Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes

Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerizat...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 24; no. 4; p. 102369
Main Authors You, Xinda, Xiao, Ke, Wu, Hong, Li, Yafei, Li, Runlai, Yuan, Jinqiu, Zhang, Runnan, Zhang, Zhiming, Liang, Xu, Shen, Jianliang, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 23.04.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials. [Display omitted] •Electrostatic-modulated interfacial polymerization is proposed for the first time•Electrostatic attraction regulates the spatial-temporal distribution of amine monomers•Monomer regulation leads to reduced thickness and enhanced cross-linking of membrane•Ultrathin and highly cross-linked polyamide membrane displays superior permselectivity Supramolecular Materials; Materials Science; Materials Chemistry; Materials Synthesis; Polymers
AbstractList Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials.
Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials.Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials.
Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials.
Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials. [Display omitted] •Electrostatic-modulated interfacial polymerization is proposed for the first time•Electrostatic attraction regulates the spatial-temporal distribution of amine monomers•Monomer regulation leads to reduced thickness and enhanced cross-linking of membrane•Ultrathin and highly cross-linked polyamide membrane displays superior permselectivity Supramolecular Materials; Materials Science; Materials Chemistry; Materials Synthesis; Polymers
Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials. • Electrostatic-modulated interfacial polymerization is proposed for the first time • Electrostatic attraction regulates the spatial-temporal distribution of amine monomers • Monomer regulation leads to reduced thickness and enhanced cross-linking of membrane • Ultrathin and highly cross-linked polyamide membrane displays superior permselectivity Supramolecular Materials; Materials Science; Materials Chemistry; Materials Synthesis; Polymers
ArticleNumber 102369
Author Zhang, Zhiming
Xiao, Ke
Li, Runlai
You, Xinda
Liang, Xu
Zhang, Runnan
Shen, Jianliang
Jiang, Zhongyi
Wu, Hong
Yuan, Jinqiu
Li, Yafei
Author_xml – sequence: 1
  givenname: Xinda
  surname: You
  fullname: You, Xinda
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Ke
  surname: Xiao
  fullname: Xiao, Ke
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Hong
  surname: Wu
  fullname: Wu, Hong
  email: wuhong@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 4
  givenname: Yafei
  surname: Li
  fullname: Li, Yafei
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 5
  givenname: Runlai
  surname: Li
  fullname: Li, Runlai
  organization: Department of Chemistry, National University of Singapore, Singapore 117549, Singapore
– sequence: 6
  givenname: Jinqiu
  surname: Yuan
  fullname: Yuan, Jinqiu
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 7
  givenname: Runnan
  surname: Zhang
  fullname: Zhang, Runnan
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 8
  givenname: Zhiming
  surname: Zhang
  fullname: Zhang, Zhiming
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 9
  givenname: Xu
  surname: Liang
  fullname: Liang, Xu
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 10
  givenname: Jianliang
  surname: Shen
  fullname: Shen, Jianliang
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 11
  givenname: Zhongyi
  surname: Jiang
  fullname: Jiang, Zhongyi
  email: zhyjiang@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33898951$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQFSWlSdP8gR6Kj714I0uWLUEplJC2gUAv7VnoY5Rqka2tZG9If33ldRKSHgJCEjPvvWHmzVt0NMYREHrf4E2Dm-58u_HZ-A3BpCkBQjvxCp0QxkWNcUuOnvyP0VnOW4wxKacV3Rt0TCkXXLDmBLnLAGZKMU9q8qYeop2DmsBWfpwgOWW8CtUuhrsBkv9bMHGspnirkq3mMCVV7yANGRYRv4dqVGN0fkkckAMMOqkR8jv02qmQ4ez-PUW_vl7-vPheX__4dnXx5bo2jPdTbYlpHTSOKKaNFsA5tYyrzqoOKy1YB9CWSzjdO0cFCCxUbzuLhaYEO05P0dWqa6Payl3yg0p3MiovD4GYbqRKpdEAkmmm21YA7nvTWlqm5WiPqW1aDcrCovV51drNegBrYCxthWeizzOj_y1v4l5yzARmfRH4eC-Q4p8Z8iSH4hmEUCYS5ywJa3hPO8JogX54WuuxyINRBcBXgCle5QROGj8dhlxK-yAbLJe1kFu5rIVc1kKua1Go5D_qg_qLpE8rCYpbew9JFgSMBqxPxesyTv8S_R8KHtVY
CitedBy_id crossref_primary_10_3390_coatings12121823
crossref_primary_10_1016_j_rineng_2024_101932
crossref_primary_10_1016_j_memsci_2023_121517
crossref_primary_10_1016_j_watres_2024_121530
crossref_primary_10_1016_j_memsci_2023_121714
crossref_primary_10_1016_j_memsci_2023_121758
crossref_primary_10_1016_j_seppur_2022_120781
crossref_primary_10_1016_j_memsci_2022_120507
crossref_primary_10_1016_j_memsci_2024_122804
crossref_primary_10_1021_acs_est_2c04736
crossref_primary_10_1016_j_advmem_2022_100032
crossref_primary_10_1016_j_ces_2023_119064
crossref_primary_10_1016_j_memsci_2023_122207
crossref_primary_10_1016_j_memsci_2023_121476
crossref_primary_10_1016_j_memsci_2024_123019
crossref_primary_10_1016_j_memsci_2022_120589
crossref_primary_10_1016_j_memsci_2023_122003
crossref_primary_10_1002_adfm_202414490
crossref_primary_10_1016_j_memsci_2022_120269
crossref_primary_10_1002_pol_20210664
crossref_primary_10_1016_j_cej_2024_152321
crossref_primary_10_1039_D0CS01599G
crossref_primary_10_1016_j_memsci_2023_122250
crossref_primary_10_1002_asia_202301076
crossref_primary_10_1016_j_cej_2025_161159
crossref_primary_10_1016_j_desal_2022_116232
crossref_primary_10_1016_j_progpolymsci_2024_101815
crossref_primary_10_1016_j_seppur_2023_124543
crossref_primary_10_1021_acsapm_3c00499
crossref_primary_10_1126_sciadv_adf6122
crossref_primary_10_2139_ssrn_3968822
crossref_primary_10_1016_j_memsci_2021_119689
crossref_primary_10_1038_s41467_022_35681_9
crossref_primary_10_1039_D2RA06304B
crossref_primary_10_1016_j_memsci_2022_120419
crossref_primary_10_1021_acs_nanolett_4c02483
crossref_primary_10_1016_j_memsci_2023_121689
crossref_primary_10_1016_j_memsci_2024_122834
crossref_primary_10_1016_j_memsci_2022_120451
crossref_primary_10_1016_j_memsci_2023_121921
crossref_primary_10_1016_j_cej_2022_137773
crossref_primary_10_1016_j_memsci_2023_121882
crossref_primary_10_1021_acsapm_4c00447
crossref_primary_10_1002_smll_202500927
crossref_primary_10_1016_j_desal_2023_116748
crossref_primary_10_1016_j_memsci_2023_122387
crossref_primary_10_1016_j_desal_2023_116861
crossref_primary_10_1016_j_memsci_2021_119971
crossref_primary_10_1039_D1EN00238D
crossref_primary_10_1016_j_jcis_2024_06_229
crossref_primary_10_1016_j_desal_2022_115952
crossref_primary_10_1016_j_desal_2023_116546
crossref_primary_10_1016_j_seppur_2023_124875
crossref_primary_10_1016_j_seppur_2024_129746
crossref_primary_10_1016_j_desal_2024_117577
crossref_primary_10_1016_j_seppur_2023_124648
crossref_primary_10_1016_j_watres_2022_118264
crossref_primary_10_1016_j_memsci_2023_121739
crossref_primary_10_1016_j_memsci_2022_120441
crossref_primary_10_1016_j_memsci_2023_121899
crossref_primary_10_1016_j_memsci_2023_121377
crossref_primary_10_1016_j_memsci_2023_122267
crossref_primary_10_1016_j_ces_2025_121569
crossref_primary_10_1016_j_chemosphere_2022_136929
crossref_primary_10_1016_j_memsci_2022_121063
crossref_primary_10_1016_j_isci_2022_104027
crossref_primary_10_1016_j_memsci_2021_120051
crossref_primary_10_1016_j_memsci_2024_123161
crossref_primary_10_1039_D1TA07413J
crossref_primary_10_1016_j_desal_2023_117029
crossref_primary_10_1016_j_carbon_2023_118582
crossref_primary_10_1002_adma_202108457
crossref_primary_10_1016_j_desal_2024_117422
crossref_primary_10_1016_j_jcis_2021_07_153
crossref_primary_10_1016_j_memsci_2022_120679
crossref_primary_10_1038_s41467_023_36711_w
crossref_primary_10_1016_j_jclepro_2023_137282
crossref_primary_10_1016_j_memsci_2021_119706
crossref_primary_10_1002_adma_202300913
crossref_primary_10_1016_j_memsci_2022_120673
crossref_primary_10_1016_j_ijbiomac_2024_132135
crossref_primary_10_1039_D3CS00803G
crossref_primary_10_1016_j_memsci_2023_121863
crossref_primary_10_1016_j_cej_2021_131791
crossref_primary_10_1016_j_chemosphere_2023_137930
crossref_primary_10_1016_j_memsci_2024_122780
crossref_primary_10_1016_j_memsci_2024_123153
crossref_primary_10_1016_j_desal_2024_118325
crossref_primary_10_1016_j_desal_2024_118523
Cites_doi 10.1039/C9TA08163A
10.1021/jacs.8b07120
10.1038/s41467-019-12100-0
10.1038/s41467-018-04467-3
10.1002/adma.201705973
10.1016/j.memsci.2020.117949
10.1016/j.memsci.2020.117980
10.1063/1.2273627
10.1126/science.aaa5058
10.1038/s41467-020-15771-2
10.1038/s41467-019-09286-8
10.1016/j.memsci.2013.03.029
10.1021/jacs.0c04589
10.1002/adma.201703909
10.1039/C9TA12258C
10.1021/la020920q
10.1002/adma.202001284
10.1021/jacs.7b06640
10.1039/C8TA05687K
10.1126/science.aar6308
10.1016/j.memsci.2015.11.016
10.1038/s41467-018-04294-6
10.1039/b002216k
10.1039/D0EE00341G
10.1038/31418
10.1002/adfm.202007054
10.1038/nmat2769
10.1016/j.actbio.2016.03.038
10.1016/j.memsci.2019.01.040
10.1016/j.memsci.2019.117244
10.1039/D0TA09319J
10.1021/acs.langmuir.6b04465
10.1002/adma.202005565
10.1016/S0376-7388(97)00278-0
10.1021/la300394c
10.1016/j.ces.2018.11.019
10.1002/anie.201511064
10.1038/nnano.2017.160
10.1016/j.memsci.2016.09.055
10.1021/ja054169u
10.1016/j.bpc.2005.04.015
10.1002/anie.201703572
10.1016/j.memsci.2017.06.084
10.1021/acsami.0c05166
10.1039/C7TA02837G
10.1021/acsami.8b04093
10.1002/adma.200901407
10.1002/anie.201604671
10.1103/PhysRevLett.90.075502
10.1038/natrevmats.2016.18
10.1016/j.memsci.2014.05.047
10.1126/science.1251181
10.1039/C9TA13957E
10.1002/adma.202001383
ContentType Journal Article
Copyright 2021 The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2021.102369
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Acceso a contenido Full Text - Doaj
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_5b5b449e077c4d3589f3703d14beade8
PMC8059057
33898951
10_1016_j_isci_2021_102369
S2589004221003370
Genre Journal Article
GroupedDBID 0R~
53G
6I.
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
AACTN
NCXOZ
NPM
7X8
5PM
ID FETCH-LOGICAL-c587t-d2c4fe1f2a5bcb9e883d58a6da60ab956ee456e9fb7ff39e909a7d6d09b320f83
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:28:15 EDT 2025
Thu Aug 21 18:16:36 EDT 2025
Fri Jul 11 10:27:00 EDT 2025
Thu Jan 02 22:55:57 EST 2025
Wed Aug 06 19:24:31 EDT 2025
Thu Apr 24 23:13:15 EDT 2025
Sat Aug 30 17:17:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Supramolecular Materials
Materials Chemistry
Materials Synthesis
Materials Science
Polymers
Language English
License This is an open access article under the CC BY license.
2021 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-d2c4fe1f2a5bcb9e883d58a6da60ab956ee456e9fb7ff39e909a7d6d09b320f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
OpenAccessLink https://doaj.org/article/5b5b449e077c4d3589f3703d14beade8
PMID 33898951
PQID 2518736253
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5b5b449e077c4d3589f3703d14beade8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8059057
proquest_miscellaneous_2518736253
pubmed_primary_33898951
crossref_citationtrail_10_1016_j_isci_2021_102369
crossref_primary_10_1016_j_isci_2021_102369
elsevier_sciencedirect_doi_10_1016_j_isci_2021_102369
PublicationCentury 2000
PublicationDate 2021-04-23
PublicationDateYYYYMMDD 2021-04-23
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Sarkar, Modak, Karan (bib37) 2020; 31
Liang, Zhu, Liu, Lee, Hung, Wang, Li, Elimelech, Jin, Lin (bib26) 2020; 11
You, Wu, Zhang, Su, Cao, Yu, Yuan, Xiao, He, Jiang (bib51) 2019; 10
Cheng, Li, Zhang, Wang, Hsiao (bib7) 2019; 196
Peng, Zhang, Hung, Wang, Sun, Lee, An, Liu, Zhao (bib34) 2020; 32
Khan, Zhang, Wu, Shen, Yuan, Fan, Cao, Olson, Jiang (bib23) 2020; 142
Qin, Zhang, Song, Huang, Xu, Zhang (bib35) 2017; 56
Song, Chen, Rong, Xie, Zhao, Wang, Chen, Wolfbeis (bib40) 2016; 55
Modig, Pfrommer, Halle (bib31) 2003; 90
Yan, Lv, Zhu, Chen, Sun, Yu (bib48) 2017; 29
Jiang, Karan, Livingston (bib21) 2018; 30
Bowen, Cao (bib1) 1998; 140
Cao, Wu, Cao, Fan, Zhao, He, Yang, Shi, You, Jiang (bib4) 2020; 32
Shen, Wang, You, Shi, Xue, Yuan, Li, Guan, Ma, Su (bib39) 2021
Guan, Liang, Zhu, Zhao, Jin (bib12) 2018; 10
You, Ma, Su, Wu, Wu, Cai, Sun, Jiang (bib50) 2017; 540
Fang, Shi, Wang (bib9) 2014; 468
He, Yang, Wu, He, Xu, Kong, Cao, Shi, Zhang, Tongsh (bib17) 2020; 32
Bowen, Sharif (bib2) 1998; 393
Zheng, Li, Yao, Zhang, Wang (bib55) 2017; 5
Li, You, Li, Yuan, Shen, Zhang, Wu, Su, Jiang (bib25) 2020; 8
Liu, Zhao (bib28) 2005; 117
Guan, Fan, Liu, Shi, Yuan, Zhang, You, He, Su, Jiang (bib11) 2020; 602
Tan, Chen, Peng, Zhang, Gao (bib41) 2018; 360
Zhang, Guan, Ji, Liu, Jin, Xu (bib54) 2019; 10
Wang, Wang, Lin, Jin, Gao, Zhu, Jin (bib44) 2018; 9
Brown, Brunelli, Eum, Rashidi, Johnson, Koros, Jones, Nair (bib3) 2014; 345
Yang, Du, Zhang, He, Xu (bib49) 2017; 33
Jiang, Tian, Zhai, Shen, Dong, He, Hou, Niu (bib18) 2019; 589
Chen, Wang, Liu, Yang, Liu, Ruoff, Lei (bib5) 2018; 9
Yu, You, Wu, Su, Zhang, Liu, Yang, Shen, Yuan, Jiang (bib52) 2020; 8
Wang, Li, Chen, Li, Yin, Cao, Zhong, Wu (bib42) 2017; 523
Wu, Yuan, Wu, Su, Yang, You, Zhang, He, Khan, Kasher (bib47) 2019; 576
Lim, Setiawan, Bae, Wang (bib27) 2016; 501
Zhu, Hou, Zhang, Yuan, Li, Tian, Wang, Zhang, Volodin, Van der Bruggen (bib56) 2018; 6
Hakala, Nygard, Manninen, Huotari, Buslaps, Nilsson, Pettersson, Hamalainen (bib13) 2006; 125
Li, Zhang, Su (bib24) 2016; 55
Makiura, Motoyama, Umemura, Yamanaka, Sakata, Kitagawa (bib30) 2010; 9
Chen, Zheng, Li, Jiang (bib6) 2005; 127
Dey, Pal, Rout, Kunjattu, Das, Mukherjee, Kharul, Banerjee (bib8) 2017; 139
Hao, Zhao, Sun, Lu, Liu, Liu, Wan, Wang (bib14) 2018; 140
Patel, Ritt, Deshmukh, Wang, Qin, Epsztein, Elimelech (bib33) 2020; 13
Shen, Bian, Zhang, An, Cui, Wang, Li (bib38) 2020; 601
Hao, Li, He, Liao, Li, Hu, Ji, Cui, Younas, Li (bib15) 2020; 8
Jiang, Zhang, Li, Sun, Hou, Niu (bib19) 2020; 12
Werber, Osuji, Elimelech (bib45) 2016; 1
Yuan, Wu, Wu, Liu, You, Zhang, Su, Yang, Shen, Jiang (bib53) 2019; 7
Morelos-Gomez, Cruz-Silva, Muramatsu, Ortiz-Medina, Araki, Fukuyo, Tejima, Takeuchi, Hayashi, Terrones (bib32) 2017; 12
Freger (bib10) 2003; 19
Karan, Jiang, Livingston (bib22) 2015; 348
Luo, Wan (bib29) 2013; 438
Rozenberg, Loewenschuss, Marcus (bib36) 2000; 2
Wu, Lin, Wang, Chen, Chang (bib46) 2012; 28
He, Gao, Zhou, Jiao, Wu, Cao, You, Cai, Su, Jiang (bib16) 2016; 40
Jiang, Cao (bib20) 2010; 22
Wang, Zhang, Fan (bib43) 2020; 59
Karan (10.1016/j.isci.2021.102369_bib22) 2015; 348
Wu (10.1016/j.isci.2021.102369_bib47) 2019; 576
Liu (10.1016/j.isci.2021.102369_bib28) 2005; 117
Khan (10.1016/j.isci.2021.102369_bib23) 2020; 142
Jiang (10.1016/j.isci.2021.102369_bib19) 2020; 12
Shen (10.1016/j.isci.2021.102369_bib38) 2020; 601
Yu (10.1016/j.isci.2021.102369_bib52) 2020; 8
Hakala (10.1016/j.isci.2021.102369_bib13) 2006; 125
Peng (10.1016/j.isci.2021.102369_bib34) 2020; 32
Wu (10.1016/j.isci.2021.102369_bib46) 2012; 28
Bowen (10.1016/j.isci.2021.102369_bib2) 1998; 393
Liang (10.1016/j.isci.2021.102369_bib26) 2020; 11
Fang (10.1016/j.isci.2021.102369_bib9) 2014; 468
Zhang (10.1016/j.isci.2021.102369_bib54) 2019; 10
Patel (10.1016/j.isci.2021.102369_bib33) 2020; 13
Modig (10.1016/j.isci.2021.102369_bib31) 2003; 90
Wang (10.1016/j.isci.2021.102369_bib44) 2018; 9
Bowen (10.1016/j.isci.2021.102369_bib1) 1998; 140
Rozenberg (10.1016/j.isci.2021.102369_bib36) 2000; 2
Guan (10.1016/j.isci.2021.102369_bib12) 2018; 10
Hao (10.1016/j.isci.2021.102369_bib15) 2020; 8
Jiang (10.1016/j.isci.2021.102369_bib18) 2019; 589
Wang (10.1016/j.isci.2021.102369_bib42) 2017; 523
Guan (10.1016/j.isci.2021.102369_bib11) 2020; 602
Wang (10.1016/j.isci.2021.102369_bib43) 2020; 59
He (10.1016/j.isci.2021.102369_bib16) 2016; 40
Yang (10.1016/j.isci.2021.102369_bib49) 2017; 33
You (10.1016/j.isci.2021.102369_bib50) 2017; 540
Werber (10.1016/j.isci.2021.102369_bib45) 2016; 1
Tan (10.1016/j.isci.2021.102369_bib41) 2018; 360
He (10.1016/j.isci.2021.102369_bib17) 2020; 32
Sarkar (10.1016/j.isci.2021.102369_bib37) 2020; 31
Dey (10.1016/j.isci.2021.102369_bib8) 2017; 139
Qin (10.1016/j.isci.2021.102369_bib35) 2017; 56
Jiang (10.1016/j.isci.2021.102369_bib21) 2018; 30
Hao (10.1016/j.isci.2021.102369_bib14) 2018; 140
Morelos-Gomez (10.1016/j.isci.2021.102369_bib32) 2017; 12
Song (10.1016/j.isci.2021.102369_bib40) 2016; 55
Zhu (10.1016/j.isci.2021.102369_bib56) 2018; 6
Lim (10.1016/j.isci.2021.102369_bib27) 2016; 501
Cao (10.1016/j.isci.2021.102369_bib4) 2020; 32
Chen (10.1016/j.isci.2021.102369_bib6) 2005; 127
You (10.1016/j.isci.2021.102369_bib51) 2019; 10
Zheng (10.1016/j.isci.2021.102369_bib55) 2017; 5
Cheng (10.1016/j.isci.2021.102369_bib7) 2019; 196
Shen (10.1016/j.isci.2021.102369_bib39) 2021
Yan (10.1016/j.isci.2021.102369_bib48) 2017; 29
Jiang (10.1016/j.isci.2021.102369_bib20) 2010; 22
Luo (10.1016/j.isci.2021.102369_bib29) 2013; 438
Freger (10.1016/j.isci.2021.102369_bib10) 2003; 19
Li (10.1016/j.isci.2021.102369_bib25) 2020; 8
Brown (10.1016/j.isci.2021.102369_bib3) 2014; 345
Yuan (10.1016/j.isci.2021.102369_bib53) 2019; 7
Makiura (10.1016/j.isci.2021.102369_bib30) 2010; 9
Li (10.1016/j.isci.2021.102369_bib24) 2016; 55
Chen (10.1016/j.isci.2021.102369_bib5) 2018; 9
References_xml – volume: 468
  start-page: 52
  year: 2014
  end-page: 61
  ident: bib9
  article-title: Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability
  publication-title: J. Membr. Sci.
– volume: 32
  start-page: 2005565
  year: 2020
  ident: bib4
  article-title: Weakly humidity-dependent proton-conducting COF membranes
  publication-title: Adv. Mater.
– volume: 589
  start-page: 117244
  year: 2019
  ident: bib18
  article-title: Thin-film composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration
  publication-title: J. Membr. Sci.
– volume: 8
  start-page: 4505
  year: 2020
  end-page: 4514
  ident: bib52
  article-title: Ultrathin fluorinated self-cleaning membranes via coordination-driven metal-bridging assembly for water purification
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 2015
  year: 2020
  ident: bib26
  article-title: Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation
  publication-title: Nat. Commun.
– volume: 576
  start-page: 131
  year: 2019
  end-page: 141
  ident: bib47
  article-title: Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability
  publication-title: J. Membr. Sci.
– year: 2021
  ident: bib39
  article-title: Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 13730
  year: 2017
  end-page: 13739
  ident: bib55
  article-title: Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 920
  year: 2010
  end-page: 932
  ident: bib20
  article-title: Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications
  publication-title: Adv. Mater.
– volume: 59
  start-page: 12
  year: 2020
  end-page: 19
  ident: bib43
  article-title: Interfacial polymerization: from chemistry to functional materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 2699
  year: 2000
  end-page: 2702
  ident: bib36
  article-title: An empirical correlation between stretching vibration redshift and hydrogen bond length
  publication-title: Phys. Chem. Chem. Phys.
– volume: 196
  start-page: 265
  year: 2019
  end-page: 276
  ident: bib7
  article-title: Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae
  publication-title: Chem. Eng. Sci.
– volume: 602
  start-page: 117980
  year: 2020
  ident: bib11
  article-title: Incorporating arginine-Fe-III complex into polyamide membranes for enhanced water permeance and antifouling performance
  publication-title: J. Membr. Sci.
– volume: 55
  start-page: 9093
  year: 2016
  end-page: 9096
  ident: bib24
  article-title: One-step assembly of phytic acid metal complexes for superhydrophilic coatings
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 7639
  year: 2017
  end-page: 7643
  ident: bib35
  article-title: Supramolecular interfacial polymerization: a controllable method of fabricating supramolecular polymeric materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 33
  start-page: 2318
  year: 2017
  end-page: 2324
  ident: bib49
  article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance
  publication-title: Langmuir
– volume: 139
  start-page: 13083
  year: 2017
  end-page: 13091
  ident: bib8
  article-title: Selective molecular separation by lnterfacially crystallized covalent organic framework thin films
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1083
  year: 2017
  end-page: 1088
  ident: bib32
  article-title: Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes
  publication-title: Nat. Nanotechnol.
– volume: 438
  start-page: 18
  year: 2013
  end-page: 28
  ident: bib29
  article-title: Effects of pH and salt on nanofiltration-a critical review
  publication-title: J. Membr. Sci.
– volume: 9
  start-page: 565
  year: 2010
  end-page: 571
  ident: bib30
  article-title: Surface nano-architecture of a metal-organic framework
  publication-title: Nat. Mater.
– volume: 28
  start-page: 7436
  year: 2012
  end-page: 7441
  ident: bib46
  article-title: Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance
  publication-title: Langmuir
– volume: 127
  start-page: 14473
  year: 2005
  end-page: 14478
  ident: bib6
  article-title: Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1694
  year: 2020
  end-page: 1710
  ident: bib33
  article-title: The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies
  publication-title: Energy Environ. Sci.
– volume: 140
  start-page: 12152
  year: 2018
  end-page: 12158
  ident: bib14
  article-title: Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 5275
  year: 2020
  end-page: 5283
  ident: bib15
  article-title: An ultrahighly permeable-selective nanofiltration membrane mediated by an in situ formed interlayer
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 4160
  year: 2019
  ident: bib51
  article-title: Metal-coordinated sub-10 nm membranes for water purification
  publication-title: Nat. Commun.
– volume: 393
  start-page: 663
  year: 1998
  end-page: 665
  ident: bib2
  article-title: Long-range electrostatic attraction between like-charge spheres in a charged pore
  publication-title: Nature
– volume: 9
  start-page: 2004
  year: 2018
  ident: bib44
  article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination
  publication-title: Nat. Commun.
– volume: 90
  start-page: 075502
  year: 2003
  ident: bib31
  article-title: Temperature-dependent hydrogen-bond geometry in liquid water
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 4791
  year: 2003
  end-page: 4797
  ident: bib10
  article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
  publication-title: Langmuir
– volume: 9
  start-page: 1902
  year: 2018
  ident: bib5
  article-title: Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation
  publication-title: Nat. Commun.
– volume: 601
  start-page: 117949
  year: 2020
  ident: bib38
  article-title: Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity
  publication-title: J. Membr. Sci.
– volume: 29
  start-page: 1703909
  year: 2017
  ident: bib48
  article-title: Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage
  publication-title: Adv. Mater.
– volume: 7
  start-page: 25641
  year: 2019
  end-page: 25649
  ident: bib53
  article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes
  publication-title: J. Mater. Chem. A
– volume: 142
  start-page: 13450
  year: 2020
  end-page: 13458
  ident: bib23
  article-title: Solid-vapor interface engineered covalent organic framework membranes for molecular separation
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 267
  year: 1998
  end-page: 273
  ident: bib1
  article-title: Electrokinetic effects in membrane pores and the determination of zeta-potential
  publication-title: J. Membr. Sci.
– volume: 360
  start-page: 518
  year: 2018
  end-page: 521
  ident: bib41
  article-title: Polyamide membranes with nanoscale Turing structures for water purification
  publication-title: Science
– volume: 32
  start-page: 2001383
  year: 2020
  ident: bib34
  article-title: Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness
  publication-title: Adv. Mater.
– volume: 523
  start-page: 273
  year: 2017
  end-page: 281
  ident: bib42
  article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination
  publication-title: J. Membr. Sci.
– volume: 125
  start-page: 084504
  year: 2006
  ident: bib13
  article-title: Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering
  publication-title: J. Chem. Phys.
– volume: 31
  start-page: 2007054
  year: 2020
  ident: bib37
  article-title: Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 25304
  year: 2020
  end-page: 25315
  ident: bib19
  article-title: Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination
  publication-title: ACS Appl. Mater. Inter.
– volume: 55
  start-page: 3936
  year: 2016
  end-page: 3941
  ident: bib40
  article-title: A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 16018
  year: 2016
  ident: bib45
  article-title: Materials for next-generation desalination and water purification membranes
  publication-title: Nat. Rev. Mater.
– volume: 345
  start-page: 72
  year: 2014
  end-page: 75
  ident: bib3
  article-title: Interfacial microfluidic processing of metal-organic framework hollow fiber membranes
  publication-title: Science
– volume: 6
  start-page: 15701
  year: 2018
  end-page: 15709
  ident: bib56
  article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 23930
  year: 2020
  end-page: 23938
  ident: bib25
  article-title: Graphene quantum dots engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem. A
– volume: 348
  start-page: 1347
  year: 2015
  end-page: 1351
  ident: bib22
  article-title: Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation
  publication-title: Science
– volume: 540
  start-page: 454
  year: 2017
  end-page: 463
  ident: bib50
  article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles
  publication-title: J. Membr. Sci.
– volume: 40
  start-page: 142
  year: 2016
  end-page: 152
  ident: bib16
  article-title: Zwitterionic materials for antifouling membrane surface construction
  publication-title: Acta Biomater.
– volume: 30
  start-page: 1705973
  year: 2018
  ident: bib21
  article-title: Water transport through ultrathin polyamide nanofilms used for reverse osmosis
  publication-title: Adv. Mater.
– volume: 501
  start-page: 152
  year: 2016
  end-page: 160
  ident: bib27
  article-title: Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solvent-resistant nanofiltration under low operating pressure
  publication-title: J. Membr. Sci.
– volume: 10
  start-page: 13903
  year: 2018
  end-page: 13913
  ident: bib12
  article-title: Incorporating graphene oxide into alginate polymer with a cationic intermediate to strengthen membrane dehydration performance
  publication-title: Acs Appl. Mater. Inter.
– volume: 32
  start-page: 2001284
  year: 2020
  ident: bib17
  article-title: De novo design of covalent organic framework membranes toward ultrafast anion transport
  publication-title: Adv. Mater.
– volume: 117
  start-page: 39
  year: 2005
  end-page: 45
  ident: bib28
  article-title: Influence of surface energy of modified surfaces on bacterial adhesion
  publication-title: Biophysical Chem.
– volume: 10
  start-page: 1253
  year: 2019
  ident: bib54
  article-title: Controllable ion transport by surface-charged graphene oxide membrane
  publication-title: Nat. Commun.
– volume: 7
  start-page: 25641
  year: 2019
  ident: 10.1016/j.isci.2021.102369_bib53
  article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08163A
– volume: 140
  start-page: 12152
  year: 2018
  ident: 10.1016/j.isci.2021.102369_bib14
  article-title: Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07120
– volume: 10
  start-page: 4160
  year: 2019
  ident: 10.1016/j.isci.2021.102369_bib51
  article-title: Metal-coordinated sub-10 nm membranes for water purification
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12100-0
– volume: 9
  start-page: 2004
  year: 2018
  ident: 10.1016/j.isci.2021.102369_bib44
  article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04467-3
– volume: 30
  start-page: 1705973
  year: 2018
  ident: 10.1016/j.isci.2021.102369_bib21
  article-title: Water transport through ultrathin polyamide nanofilms used for reverse osmosis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705973
– volume: 601
  start-page: 117949
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib38
  article-title: Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.117949
– volume: 602
  start-page: 117980
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib11
  article-title: Incorporating arginine-Fe-III complex into polyamide membranes for enhanced water permeance and antifouling performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.117980
– volume: 125
  start-page: 084504
  year: 2006
  ident: 10.1016/j.isci.2021.102369_bib13
  article-title: Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2273627
– volume: 348
  start-page: 1347
  year: 2015
  ident: 10.1016/j.isci.2021.102369_bib22
  article-title: Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation
  publication-title: Science
  doi: 10.1126/science.aaa5058
– volume: 11
  start-page: 2015
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib26
  article-title: Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15771-2
– volume: 10
  start-page: 1253
  year: 2019
  ident: 10.1016/j.isci.2021.102369_bib54
  article-title: Controllable ion transport by surface-charged graphene oxide membrane
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09286-8
– volume: 438
  start-page: 18
  year: 2013
  ident: 10.1016/j.isci.2021.102369_bib29
  article-title: Effects of pH and salt on nanofiltration-a critical review
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.03.029
– volume: 142
  start-page: 13450
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib23
  article-title: Solid-vapor interface engineered covalent organic framework membranes for molecular separation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04589
– year: 2021
  ident: 10.1016/j.isci.2021.102369_bib39
  article-title: Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1703909
  year: 2017
  ident: 10.1016/j.isci.2021.102369_bib48
  article-title: Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703909
– volume: 8
  start-page: 5275
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib15
  article-title: An ultrahighly permeable-selective nanofiltration membrane mediated by an in situ formed interlayer
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12258C
– volume: 19
  start-page: 4791
  year: 2003
  ident: 10.1016/j.isci.2021.102369_bib10
  article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
  publication-title: Langmuir
  doi: 10.1021/la020920q
– volume: 32
  start-page: 2001284
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib17
  article-title: De novo design of covalent organic framework membranes toward ultrafast anion transport
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001284
– volume: 139
  start-page: 13083
  year: 2017
  ident: 10.1016/j.isci.2021.102369_bib8
  article-title: Selective molecular separation by lnterfacially crystallized covalent organic framework thin films
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06640
– volume: 6
  start-page: 15701
  year: 2018
  ident: 10.1016/j.isci.2021.102369_bib56
  article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05687K
– volume: 360
  start-page: 518
  year: 2018
  ident: 10.1016/j.isci.2021.102369_bib41
  article-title: Polyamide membranes with nanoscale Turing structures for water purification
  publication-title: Science
  doi: 10.1126/science.aar6308
– volume: 501
  start-page: 152
  year: 2016
  ident: 10.1016/j.isci.2021.102369_bib27
  article-title: Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solvent-resistant nanofiltration under low operating pressure
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.11.016
– volume: 9
  start-page: 1902
  year: 2018
  ident: 10.1016/j.isci.2021.102369_bib5
  article-title: Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04294-6
– volume: 2
  start-page: 2699
  year: 2000
  ident: 10.1016/j.isci.2021.102369_bib36
  article-title: An empirical correlation between stretching vibration redshift and hydrogen bond length
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b002216k
– volume: 13
  start-page: 1694
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib33
  article-title: The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00341G
– volume: 393
  start-page: 663
  year: 1998
  ident: 10.1016/j.isci.2021.102369_bib2
  article-title: Long-range electrostatic attraction between like-charge spheres in a charged pore
  publication-title: Nature
  doi: 10.1038/31418
– volume: 31
  start-page: 2007054
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib37
  article-title: Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007054
– volume: 9
  start-page: 565
  year: 2010
  ident: 10.1016/j.isci.2021.102369_bib30
  article-title: Surface nano-architecture of a metal-organic framework
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2769
– volume: 40
  start-page: 142
  year: 2016
  ident: 10.1016/j.isci.2021.102369_bib16
  article-title: Zwitterionic materials for antifouling membrane surface construction
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.03.038
– volume: 576
  start-page: 131
  year: 2019
  ident: 10.1016/j.isci.2021.102369_bib47
  article-title: Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.01.040
– volume: 589
  start-page: 117244
  year: 2019
  ident: 10.1016/j.isci.2021.102369_bib18
  article-title: Thin-film composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117244
– volume: 8
  start-page: 23930
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib25
  article-title: Graphene quantum dots engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09319J
– volume: 33
  start-page: 2318
  year: 2017
  ident: 10.1016/j.isci.2021.102369_bib49
  article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b04465
– volume: 32
  start-page: 2005565
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib4
  article-title: Weakly humidity-dependent proton-conducting COF membranes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005565
– volume: 140
  start-page: 267
  year: 1998
  ident: 10.1016/j.isci.2021.102369_bib1
  article-title: Electrokinetic effects in membrane pores and the determination of zeta-potential
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00278-0
– volume: 28
  start-page: 7436
  year: 2012
  ident: 10.1016/j.isci.2021.102369_bib46
  article-title: Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance
  publication-title: Langmuir
  doi: 10.1021/la300394c
– volume: 196
  start-page: 265
  year: 2019
  ident: 10.1016/j.isci.2021.102369_bib7
  article-title: Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.11.019
– volume: 55
  start-page: 3936
  year: 2016
  ident: 10.1016/j.isci.2021.102369_bib40
  article-title: A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511064
– volume: 12
  start-page: 1083
  year: 2017
  ident: 10.1016/j.isci.2021.102369_bib32
  article-title: Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.160
– volume: 523
  start-page: 273
  year: 2017
  ident: 10.1016/j.isci.2021.102369_bib42
  article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.09.055
– volume: 127
  start-page: 14473
  year: 2005
  ident: 10.1016/j.isci.2021.102369_bib6
  article-title: Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054169u
– volume: 117
  start-page: 39
  year: 2005
  ident: 10.1016/j.isci.2021.102369_bib28
  article-title: Influence of surface energy of modified surfaces on bacterial adhesion
  publication-title: Biophysical Chem.
  doi: 10.1016/j.bpc.2005.04.015
– volume: 56
  start-page: 7639
  year: 2017
  ident: 10.1016/j.isci.2021.102369_bib35
  article-title: Supramolecular interfacial polymerization: a controllable method of fabricating supramolecular polymeric materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703572
– volume: 540
  start-page: 454
  year: 2017
  ident: 10.1016/j.isci.2021.102369_bib50
  article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.06.084
– volume: 12
  start-page: 25304
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib19
  article-title: Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.0c05166
– volume: 5
  start-page: 13730
  year: 2017
  ident: 10.1016/j.isci.2021.102369_bib55
  article-title: Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02837G
– volume: 10
  start-page: 13903
  year: 2018
  ident: 10.1016/j.isci.2021.102369_bib12
  article-title: Incorporating graphene oxide into alginate polymer with a cationic intermediate to strengthen membrane dehydration performance
  publication-title: Acs Appl. Mater. Inter.
  doi: 10.1021/acsami.8b04093
– volume: 22
  start-page: 920
  year: 2010
  ident: 10.1016/j.isci.2021.102369_bib20
  article-title: Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901407
– volume: 55
  start-page: 9093
  year: 2016
  ident: 10.1016/j.isci.2021.102369_bib24
  article-title: One-step assembly of phytic acid metal complexes for superhydrophilic coatings
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604671
– volume: 59
  start-page: 12
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib43
  article-title: Interfacial polymerization: from chemistry to functional materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 90
  start-page: 075502
  year: 2003
  ident: 10.1016/j.isci.2021.102369_bib31
  article-title: Temperature-dependent hydrogen-bond geometry in liquid water
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.075502
– volume: 1
  start-page: 16018
  year: 2016
  ident: 10.1016/j.isci.2021.102369_bib45
  article-title: Materials for next-generation desalination and water purification membranes
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.18
– volume: 468
  start-page: 52
  year: 2014
  ident: 10.1016/j.isci.2021.102369_bib9
  article-title: Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.05.047
– volume: 345
  start-page: 72
  year: 2014
  ident: 10.1016/j.isci.2021.102369_bib3
  article-title: Interfacial microfluidic processing of metal-organic framework hollow fiber membranes
  publication-title: Science
  doi: 10.1126/science.1251181
– volume: 8
  start-page: 4505
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib52
  article-title: Ultrathin fluorinated self-cleaning membranes via coordination-driven metal-bridging assembly for water purification
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13957E
– volume: 32
  start-page: 2001383
  year: 2020
  ident: 10.1016/j.isci.2021.102369_bib34
  article-title: Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001383
SSID ssj0002002496
Score 2.4794087
Snippet Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102369
SubjectTerms Materials Chemistry
Materials Science
Materials Synthesis
Polymers
Supramolecular Materials
Title Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes
URI https://dx.doi.org/10.1016/j.isci.2021.102369
https://www.ncbi.nlm.nih.gov/pubmed/33898951
https://www.proquest.com/docview/2518736253
https://pubmed.ncbi.nlm.nih.gov/PMC8059057
https://doaj.org/article/5b5b449e077c4d3589f3703d14beade8
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYsovuqLFbzJ4u4m2SRHFUUEPSl4C8kmwUq7Ldoe_PfOJNvSKtSL130nM5t8k8x8HyHntkYQHGhuWPAQoEDAKiW1OQ0-MMpk4QyuQz4-1fcv7OGVvy5IfWFOWKIHTh13yS23jClfCNEwR7lUgYKXupJZzPWNZb4w5y0EU-9xew2p8KKyHMecIHDNrmImJXdhxSsEh1UZqQsw23lhVork_UuT02_w-TOHcmFSutsimx2azK5SK7bJmm93SLhN0jZYK9Rv8uHIoUSXdxlSQ3wEg4vk2Xg0-MLNmlSFmU1i9mw2HcBb8jGM1p9RHweGwqw1Lcp6d_S62dAPIcCGAXKXvNzdPt_c552cQt5wKSa5qxqwRxkqw21jlQebOC5N7UxdGAtxkveAprwKVoRAlVeFMsLVrlCWVkWQdI-st6PWH5CMV03JmlqAgR2jJljuJETlyjNna8dpj5Sz7tRNxzWOkhcDPUsqe9doAo0m0MkEPXIxv2ecmDZWXn2NVppfiSzZ8QD4ju58R__lOz3CZzbWHeBIQAIe1V_58rOZQ2j4G3GLBfp9NP3UgBalAEyAXbCfHGT-iZSiVCcve0Qsuc5SG5bPtP23yPgtsUSYi8P_aPQR2cCm4I5YRY_J-uRj6k8AWE3safyHvgHbOSQ7
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostatic-modulated+interfacial+polymerization+toward+ultra-permselective+nanofiltration+membranes&rft.jtitle=iScience&rft.au=You%2C+Xinda&rft.au=Xiao%2C+Ke&rft.au=Wu%2C+Hong&rft.au=Li%2C+Yafei&rft.date=2021-04-23&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1016%2Fj.isci.2021.102369&rft_id=info%3Apmid%2F33898951&rft.externalDocID=PMC8059057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon