bib12
  article-title: Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer
  publication-title: ACS Nano
  contributor:
    fullname: Stevens
– volume: 2
  start-page: 29
  year: 2017
  ident: bib19
  article-title: Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines
  publication-title: NPJ Vaccines
  contributor:
    fullname: Fotin-Mleczek
– volume: 198
  start-page: 4012
  year: 2017
  end-page: 4024
  ident: bib21
  article-title: Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design
  publication-title: J. Immunol.
  contributor:
    fullname: Geall
– volume: 11
  start-page: 2913
  year: 2015
  end-page: 2922
  ident: bib33
  article-title: Evaluation of mucosal adjuvants and immunization routes for the induction of systemic and mucosal humoral immune responses in macaques
  publication-title: Hum. Vaccin. Immunother.
  contributor:
    fullname: Shattock
– volume: 44
  start-page: 101262
  year: 2022
  ident: bib5
  article-title: Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial
  publication-title: EClinicalMedicine
  contributor:
    fullname: Lemm
– year: 2021
  ident: bib22
  article-title: The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory
  publication-title: bioRxiv
  contributor:
    fullname: Igyártó
– volume: 53
  start-page: 26
  year: 2020
  ident: 10.1016/j.omtn.2022.11.024_bib7
  article-title: Distinct and orchestrated functions of RNA sensors in innate immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.03.017
  contributor:
    fullname: Liu
– year: 2021
  ident: 10.1016/j.omtn.2022.11.024_bib22
  article-title: The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory
  publication-title: bioRxiv
  contributor:
    fullname: Ndeupen
– volume: 9
  start-page: e1003118
  year: 2013
  ident: 10.1016/j.omtn.2022.11.024_bib27
  article-title: IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003118
  contributor:
    fullname: Lazear
– volume: 27
  start-page: 240
  year: 2007
  ident: 10.1016/j.omtn.2022.11.024_bib40
  article-title: Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.07.013
  contributor:
    fullname: Kumagai
– volume: 25
  start-page: 2635
  year: 2017
  ident: 10.1016/j.omtn.2022.11.024_bib20
  article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.08.006
  contributor:
    fullname: Liang
– volume: 36
  start-page: 109504
  year: 2021
  ident: 10.1016/j.omtn.2022.11.024_bib30
  article-title: Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109504
  contributor:
    fullname: Bergamaschi
– volume: 118
  year: 2021
  ident: 10.1016/j.omtn.2022.11.024_bib28
  article-title: Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Zhang
– volume: 54
  start-page: 2877
  year: 2021
  ident: 10.1016/j.omtn.2022.11.024_bib25
  article-title: Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.11.001
  contributor:
    fullname: Alameh
– volume: 8
  start-page: e46149
  year: 2019
  ident: 10.1016/j.omtn.2022.11.024_bib32
  article-title: Identification of potential biomarkers of vaccine inflammation in mice
  publication-title: Elife
  doi: 10.7554/eLife.46149
  contributor:
    fullname: McKay
– ident: 10.1016/j.omtn.2022.11.024_bib6
– volume: 12
  start-page: e100574
  year: 2016
  ident: 10.1016/j.omtn.2022.11.024_bib18
  article-title: RIG-I signaling is critical for efficient polyfunctional T cell responses during influenza virus infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005754
  contributor:
    fullname: Kandasamy
– volume: 30
  start-page: 2256
  year: 2012
  ident: 10.1016/j.omtn.2022.11.024_bib24
  article-title: Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2012.01.070
  contributor:
    fullname: Watson
– volume: 47
  start-page: 1083
  year: 2010
  ident: 10.1016/j.omtn.2022.11.024_bib37
  article-title: A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2009.11.003
  contributor:
    fullname: Liu
– volume: 28
  start-page: 117
  year: 2021
  ident: 10.1016/j.omtn.2022.11.024_bib11
  article-title: Self-amplifying RNA vaccines for infectious diseases
  publication-title: Gene Ther.
  doi: 10.1038/s41434-020-00204-y
  contributor:
    fullname: Bloom
– volume: 99
  start-page: 287
  year: 2017
  ident: 10.1016/j.omtn.2022.11.024_bib31
  article-title: The synergistic effects of combining TLR ligand based adjuvants on the cytokine response are dependent upon p38/JNK signalling
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2017.08.009
  contributor:
    fullname: Fischetti
– volume: 202
  start-page: 162
  year: 2020
  ident: 10.1016/j.omtn.2022.11.024_bib2
  article-title: Vaccines for COVID-19
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/cei.13517
  contributor:
    fullname: Tregoning
– volume: 2
  start-page: 29
  year: 2017
  ident: 10.1016/j.omtn.2022.11.024_bib19
  article-title: Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-017-0032-6
  contributor:
    fullname: Lutz
– volume: 9
  start-page: 126
  year: 2018
  ident: 10.1016/j.omtn.2022.11.024_bib15
  article-title: Mouse models of influenza infection with circulating strains to test seasonal vaccine efficacy. Original research frontiers in immunology
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00126
  contributor:
    fullname: Groves
– volume: 11
  start-page: 3523
  year: 2020
  ident: 10.1016/j.omtn.2022.11.024_bib4
  article-title: Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17409-9
  contributor:
    fullname: McKay
– volume: 8
  start-page: 433
  year: 2020
  ident: 10.1016/j.omtn.2022.11.024_bib23
  article-title: Lipid nanoparticle acts as a potential adjuvant for influenza split vaccine without inducing inflammatory responses
  publication-title: Vaccines
  doi: 10.3390/vaccines8030433
  contributor:
    fullname: Shirai
– volume: 84
  start-page: 12713
  year: 2010
  ident: 10.1016/j.omtn.2022.11.024_bib17
  article-title: MyD88 signaling is indispensable for primary influenza A virus infection but dispensable for secondary infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.01675-10
  contributor:
    fullname: Seo
– volume: 17
  start-page: 867
  year: 2019
  ident: 10.1016/j.omtn.2022.11.024_bib26
  article-title: Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.08.001
  contributor:
    fullname: Huysmans
– volume: 198
  start-page: 4012
  year: 2017
  ident: 10.1016/j.omtn.2022.11.024_bib21
  article-title: Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1601877
  contributor:
    fullname: Pepini
– volume: 11
  start-page: 2913
  year: 2015
  ident: 10.1016/j.omtn.2022.11.024_bib33
  article-title: Evaluation of mucosal adjuvants and immunization routes for the induction of systemic and mucosal humoral immune responses in macaques
  publication-title: Hum. Vaccin. Immunother.
  doi: 10.1080/21645515.2015.1070998
  contributor:
    fullname: Veazey
– volume: 151
  start-page: 451
  year: 2017
  ident: 10.1016/j.omtn.2022.11.024_bib10
  article-title: Inflammatory responses to influenza vaccination at the extremes of age
  publication-title: Immunology
  doi: 10.1111/imm.12742
  contributor:
    fullname: McDonald
– volume: 25
  start-page: 361
  year: 2006
  ident: 10.1016/j.omtn.2022.11.024_bib8
  article-title: Complex modulation of cell type-specific signaling in response to type I interferons
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.014
  contributor:
    fullname: van Boxel-Dezaire
– volume: 21
  start-page: 626
  year: 2021
  ident: 10.1016/j.omtn.2022.11.024_bib1
  article-title: Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00592-1
  contributor:
    fullname: Tregoning
– volume: 88
  start-page: 6128
  year: 2014
  ident: 10.1016/j.omtn.2022.11.024_bib39
  article-title: Alpha/beta interferon receptor signaling amplifies early proinflammatory cytokine production in the lung during respiratory syncytial virus infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.00333-14
  contributor:
    fullname: Goritzka
– volume: 195
  start-page: 139
  year: 2019
  ident: 10.1016/j.omtn.2022.11.024_bib41
  article-title: The impact of timing of maternal influenza immunization on infant antibody levels at birth
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/cei.13234
  contributor:
    fullname: Zhong
– volume: 26
  start-page: 446
  year: 2018
  ident: 10.1016/j.omtn.2022.11.024_bib3
  article-title: Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.11.017
  contributor:
    fullname: Vogel
– volume: 14
  start-page: 5711
  year: 2020
  ident: 10.1016/j.omtn.2022.11.024_bib12
  article-title: Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00326
  contributor:
    fullname: Blakney
– volume: 23
  start-page: 543
  year: 2022
  ident: 10.1016/j.omtn.2022.11.024_bib34
  article-title: Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01163-9
  contributor:
    fullname: Li
– volume: 44
  start-page: 101262
  year: 2022
  ident: 10.1016/j.omtn.2022.11.024_bib5
  article-title: Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2021.101262
  contributor:
    fullname: Pollock
– volume: 26
  start-page: 2507
  year: 2018
  ident: 10.1016/j.omtn.2022.11.024_bib13
  article-title: A nanostructured lipid carrier for delivery of a replicating viral RNA provides single, low-dose protection against Zika
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.07.010
  contributor:
    fullname: Erasmus
– volume: 215
  start-page: 2964
  year: 2018
  ident: 10.1016/j.omtn.2022.11.024_bib36
  article-title: TLR8: No gain, no pain
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20181899
  contributor:
    fullname: Barrat
– volume: 176
  start-page: 113900
  year: 2021
  ident: 10.1016/j.omtn.2022.11.024_bib9
  article-title: Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: getting the message across
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.113900
  contributor:
    fullname: Minnaert
– volume: 99
  start-page: 230
  year: 2013
  ident: 10.1016/j.omtn.2022.11.024_bib16
  article-title: Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2013.05.007
  contributor:
    fullname: Arimori
– volume: 24
  start-page: 369
  year: 2021
  ident: 10.1016/j.omtn.2022.11.024_bib35
  article-title: Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2021.03.008
  contributor:
    fullname: Davies
– volume: 3
  start-page: iqac004
  year: 2022
  ident: 10.1016/j.omtn.2022.11.024_bib38
  article-title: Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets
  publication-title: Oxford Open Immunol.
  doi: 10.1093/oxfimm/iqac004
  contributor:
    fullname: McKay
– volume: 338
  start-page: 201
  year: 2021
  ident: 10.1016/j.omtn.2022.11.024_bib14
  article-title: Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2021.08.029
  contributor:
    fullname: Blakney
– volume: 29
  start-page: 1174
  year: 2021
  ident: 10.1016/j.omtn.2022.11.024_bib29
  article-title: Innate inhibiting proteins enhance expression and immunogenicity of self-amplifying RNA
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2020.11.011
  contributor:
    fullname: Blakney
SSID ssj0000601262
Score 2.4277146
Snippet To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These...
To be effective, RNA vaccines require both translation and the induction of an immune response to recruit cells to the site of immunization. These factors can...
To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 29
SubjectTerms formulation
inflammation
influenza
MT: Oligonucleotides: Therapies and Applications
Original
pandemic
sensing
vaccine
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB7hJSMhLhDwO_FxQawqJHpARerNsmMbFrFOxe5W6r9nbGerDUhw4ZZ34syX8Tfx5xmEXjgPLq6P4P2Ctq1ggreOedGSQGjsrSehFIP5dKpOvoiP5_L8oNRX1oTV9MD1xb0lXlkuoo2WeKFE7yBioQP08sJFolzNBErYQTBVfTA43lJNlFHFWgZIm2bMVHHXuN7m5KeMvckpPJmY9Uolef-sc_qTfP6uoTzolJa30a2JTeJFbcUddCOku-h4kSCSXl_hl7joO8uP82Pkl0BPp2JdrzEAC7CwntZs8vjz6QJvspw9fcV17iQGcgiL610aAWarAQg7HiMc9CO2NivRyxypcuKlHfII_eYeOlt-OHt_0k41FtpB9t229Z3yjFovRDdIxXkXLVd9GPrgoou9p57o2EkLcZSD0Mr7rtdSykAEML_B8fvoKI0pPERYA1MKnQ_cSS0kxHFRUy2s5AGciB10g17tX7G5qJk0zF5i9t1kg5hsEAhJDBikQe-yFa6PzFmwywbAhpmwYf6FjQbJvQ3NRCgqUYBLrf568-d7gxv42vIQik1h3G0MyxIi1WtGG_SgAuD6ETmQOd1R1qBuBo1ZG-Z70upbyeitwStqoh79j0Y_RjehKTzr5Kh4go62P3fhKRCnrXtWvpFfvrkVUg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKuXBBQFmGTUZCXCBV4i32oaqGilGF1B5QK_Vm2bFdpuokMAui_55nxymEVhy4ZbGz-C3-XvL5PYTeWgcuTgbwfl6ZghFGC0scK0pfVkEaV_pUDOboWByess9n_GwLDeWO8gCubg3tYj2p0-Xl7s_vV_tg8Hu_uVrdYh1zmRKyGzNyEnYH3YW7VpHidZThfu-ZwR0LktfO3N51ND-lNP6jaeomDP2bTfnH9DR7gO5nXImnvSI8RFu-fYR2pi3E1Isr_A4npmf6hL6D3AyAai7b9QHDS4NWLPKeaR3-cjzFq0hsb89xv4oSA0yEzcWm7UDh5g1Ad9wFaHQZChM56Wm1VOr4wzTxX_3qMTqZfTo5OCxytYWi4bJeF64WjlTGMVY3XFBaB0OF9I30NtggXeVKFWpuIKKyEGQ5V0vFOfclAwzYWPoEbbdd658hrAAz-dp5arliHCK6oCrFDKce3Ilp1AS9H4ZYf-tzauiBbHaho0B0FAgEJxoEMkEfoxSuW8Z82OlAtzzX2bx06YShLJhgSscEkxbi2qoBLMhsKIWFi_BBhjpDix4ywKXm_7z5m0HgGuwu_kwxre82K00imUhIRaoJetorwPUjUoB1qq7IBNUj1Ri9w_hMO_-acnsr8I-qFM__u-cLdA-en0aaXMVeou31cuNfAW5a29fJGH4Bcdsa0w
  priority: 102
  providerName: Scholars Portal
Title Formulation, inflammation, and RNA sensing impact the immunogenicity of self-amplifying RNA vaccines
URI https://dx.doi.org/10.1016/j.omtn.2022.11.024
https://www.ncbi.nlm.nih.gov/pubmed/36589712
https://www.proquest.com/docview/2760168921
https://pubmed.ncbi.nlm.nih.gov/PMC9794906
https://doaj.org/article/0d6a34fafa0d4648b2111c1434bf06b4
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbanrggoDwWSmUkxAWymzi2Yx-XilWFtBVCRerN8rNs1ThVdxep_56xk1RdkDhwifKwHSczHn9jfx4j9N44MHEigPXzUheU0LowxNGi9GUVhHalz5vBLM_46Q_69YJd7CE2roXJpH1rVtN43U7j6mfmVt60djbyxGbflicSlEiWfLaP9qH7feCi9-YXbC4nwwKZnsvVtZsU65SQaYrYSehOJ5Rj9e_0RX9jzT8pkw_6oMUT9HgAj3jeV_Ip2vPxGTqcR3Cc2zv8AWc6Zx4nP0RuAWh02JvrEwY9AtG3w5WODn8_m-N1Yq_HS9wvlcSABeG03cYOtGplAZ_jLkCi61DoRDzPS6Jyxl_apgn59XN0vvhyfnJaDFsqFJaJZlO4hjtSaUdpYxmv6ybomgtvhTfBBOEqV8rQMA1ukwFPyrlGSMaYLykAPWvqF-ggdtG_QlgCMPKN87VhkjJw24KsJNWs9mAztJUT9HH8xeqmD5yhRkbZlUoCUUkg4IEoEMgEfU5SuE-Zgl7nG93tpRpEr0rHdU2DDrp0lFNhwHmtLAA-akLJDRTCRhmqAT_0uACKWv3z5e9GgStoXGnGREffbdeKJMYQF5JUE_SyV4D7KtaA3WRTkQlqdlRj5xt2n4A-5wDeg_6-_u-cb9CjtO194sJV9AgdbG63_i2Ao405zoMKcFxScZwbxm_9oRRX
link.rule.ids 230,314,727,780,784,864,885,2102,24318,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5QAXBCyP8jQS4gJpEz_i-FhWVAW2FUJF2pvl51K0SVbbFol_z9hJVluQOHDLw07szHj8TfzNGKHXxoGJqwJYPy91xgijmSGOZbnPi1Bpl_u0GcxiWc6_sU-n_PQA8SEWJpH2rVmPm_N63Ky_J27lRW0nA09s8mVxLEGJZF5ObqCbnApZXHPSOwMMVrckfYhMx-Zq623MdkrIOObsJGxvGkrZ-vdmo7_R5p-kyWuz0OwuutPDRzztmnkPHfjmPjqaNuA617_wG5wInelP-RFyM8Cj_e5c7zBoEgi_7s904_DX5RRvIn-9OcNdsCQGNAiH9a5pQa_WFhA6bgMUOg-ZjtTzFBSVKv7UNi7Jbx6g1ezD6nie9ZsqZJZXYps5UTpSaMeYsLykVARNy8rbyptgQuUKl8sguAbHyYAv5ZyoJOfc5wygnjX0ITps2sY_RlgCNPLCeWq4ZBwctyALyTSnHqyGtnKE3g6fWF10qTPUwCn7oaJAVBQI-CAKBDJC76MUrkrGtNfpQnt5pnrhq9yVmrKgg84dK1llwH0tLEA-ZkJeGngIH2SoegTRIQN41PqfL381CFzB8IprJrrx7W6jSOQMlZUkxQg96hTgqokU0JsUBRkhsacae33YvwManVJ49xr85L9rvkS35qvFiTr5uPz8FN2GvtDIjCvYM3S4vdz55wCVtuZFGhi_AaJ5Fd0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSIgXBIxLNy5GQrxA2sSXJH4sg2pcVk1oSHuzfB1Fi1OtLRL_nmMnmVqQeOAt9zg5X46_E38-B6FX2oKLqz14PydUxgijmSaWZbnLC18rm7tUDOZkXh5_Y5_O-flWqa8k2jd6MQ6XzTgsvidt5bIxk0EnNjk9ORIAIpGXk6X1k5voFqcAsq1AvXPC4HlL0k-T6RRdbbOOGU8JGce8nYTtdEUpY_9Oj_Q34_xTOLnVE83uobs9hcTTrqn30Q0XHqD9aYDwufmFX-Mk6kx_y_eRnQEn7St0vcWAJgBA06-pYPHX-RSvooY9XOBuwiQGRgiLzSa0gK2FAZaOWw8HXfpMRfl5mhiVTvypTByWXz1EZ7MPZ0fHWV9YITO8rtaZrUpLCmUZqwwvKa28omXtTO201762hc2Fr7iC4ElDPGVtVQvOucsZ0D2j6SO0F9rgniAsgB65yjqquWAcgjcvCsEUpw48hzJihN4Mr1guu_QZctCV_ZDRIDIaBOIQCQYZoXfRCtdHxtTXaUN7dSF7AMjclooyr7zKLStZrSGELQzQPqZ9Xmq4CB9sKHsW0bEDuNTinzd_ORhcwicWx01UcO1mJUnUDZW1IMUIPe4AcN1ECgxOVAUZoWoHGjvPsLsHUJ3SePcoPvjvM1-g26fvZ_LLx_nnQ3QHHoVGcVzBnqK99dXGPQO2tNbP03fxG4p5FvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formulation%2C+inflammation%2C+and+RNA+sensing+impact+the+immunogenicity+of+self-amplifying+RNA+vaccines&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Tregoning%2C+John+S.&rft.au=Stirling%2C+David+C.&rft.au=Wang%2C+Ziyin&rft.au=Flight%2C+Katie+E.&rft.date=2023-03-14&rft.pub=American+Society+of+Gene+%26+Cell+Therapy&rft.eissn=2162-2531&rft.volume=31&rft.spage=29&rft.epage=42&rft_id=info:doi/10.1016%2Fj.omtn.2022.11.024&rft.externalDBID=PMC9794906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon