Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes
Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerizat...
Saved in:
Published in | iScience Vol. 24; no. 4; p. 102369 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
23.04.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials.
[Display omitted]
•Electrostatic-modulated interfacial polymerization is proposed for the first time•Electrostatic attraction regulates the spatial-temporal distribution of amine monomers•Monomer regulation leads to reduced thickness and enhanced cross-linking of membrane•Ultrathin and highly cross-linked polyamide membrane displays superior permselectivity
Supramolecular Materials; Materials Science; Materials Chemistry; Materials Synthesis; Polymers |
---|---|
AbstractList | Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials. Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials.Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials. Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials. Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials. [Display omitted] •Electrostatic-modulated interfacial polymerization is proposed for the first time•Electrostatic attraction regulates the spatial-temporal distribution of amine monomers•Monomer regulation leads to reduced thickness and enhanced cross-linking of membrane•Ultrathin and highly cross-linked polyamide membrane displays superior permselectivity Supramolecular Materials; Materials Science; Materials Chemistry; Materials Synthesis; Polymers Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials. • Electrostatic-modulated interfacial polymerization is proposed for the first time • Electrostatic attraction regulates the spatial-temporal distribution of amine monomers • Monomer regulation leads to reduced thickness and enhanced cross-linking of membrane • Ultrathin and highly cross-linked polyamide membrane displays superior permselectivity Supramolecular Materials; Materials Science; Materials Chemistry; Materials Synthesis; Polymers |
ArticleNumber | 102369 |
Author | Zhang, Zhiming Xiao, Ke Li, Runlai You, Xinda Liang, Xu Zhang, Runnan Shen, Jianliang Jiang, Zhongyi Wu, Hong Yuan, Jinqiu Li, Yafei |
Author_xml | – sequence: 1 givenname: Xinda surname: You fullname: You, Xinda organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 2 givenname: Ke surname: Xiao fullname: Xiao, Ke organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Hong surname: Wu fullname: Wu, Hong email: wuhong@tju.edu.cn organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 4 givenname: Yafei surname: Li fullname: Li, Yafei organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 5 givenname: Runlai surname: Li fullname: Li, Runlai organization: Department of Chemistry, National University of Singapore, Singapore 117549, Singapore – sequence: 6 givenname: Jinqiu surname: Yuan fullname: Yuan, Jinqiu organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 7 givenname: Runnan surname: Zhang fullname: Zhang, Runnan organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 8 givenname: Zhiming surname: Zhang fullname: Zhang, Zhiming organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 9 givenname: Xu surname: Liang fullname: Liang, Xu organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 10 givenname: Jianliang surname: Shen fullname: Shen, Jianliang organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 11 givenname: Zhongyi surname: Jiang fullname: Jiang, Zhongyi email: zhyjiang@tju.edu.cn organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33898951$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQFSWlSdP8gR6Kj714I0uWLUEplJC2gUAv7VnoY5Rqka2tZG9If33ldRKSHgJCEjPvvWHmzVt0NMYREHrf4E2Dm-58u_HZ-A3BpCkBQjvxCp0QxkWNcUuOnvyP0VnOW4wxKacV3Rt0TCkXXLDmBLnLAGZKMU9q8qYeop2DmsBWfpwgOWW8CtUuhrsBkv9bMHGspnirkq3mMCVV7yANGRYRv4dqVGN0fkkckAMMOqkR8jv02qmQ4ez-PUW_vl7-vPheX__4dnXx5bo2jPdTbYlpHTSOKKaNFsA5tYyrzqoOKy1YB9CWSzjdO0cFCCxUbzuLhaYEO05P0dWqa6Payl3yg0p3MiovD4GYbqRKpdEAkmmm21YA7nvTWlqm5WiPqW1aDcrCovV51drNegBrYCxthWeizzOj_y1v4l5yzARmfRH4eC-Q4p8Z8iSH4hmEUCYS5ywJa3hPO8JogX54WuuxyINRBcBXgCle5QROGj8dhlxK-yAbLJe1kFu5rIVc1kKua1Go5D_qg_qLpE8rCYpbew9JFgSMBqxPxesyTv8S_R8KHtVY |
CitedBy_id | crossref_primary_10_3390_coatings12121823 crossref_primary_10_1016_j_rineng_2024_101932 crossref_primary_10_1016_j_memsci_2023_121517 crossref_primary_10_1016_j_watres_2024_121530 crossref_primary_10_1016_j_memsci_2023_121714 crossref_primary_10_1016_j_memsci_2023_121758 crossref_primary_10_1016_j_seppur_2022_120781 crossref_primary_10_1016_j_memsci_2022_120507 crossref_primary_10_1016_j_memsci_2024_122804 crossref_primary_10_1021_acs_est_2c04736 crossref_primary_10_1016_j_advmem_2022_100032 crossref_primary_10_1016_j_ces_2023_119064 crossref_primary_10_1016_j_memsci_2023_122207 crossref_primary_10_1016_j_memsci_2023_121476 crossref_primary_10_1016_j_memsci_2024_123019 crossref_primary_10_1016_j_memsci_2022_120589 crossref_primary_10_1016_j_memsci_2023_122003 crossref_primary_10_1002_adfm_202414490 crossref_primary_10_1016_j_memsci_2022_120269 crossref_primary_10_1002_pol_20210664 crossref_primary_10_1016_j_cej_2024_152321 crossref_primary_10_1039_D0CS01599G crossref_primary_10_1016_j_memsci_2023_122250 crossref_primary_10_1002_asia_202301076 crossref_primary_10_1016_j_cej_2025_161159 crossref_primary_10_1016_j_desal_2022_116232 crossref_primary_10_1016_j_progpolymsci_2024_101815 crossref_primary_10_1016_j_seppur_2023_124543 crossref_primary_10_1021_acsapm_3c00499 crossref_primary_10_1126_sciadv_adf6122 crossref_primary_10_2139_ssrn_3968822 crossref_primary_10_1016_j_memsci_2021_119689 crossref_primary_10_1038_s41467_022_35681_9 crossref_primary_10_1039_D2RA06304B crossref_primary_10_1016_j_memsci_2022_120419 crossref_primary_10_1021_acs_nanolett_4c02483 crossref_primary_10_1016_j_memsci_2023_121689 crossref_primary_10_1016_j_memsci_2024_122834 crossref_primary_10_1016_j_memsci_2022_120451 crossref_primary_10_1016_j_memsci_2023_121921 crossref_primary_10_1016_j_cej_2022_137773 crossref_primary_10_1016_j_memsci_2023_121882 crossref_primary_10_1021_acsapm_4c00447 crossref_primary_10_1002_smll_202500927 crossref_primary_10_1016_j_desal_2023_116748 crossref_primary_10_1016_j_memsci_2023_122387 crossref_primary_10_1016_j_desal_2023_116861 crossref_primary_10_1016_j_memsci_2021_119971 crossref_primary_10_1039_D1EN00238D crossref_primary_10_1016_j_jcis_2024_06_229 crossref_primary_10_1016_j_desal_2022_115952 crossref_primary_10_1016_j_desal_2023_116546 crossref_primary_10_1016_j_seppur_2023_124875 crossref_primary_10_1016_j_seppur_2024_129746 crossref_primary_10_1016_j_desal_2024_117577 crossref_primary_10_1016_j_seppur_2023_124648 crossref_primary_10_1016_j_watres_2022_118264 crossref_primary_10_1016_j_memsci_2023_121739 crossref_primary_10_1016_j_memsci_2022_120441 crossref_primary_10_1016_j_memsci_2023_121899 crossref_primary_10_1016_j_memsci_2023_121377 crossref_primary_10_1016_j_memsci_2023_122267 crossref_primary_10_1016_j_ces_2025_121569 crossref_primary_10_1016_j_chemosphere_2022_136929 crossref_primary_10_1016_j_memsci_2022_121063 crossref_primary_10_1016_j_isci_2022_104027 crossref_primary_10_1016_j_memsci_2021_120051 crossref_primary_10_1016_j_memsci_2024_123161 crossref_primary_10_1039_D1TA07413J crossref_primary_10_1016_j_desal_2023_117029 crossref_primary_10_1016_j_carbon_2023_118582 crossref_primary_10_1002_adma_202108457 crossref_primary_10_1016_j_desal_2024_117422 crossref_primary_10_1016_j_jcis_2021_07_153 crossref_primary_10_1016_j_memsci_2022_120679 crossref_primary_10_1038_s41467_023_36711_w crossref_primary_10_1016_j_jclepro_2023_137282 crossref_primary_10_1016_j_memsci_2021_119706 crossref_primary_10_1002_adma_202300913 crossref_primary_10_1016_j_memsci_2022_120673 crossref_primary_10_1016_j_ijbiomac_2024_132135 crossref_primary_10_1039_D3CS00803G crossref_primary_10_1016_j_memsci_2023_121863 crossref_primary_10_1016_j_cej_2021_131791 crossref_primary_10_1016_j_chemosphere_2023_137930 crossref_primary_10_1016_j_memsci_2024_122780 crossref_primary_10_1016_j_memsci_2024_123153 crossref_primary_10_1016_j_desal_2024_118325 crossref_primary_10_1016_j_desal_2024_118523 |
Cites_doi | 10.1039/C9TA08163A 10.1021/jacs.8b07120 10.1038/s41467-019-12100-0 10.1038/s41467-018-04467-3 10.1002/adma.201705973 10.1016/j.memsci.2020.117949 10.1016/j.memsci.2020.117980 10.1063/1.2273627 10.1126/science.aaa5058 10.1038/s41467-020-15771-2 10.1038/s41467-019-09286-8 10.1016/j.memsci.2013.03.029 10.1021/jacs.0c04589 10.1002/adma.201703909 10.1039/C9TA12258C 10.1021/la020920q 10.1002/adma.202001284 10.1021/jacs.7b06640 10.1039/C8TA05687K 10.1126/science.aar6308 10.1016/j.memsci.2015.11.016 10.1038/s41467-018-04294-6 10.1039/b002216k 10.1039/D0EE00341G 10.1038/31418 10.1002/adfm.202007054 10.1038/nmat2769 10.1016/j.actbio.2016.03.038 10.1016/j.memsci.2019.01.040 10.1016/j.memsci.2019.117244 10.1039/D0TA09319J 10.1021/acs.langmuir.6b04465 10.1002/adma.202005565 10.1016/S0376-7388(97)00278-0 10.1021/la300394c 10.1016/j.ces.2018.11.019 10.1002/anie.201511064 10.1038/nnano.2017.160 10.1016/j.memsci.2016.09.055 10.1021/ja054169u 10.1016/j.bpc.2005.04.015 10.1002/anie.201703572 10.1016/j.memsci.2017.06.084 10.1021/acsami.0c05166 10.1039/C7TA02837G 10.1021/acsami.8b04093 10.1002/adma.200901407 10.1002/anie.201604671 10.1103/PhysRevLett.90.075502 10.1038/natrevmats.2016.18 10.1016/j.memsci.2014.05.047 10.1126/science.1251181 10.1039/C9TA13957E 10.1002/adma.202001383 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) 2021 The Author(s). 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s) – notice: 2021 The Author(s). – notice: 2021 The Author(s) 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2021.102369 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Acceso a contenido Full Text - Doaj url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_5b5b449e077c4d3589f3703d14beade8 PMC8059057 33898951 10_1016_j_isci_2021_102369 S2589004221003370 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 6I. AAEDW AAFTH AALRI AAMRU AAXUO AAYWO ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ AAYXX CITATION EJD AACTN NCXOZ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c587t-d2c4fe1f2a5bcb9e883d58a6da60ab956ee456e9fb7ff39e909a7d6d09b320f83 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:28:15 EDT 2025 Thu Aug 21 18:16:36 EDT 2025 Fri Jul 11 10:27:00 EDT 2025 Thu Jan 02 22:55:57 EST 2025 Wed Aug 06 19:24:31 EDT 2025 Thu Apr 24 23:13:15 EDT 2025 Sat Aug 30 17:17:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Supramolecular Materials Materials Chemistry Materials Synthesis Materials Science Polymers |
Language | English |
License | This is an open access article under the CC BY license. 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c587t-d2c4fe1f2a5bcb9e883d58a6da60ab956ee456e9fb7ff39e909a7d6d09b320f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
OpenAccessLink | https://doaj.org/article/5b5b449e077c4d3589f3703d14beade8 |
PMID | 33898951 |
PQID | 2518736253 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5b5b449e077c4d3589f3703d14beade8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8059057 proquest_miscellaneous_2518736253 pubmed_primary_33898951 crossref_citationtrail_10_1016_j_isci_2021_102369 crossref_primary_10_1016_j_isci_2021_102369 elsevier_sciencedirect_doi_10_1016_j_isci_2021_102369 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-23 |
PublicationDateYYYYMMDD | 2021-04-23 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Sarkar, Modak, Karan (bib37) 2020; 31 Liang, Zhu, Liu, Lee, Hung, Wang, Li, Elimelech, Jin, Lin (bib26) 2020; 11 You, Wu, Zhang, Su, Cao, Yu, Yuan, Xiao, He, Jiang (bib51) 2019; 10 Cheng, Li, Zhang, Wang, Hsiao (bib7) 2019; 196 Peng, Zhang, Hung, Wang, Sun, Lee, An, Liu, Zhao (bib34) 2020; 32 Khan, Zhang, Wu, Shen, Yuan, Fan, Cao, Olson, Jiang (bib23) 2020; 142 Qin, Zhang, Song, Huang, Xu, Zhang (bib35) 2017; 56 Song, Chen, Rong, Xie, Zhao, Wang, Chen, Wolfbeis (bib40) 2016; 55 Modig, Pfrommer, Halle (bib31) 2003; 90 Yan, Lv, Zhu, Chen, Sun, Yu (bib48) 2017; 29 Jiang, Karan, Livingston (bib21) 2018; 30 Bowen, Cao (bib1) 1998; 140 Cao, Wu, Cao, Fan, Zhao, He, Yang, Shi, You, Jiang (bib4) 2020; 32 Shen, Wang, You, Shi, Xue, Yuan, Li, Guan, Ma, Su (bib39) 2021 Guan, Liang, Zhu, Zhao, Jin (bib12) 2018; 10 You, Ma, Su, Wu, Wu, Cai, Sun, Jiang (bib50) 2017; 540 Fang, Shi, Wang (bib9) 2014; 468 He, Yang, Wu, He, Xu, Kong, Cao, Shi, Zhang, Tongsh (bib17) 2020; 32 Bowen, Sharif (bib2) 1998; 393 Zheng, Li, Yao, Zhang, Wang (bib55) 2017; 5 Li, You, Li, Yuan, Shen, Zhang, Wu, Su, Jiang (bib25) 2020; 8 Liu, Zhao (bib28) 2005; 117 Guan, Fan, Liu, Shi, Yuan, Zhang, You, He, Su, Jiang (bib11) 2020; 602 Tan, Chen, Peng, Zhang, Gao (bib41) 2018; 360 Zhang, Guan, Ji, Liu, Jin, Xu (bib54) 2019; 10 Wang, Wang, Lin, Jin, Gao, Zhu, Jin (bib44) 2018; 9 Brown, Brunelli, Eum, Rashidi, Johnson, Koros, Jones, Nair (bib3) 2014; 345 Yang, Du, Zhang, He, Xu (bib49) 2017; 33 Jiang, Tian, Zhai, Shen, Dong, He, Hou, Niu (bib18) 2019; 589 Chen, Wang, Liu, Yang, Liu, Ruoff, Lei (bib5) 2018; 9 Yu, You, Wu, Su, Zhang, Liu, Yang, Shen, Yuan, Jiang (bib52) 2020; 8 Wang, Li, Chen, Li, Yin, Cao, Zhong, Wu (bib42) 2017; 523 Wu, Yuan, Wu, Su, Yang, You, Zhang, He, Khan, Kasher (bib47) 2019; 576 Lim, Setiawan, Bae, Wang (bib27) 2016; 501 Zhu, Hou, Zhang, Yuan, Li, Tian, Wang, Zhang, Volodin, Van der Bruggen (bib56) 2018; 6 Hakala, Nygard, Manninen, Huotari, Buslaps, Nilsson, Pettersson, Hamalainen (bib13) 2006; 125 Li, Zhang, Su (bib24) 2016; 55 Makiura, Motoyama, Umemura, Yamanaka, Sakata, Kitagawa (bib30) 2010; 9 Chen, Zheng, Li, Jiang (bib6) 2005; 127 Dey, Pal, Rout, Kunjattu, Das, Mukherjee, Kharul, Banerjee (bib8) 2017; 139 Hao, Zhao, Sun, Lu, Liu, Liu, Wan, Wang (bib14) 2018; 140 Patel, Ritt, Deshmukh, Wang, Qin, Epsztein, Elimelech (bib33) 2020; 13 Shen, Bian, Zhang, An, Cui, Wang, Li (bib38) 2020; 601 Hao, Li, He, Liao, Li, Hu, Ji, Cui, Younas, Li (bib15) 2020; 8 Jiang, Zhang, Li, Sun, Hou, Niu (bib19) 2020; 12 Werber, Osuji, Elimelech (bib45) 2016; 1 Yuan, Wu, Wu, Liu, You, Zhang, Su, Yang, Shen, Jiang (bib53) 2019; 7 Morelos-Gomez, Cruz-Silva, Muramatsu, Ortiz-Medina, Araki, Fukuyo, Tejima, Takeuchi, Hayashi, Terrones (bib32) 2017; 12 Freger (bib10) 2003; 19 Karan, Jiang, Livingston (bib22) 2015; 348 Luo, Wan (bib29) 2013; 438 Rozenberg, Loewenschuss, Marcus (bib36) 2000; 2 Wu, Lin, Wang, Chen, Chang (bib46) 2012; 28 He, Gao, Zhou, Jiao, Wu, Cao, You, Cai, Su, Jiang (bib16) 2016; 40 Jiang, Cao (bib20) 2010; 22 Wang, Zhang, Fan (bib43) 2020; 59 Karan (10.1016/j.isci.2021.102369_bib22) 2015; 348 Wu (10.1016/j.isci.2021.102369_bib47) 2019; 576 Liu (10.1016/j.isci.2021.102369_bib28) 2005; 117 Khan (10.1016/j.isci.2021.102369_bib23) 2020; 142 Jiang (10.1016/j.isci.2021.102369_bib19) 2020; 12 Shen (10.1016/j.isci.2021.102369_bib38) 2020; 601 Yu (10.1016/j.isci.2021.102369_bib52) 2020; 8 Hakala (10.1016/j.isci.2021.102369_bib13) 2006; 125 Peng (10.1016/j.isci.2021.102369_bib34) 2020; 32 Wu (10.1016/j.isci.2021.102369_bib46) 2012; 28 Bowen (10.1016/j.isci.2021.102369_bib2) 1998; 393 Liang (10.1016/j.isci.2021.102369_bib26) 2020; 11 Fang (10.1016/j.isci.2021.102369_bib9) 2014; 468 Zhang (10.1016/j.isci.2021.102369_bib54) 2019; 10 Patel (10.1016/j.isci.2021.102369_bib33) 2020; 13 Modig (10.1016/j.isci.2021.102369_bib31) 2003; 90 Wang (10.1016/j.isci.2021.102369_bib44) 2018; 9 Bowen (10.1016/j.isci.2021.102369_bib1) 1998; 140 Rozenberg (10.1016/j.isci.2021.102369_bib36) 2000; 2 Guan (10.1016/j.isci.2021.102369_bib12) 2018; 10 Hao (10.1016/j.isci.2021.102369_bib15) 2020; 8 Jiang (10.1016/j.isci.2021.102369_bib18) 2019; 589 Wang (10.1016/j.isci.2021.102369_bib42) 2017; 523 Guan (10.1016/j.isci.2021.102369_bib11) 2020; 602 Wang (10.1016/j.isci.2021.102369_bib43) 2020; 59 He (10.1016/j.isci.2021.102369_bib16) 2016; 40 Yang (10.1016/j.isci.2021.102369_bib49) 2017; 33 You (10.1016/j.isci.2021.102369_bib50) 2017; 540 Werber (10.1016/j.isci.2021.102369_bib45) 2016; 1 Tan (10.1016/j.isci.2021.102369_bib41) 2018; 360 He (10.1016/j.isci.2021.102369_bib17) 2020; 32 Sarkar (10.1016/j.isci.2021.102369_bib37) 2020; 31 Dey (10.1016/j.isci.2021.102369_bib8) 2017; 139 Qin (10.1016/j.isci.2021.102369_bib35) 2017; 56 Jiang (10.1016/j.isci.2021.102369_bib21) 2018; 30 Hao (10.1016/j.isci.2021.102369_bib14) 2018; 140 Morelos-Gomez (10.1016/j.isci.2021.102369_bib32) 2017; 12 Song (10.1016/j.isci.2021.102369_bib40) 2016; 55 Zhu (10.1016/j.isci.2021.102369_bib56) 2018; 6 Lim (10.1016/j.isci.2021.102369_bib27) 2016; 501 Cao (10.1016/j.isci.2021.102369_bib4) 2020; 32 Chen (10.1016/j.isci.2021.102369_bib6) 2005; 127 You (10.1016/j.isci.2021.102369_bib51) 2019; 10 Zheng (10.1016/j.isci.2021.102369_bib55) 2017; 5 Cheng (10.1016/j.isci.2021.102369_bib7) 2019; 196 Shen (10.1016/j.isci.2021.102369_bib39) 2021 Yan (10.1016/j.isci.2021.102369_bib48) 2017; 29 Jiang (10.1016/j.isci.2021.102369_bib20) 2010; 22 Luo (10.1016/j.isci.2021.102369_bib29) 2013; 438 Freger (10.1016/j.isci.2021.102369_bib10) 2003; 19 Li (10.1016/j.isci.2021.102369_bib25) 2020; 8 Brown (10.1016/j.isci.2021.102369_bib3) 2014; 345 Yuan (10.1016/j.isci.2021.102369_bib53) 2019; 7 Makiura (10.1016/j.isci.2021.102369_bib30) 2010; 9 Li (10.1016/j.isci.2021.102369_bib24) 2016; 55 Chen (10.1016/j.isci.2021.102369_bib5) 2018; 9 |
References_xml | – volume: 468 start-page: 52 year: 2014 end-page: 61 ident: bib9 article-title: Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability publication-title: J. Membr. Sci. – volume: 32 start-page: 2005565 year: 2020 ident: bib4 article-title: Weakly humidity-dependent proton-conducting COF membranes publication-title: Adv. Mater. – volume: 589 start-page: 117244 year: 2019 ident: bib18 article-title: Thin-film composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration publication-title: J. Membr. Sci. – volume: 8 start-page: 4505 year: 2020 end-page: 4514 ident: bib52 article-title: Ultrathin fluorinated self-cleaning membranes via coordination-driven metal-bridging assembly for water purification publication-title: J. Mater. Chem. A – volume: 11 start-page: 2015 year: 2020 ident: bib26 article-title: Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation publication-title: Nat. Commun. – volume: 576 start-page: 131 year: 2019 end-page: 141 ident: bib47 article-title: Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability publication-title: J. Membr. Sci. – year: 2021 ident: bib39 article-title: Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane publication-title: J. Mater. Chem. A – volume: 5 start-page: 13730 year: 2017 end-page: 13739 ident: bib55 article-title: Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water publication-title: J. Mater. Chem. A – volume: 22 start-page: 920 year: 2010 end-page: 932 ident: bib20 article-title: Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications publication-title: Adv. Mater. – volume: 59 start-page: 12 year: 2020 end-page: 19 ident: bib43 article-title: Interfacial polymerization: from chemistry to functional materials publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 2699 year: 2000 end-page: 2702 ident: bib36 article-title: An empirical correlation between stretching vibration redshift and hydrogen bond length publication-title: Phys. Chem. Chem. Phys. – volume: 196 start-page: 265 year: 2019 end-page: 276 ident: bib7 article-title: Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae publication-title: Chem. Eng. Sci. – volume: 602 start-page: 117980 year: 2020 ident: bib11 article-title: Incorporating arginine-Fe-III complex into polyamide membranes for enhanced water permeance and antifouling performance publication-title: J. Membr. Sci. – volume: 55 start-page: 9093 year: 2016 end-page: 9096 ident: bib24 article-title: One-step assembly of phytic acid metal complexes for superhydrophilic coatings publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 7639 year: 2017 end-page: 7643 ident: bib35 article-title: Supramolecular interfacial polymerization: a controllable method of fabricating supramolecular polymeric materials publication-title: Angew. Chem. Int. Ed. – volume: 33 start-page: 2318 year: 2017 end-page: 2324 ident: bib49 article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance publication-title: Langmuir – volume: 139 start-page: 13083 year: 2017 end-page: 13091 ident: bib8 article-title: Selective molecular separation by lnterfacially crystallized covalent organic framework thin films publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1083 year: 2017 end-page: 1088 ident: bib32 article-title: Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes publication-title: Nat. Nanotechnol. – volume: 438 start-page: 18 year: 2013 end-page: 28 ident: bib29 article-title: Effects of pH and salt on nanofiltration-a critical review publication-title: J. Membr. Sci. – volume: 9 start-page: 565 year: 2010 end-page: 571 ident: bib30 article-title: Surface nano-architecture of a metal-organic framework publication-title: Nat. Mater. – volume: 28 start-page: 7436 year: 2012 end-page: 7441 ident: bib46 article-title: Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance publication-title: Langmuir – volume: 127 start-page: 14473 year: 2005 end-page: 14478 ident: bib6 article-title: Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1694 year: 2020 end-page: 1710 ident: bib33 article-title: The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies publication-title: Energy Environ. Sci. – volume: 140 start-page: 12152 year: 2018 end-page: 12158 ident: bib14 article-title: Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 5275 year: 2020 end-page: 5283 ident: bib15 article-title: An ultrahighly permeable-selective nanofiltration membrane mediated by an in situ formed interlayer publication-title: J. Mater. Chem. A – volume: 10 start-page: 4160 year: 2019 ident: bib51 article-title: Metal-coordinated sub-10 nm membranes for water purification publication-title: Nat. Commun. – volume: 393 start-page: 663 year: 1998 end-page: 665 ident: bib2 article-title: Long-range electrostatic attraction between like-charge spheres in a charged pore publication-title: Nature – volume: 9 start-page: 2004 year: 2018 ident: bib44 article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination publication-title: Nat. Commun. – volume: 90 start-page: 075502 year: 2003 ident: bib31 article-title: Temperature-dependent hydrogen-bond geometry in liquid water publication-title: Phys. Rev. Lett. – volume: 19 start-page: 4791 year: 2003 end-page: 4797 ident: bib10 article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization publication-title: Langmuir – volume: 9 start-page: 1902 year: 2018 ident: bib5 article-title: Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation publication-title: Nat. Commun. – volume: 601 start-page: 117949 year: 2020 ident: bib38 article-title: Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity publication-title: J. Membr. Sci. – volume: 29 start-page: 1703909 year: 2017 ident: bib48 article-title: Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage publication-title: Adv. Mater. – volume: 7 start-page: 25641 year: 2019 end-page: 25649 ident: bib53 article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes publication-title: J. Mater. Chem. A – volume: 142 start-page: 13450 year: 2020 end-page: 13458 ident: bib23 article-title: Solid-vapor interface engineered covalent organic framework membranes for molecular separation publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 267 year: 1998 end-page: 273 ident: bib1 article-title: Electrokinetic effects in membrane pores and the determination of zeta-potential publication-title: J. Membr. Sci. – volume: 360 start-page: 518 year: 2018 end-page: 521 ident: bib41 article-title: Polyamide membranes with nanoscale Turing structures for water purification publication-title: Science – volume: 32 start-page: 2001383 year: 2020 ident: bib34 article-title: Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness publication-title: Adv. Mater. – volume: 523 start-page: 273 year: 2017 end-page: 281 ident: bib42 article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination publication-title: J. Membr. Sci. – volume: 125 start-page: 084504 year: 2006 ident: bib13 article-title: Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering publication-title: J. Chem. Phys. – volume: 31 start-page: 2007054 year: 2020 ident: bib37 article-title: Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration publication-title: Adv. Funct. Mater. – volume: 12 start-page: 25304 year: 2020 end-page: 25315 ident: bib19 article-title: Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination publication-title: ACS Appl. Mater. Inter. – volume: 55 start-page: 3936 year: 2016 end-page: 3941 ident: bib40 article-title: A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 16018 year: 2016 ident: bib45 article-title: Materials for next-generation desalination and water purification membranes publication-title: Nat. Rev. Mater. – volume: 345 start-page: 72 year: 2014 end-page: 75 ident: bib3 article-title: Interfacial microfluidic processing of metal-organic framework hollow fiber membranes publication-title: Science – volume: 6 start-page: 15701 year: 2018 end-page: 15709 ident: bib56 article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. A – volume: 8 start-page: 23930 year: 2020 end-page: 23938 ident: bib25 article-title: Graphene quantum dots engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. A – volume: 348 start-page: 1347 year: 2015 end-page: 1351 ident: bib22 article-title: Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation publication-title: Science – volume: 540 start-page: 454 year: 2017 end-page: 463 ident: bib50 article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles publication-title: J. Membr. Sci. – volume: 40 start-page: 142 year: 2016 end-page: 152 ident: bib16 article-title: Zwitterionic materials for antifouling membrane surface construction publication-title: Acta Biomater. – volume: 30 start-page: 1705973 year: 2018 ident: bib21 article-title: Water transport through ultrathin polyamide nanofilms used for reverse osmosis publication-title: Adv. Mater. – volume: 501 start-page: 152 year: 2016 end-page: 160 ident: bib27 article-title: Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solvent-resistant nanofiltration under low operating pressure publication-title: J. Membr. Sci. – volume: 10 start-page: 13903 year: 2018 end-page: 13913 ident: bib12 article-title: Incorporating graphene oxide into alginate polymer with a cationic intermediate to strengthen membrane dehydration performance publication-title: Acs Appl. Mater. Inter. – volume: 32 start-page: 2001284 year: 2020 ident: bib17 article-title: De novo design of covalent organic framework membranes toward ultrafast anion transport publication-title: Adv. Mater. – volume: 117 start-page: 39 year: 2005 end-page: 45 ident: bib28 article-title: Influence of surface energy of modified surfaces on bacterial adhesion publication-title: Biophysical Chem. – volume: 10 start-page: 1253 year: 2019 ident: bib54 article-title: Controllable ion transport by surface-charged graphene oxide membrane publication-title: Nat. Commun. – volume: 7 start-page: 25641 year: 2019 ident: 10.1016/j.isci.2021.102369_bib53 article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08163A – volume: 140 start-page: 12152 year: 2018 ident: 10.1016/j.isci.2021.102369_bib14 article-title: Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07120 – volume: 10 start-page: 4160 year: 2019 ident: 10.1016/j.isci.2021.102369_bib51 article-title: Metal-coordinated sub-10 nm membranes for water purification publication-title: Nat. Commun. doi: 10.1038/s41467-019-12100-0 – volume: 9 start-page: 2004 year: 2018 ident: 10.1016/j.isci.2021.102369_bib44 article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination publication-title: Nat. Commun. doi: 10.1038/s41467-018-04467-3 – volume: 30 start-page: 1705973 year: 2018 ident: 10.1016/j.isci.2021.102369_bib21 article-title: Water transport through ultrathin polyamide nanofilms used for reverse osmosis publication-title: Adv. Mater. doi: 10.1002/adma.201705973 – volume: 601 start-page: 117949 year: 2020 ident: 10.1016/j.isci.2021.102369_bib38 article-title: Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.117949 – volume: 602 start-page: 117980 year: 2020 ident: 10.1016/j.isci.2021.102369_bib11 article-title: Incorporating arginine-Fe-III complex into polyamide membranes for enhanced water permeance and antifouling performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.117980 – volume: 125 start-page: 084504 year: 2006 ident: 10.1016/j.isci.2021.102369_bib13 article-title: Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering publication-title: J. Chem. Phys. doi: 10.1063/1.2273627 – volume: 348 start-page: 1347 year: 2015 ident: 10.1016/j.isci.2021.102369_bib22 article-title: Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation publication-title: Science doi: 10.1126/science.aaa5058 – volume: 11 start-page: 2015 year: 2020 ident: 10.1016/j.isci.2021.102369_bib26 article-title: Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation publication-title: Nat. Commun. doi: 10.1038/s41467-020-15771-2 – volume: 10 start-page: 1253 year: 2019 ident: 10.1016/j.isci.2021.102369_bib54 article-title: Controllable ion transport by surface-charged graphene oxide membrane publication-title: Nat. Commun. doi: 10.1038/s41467-019-09286-8 – volume: 438 start-page: 18 year: 2013 ident: 10.1016/j.isci.2021.102369_bib29 article-title: Effects of pH and salt on nanofiltration-a critical review publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.03.029 – volume: 142 start-page: 13450 year: 2020 ident: 10.1016/j.isci.2021.102369_bib23 article-title: Solid-vapor interface engineered covalent organic framework membranes for molecular separation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04589 – year: 2021 ident: 10.1016/j.isci.2021.102369_bib39 article-title: Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane publication-title: J. Mater. Chem. A – volume: 29 start-page: 1703909 year: 2017 ident: 10.1016/j.isci.2021.102369_bib48 article-title: Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage publication-title: Adv. Mater. doi: 10.1002/adma.201703909 – volume: 8 start-page: 5275 year: 2020 ident: 10.1016/j.isci.2021.102369_bib15 article-title: An ultrahighly permeable-selective nanofiltration membrane mediated by an in situ formed interlayer publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12258C – volume: 19 start-page: 4791 year: 2003 ident: 10.1016/j.isci.2021.102369_bib10 article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization publication-title: Langmuir doi: 10.1021/la020920q – volume: 32 start-page: 2001284 year: 2020 ident: 10.1016/j.isci.2021.102369_bib17 article-title: De novo design of covalent organic framework membranes toward ultrafast anion transport publication-title: Adv. Mater. doi: 10.1002/adma.202001284 – volume: 139 start-page: 13083 year: 2017 ident: 10.1016/j.isci.2021.102369_bib8 article-title: Selective molecular separation by lnterfacially crystallized covalent organic framework thin films publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06640 – volume: 6 start-page: 15701 year: 2018 ident: 10.1016/j.isci.2021.102369_bib56 article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05687K – volume: 360 start-page: 518 year: 2018 ident: 10.1016/j.isci.2021.102369_bib41 article-title: Polyamide membranes with nanoscale Turing structures for water purification publication-title: Science doi: 10.1126/science.aar6308 – volume: 501 start-page: 152 year: 2016 ident: 10.1016/j.isci.2021.102369_bib27 article-title: Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solvent-resistant nanofiltration under low operating pressure publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.11.016 – volume: 9 start-page: 1902 year: 2018 ident: 10.1016/j.isci.2021.102369_bib5 article-title: Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation publication-title: Nat. Commun. doi: 10.1038/s41467-018-04294-6 – volume: 2 start-page: 2699 year: 2000 ident: 10.1016/j.isci.2021.102369_bib36 article-title: An empirical correlation between stretching vibration redshift and hydrogen bond length publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b002216k – volume: 13 start-page: 1694 year: 2020 ident: 10.1016/j.isci.2021.102369_bib33 article-title: The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00341G – volume: 393 start-page: 663 year: 1998 ident: 10.1016/j.isci.2021.102369_bib2 article-title: Long-range electrostatic attraction between like-charge spheres in a charged pore publication-title: Nature doi: 10.1038/31418 – volume: 31 start-page: 2007054 year: 2020 ident: 10.1016/j.isci.2021.102369_bib37 article-title: Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007054 – volume: 9 start-page: 565 year: 2010 ident: 10.1016/j.isci.2021.102369_bib30 article-title: Surface nano-architecture of a metal-organic framework publication-title: Nat. Mater. doi: 10.1038/nmat2769 – volume: 40 start-page: 142 year: 2016 ident: 10.1016/j.isci.2021.102369_bib16 article-title: Zwitterionic materials for antifouling membrane surface construction publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.03.038 – volume: 576 start-page: 131 year: 2019 ident: 10.1016/j.isci.2021.102369_bib47 article-title: Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.01.040 – volume: 589 start-page: 117244 year: 2019 ident: 10.1016/j.isci.2021.102369_bib18 article-title: Thin-film composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117244 – volume: 8 start-page: 23930 year: 2020 ident: 10.1016/j.isci.2021.102369_bib25 article-title: Graphene quantum dots engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09319J – volume: 33 start-page: 2318 year: 2017 ident: 10.1016/j.isci.2021.102369_bib49 article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance publication-title: Langmuir doi: 10.1021/acs.langmuir.6b04465 – volume: 32 start-page: 2005565 year: 2020 ident: 10.1016/j.isci.2021.102369_bib4 article-title: Weakly humidity-dependent proton-conducting COF membranes publication-title: Adv. Mater. doi: 10.1002/adma.202005565 – volume: 140 start-page: 267 year: 1998 ident: 10.1016/j.isci.2021.102369_bib1 article-title: Electrokinetic effects in membrane pores and the determination of zeta-potential publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(97)00278-0 – volume: 28 start-page: 7436 year: 2012 ident: 10.1016/j.isci.2021.102369_bib46 article-title: Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance publication-title: Langmuir doi: 10.1021/la300394c – volume: 196 start-page: 265 year: 2019 ident: 10.1016/j.isci.2021.102369_bib7 article-title: Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.11.019 – volume: 55 start-page: 3936 year: 2016 ident: 10.1016/j.isci.2021.102369_bib40 article-title: A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511064 – volume: 12 start-page: 1083 year: 2017 ident: 10.1016/j.isci.2021.102369_bib32 article-title: Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.160 – volume: 523 start-page: 273 year: 2017 ident: 10.1016/j.isci.2021.102369_bib42 article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.09.055 – volume: 127 start-page: 14473 year: 2005 ident: 10.1016/j.isci.2021.102369_bib6 article-title: Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054169u – volume: 117 start-page: 39 year: 2005 ident: 10.1016/j.isci.2021.102369_bib28 article-title: Influence of surface energy of modified surfaces on bacterial adhesion publication-title: Biophysical Chem. doi: 10.1016/j.bpc.2005.04.015 – volume: 56 start-page: 7639 year: 2017 ident: 10.1016/j.isci.2021.102369_bib35 article-title: Supramolecular interfacial polymerization: a controllable method of fabricating supramolecular polymeric materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703572 – volume: 540 start-page: 454 year: 2017 ident: 10.1016/j.isci.2021.102369_bib50 article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.06.084 – volume: 12 start-page: 25304 year: 2020 ident: 10.1016/j.isci.2021.102369_bib19 article-title: Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.0c05166 – volume: 5 start-page: 13730 year: 2017 ident: 10.1016/j.isci.2021.102369_bib55 article-title: Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02837G – volume: 10 start-page: 13903 year: 2018 ident: 10.1016/j.isci.2021.102369_bib12 article-title: Incorporating graphene oxide into alginate polymer with a cationic intermediate to strengthen membrane dehydration performance publication-title: Acs Appl. Mater. Inter. doi: 10.1021/acsami.8b04093 – volume: 22 start-page: 920 year: 2010 ident: 10.1016/j.isci.2021.102369_bib20 article-title: Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications publication-title: Adv. Mater. doi: 10.1002/adma.200901407 – volume: 55 start-page: 9093 year: 2016 ident: 10.1016/j.isci.2021.102369_bib24 article-title: One-step assembly of phytic acid metal complexes for superhydrophilic coatings publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604671 – volume: 59 start-page: 12 year: 2020 ident: 10.1016/j.isci.2021.102369_bib43 article-title: Interfacial polymerization: from chemistry to functional materials publication-title: Angew. Chem. Int. Ed. – volume: 90 start-page: 075502 year: 2003 ident: 10.1016/j.isci.2021.102369_bib31 article-title: Temperature-dependent hydrogen-bond geometry in liquid water publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.075502 – volume: 1 start-page: 16018 year: 2016 ident: 10.1016/j.isci.2021.102369_bib45 article-title: Materials for next-generation desalination and water purification membranes publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.18 – volume: 468 start-page: 52 year: 2014 ident: 10.1016/j.isci.2021.102369_bib9 article-title: Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.05.047 – volume: 345 start-page: 72 year: 2014 ident: 10.1016/j.isci.2021.102369_bib3 article-title: Interfacial microfluidic processing of metal-organic framework hollow fiber membranes publication-title: Science doi: 10.1126/science.1251181 – volume: 8 start-page: 4505 year: 2020 ident: 10.1016/j.isci.2021.102369_bib52 article-title: Ultrathin fluorinated self-cleaning membranes via coordination-driven metal-bridging assembly for water purification publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13957E – volume: 32 start-page: 2001383 year: 2020 ident: 10.1016/j.isci.2021.102369_bib34 article-title: Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness publication-title: Adv. Mater. doi: 10.1002/adma.202001383 |
SSID | ssj0002002496 |
Score | 2.4794087 |
Snippet | Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102369 |
SubjectTerms | Materials Chemistry Materials Science Materials Synthesis Polymers Supramolecular Materials |
Title | Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes |
URI | https://dx.doi.org/10.1016/j.isci.2021.102369 https://www.ncbi.nlm.nih.gov/pubmed/33898951 https://www.proquest.com/docview/2518736253 https://pubmed.ncbi.nlm.nih.gov/PMC8059057 https://doaj.org/article/5b5b449e077c4d3589f3703d14beade8 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYsovuqLFbzJ4u4m2SRHFUUEPSl4C8kmwUq7Ldoe_PfOJNvSKtSL130nM5t8k8x8HyHntkYQHGhuWPAQoEDAKiW1OQ0-MMpk4QyuQz4-1fcv7OGVvy5IfWFOWKIHTh13yS23jClfCNEwR7lUgYKXupJZzPWNZb4w5y0EU-9xew2p8KKyHMecIHDNrmImJXdhxSsEh1UZqQsw23lhVork_UuT02_w-TOHcmFSutsimx2azK5SK7bJmm93SLhN0jZYK9Rv8uHIoUSXdxlSQ3wEg4vk2Xg0-MLNmlSFmU1i9mw2HcBb8jGM1p9RHweGwqw1Lcp6d_S62dAPIcCGAXKXvNzdPt_c552cQt5wKSa5qxqwRxkqw21jlQebOC5N7UxdGAtxkveAprwKVoRAlVeFMsLVrlCWVkWQdI-st6PWH5CMV03JmlqAgR2jJljuJETlyjNna8dpj5Sz7tRNxzWOkhcDPUsqe9doAo0m0MkEPXIxv2ecmDZWXn2NVppfiSzZ8QD4ju58R__lOz3CZzbWHeBIQAIe1V_58rOZQ2j4G3GLBfp9NP3UgBalAEyAXbCfHGT-iZSiVCcve0Qsuc5SG5bPtP23yPgtsUSYi8P_aPQR2cCm4I5YRY_J-uRj6k8AWE3safyHvgHbOSQ7 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostatic-modulated+interfacial+polymerization+toward+ultra-permselective+nanofiltration+membranes&rft.jtitle=iScience&rft.au=You%2C+Xinda&rft.au=Xiao%2C+Ke&rft.au=Wu%2C+Hong&rft.au=Li%2C+Yafei&rft.date=2021-04-23&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1016%2Fj.isci.2021.102369&rft_id=info%3Apmid%2F33898951&rft.externalDocID=PMC8059057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |