RECK in Neural Precursor Cells Plays a Critical Role in Mouse Forebrain Angiogenesis
RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also...
Saved in:
Published in | iScience Vol. 19; pp. 559 - 571 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.09.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling.
[Display omitted]
•Mice lacking RECK in Foxg1-positive neural precursor cells die shortly after birth•These mice show vascular defects similar to those in mice lacking endothelial RECK•The vascular phenotype can be suppressed by LiCl, an activator of WNT signaling•RECK in WNT7-producing cell enhances contact-dependent WNT signaling in adjacent cells
Vascular Remodeling; Neuroscience; Molecular Neuroscience; Developmental Neuroscience |
---|---|
AbstractList | RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When
Reck
is inactivated in
Foxg1
-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective
Reck
knockout mice and
Wnt7a/b
-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling.
•
Mice lacking RECK in
Foxg1
-positive neural precursor cells die shortly after birth
•
These mice show vascular defects similar to those in mice lacking endothelial RECK
•
The vascular phenotype can be suppressed by LiCl, an activator of WNT signaling
•
RECK in WNT7-producing cell enhances contact-dependent WNT signaling in adjacent cells
Vascular Remodeling; Neuroscience; Molecular Neuroscience; Developmental Neuroscience RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling. [Display omitted] •Mice lacking RECK in Foxg1-positive neural precursor cells die shortly after birth•These mice show vascular defects similar to those in mice lacking endothelial RECK•The vascular phenotype can be suppressed by LiCl, an activator of WNT signaling•RECK in WNT7-producing cell enhances contact-dependent WNT signaling in adjacent cells Vascular Remodeling; Neuroscience; Molecular Neuroscience; Developmental Neuroscience RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling. RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling. : Vascular Remodeling; Neuroscience; Molecular Neuroscience; Developmental Neuroscience Subject Areas: Vascular Remodeling, Neuroscience, Molecular Neuroscience, Developmental Neuroscience RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling.RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling. |
Author | Noda, Makoto Miki, Takao Hanashima, Carina Watanabe, Naoki Almeida, Glícia Maria de Li, Huiping Matsuzaki, Tomoko Kuo, Calvin J. |
AuthorAffiliation | 4 Stanford University School of Medicine, Department of Medicine, Division of Hematology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA 5 Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan 2 Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan 1 Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan 3 Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan |
AuthorAffiliation_xml | – name: 4 Stanford University School of Medicine, Department of Medicine, Division of Hematology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA – name: 3 Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan – name: 1 Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan – name: 2 Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan – name: 5 Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan |
Author_xml | – sequence: 1 givenname: Huiping surname: Li fullname: Li, Huiping organization: Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan – sequence: 2 givenname: Takao surname: Miki fullname: Miki, Takao organization: Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan – sequence: 3 givenname: Glícia Maria de surname: Almeida fullname: Almeida, Glícia Maria de organization: Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan – sequence: 4 givenname: Carina surname: Hanashima fullname: Hanashima, Carina organization: Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan – sequence: 5 givenname: Tomoko surname: Matsuzaki fullname: Matsuzaki, Tomoko organization: Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan – sequence: 6 givenname: Calvin J. surname: Kuo fullname: Kuo, Calvin J. organization: Stanford University School of Medicine, Department of Medicine, Division of Hematology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA – sequence: 7 givenname: Naoki surname: Watanabe fullname: Watanabe, Naoki organization: Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan – sequence: 8 givenname: Makoto surname: Noda fullname: Noda, Makoto email: noda.makoto.3x@kyoto-u.ac.jp organization: Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31445376$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustq3DAUFSWhSdP8QBfFy27GvZJsPaAUgknakCchXQuNfD3V4LFSyQ7k7yt3kpB0ERB6nnOuOPd8IDtDGJCQTxRKClR8XZc-OV8yoLoEVQLod2Sf1UovACq282K_Rw5TWgMAy6PS4j3Z47Sqai7FPrm9OW7OCj8UlzhF2xfXEd0UU4hFg32fiuvePqTCFk30o3cZcBN6nPEXYUpYnISIy2jz-WhY-bDCAZNPH8luZ_uEh4_rAfl1cnzb_FycX_04bY7OF65Wclw4BC1Y5bgSSqkKkAMIVTMhQS1ZZ3GeWrF0jtfIpKxlxxHACd11FbecH5DTrW4b7NrcRb-x8cEE682_ixBXxsb87R6NcNQy3lGqpaqc5lo43bWKC6Vpq9o2a33fat1Nyw22Docx-_FK9PXL4H-bVbg3QlIutcwCXx4FYvgzYRrNJncom2gHzF4ZxhTUFdOcZujnl7Weizy1JQPUFuBiSCliZ5wf7ejDXNr3hoKZQ2DWZg6BmUNgQJkcgkxl_1Gf1N8kfduSMHfr3mM0GYGDw9bnPIzZTv8W_S9O2cmd |
CitedBy_id | crossref_primary_10_2147_JIR_S501856 crossref_primary_10_3390_cancers12010071 crossref_primary_10_1016_j_jbc_2024_107570 crossref_primary_10_1096_fj_202001646RR crossref_primary_10_1002_jcp_31396 crossref_primary_10_1016_j_jphs_2021_02_001 crossref_primary_10_1073_pnas_2006332117 crossref_primary_10_1242_dev_200340 crossref_primary_10_1016_j_cell_2023_09_021 crossref_primary_10_1038_s41598_022_06288_3 crossref_primary_10_1126_science_abm4459 crossref_primary_10_1038_s41598_020_63338_4 crossref_primary_10_1016_j_conb_2021_04_005 crossref_primary_10_1146_annurev_neuro_111020_102127 |
Cites_doi | 10.1242/dev.103416 10.1038/s41594-019-0216-z 10.1242/dev.01165 10.1073/pnas.0805165106 10.1242/dev.123059 10.1016/j.lfs.2010.06.001 10.1172/JCI31731 10.1126/science.1164594 10.1242/dev.176073 10.1073/pnas.93.16.8455 10.1016/j.ydbio.2013.03.010 10.1074/jbc.M806212200 10.1016/S0092-8674(00)81618-9 10.1097/MOH.0000000000000043 10.1006/dbio.2000.9732 10.1016/j.neuron.2017.10.025 10.1002/dvdy.24339 10.1093/emboj/18.21.5931 10.1128/MCB.02179-06 10.1371/journal.pone.0000837 10.7554/eLife.06489 10.1016/j.celrep.2017.08.004 10.1038/nature08875 10.1016/j.devcel.2010.01.008 10.1128/MCB.22.21.7667-7677.2002 10.1073/pnas.1017192108 10.1016/S1097-2765(00)80200-2 10.1093/hmg/ddu338 10.1126/scitranslmed.3005794 10.1038/srep17860 10.1073/pnas.1013751108 10.1073/pnas.1019761108 10.1016/j.neuron.2017.08.032 10.1002/dvg.20335 10.1083/jcb.200806024 10.1242/dev.01551 10.1126/science.aat1178 10.1038/44334 10.1073/pnas.95.22.13221 10.1038/nn1922 10.1523/JNEUROSCI.3467-05.2005 10.1126/science.1196554 10.1242/bio.2012638 10.1006/dbio.2000.0106 10.1038/ncomms3609 10.1016/j.devcel.2018.01.023 10.1186/1471-213X-10-84 10.1172/JCI38079 10.1128/MCB.06222-11 10.1016/S0002-9440(10)64062-X 10.1016/S0092-8674(01)00597-9 10.1242/dev.129.12.2891 10.1016/j.celrep.2018.09.045 10.1161/CIRCRESAHA.118.313316 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2019.08.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 571 |
ExternalDocumentID | oai_doaj_org_article_6c1a23f119784c9396c9fd836891d8dd PMC6713797 31445376 10_1016_j_isci_2019_08_009 S2589004219302871 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS100904 |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c587t-ce09624c38688840e30068526708b2faeb2fad6bcc35e27757f3e00c69ff43a33 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:05:18 EDT 2025 Thu Aug 21 18:42:15 EDT 2025 Thu Jul 10 23:36:59 EDT 2025 Thu Jan 02 22:59:05 EST 2025 Tue Jul 01 01:03:26 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue May 16 22:28:48 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vascular Remodeling Neuroscience Molecular Neuroscience Developmental Neuroscience |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c587t-ce09624c38688840e30068526708b2faeb2fad6bcc35e27757f3e00c69ff43a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://doaj.org/article/6c1a23f119784c9396c9fd836891d8dd |
PMID | 31445376 |
PQID | 2280542931 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6c1a23f119784c9396c9fd836891d8dd pubmedcentral_primary_oai_pubmedcentral_nih_gov_6713797 proquest_miscellaneous_2280542931 pubmed_primary_31445376 crossref_citationtrail_10_1016_j_isci_2019_08_009 crossref_primary_10_1016_j_isci_2019_08_009 elsevier_sciencedirect_doi_10_1016_j_isci_2019_08_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-27 |
PublicationDateYYYYMMDD | 2019-09-27 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Privratsky, Newman, Newman (bib40) 2010; 87 Cullen, Elzarrad, Seaman, Zudaire, Stevens, Yang, Li, Chaudhary, Xu, Hilton (bib14) 2011; 108 Da Silva, Rocha, Motamedi, Massa, Basboga, Morrison, Wagner, Schedl (bib16) 2017; 20 Liebner, Corada, Bangsow, Babbage, Taddei, Czupalla, Reis, Felici, Wolburg, Fruttiger (bib29) 2008; 183 Yamamoto, Matsuzaki, Takahashi, Adachi, Maeda, Yamaguchi, Kitayama, Echizenya, Morioka, Alexander (bib52) 2012; 1 Eubelen, Bostaille, Cabochette, Gauquier, Tebabi, Dumitru, Koehler, Gut, Alsteens, Stainier (bib18) 2018; 361 Yang, Baumann, Sun, Tang, Dunn, Akeson, Kernie, Kallapur, Lindquist, Huang (bib53) 2013; 5 Cho, Smallwood, Nathans (bib7) 2017; 95 Kisanuki, Hammer, Miyazaki, Williams, Richardson, Yanagisawa (bib25) 2001; 230 Lyden, Young, Zagzag, Yan, Gerald, O'Reilly, Bader, Hynes, Zhuang, Manova, Benezra (bib30) 1999; 401 Paredes, Himmels, Ruiz de Almodovar (bib39) 2018; 45 Vallon, Yuki, Nguyen, Chang, Yuan, Siepe, Miao, Essler, Noda, Garcia, Kuo (bib50) 2018; 25 Cohen, Ihida-Stansbury, Lu, Panettieri, Jones, Morrisey (bib9) 2009; 119 Mazzoni, Smith, Shahriar, Cutforth, Ceja, Agalliu (bib31) 2017; 96 Muzumdar, Tasic, Miyamichi, Li, Luo (bib36) 2007; 45 Corada, Orsenigo, Bhat, Conze, Breviario, Cunha, Claesson-Welsh, Beznoussenko, Mironov, Bacigaluppi (bib11) 2019; 124 Oh, Takahashi, Kondo, Mizoguchi, Adachi, Sasahara, Nishimura, Imamura, Kitayama, Alexander (bib37) 2001; 107 Kugimiya, Kawaguchi, Ohba, Kawamura, Hirata, Chikuda, Azuma, Woodgett, Nakamura, Chung (bib27) 2007; 2 Hellbach, Weise, Vezzali, Wahane, Heidrich, Roidl, Pruszak, Esser, Vogel (bib22) 2014; 23 Proctor, Zang, Wang, Wang, Reichardt (bib41) 2005; 25 Almeida, Yamamoto, Morioka, Ogawa, Matsuzaki, Noda (bib1) 2015; 5 Harada, Tamai, Ishikawa, Sauer, Takaku, Oshima, Taketo (bib20) 1999; 18 Daneman, Agalliu, Zhou, Kuhnert, Kuo, Barres (bib17) 2009; 106 Anderson, Pan, Yang, Hughes, Walls, Dominguez, Simmons, Burfeind, Xue, Wei (bib2) 2011; 108 Cornett, Snowball, Varisco, Lang, Whitsett, Sinner (bib12) 2013; 379 Stenman, Rajagopal, Carroll, Ishibashi, McMahon, McMahon (bib45) 2008; 322 Kuhnert, Mancuso, Shamloo, Wang, Choksi, Florek, Su, Fruttiger, Young, Heilshorn, Kuo (bib28) 2010; 330 Sundberg, Nagy, Brown, Feng, Eckelhoefer, Manseau, Dvorak, Dvorak (bib46) 2001; 158 Cruciat, Niehrs (bib13) 2012; 5 Griffin, Curtis, Davis, Muthukumar, Magnuson (bib19) 2011; 108 Morini, Dejana (bib34) 2014; 21 Cambier, Plate, Sucov, Pashmforoush (bib5) 2014; 141 Hirai, Matoba, Mihara, Arimori, Takagi (bib24) 2019; 26 McCarty, Monahan-Earley, Brown, Keller, Gerhardt, Rubin, Shani, Dvorak, Wolburg, Bader (bib32) 2002; 22 Hirabayashi, Itoh, Tabata, Nakajima, Akiyama, Masuyama, Gotoh (bib23) 2004; 131 Routledge, Scholpp (bib42) 2019; 146 Corada, Orsenigo, Morini, Pitulescu, Bhat, Nyqvist, Breviario, Conti, Briot, Iruela-Arispe (bib10) 2013; 4 Vanhollebeke, Stone, Bostaille, Cho, Zhou, Maquet, Gauquier, Cabochette, Fukuhara, Mochizuki (bib51) 2015; 4 Sinner, Kordich, Spence, Opoka, Rankin, Lin, Jonatan, Zorn, Wells (bib44) 2007; 27 Tian, Yuan, Goss, Wang, Yang, Lepore, Zhou, Schwartz, Patel, Cohen, Morrisey (bib48) 2010; 18 Briggs, Burns, Lockhart, Phelps, Van den Hoff, Wessels (bib4) 2015; 245 Curtis, Griffin (bib15) 2012; 32 Zorn, Barish, Williams, Lavender, Klymkowsky, Varmus (bib55) 1999; 4 Chandana, Maeda, Ueda, Kiyonari, Oshima, Yamamoto, Kondo, Oh, Takahashi, Yoshida (bib6) 2010; 10 Muraguchi, Takegami, Ohtsuka, Kitajima, Chandana, Omura, Miki, Takahashi, Matsumoto, Ludwig (bib35) 2007; 10 McCarty, Lacy-Hulbert, Charest, Bronson, Crowley, Housman, Savill, Roes, Hynes (bib33) 2005; 132 Omura, Matsuzaki, Mio, Ogura, Yamamoto, Fujita, Okawa, Kitayama, Takahashi, Sato, Noda (bib38) 2009; 284 Shimomura, Agalliu, Vonica, Luria, Wajid, Baumer, Belli, Petukhova, Schinzel, Brivanlou (bib43) 2010; 464 Cohen, Wang, Lepore, Lu, Taketo, Epstein, Morrisey (bib8) 2007; 117 Klein, Melton (bib26) 1996; 93 Takahashi, Sheng, Horan, Kitayama, Maki, Hitomi, Kitaura, Takai, Sasahara, Horimoto (bib47) 1998; 95 Ulrich, Carretero-Ortega, Menendez, Narvaez, Sun, Lancaster, Pershad, Trzaska, Veliz, Kamei (bib49) 2016; 143 Zhu, Motejlek, Wang, Zang, Schmidt, Reichardt (bib54) 2002; 129 Bader, Rayburn, Crowley, Hynes (bib3) 1998; 95 Hebert, McConnell (bib21) 2000; 222 Kugimiya (10.1016/j.isci.2019.08.009_bib27) 2007; 2 Privratsky (10.1016/j.isci.2019.08.009_bib40) 2010; 87 Curtis (10.1016/j.isci.2019.08.009_bib15) 2012; 32 Liebner (10.1016/j.isci.2019.08.009_bib29) 2008; 183 Kisanuki (10.1016/j.isci.2019.08.009_bib25) 2001; 230 Mazzoni (10.1016/j.isci.2019.08.009_bib31) 2017; 96 Cruciat (10.1016/j.isci.2019.08.009_bib13) 2012; 5 Hellbach (10.1016/j.isci.2019.08.009_bib22) 2014; 23 Omura (10.1016/j.isci.2019.08.009_bib38) 2009; 284 Cullen (10.1016/j.isci.2019.08.009_bib14) 2011; 108 Zhu (10.1016/j.isci.2019.08.009_bib54) 2002; 129 Hirai (10.1016/j.isci.2019.08.009_bib24) 2019; 26 Morini (10.1016/j.isci.2019.08.009_bib34) 2014; 21 Ulrich (10.1016/j.isci.2019.08.009_bib49) 2016; 143 Muzumdar (10.1016/j.isci.2019.08.009_bib36) 2007; 45 Shimomura (10.1016/j.isci.2019.08.009_bib43) 2010; 464 Chandana (10.1016/j.isci.2019.08.009_bib6) 2010; 10 Daneman (10.1016/j.isci.2019.08.009_bib17) 2009; 106 Harada (10.1016/j.isci.2019.08.009_bib20) 1999; 18 Zorn (10.1016/j.isci.2019.08.009_bib55) 1999; 4 Cho (10.1016/j.isci.2019.08.009_bib7) 2017; 95 Corada (10.1016/j.isci.2019.08.009_bib10) 2013; 4 McCarty (10.1016/j.isci.2019.08.009_bib33) 2005; 132 Da Silva (10.1016/j.isci.2019.08.009_bib16) 2017; 20 Eubelen (10.1016/j.isci.2019.08.009_bib18) 2018; 361 Paredes (10.1016/j.isci.2019.08.009_bib39) 2018; 45 Anderson (10.1016/j.isci.2019.08.009_bib2) 2011; 108 Yamamoto (10.1016/j.isci.2019.08.009_bib52) 2012; 1 Cohen (10.1016/j.isci.2019.08.009_bib8) 2007; 117 Vallon (10.1016/j.isci.2019.08.009_bib50) 2018; 25 Cornett (10.1016/j.isci.2019.08.009_bib12) 2013; 379 Klein (10.1016/j.isci.2019.08.009_bib26) 1996; 93 Briggs (10.1016/j.isci.2019.08.009_bib4) 2015; 245 Lyden (10.1016/j.isci.2019.08.009_bib30) 1999; 401 Bader (10.1016/j.isci.2019.08.009_bib3) 1998; 95 Griffin (10.1016/j.isci.2019.08.009_bib19) 2011; 108 Stenman (10.1016/j.isci.2019.08.009_bib45) 2008; 322 Sinner (10.1016/j.isci.2019.08.009_bib44) 2007; 27 Corada (10.1016/j.isci.2019.08.009_bib11) 2019; 124 McCarty (10.1016/j.isci.2019.08.009_bib32) 2002; 22 Hirabayashi (10.1016/j.isci.2019.08.009_bib23) 2004; 131 Tian (10.1016/j.isci.2019.08.009_bib48) 2010; 18 Takahashi (10.1016/j.isci.2019.08.009_bib47) 1998; 95 Oh (10.1016/j.isci.2019.08.009_bib37) 2001; 107 Proctor (10.1016/j.isci.2019.08.009_bib41) 2005; 25 Muraguchi (10.1016/j.isci.2019.08.009_bib35) 2007; 10 Kuhnert (10.1016/j.isci.2019.08.009_bib28) 2010; 330 Routledge (10.1016/j.isci.2019.08.009_bib42) 2019; 146 Cambier (10.1016/j.isci.2019.08.009_bib5) 2014; 141 Hebert (10.1016/j.isci.2019.08.009_bib21) 2000; 222 Almeida (10.1016/j.isci.2019.08.009_bib1) 2015; 5 Sundberg (10.1016/j.isci.2019.08.009_bib46) 2001; 158 Vanhollebeke (10.1016/j.isci.2019.08.009_bib51) 2015; 4 Yang (10.1016/j.isci.2019.08.009_bib53) 2013; 5 Cohen (10.1016/j.isci.2019.08.009_bib9) 2009; 119 |
References_xml | – volume: 23 start-page: 6177 year: 2014 end-page: 6190 ident: bib22 article-title: Neural deletion of Tgfbr2 impairs angiogenesis through an altered secretome publication-title: Hum. Mol. Genet. – volume: 4 start-page: 487 year: 1999 end-page: 498 ident: bib55 article-title: Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin publication-title: Mol. Cell – volume: 330 start-page: 985 year: 2010 end-page: 989 ident: bib28 article-title: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124 publication-title: Science – volume: 4 start-page: 2609 year: 2013 ident: bib10 article-title: Sox17 is indispensable for acquisition and maintenance of arterial identity publication-title: Nat. Commun. – volume: 25 start-page: 9940 year: 2005 end-page: 9948 ident: bib41 article-title: Vascular development of the brain requires beta8 integrin expression in the neuroepithelium publication-title: J. Neurosci. – volume: 32 start-page: 1312 year: 2012 end-page: 1320 ident: bib15 article-title: The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling publication-title: Mol. Cell. Biol. – volume: 106 start-page: 641 year: 2009 end-page: 646 ident: bib17 article-title: Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis publication-title: Proc. Natl. Acad. Sci. U S A – volume: 245 start-page: 103 year: 2015 end-page: 113 ident: bib4 article-title: Wnt/beta-catenin and sonic hedgehog pathways interact in the regulation of the development of the dorsal mesenchymal protrusion publication-title: Dev. Dyn. – volume: 108 start-page: 2807 year: 2011 end-page: 2812 ident: bib2 article-title: Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor publication-title: Proc. Natl. Acad. Sci. U S A – volume: 5 start-page: 17860 year: 2015 ident: bib1 article-title: Critical roles for murine Reck in the regulation of vascular patterning and stabilization publication-title: Sci. Rep. – volume: 10 start-page: 84 year: 2010 ident: bib6 article-title: Involvement of the Reck tumor suppressor protein in maternal and embryonic vascular remodeling in mice publication-title: BMC Dev. Biol. – volume: 401 start-page: 670 year: 1999 end-page: 677 ident: bib30 article-title: Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts publication-title: Nature – volume: 95 start-page: 507 year: 1998 end-page: 519 ident: bib3 article-title: Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins publication-title: Cell – volume: 124 start-page: 511 year: 2019 end-page: 525 ident: bib11 article-title: Fine-tuning of Sox17 and canonical Wnt coordinates the permeability properties of the blood-brain barrier publication-title: Circ. Res. – volume: 5 start-page: a015081 year: 2012 ident: bib13 article-title: Secreted and transmembrane wnt inhibitors and activators publication-title: Cold Spring Harb. Perspect. Biol. – volume: 464 start-page: 1043 year: 2010 end-page: 1047 ident: bib43 article-title: APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex publication-title: Nature – volume: 108 start-page: 5759 year: 2011 end-page: 5764 ident: bib14 article-title: GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier publication-title: Proc. Natl. Acad. Sci. U S A – volume: 129 start-page: 2891 year: 2002 end-page: 2903 ident: bib54 article-title: beta8 integrins are required for vascular morphogenesis in mouse embryos publication-title: Development – volume: 222 start-page: 296 year: 2000 end-page: 306 ident: bib21 article-title: Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures publication-title: Dev. Biol. – volume: 284 start-page: 3461 year: 2009 end-page: 3469 ident: bib38 article-title: RECK forms cowbell-shaped dimers and inhibits matrix metalloproteinase-catalyzed cleavage of fibronectin publication-title: J. Biol. Chem. – volume: 18 start-page: 275 year: 2010 end-page: 287 ident: bib48 article-title: Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development publication-title: Dev. Cell – volume: 141 start-page: 2959 year: 2014 end-page: 2971 ident: bib5 article-title: Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3 publication-title: Development – volume: 361 year: 2018 ident: bib18 article-title: A molecular mechanism for Wnt ligand-specific signaling publication-title: Science – volume: 96 start-page: 1055 year: 2017 end-page: 1069.e6 ident: bib31 article-title: The Wnt inhibitor Apcdd1 coordinates vascular remodeling and barrier maturation of retinal blood vessels publication-title: Neuron – volume: 117 start-page: 1794 year: 2007 end-page: 1804 ident: bib8 article-title: Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling publication-title: J. Clin. Invest. – volume: 1 start-page: 458 year: 2012 end-page: 466 ident: bib52 article-title: The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs publication-title: Biol. Open – volume: 108 start-page: 2282 year: 2011 end-page: 2287 ident: bib19 article-title: The chromatin-remodeling enzyme BRG1 modulates vascular Wnt signaling at two levels publication-title: Proc. Natl. Acad. Sci. U S A – volume: 25 start-page: 339 year: 2018 end-page: 349.e9 ident: bib50 article-title: A RECK-WNT7 receptor-ligand interaction enables isoform-specific regulation of Wnt bioavailability publication-title: Cell Rep. – volume: 4 year: 2015 ident: bib51 article-title: Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis publication-title: Elife – volume: 158 start-page: 1145 year: 2001 end-page: 1160 ident: bib46 article-title: Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery publication-title: Am. J. Pathol. – volume: 93 start-page: 8455 year: 1996 end-page: 8459 ident: bib26 article-title: A molecular mechanism for the effect of lithium on development publication-title: Proc. Natl. Acad. Sci. U S A – volume: 87 start-page: 69 year: 2010 end-page: 82 ident: bib40 article-title: PECAM-1: conflicts of interest in inflammation publication-title: Life Sci. – volume: 45 start-page: 10 year: 2018 end-page: 32 ident: bib39 article-title: Neurovascular communication during CNS development publication-title: Dev. Cell – volume: 95 start-page: 1221 year: 2017 end-page: 1225 ident: bib7 article-title: Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation publication-title: Neuron – volume: 379 start-page: 38 year: 2013 end-page: 52 ident: bib12 article-title: Wntless is required for peripheral lung differentiation and pulmonary vascular development publication-title: Dev. Biol. – volume: 119 start-page: 2538 year: 2009 end-page: 2549 ident: bib9 article-title: Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway publication-title: J. Clin. Invest. – volume: 20 start-page: 1745 year: 2017 end-page: 1754 ident: bib16 article-title: Coronary artery formation is driven by localized expression of R-spondin3 publication-title: Cell Rep. – volume: 2 start-page: e837 year: 2007 ident: bib27 article-title: GSK-3beta controls osteogenesis through regulating Runx2 activity publication-title: PLoS One – volume: 131 start-page: 2791 year: 2004 end-page: 2801 ident: bib23 article-title: The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells publication-title: Development – volume: 146 year: 2019 ident: bib42 article-title: Mechanisms of intercellular Wnt transport publication-title: Development – volume: 27 start-page: 7802 year: 2007 end-page: 7815 ident: bib44 article-title: Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells publication-title: Mol. Cell. Biol. – volume: 322 start-page: 1247 year: 2008 end-page: 1250 ident: bib45 article-title: Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature publication-title: Science – volume: 26 start-page: 372 year: 2019 end-page: 379 ident: bib24 article-title: Crystal structure of a mammalian Wnt-frizzled complex publication-title: Nat. Struct. Mol. Biol. – volume: 143 start-page: 147 year: 2016 end-page: 159 ident: bib49 article-title: Reck enables cerebrovascular development by promoting canonical Wnt signaling publication-title: Development – volume: 132 start-page: 165 year: 2005 end-page: 176 ident: bib33 article-title: Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death publication-title: Development – volume: 230 start-page: 230 year: 2001 end-page: 242 ident: bib25 article-title: Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo publication-title: Dev. Biol. – volume: 5 start-page: 193ra190 year: 2013 ident: bib53 article-title: Overexpression of vascular endothelial growth factor in the germinal matrix induces neurovascular proteases and intraventricular hemorrhage publication-title: Sci. Transl. Med. – volume: 10 start-page: 838 year: 2007 end-page: 845 ident: bib35 article-title: RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity publication-title: Nat. Neurosci. – volume: 18 start-page: 5931 year: 1999 end-page: 5942 ident: bib20 article-title: Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene publication-title: EMBO J. – volume: 22 start-page: 7667 year: 2002 end-page: 7677 ident: bib32 article-title: Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins publication-title: Mol. Cell. Biol. – volume: 183 start-page: 409 year: 2008 end-page: 417 ident: bib29 article-title: Wnt/beta-catenin signaling controls development of the blood-brain barrier publication-title: J. Cell Biol. – volume: 107 start-page: 789 year: 2001 end-page: 800 ident: bib37 article-title: The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis publication-title: Cell – volume: 21 start-page: 229 year: 2014 end-page: 234 ident: bib34 article-title: Transcriptional regulation of arterial differentiation via Wnt, Sox and Notch publication-title: Curr. Opin. Hematol. – volume: 95 start-page: 13221 year: 1998 end-page: 13226 ident: bib47 article-title: Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK publication-title: Proc. Natl. Acad. Sci. U S A – volume: 45 start-page: 593 year: 2007 end-page: 605 ident: bib36 article-title: A global double-fluorescent Cre reporter mouse publication-title: Genesis – volume: 141 start-page: 2959 year: 2014 ident: 10.1016/j.isci.2019.08.009_bib5 article-title: Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3 publication-title: Development doi: 10.1242/dev.103416 – volume: 26 start-page: 372 year: 2019 ident: 10.1016/j.isci.2019.08.009_bib24 article-title: Crystal structure of a mammalian Wnt-frizzled complex publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0216-z – volume: 131 start-page: 2791 year: 2004 ident: 10.1016/j.isci.2019.08.009_bib23 article-title: The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells publication-title: Development doi: 10.1242/dev.01165 – volume: 106 start-page: 641 year: 2009 ident: 10.1016/j.isci.2019.08.009_bib17 article-title: Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0805165106 – volume: 143 start-page: 147 year: 2016 ident: 10.1016/j.isci.2019.08.009_bib49 article-title: Reck enables cerebrovascular development by promoting canonical Wnt signaling publication-title: Development doi: 10.1242/dev.123059 – volume: 87 start-page: 69 year: 2010 ident: 10.1016/j.isci.2019.08.009_bib40 article-title: PECAM-1: conflicts of interest in inflammation publication-title: Life Sci. doi: 10.1016/j.lfs.2010.06.001 – volume: 117 start-page: 1794 year: 2007 ident: 10.1016/j.isci.2019.08.009_bib8 article-title: Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling publication-title: J. Clin. Invest. doi: 10.1172/JCI31731 – volume: 322 start-page: 1247 year: 2008 ident: 10.1016/j.isci.2019.08.009_bib45 article-title: Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature publication-title: Science doi: 10.1126/science.1164594 – volume: 146 year: 2019 ident: 10.1016/j.isci.2019.08.009_bib42 article-title: Mechanisms of intercellular Wnt transport publication-title: Development doi: 10.1242/dev.176073 – volume: 93 start-page: 8455 year: 1996 ident: 10.1016/j.isci.2019.08.009_bib26 article-title: A molecular mechanism for the effect of lithium on development publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.93.16.8455 – volume: 379 start-page: 38 year: 2013 ident: 10.1016/j.isci.2019.08.009_bib12 article-title: Wntless is required for peripheral lung differentiation and pulmonary vascular development publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2013.03.010 – volume: 284 start-page: 3461 year: 2009 ident: 10.1016/j.isci.2019.08.009_bib38 article-title: RECK forms cowbell-shaped dimers and inhibits matrix metalloproteinase-catalyzed cleavage of fibronectin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M806212200 – volume: 95 start-page: 507 year: 1998 ident: 10.1016/j.isci.2019.08.009_bib3 article-title: Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins publication-title: Cell doi: 10.1016/S0092-8674(00)81618-9 – volume: 21 start-page: 229 year: 2014 ident: 10.1016/j.isci.2019.08.009_bib34 article-title: Transcriptional regulation of arterial differentiation via Wnt, Sox and Notch publication-title: Curr. Opin. Hematol. doi: 10.1097/MOH.0000000000000043 – volume: 222 start-page: 296 year: 2000 ident: 10.1016/j.isci.2019.08.009_bib21 article-title: Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures publication-title: Dev. Biol. doi: 10.1006/dbio.2000.9732 – volume: 96 start-page: 1055 year: 2017 ident: 10.1016/j.isci.2019.08.009_bib31 article-title: The Wnt inhibitor Apcdd1 coordinates vascular remodeling and barrier maturation of retinal blood vessels publication-title: Neuron doi: 10.1016/j.neuron.2017.10.025 – volume: 245 start-page: 103 year: 2015 ident: 10.1016/j.isci.2019.08.009_bib4 article-title: Wnt/beta-catenin and sonic hedgehog pathways interact in the regulation of the development of the dorsal mesenchymal protrusion publication-title: Dev. Dyn. doi: 10.1002/dvdy.24339 – volume: 18 start-page: 5931 year: 1999 ident: 10.1016/j.isci.2019.08.009_bib20 article-title: Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene publication-title: EMBO J. doi: 10.1093/emboj/18.21.5931 – volume: 27 start-page: 7802 year: 2007 ident: 10.1016/j.isci.2019.08.009_bib44 article-title: Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02179-06 – volume: 2 start-page: e837 year: 2007 ident: 10.1016/j.isci.2019.08.009_bib27 article-title: GSK-3beta controls osteogenesis through regulating Runx2 activity publication-title: PLoS One doi: 10.1371/journal.pone.0000837 – volume: 4 year: 2015 ident: 10.1016/j.isci.2019.08.009_bib51 article-title: Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis publication-title: Elife doi: 10.7554/eLife.06489 – volume: 20 start-page: 1745 year: 2017 ident: 10.1016/j.isci.2019.08.009_bib16 article-title: Coronary artery formation is driven by localized expression of R-spondin3 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.08.004 – volume: 464 start-page: 1043 year: 2010 ident: 10.1016/j.isci.2019.08.009_bib43 article-title: APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex publication-title: Nature doi: 10.1038/nature08875 – volume: 18 start-page: 275 year: 2010 ident: 10.1016/j.isci.2019.08.009_bib48 article-title: Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.01.008 – volume: 22 start-page: 7667 year: 2002 ident: 10.1016/j.isci.2019.08.009_bib32 article-title: Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.21.7667-7677.2002 – volume: 108 start-page: 5759 year: 2011 ident: 10.1016/j.isci.2019.08.009_bib14 article-title: GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1017192108 – volume: 4 start-page: 487 year: 1999 ident: 10.1016/j.isci.2019.08.009_bib55 article-title: Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80200-2 – volume: 23 start-page: 6177 year: 2014 ident: 10.1016/j.isci.2019.08.009_bib22 article-title: Neural deletion of Tgfbr2 impairs angiogenesis through an altered secretome publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu338 – volume: 5 start-page: 193ra190 year: 2013 ident: 10.1016/j.isci.2019.08.009_bib53 article-title: Overexpression of vascular endothelial growth factor in the germinal matrix induces neurovascular proteases and intraventricular hemorrhage publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3005794 – volume: 5 start-page: 17860 year: 2015 ident: 10.1016/j.isci.2019.08.009_bib1 article-title: Critical roles for murine Reck in the regulation of vascular patterning and stabilization publication-title: Sci. Rep. doi: 10.1038/srep17860 – volume: 108 start-page: 2282 year: 2011 ident: 10.1016/j.isci.2019.08.009_bib19 article-title: The chromatin-remodeling enzyme BRG1 modulates vascular Wnt signaling at two levels publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1013751108 – volume: 108 start-page: 2807 year: 2011 ident: 10.1016/j.isci.2019.08.009_bib2 article-title: Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1019761108 – volume: 95 start-page: 1221 year: 2017 ident: 10.1016/j.isci.2019.08.009_bib7 article-title: Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation publication-title: Neuron doi: 10.1016/j.neuron.2017.08.032 – volume: 45 start-page: 593 year: 2007 ident: 10.1016/j.isci.2019.08.009_bib36 article-title: A global double-fluorescent Cre reporter mouse publication-title: Genesis doi: 10.1002/dvg.20335 – volume: 183 start-page: 409 year: 2008 ident: 10.1016/j.isci.2019.08.009_bib29 article-title: Wnt/beta-catenin signaling controls development of the blood-brain barrier publication-title: J. Cell Biol. doi: 10.1083/jcb.200806024 – volume: 132 start-page: 165 year: 2005 ident: 10.1016/j.isci.2019.08.009_bib33 article-title: Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death publication-title: Development doi: 10.1242/dev.01551 – volume: 361 year: 2018 ident: 10.1016/j.isci.2019.08.009_bib18 article-title: A molecular mechanism for Wnt ligand-specific signaling publication-title: Science doi: 10.1126/science.aat1178 – volume: 401 start-page: 670 year: 1999 ident: 10.1016/j.isci.2019.08.009_bib30 article-title: Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts publication-title: Nature doi: 10.1038/44334 – volume: 95 start-page: 13221 year: 1998 ident: 10.1016/j.isci.2019.08.009_bib47 article-title: Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.95.22.13221 – volume: 5 start-page: a015081 year: 2012 ident: 10.1016/j.isci.2019.08.009_bib13 article-title: Secreted and transmembrane wnt inhibitors and activators publication-title: Cold Spring Harb. Perspect. Biol. – volume: 10 start-page: 838 year: 2007 ident: 10.1016/j.isci.2019.08.009_bib35 article-title: RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity publication-title: Nat. Neurosci. doi: 10.1038/nn1922 – volume: 25 start-page: 9940 year: 2005 ident: 10.1016/j.isci.2019.08.009_bib41 article-title: Vascular development of the brain requires beta8 integrin expression in the neuroepithelium publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3467-05.2005 – volume: 330 start-page: 985 year: 2010 ident: 10.1016/j.isci.2019.08.009_bib28 article-title: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124 publication-title: Science doi: 10.1126/science.1196554 – volume: 1 start-page: 458 year: 2012 ident: 10.1016/j.isci.2019.08.009_bib52 article-title: The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs publication-title: Biol. Open doi: 10.1242/bio.2012638 – volume: 230 start-page: 230 year: 2001 ident: 10.1016/j.isci.2019.08.009_bib25 article-title: Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo publication-title: Dev. Biol. doi: 10.1006/dbio.2000.0106 – volume: 4 start-page: 2609 year: 2013 ident: 10.1016/j.isci.2019.08.009_bib10 article-title: Sox17 is indispensable for acquisition and maintenance of arterial identity publication-title: Nat. Commun. doi: 10.1038/ncomms3609 – volume: 45 start-page: 10 year: 2018 ident: 10.1016/j.isci.2019.08.009_bib39 article-title: Neurovascular communication during CNS development publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.01.023 – volume: 10 start-page: 84 year: 2010 ident: 10.1016/j.isci.2019.08.009_bib6 article-title: Involvement of the Reck tumor suppressor protein in maternal and embryonic vascular remodeling in mice publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-10-84 – volume: 119 start-page: 2538 year: 2009 ident: 10.1016/j.isci.2019.08.009_bib9 article-title: Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway publication-title: J. Clin. Invest. doi: 10.1172/JCI38079 – volume: 32 start-page: 1312 year: 2012 ident: 10.1016/j.isci.2019.08.009_bib15 article-title: The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.06222-11 – volume: 158 start-page: 1145 year: 2001 ident: 10.1016/j.isci.2019.08.009_bib46 article-title: Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)64062-X – volume: 107 start-page: 789 year: 2001 ident: 10.1016/j.isci.2019.08.009_bib37 article-title: The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis publication-title: Cell doi: 10.1016/S0092-8674(01)00597-9 – volume: 129 start-page: 2891 year: 2002 ident: 10.1016/j.isci.2019.08.009_bib54 article-title: beta8 integrins are required for vascular morphogenesis in mouse embryos publication-title: Development doi: 10.1242/dev.129.12.2891 – volume: 25 start-page: 339 year: 2018 ident: 10.1016/j.isci.2019.08.009_bib50 article-title: A RECK-WNT7 receptor-ligand interaction enables isoform-specific regulation of Wnt bioavailability publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.09.045 – volume: 124 start-page: 511 year: 2019 ident: 10.1016/j.isci.2019.08.009_bib11 article-title: Fine-tuning of Sox17 and canonical Wnt coordinates the permeability properties of the blood-brain barrier publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.313316 |
SSID | ssj0002002496 |
Score | 2.1820176 |
Snippet | RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 559 |
SubjectTerms | Developmental Neuroscience Molecular Neuroscience Neuroscience Vascular Remodeling |
Title | RECK in Neural Precursor Cells Plays a Critical Role in Mouse Forebrain Angiogenesis |
URI | https://dx.doi.org/10.1016/j.isci.2019.08.009 https://www.ncbi.nlm.nih.gov/pubmed/31445376 https://www.proquest.com/docview/2280542931 https://pubmed.ncbi.nlm.nih.gov/PMC6713797 https://doaj.org/article/6c1a23f119784c9396c9fd836891d8dd |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp15QK2ibliJX6q2KSDJ-HmEFQq2oEAKJm-U4Ng2KErRZDvz7evJY7VKJXnrJIXEenhnb4_jz9xHyzdlMVYV0KbcBUuYtS1WQNoUiB-V87Cxz3Ch8-Utc3LIfd_xuQ-oLMWEjPfBouGPhcltAwNUuxZwGLZwOlQKhdF6pqsLeN455G5Oph2F5DanwBmU5jpigGJrTjpkR3IU7XhHXpQf-TkQjboxKA3n_1uD0d_L5EkO5MSidvyV7UzZJT8ZavCM7vt0nN9dni5-0bikSb8SrV0v8p953S7rwTdPTq8Y-99TSWeWAXneNx_KX3VPvKYp1ligcQU_a-7q7x86w7g_I7fnZzeIincQTUseVXKXOx8lJwRwoESe5LPOAu0F4IWSmyiJYj4dKlM4B94WUXAbwWeaEDoGBBXhPdtuu9R8R_SR8KMuSB-2YdKBjViBL8IGJ3ELgCcln4xk3MYujwEVjZgjZg0GDGzS4QdXLTCfk-_qex5FX49XSp-iTdUnkxB5OxEgxU6SYf0VKQvjsUTOlF2PaEB9Vv_ryr7P7TWx7uKBiWx89YpBKCPW-IE_IhzEc1p8IcaaKVDkJkVuBslWH7Stt_Xvg9xYyB6nlp_9R6c_kDVYFES6FPCS7q-WT_xLTqFV5NLSYP8-cF_c |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RECK+in+Neural+Precursor+Cells+Plays+a+Critical+Role+in+Mouse+Forebrain+Angiogenesis&rft.jtitle=iScience&rft.au=Li%2C+Huiping&rft.au=Miki%2C+Takao&rft.au=Almeida%2C+Gl%C3%ADcia+Maria+de&rft.au=Hanashima%2C+Carina&rft.date=2019-09-27&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=19&rft.spage=559&rft.epage=571&rft_id=info:doi/10.1016%2Fj.isci.2019.08.009&rft.externalDocID=S2589004219302871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |