RECK in Neural Precursor Cells Plays a Critical Role in Mouse Forebrain Angiogenesis

RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 19; pp. 559 - 571
Main Authors Li, Huiping, Miki, Takao, Almeida, Glícia Maria de, Hanashima, Carina, Matsuzaki, Tomoko, Kuo, Calvin J., Watanabe, Naoki, Noda, Makoto
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.09.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling. [Display omitted] •Mice lacking RECK in Foxg1-positive neural precursor cells die shortly after birth•These mice show vascular defects similar to those in mice lacking endothelial RECK•The vascular phenotype can be suppressed by LiCl, an activator of WNT signaling•RECK in WNT7-producing cell enhances contact-dependent WNT signaling in adjacent cells Vascular Remodeling; Neuroscience; Molecular Neuroscience; Developmental Neuroscience
AbstractList RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1 -positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b -deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling. • Mice lacking RECK in Foxg1 -positive neural precursor cells die shortly after birth • These mice show vascular defects similar to those in mice lacking endothelial RECK • The vascular phenotype can be suppressed by LiCl, an activator of WNT signaling • RECK in WNT7-producing cell enhances contact-dependent WNT signaling in adjacent cells Vascular Remodeling; Neuroscience; Molecular Neuroscience; Developmental Neuroscience
RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling. [Display omitted] •Mice lacking RECK in Foxg1-positive neural precursor cells die shortly after birth•These mice show vascular defects similar to those in mice lacking endothelial RECK•The vascular phenotype can be suppressed by LiCl, an activator of WNT signaling•RECK in WNT7-producing cell enhances contact-dependent WNT signaling in adjacent cells Vascular Remodeling; Neuroscience; Molecular Neuroscience; Developmental Neuroscience
RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling.
RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling. : Vascular Remodeling; Neuroscience; Molecular Neuroscience; Developmental Neuroscience Subject Areas: Vascular Remodeling, Neuroscience, Molecular Neuroscience, Developmental Neuroscience
RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling.RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling.
Author Noda, Makoto
Miki, Takao
Hanashima, Carina
Watanabe, Naoki
Almeida, Glícia Maria de
Li, Huiping
Matsuzaki, Tomoko
Kuo, Calvin J.
AuthorAffiliation 4 Stanford University School of Medicine, Department of Medicine, Division of Hematology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
5 Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
2 Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
1 Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
3 Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
AuthorAffiliation_xml – name: 4 Stanford University School of Medicine, Department of Medicine, Division of Hematology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
– name: 3 Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
– name: 1 Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
– name: 2 Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
– name: 5 Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
Author_xml – sequence: 1
  givenname: Huiping
  surname: Li
  fullname: Li, Huiping
  organization: Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 2
  givenname: Takao
  surname: Miki
  fullname: Miki, Takao
  organization: Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 3
  givenname: Glícia Maria de
  surname: Almeida
  fullname: Almeida, Glícia Maria de
  organization: Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 4
  givenname: Carina
  surname: Hanashima
  fullname: Hanashima, Carina
  organization: Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
– sequence: 5
  givenname: Tomoko
  surname: Matsuzaki
  fullname: Matsuzaki, Tomoko
  organization: Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 6
  givenname: Calvin J.
  surname: Kuo
  fullname: Kuo, Calvin J.
  organization: Stanford University School of Medicine, Department of Medicine, Division of Hematology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
– sequence: 7
  givenname: Naoki
  surname: Watanabe
  fullname: Watanabe, Naoki
  organization: Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 8
  givenname: Makoto
  surname: Noda
  fullname: Noda, Makoto
  email: noda.makoto.3x@kyoto-u.ac.jp
  organization: Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31445376$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustq3DAUFSWhSdP8QBfFy27GvZJsPaAUgknakCchXQuNfD3V4LFSyQ7k7yt3kpB0ERB6nnOuOPd8IDtDGJCQTxRKClR8XZc-OV8yoLoEVQLod2Sf1UovACq282K_Rw5TWgMAy6PS4j3Z47Sqai7FPrm9OW7OCj8UlzhF2xfXEd0UU4hFg32fiuvePqTCFk30o3cZcBN6nPEXYUpYnISIy2jz-WhY-bDCAZNPH8luZ_uEh4_rAfl1cnzb_FycX_04bY7OF65Wclw4BC1Y5bgSSqkKkAMIVTMhQS1ZZ3GeWrF0jtfIpKxlxxHACd11FbecH5DTrW4b7NrcRb-x8cEE682_ixBXxsb87R6NcNQy3lGqpaqc5lo43bWKC6Vpq9o2a33fat1Nyw22Docx-_FK9PXL4H-bVbg3QlIutcwCXx4FYvgzYRrNJncom2gHzF4ZxhTUFdOcZujnl7Weizy1JQPUFuBiSCliZ5wf7ejDXNr3hoKZQ2DWZg6BmUNgQJkcgkxl_1Gf1N8kfduSMHfr3mM0GYGDw9bnPIzZTv8W_S9O2cmd
CitedBy_id crossref_primary_10_2147_JIR_S501856
crossref_primary_10_3390_cancers12010071
crossref_primary_10_1016_j_jbc_2024_107570
crossref_primary_10_1096_fj_202001646RR
crossref_primary_10_1002_jcp_31396
crossref_primary_10_1016_j_jphs_2021_02_001
crossref_primary_10_1073_pnas_2006332117
crossref_primary_10_1242_dev_200340
crossref_primary_10_1016_j_cell_2023_09_021
crossref_primary_10_1038_s41598_022_06288_3
crossref_primary_10_1126_science_abm4459
crossref_primary_10_1038_s41598_020_63338_4
crossref_primary_10_1016_j_conb_2021_04_005
crossref_primary_10_1146_annurev_neuro_111020_102127
Cites_doi 10.1242/dev.103416
10.1038/s41594-019-0216-z
10.1242/dev.01165
10.1073/pnas.0805165106
10.1242/dev.123059
10.1016/j.lfs.2010.06.001
10.1172/JCI31731
10.1126/science.1164594
10.1242/dev.176073
10.1073/pnas.93.16.8455
10.1016/j.ydbio.2013.03.010
10.1074/jbc.M806212200
10.1016/S0092-8674(00)81618-9
10.1097/MOH.0000000000000043
10.1006/dbio.2000.9732
10.1016/j.neuron.2017.10.025
10.1002/dvdy.24339
10.1093/emboj/18.21.5931
10.1128/MCB.02179-06
10.1371/journal.pone.0000837
10.7554/eLife.06489
10.1016/j.celrep.2017.08.004
10.1038/nature08875
10.1016/j.devcel.2010.01.008
10.1128/MCB.22.21.7667-7677.2002
10.1073/pnas.1017192108
10.1016/S1097-2765(00)80200-2
10.1093/hmg/ddu338
10.1126/scitranslmed.3005794
10.1038/srep17860
10.1073/pnas.1013751108
10.1073/pnas.1019761108
10.1016/j.neuron.2017.08.032
10.1002/dvg.20335
10.1083/jcb.200806024
10.1242/dev.01551
10.1126/science.aat1178
10.1038/44334
10.1073/pnas.95.22.13221
10.1038/nn1922
10.1523/JNEUROSCI.3467-05.2005
10.1126/science.1196554
10.1242/bio.2012638
10.1006/dbio.2000.0106
10.1038/ncomms3609
10.1016/j.devcel.2018.01.023
10.1186/1471-213X-10-84
10.1172/JCI38079
10.1128/MCB.06222-11
10.1016/S0002-9440(10)64062-X
10.1016/S0092-8674(01)00597-9
10.1242/dev.129.12.2891
10.1016/j.celrep.2018.09.045
10.1161/CIRCRESAHA.118.313316
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2019.08.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 571
ExternalDocumentID oai_doaj_org_article_6c1a23f119784c9396c9fd836891d8dd
PMC6713797
31445376
10_1016_j_isci_2019_08_009
S2589004219302871
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS100904
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c587t-ce09624c38688840e30068526708b2faeb2fad6bcc35e27757f3e00c69ff43a33
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:05:18 EDT 2025
Thu Aug 21 18:42:15 EDT 2025
Thu Jul 10 23:36:59 EDT 2025
Thu Jan 02 22:59:05 EST 2025
Tue Jul 01 01:03:26 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Tue May 16 22:28:48 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Vascular Remodeling
Neuroscience
Molecular Neuroscience
Developmental Neuroscience
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-ce09624c38688840e30068526708b2faeb2fad6bcc35e27757f3e00c69ff43a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/6c1a23f119784c9396c9fd836891d8dd
PMID 31445376
PQID 2280542931
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_6c1a23f119784c9396c9fd836891d8dd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6713797
proquest_miscellaneous_2280542931
pubmed_primary_31445376
crossref_citationtrail_10_1016_j_isci_2019_08_009
crossref_primary_10_1016_j_isci_2019_08_009
elsevier_sciencedirect_doi_10_1016_j_isci_2019_08_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-27
PublicationDateYYYYMMDD 2019-09-27
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Privratsky, Newman, Newman (bib40) 2010; 87
Cullen, Elzarrad, Seaman, Zudaire, Stevens, Yang, Li, Chaudhary, Xu, Hilton (bib14) 2011; 108
Da Silva, Rocha, Motamedi, Massa, Basboga, Morrison, Wagner, Schedl (bib16) 2017; 20
Liebner, Corada, Bangsow, Babbage, Taddei, Czupalla, Reis, Felici, Wolburg, Fruttiger (bib29) 2008; 183
Yamamoto, Matsuzaki, Takahashi, Adachi, Maeda, Yamaguchi, Kitayama, Echizenya, Morioka, Alexander (bib52) 2012; 1
Eubelen, Bostaille, Cabochette, Gauquier, Tebabi, Dumitru, Koehler, Gut, Alsteens, Stainier (bib18) 2018; 361
Yang, Baumann, Sun, Tang, Dunn, Akeson, Kernie, Kallapur, Lindquist, Huang (bib53) 2013; 5
Cho, Smallwood, Nathans (bib7) 2017; 95
Kisanuki, Hammer, Miyazaki, Williams, Richardson, Yanagisawa (bib25) 2001; 230
Lyden, Young, Zagzag, Yan, Gerald, O'Reilly, Bader, Hynes, Zhuang, Manova, Benezra (bib30) 1999; 401
Paredes, Himmels, Ruiz de Almodovar (bib39) 2018; 45
Vallon, Yuki, Nguyen, Chang, Yuan, Siepe, Miao, Essler, Noda, Garcia, Kuo (bib50) 2018; 25
Cohen, Ihida-Stansbury, Lu, Panettieri, Jones, Morrisey (bib9) 2009; 119
Mazzoni, Smith, Shahriar, Cutforth, Ceja, Agalliu (bib31) 2017; 96
Muzumdar, Tasic, Miyamichi, Li, Luo (bib36) 2007; 45
Corada, Orsenigo, Bhat, Conze, Breviario, Cunha, Claesson-Welsh, Beznoussenko, Mironov, Bacigaluppi (bib11) 2019; 124
Oh, Takahashi, Kondo, Mizoguchi, Adachi, Sasahara, Nishimura, Imamura, Kitayama, Alexander (bib37) 2001; 107
Kugimiya, Kawaguchi, Ohba, Kawamura, Hirata, Chikuda, Azuma, Woodgett, Nakamura, Chung (bib27) 2007; 2
Hellbach, Weise, Vezzali, Wahane, Heidrich, Roidl, Pruszak, Esser, Vogel (bib22) 2014; 23
Proctor, Zang, Wang, Wang, Reichardt (bib41) 2005; 25
Almeida, Yamamoto, Morioka, Ogawa, Matsuzaki, Noda (bib1) 2015; 5
Harada, Tamai, Ishikawa, Sauer, Takaku, Oshima, Taketo (bib20) 1999; 18
Daneman, Agalliu, Zhou, Kuhnert, Kuo, Barres (bib17) 2009; 106
Anderson, Pan, Yang, Hughes, Walls, Dominguez, Simmons, Burfeind, Xue, Wei (bib2) 2011; 108
Cornett, Snowball, Varisco, Lang, Whitsett, Sinner (bib12) 2013; 379
Stenman, Rajagopal, Carroll, Ishibashi, McMahon, McMahon (bib45) 2008; 322
Kuhnert, Mancuso, Shamloo, Wang, Choksi, Florek, Su, Fruttiger, Young, Heilshorn, Kuo (bib28) 2010; 330
Sundberg, Nagy, Brown, Feng, Eckelhoefer, Manseau, Dvorak, Dvorak (bib46) 2001; 158
Cruciat, Niehrs (bib13) 2012; 5
Griffin, Curtis, Davis, Muthukumar, Magnuson (bib19) 2011; 108
Morini, Dejana (bib34) 2014; 21
Cambier, Plate, Sucov, Pashmforoush (bib5) 2014; 141
Hirai, Matoba, Mihara, Arimori, Takagi (bib24) 2019; 26
McCarty, Monahan-Earley, Brown, Keller, Gerhardt, Rubin, Shani, Dvorak, Wolburg, Bader (bib32) 2002; 22
Hirabayashi, Itoh, Tabata, Nakajima, Akiyama, Masuyama, Gotoh (bib23) 2004; 131
Routledge, Scholpp (bib42) 2019; 146
Corada, Orsenigo, Morini, Pitulescu, Bhat, Nyqvist, Breviario, Conti, Briot, Iruela-Arispe (bib10) 2013; 4
Vanhollebeke, Stone, Bostaille, Cho, Zhou, Maquet, Gauquier, Cabochette, Fukuhara, Mochizuki (bib51) 2015; 4
Sinner, Kordich, Spence, Opoka, Rankin, Lin, Jonatan, Zorn, Wells (bib44) 2007; 27
Tian, Yuan, Goss, Wang, Yang, Lepore, Zhou, Schwartz, Patel, Cohen, Morrisey (bib48) 2010; 18
Briggs, Burns, Lockhart, Phelps, Van den Hoff, Wessels (bib4) 2015; 245
Curtis, Griffin (bib15) 2012; 32
Zorn, Barish, Williams, Lavender, Klymkowsky, Varmus (bib55) 1999; 4
Chandana, Maeda, Ueda, Kiyonari, Oshima, Yamamoto, Kondo, Oh, Takahashi, Yoshida (bib6) 2010; 10
Muraguchi, Takegami, Ohtsuka, Kitajima, Chandana, Omura, Miki, Takahashi, Matsumoto, Ludwig (bib35) 2007; 10
McCarty, Lacy-Hulbert, Charest, Bronson, Crowley, Housman, Savill, Roes, Hynes (bib33) 2005; 132
Omura, Matsuzaki, Mio, Ogura, Yamamoto, Fujita, Okawa, Kitayama, Takahashi, Sato, Noda (bib38) 2009; 284
Shimomura, Agalliu, Vonica, Luria, Wajid, Baumer, Belli, Petukhova, Schinzel, Brivanlou (bib43) 2010; 464
Cohen, Wang, Lepore, Lu, Taketo, Epstein, Morrisey (bib8) 2007; 117
Klein, Melton (bib26) 1996; 93
Takahashi, Sheng, Horan, Kitayama, Maki, Hitomi, Kitaura, Takai, Sasahara, Horimoto (bib47) 1998; 95
Ulrich, Carretero-Ortega, Menendez, Narvaez, Sun, Lancaster, Pershad, Trzaska, Veliz, Kamei (bib49) 2016; 143
Zhu, Motejlek, Wang, Zang, Schmidt, Reichardt (bib54) 2002; 129
Bader, Rayburn, Crowley, Hynes (bib3) 1998; 95
Hebert, McConnell (bib21) 2000; 222
Kugimiya (10.1016/j.isci.2019.08.009_bib27) 2007; 2
Privratsky (10.1016/j.isci.2019.08.009_bib40) 2010; 87
Curtis (10.1016/j.isci.2019.08.009_bib15) 2012; 32
Liebner (10.1016/j.isci.2019.08.009_bib29) 2008; 183
Kisanuki (10.1016/j.isci.2019.08.009_bib25) 2001; 230
Mazzoni (10.1016/j.isci.2019.08.009_bib31) 2017; 96
Cruciat (10.1016/j.isci.2019.08.009_bib13) 2012; 5
Hellbach (10.1016/j.isci.2019.08.009_bib22) 2014; 23
Omura (10.1016/j.isci.2019.08.009_bib38) 2009; 284
Cullen (10.1016/j.isci.2019.08.009_bib14) 2011; 108
Zhu (10.1016/j.isci.2019.08.009_bib54) 2002; 129
Hirai (10.1016/j.isci.2019.08.009_bib24) 2019; 26
Morini (10.1016/j.isci.2019.08.009_bib34) 2014; 21
Ulrich (10.1016/j.isci.2019.08.009_bib49) 2016; 143
Muzumdar (10.1016/j.isci.2019.08.009_bib36) 2007; 45
Shimomura (10.1016/j.isci.2019.08.009_bib43) 2010; 464
Chandana (10.1016/j.isci.2019.08.009_bib6) 2010; 10
Daneman (10.1016/j.isci.2019.08.009_bib17) 2009; 106
Harada (10.1016/j.isci.2019.08.009_bib20) 1999; 18
Zorn (10.1016/j.isci.2019.08.009_bib55) 1999; 4
Cho (10.1016/j.isci.2019.08.009_bib7) 2017; 95
Corada (10.1016/j.isci.2019.08.009_bib10) 2013; 4
McCarty (10.1016/j.isci.2019.08.009_bib33) 2005; 132
Da Silva (10.1016/j.isci.2019.08.009_bib16) 2017; 20
Eubelen (10.1016/j.isci.2019.08.009_bib18) 2018; 361
Paredes (10.1016/j.isci.2019.08.009_bib39) 2018; 45
Anderson (10.1016/j.isci.2019.08.009_bib2) 2011; 108
Yamamoto (10.1016/j.isci.2019.08.009_bib52) 2012; 1
Cohen (10.1016/j.isci.2019.08.009_bib8) 2007; 117
Vallon (10.1016/j.isci.2019.08.009_bib50) 2018; 25
Cornett (10.1016/j.isci.2019.08.009_bib12) 2013; 379
Klein (10.1016/j.isci.2019.08.009_bib26) 1996; 93
Briggs (10.1016/j.isci.2019.08.009_bib4) 2015; 245
Lyden (10.1016/j.isci.2019.08.009_bib30) 1999; 401
Bader (10.1016/j.isci.2019.08.009_bib3) 1998; 95
Griffin (10.1016/j.isci.2019.08.009_bib19) 2011; 108
Stenman (10.1016/j.isci.2019.08.009_bib45) 2008; 322
Sinner (10.1016/j.isci.2019.08.009_bib44) 2007; 27
Corada (10.1016/j.isci.2019.08.009_bib11) 2019; 124
McCarty (10.1016/j.isci.2019.08.009_bib32) 2002; 22
Hirabayashi (10.1016/j.isci.2019.08.009_bib23) 2004; 131
Tian (10.1016/j.isci.2019.08.009_bib48) 2010; 18
Takahashi (10.1016/j.isci.2019.08.009_bib47) 1998; 95
Oh (10.1016/j.isci.2019.08.009_bib37) 2001; 107
Proctor (10.1016/j.isci.2019.08.009_bib41) 2005; 25
Muraguchi (10.1016/j.isci.2019.08.009_bib35) 2007; 10
Kuhnert (10.1016/j.isci.2019.08.009_bib28) 2010; 330
Routledge (10.1016/j.isci.2019.08.009_bib42) 2019; 146
Cambier (10.1016/j.isci.2019.08.009_bib5) 2014; 141
Hebert (10.1016/j.isci.2019.08.009_bib21) 2000; 222
Almeida (10.1016/j.isci.2019.08.009_bib1) 2015; 5
Sundberg (10.1016/j.isci.2019.08.009_bib46) 2001; 158
Vanhollebeke (10.1016/j.isci.2019.08.009_bib51) 2015; 4
Yang (10.1016/j.isci.2019.08.009_bib53) 2013; 5
Cohen (10.1016/j.isci.2019.08.009_bib9) 2009; 119
References_xml – volume: 23
  start-page: 6177
  year: 2014
  end-page: 6190
  ident: bib22
  article-title: Neural deletion of Tgfbr2 impairs angiogenesis through an altered secretome
  publication-title: Hum. Mol. Genet.
– volume: 4
  start-page: 487
  year: 1999
  end-page: 498
  ident: bib55
  article-title: Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin
  publication-title: Mol. Cell
– volume: 330
  start-page: 985
  year: 2010
  end-page: 989
  ident: bib28
  article-title: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124
  publication-title: Science
– volume: 4
  start-page: 2609
  year: 2013
  ident: bib10
  article-title: Sox17 is indispensable for acquisition and maintenance of arterial identity
  publication-title: Nat. Commun.
– volume: 25
  start-page: 9940
  year: 2005
  end-page: 9948
  ident: bib41
  article-title: Vascular development of the brain requires beta8 integrin expression in the neuroepithelium
  publication-title: J. Neurosci.
– volume: 32
  start-page: 1312
  year: 2012
  end-page: 1320
  ident: bib15
  article-title: The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling
  publication-title: Mol. Cell. Biol.
– volume: 106
  start-page: 641
  year: 2009
  end-page: 646
  ident: bib17
  article-title: Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 245
  start-page: 103
  year: 2015
  end-page: 113
  ident: bib4
  article-title: Wnt/beta-catenin and sonic hedgehog pathways interact in the regulation of the development of the dorsal mesenchymal protrusion
  publication-title: Dev. Dyn.
– volume: 108
  start-page: 2807
  year: 2011
  end-page: 2812
  ident: bib2
  article-title: Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 5
  start-page: 17860
  year: 2015
  ident: bib1
  article-title: Critical roles for murine Reck in the regulation of vascular patterning and stabilization
  publication-title: Sci. Rep.
– volume: 10
  start-page: 84
  year: 2010
  ident: bib6
  article-title: Involvement of the Reck tumor suppressor protein in maternal and embryonic vascular remodeling in mice
  publication-title: BMC Dev. Biol.
– volume: 401
  start-page: 670
  year: 1999
  end-page: 677
  ident: bib30
  article-title: Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts
  publication-title: Nature
– volume: 95
  start-page: 507
  year: 1998
  end-page: 519
  ident: bib3
  article-title: Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins
  publication-title: Cell
– volume: 124
  start-page: 511
  year: 2019
  end-page: 525
  ident: bib11
  article-title: Fine-tuning of Sox17 and canonical Wnt coordinates the permeability properties of the blood-brain barrier
  publication-title: Circ. Res.
– volume: 5
  start-page: a015081
  year: 2012
  ident: bib13
  article-title: Secreted and transmembrane wnt inhibitors and activators
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 464
  start-page: 1043
  year: 2010
  end-page: 1047
  ident: bib43
  article-title: APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex
  publication-title: Nature
– volume: 108
  start-page: 5759
  year: 2011
  end-page: 5764
  ident: bib14
  article-title: GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 129
  start-page: 2891
  year: 2002
  end-page: 2903
  ident: bib54
  article-title: beta8 integrins are required for vascular morphogenesis in mouse embryos
  publication-title: Development
– volume: 222
  start-page: 296
  year: 2000
  end-page: 306
  ident: bib21
  article-title: Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures
  publication-title: Dev. Biol.
– volume: 284
  start-page: 3461
  year: 2009
  end-page: 3469
  ident: bib38
  article-title: RECK forms cowbell-shaped dimers and inhibits matrix metalloproteinase-catalyzed cleavage of fibronectin
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 275
  year: 2010
  end-page: 287
  ident: bib48
  article-title: Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development
  publication-title: Dev. Cell
– volume: 141
  start-page: 2959
  year: 2014
  end-page: 2971
  ident: bib5
  article-title: Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3
  publication-title: Development
– volume: 361
  year: 2018
  ident: bib18
  article-title: A molecular mechanism for Wnt ligand-specific signaling
  publication-title: Science
– volume: 96
  start-page: 1055
  year: 2017
  end-page: 1069.e6
  ident: bib31
  article-title: The Wnt inhibitor Apcdd1 coordinates vascular remodeling and barrier maturation of retinal blood vessels
  publication-title: Neuron
– volume: 117
  start-page: 1794
  year: 2007
  end-page: 1804
  ident: bib8
  article-title: Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling
  publication-title: J. Clin. Invest.
– volume: 1
  start-page: 458
  year: 2012
  end-page: 466
  ident: bib52
  article-title: The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs
  publication-title: Biol. Open
– volume: 108
  start-page: 2282
  year: 2011
  end-page: 2287
  ident: bib19
  article-title: The chromatin-remodeling enzyme BRG1 modulates vascular Wnt signaling at two levels
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 25
  start-page: 339
  year: 2018
  end-page: 349.e9
  ident: bib50
  article-title: A RECK-WNT7 receptor-ligand interaction enables isoform-specific regulation of Wnt bioavailability
  publication-title: Cell Rep.
– volume: 4
  year: 2015
  ident: bib51
  article-title: Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis
  publication-title: Elife
– volume: 158
  start-page: 1145
  year: 2001
  end-page: 1160
  ident: bib46
  article-title: Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery
  publication-title: Am. J. Pathol.
– volume: 93
  start-page: 8455
  year: 1996
  end-page: 8459
  ident: bib26
  article-title: A molecular mechanism for the effect of lithium on development
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 87
  start-page: 69
  year: 2010
  end-page: 82
  ident: bib40
  article-title: PECAM-1: conflicts of interest in inflammation
  publication-title: Life Sci.
– volume: 45
  start-page: 10
  year: 2018
  end-page: 32
  ident: bib39
  article-title: Neurovascular communication during CNS development
  publication-title: Dev. Cell
– volume: 95
  start-page: 1221
  year: 2017
  end-page: 1225
  ident: bib7
  article-title: Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation
  publication-title: Neuron
– volume: 379
  start-page: 38
  year: 2013
  end-page: 52
  ident: bib12
  article-title: Wntless is required for peripheral lung differentiation and pulmonary vascular development
  publication-title: Dev. Biol.
– volume: 119
  start-page: 2538
  year: 2009
  end-page: 2549
  ident: bib9
  article-title: Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway
  publication-title: J. Clin. Invest.
– volume: 20
  start-page: 1745
  year: 2017
  end-page: 1754
  ident: bib16
  article-title: Coronary artery formation is driven by localized expression of R-spondin3
  publication-title: Cell Rep.
– volume: 2
  start-page: e837
  year: 2007
  ident: bib27
  article-title: GSK-3beta controls osteogenesis through regulating Runx2 activity
  publication-title: PLoS One
– volume: 131
  start-page: 2791
  year: 2004
  end-page: 2801
  ident: bib23
  article-title: The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells
  publication-title: Development
– volume: 146
  year: 2019
  ident: bib42
  article-title: Mechanisms of intercellular Wnt transport
  publication-title: Development
– volume: 27
  start-page: 7802
  year: 2007
  end-page: 7815
  ident: bib44
  article-title: Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells
  publication-title: Mol. Cell. Biol.
– volume: 322
  start-page: 1247
  year: 2008
  end-page: 1250
  ident: bib45
  article-title: Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature
  publication-title: Science
– volume: 26
  start-page: 372
  year: 2019
  end-page: 379
  ident: bib24
  article-title: Crystal structure of a mammalian Wnt-frizzled complex
  publication-title: Nat. Struct. Mol. Biol.
– volume: 143
  start-page: 147
  year: 2016
  end-page: 159
  ident: bib49
  article-title: Reck enables cerebrovascular development by promoting canonical Wnt signaling
  publication-title: Development
– volume: 132
  start-page: 165
  year: 2005
  end-page: 176
  ident: bib33
  article-title: Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death
  publication-title: Development
– volume: 230
  start-page: 230
  year: 2001
  end-page: 242
  ident: bib25
  article-title: Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo
  publication-title: Dev. Biol.
– volume: 5
  start-page: 193ra190
  year: 2013
  ident: bib53
  article-title: Overexpression of vascular endothelial growth factor in the germinal matrix induces neurovascular proteases and intraventricular hemorrhage
  publication-title: Sci. Transl. Med.
– volume: 10
  start-page: 838
  year: 2007
  end-page: 845
  ident: bib35
  article-title: RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity
  publication-title: Nat. Neurosci.
– volume: 18
  start-page: 5931
  year: 1999
  end-page: 5942
  ident: bib20
  article-title: Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene
  publication-title: EMBO J.
– volume: 22
  start-page: 7667
  year: 2002
  end-page: 7677
  ident: bib32
  article-title: Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins
  publication-title: Mol. Cell. Biol.
– volume: 183
  start-page: 409
  year: 2008
  end-page: 417
  ident: bib29
  article-title: Wnt/beta-catenin signaling controls development of the blood-brain barrier
  publication-title: J. Cell Biol.
– volume: 107
  start-page: 789
  year: 2001
  end-page: 800
  ident: bib37
  article-title: The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis
  publication-title: Cell
– volume: 21
  start-page: 229
  year: 2014
  end-page: 234
  ident: bib34
  article-title: Transcriptional regulation of arterial differentiation via Wnt, Sox and Notch
  publication-title: Curr. Opin. Hematol.
– volume: 95
  start-page: 13221
  year: 1998
  end-page: 13226
  ident: bib47
  article-title: Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 45
  start-page: 593
  year: 2007
  end-page: 605
  ident: bib36
  article-title: A global double-fluorescent Cre reporter mouse
  publication-title: Genesis
– volume: 141
  start-page: 2959
  year: 2014
  ident: 10.1016/j.isci.2019.08.009_bib5
  article-title: Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3
  publication-title: Development
  doi: 10.1242/dev.103416
– volume: 26
  start-page: 372
  year: 2019
  ident: 10.1016/j.isci.2019.08.009_bib24
  article-title: Crystal structure of a mammalian Wnt-frizzled complex
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0216-z
– volume: 131
  start-page: 2791
  year: 2004
  ident: 10.1016/j.isci.2019.08.009_bib23
  article-title: The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells
  publication-title: Development
  doi: 10.1242/dev.01165
– volume: 106
  start-page: 641
  year: 2009
  ident: 10.1016/j.isci.2019.08.009_bib17
  article-title: Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0805165106
– volume: 143
  start-page: 147
  year: 2016
  ident: 10.1016/j.isci.2019.08.009_bib49
  article-title: Reck enables cerebrovascular development by promoting canonical Wnt signaling
  publication-title: Development
  doi: 10.1242/dev.123059
– volume: 87
  start-page: 69
  year: 2010
  ident: 10.1016/j.isci.2019.08.009_bib40
  article-title: PECAM-1: conflicts of interest in inflammation
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2010.06.001
– volume: 117
  start-page: 1794
  year: 2007
  ident: 10.1016/j.isci.2019.08.009_bib8
  article-title: Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI31731
– volume: 322
  start-page: 1247
  year: 2008
  ident: 10.1016/j.isci.2019.08.009_bib45
  article-title: Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature
  publication-title: Science
  doi: 10.1126/science.1164594
– volume: 146
  year: 2019
  ident: 10.1016/j.isci.2019.08.009_bib42
  article-title: Mechanisms of intercellular Wnt transport
  publication-title: Development
  doi: 10.1242/dev.176073
– volume: 93
  start-page: 8455
  year: 1996
  ident: 10.1016/j.isci.2019.08.009_bib26
  article-title: A molecular mechanism for the effect of lithium on development
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.93.16.8455
– volume: 379
  start-page: 38
  year: 2013
  ident: 10.1016/j.isci.2019.08.009_bib12
  article-title: Wntless is required for peripheral lung differentiation and pulmonary vascular development
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2013.03.010
– volume: 284
  start-page: 3461
  year: 2009
  ident: 10.1016/j.isci.2019.08.009_bib38
  article-title: RECK forms cowbell-shaped dimers and inhibits matrix metalloproteinase-catalyzed cleavage of fibronectin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M806212200
– volume: 95
  start-page: 507
  year: 1998
  ident: 10.1016/j.isci.2019.08.009_bib3
  article-title: Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81618-9
– volume: 21
  start-page: 229
  year: 2014
  ident: 10.1016/j.isci.2019.08.009_bib34
  article-title: Transcriptional regulation of arterial differentiation via Wnt, Sox and Notch
  publication-title: Curr. Opin. Hematol.
  doi: 10.1097/MOH.0000000000000043
– volume: 222
  start-page: 296
  year: 2000
  ident: 10.1016/j.isci.2019.08.009_bib21
  article-title: Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2000.9732
– volume: 96
  start-page: 1055
  year: 2017
  ident: 10.1016/j.isci.2019.08.009_bib31
  article-title: The Wnt inhibitor Apcdd1 coordinates vascular remodeling and barrier maturation of retinal blood vessels
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.10.025
– volume: 245
  start-page: 103
  year: 2015
  ident: 10.1016/j.isci.2019.08.009_bib4
  article-title: Wnt/beta-catenin and sonic hedgehog pathways interact in the regulation of the development of the dorsal mesenchymal protrusion
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24339
– volume: 18
  start-page: 5931
  year: 1999
  ident: 10.1016/j.isci.2019.08.009_bib20
  article-title: Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.21.5931
– volume: 27
  start-page: 7802
  year: 2007
  ident: 10.1016/j.isci.2019.08.009_bib44
  article-title: Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02179-06
– volume: 2
  start-page: e837
  year: 2007
  ident: 10.1016/j.isci.2019.08.009_bib27
  article-title: GSK-3beta controls osteogenesis through regulating Runx2 activity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000837
– volume: 4
  year: 2015
  ident: 10.1016/j.isci.2019.08.009_bib51
  article-title: Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis
  publication-title: Elife
  doi: 10.7554/eLife.06489
– volume: 20
  start-page: 1745
  year: 2017
  ident: 10.1016/j.isci.2019.08.009_bib16
  article-title: Coronary artery formation is driven by localized expression of R-spondin3
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.08.004
– volume: 464
  start-page: 1043
  year: 2010
  ident: 10.1016/j.isci.2019.08.009_bib43
  article-title: APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex
  publication-title: Nature
  doi: 10.1038/nature08875
– volume: 18
  start-page: 275
  year: 2010
  ident: 10.1016/j.isci.2019.08.009_bib48
  article-title: Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.01.008
– volume: 22
  start-page: 7667
  year: 2002
  ident: 10.1016/j.isci.2019.08.009_bib32
  article-title: Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.21.7667-7677.2002
– volume: 108
  start-page: 5759
  year: 2011
  ident: 10.1016/j.isci.2019.08.009_bib14
  article-title: GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1017192108
– volume: 4
  start-page: 487
  year: 1999
  ident: 10.1016/j.isci.2019.08.009_bib55
  article-title: Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80200-2
– volume: 23
  start-page: 6177
  year: 2014
  ident: 10.1016/j.isci.2019.08.009_bib22
  article-title: Neural deletion of Tgfbr2 impairs angiogenesis through an altered secretome
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu338
– volume: 5
  start-page: 193ra190
  year: 2013
  ident: 10.1016/j.isci.2019.08.009_bib53
  article-title: Overexpression of vascular endothelial growth factor in the germinal matrix induces neurovascular proteases and intraventricular hemorrhage
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3005794
– volume: 5
  start-page: 17860
  year: 2015
  ident: 10.1016/j.isci.2019.08.009_bib1
  article-title: Critical roles for murine Reck in the regulation of vascular patterning and stabilization
  publication-title: Sci. Rep.
  doi: 10.1038/srep17860
– volume: 108
  start-page: 2282
  year: 2011
  ident: 10.1016/j.isci.2019.08.009_bib19
  article-title: The chromatin-remodeling enzyme BRG1 modulates vascular Wnt signaling at two levels
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1013751108
– volume: 108
  start-page: 2807
  year: 2011
  ident: 10.1016/j.isci.2019.08.009_bib2
  article-title: Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1019761108
– volume: 95
  start-page: 1221
  year: 2017
  ident: 10.1016/j.isci.2019.08.009_bib7
  article-title: Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.08.032
– volume: 45
  start-page: 593
  year: 2007
  ident: 10.1016/j.isci.2019.08.009_bib36
  article-title: A global double-fluorescent Cre reporter mouse
  publication-title: Genesis
  doi: 10.1002/dvg.20335
– volume: 183
  start-page: 409
  year: 2008
  ident: 10.1016/j.isci.2019.08.009_bib29
  article-title: Wnt/beta-catenin signaling controls development of the blood-brain barrier
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200806024
– volume: 132
  start-page: 165
  year: 2005
  ident: 10.1016/j.isci.2019.08.009_bib33
  article-title: Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death
  publication-title: Development
  doi: 10.1242/dev.01551
– volume: 361
  year: 2018
  ident: 10.1016/j.isci.2019.08.009_bib18
  article-title: A molecular mechanism for Wnt ligand-specific signaling
  publication-title: Science
  doi: 10.1126/science.aat1178
– volume: 401
  start-page: 670
  year: 1999
  ident: 10.1016/j.isci.2019.08.009_bib30
  article-title: Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts
  publication-title: Nature
  doi: 10.1038/44334
– volume: 95
  start-page: 13221
  year: 1998
  ident: 10.1016/j.isci.2019.08.009_bib47
  article-title: Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.95.22.13221
– volume: 5
  start-page: a015081
  year: 2012
  ident: 10.1016/j.isci.2019.08.009_bib13
  article-title: Secreted and transmembrane wnt inhibitors and activators
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 10
  start-page: 838
  year: 2007
  ident: 10.1016/j.isci.2019.08.009_bib35
  article-title: RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1922
– volume: 25
  start-page: 9940
  year: 2005
  ident: 10.1016/j.isci.2019.08.009_bib41
  article-title: Vascular development of the brain requires beta8 integrin expression in the neuroepithelium
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3467-05.2005
– volume: 330
  start-page: 985
  year: 2010
  ident: 10.1016/j.isci.2019.08.009_bib28
  article-title: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124
  publication-title: Science
  doi: 10.1126/science.1196554
– volume: 1
  start-page: 458
  year: 2012
  ident: 10.1016/j.isci.2019.08.009_bib52
  article-title: The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs
  publication-title: Biol. Open
  doi: 10.1242/bio.2012638
– volume: 230
  start-page: 230
  year: 2001
  ident: 10.1016/j.isci.2019.08.009_bib25
  article-title: Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2000.0106
– volume: 4
  start-page: 2609
  year: 2013
  ident: 10.1016/j.isci.2019.08.009_bib10
  article-title: Sox17 is indispensable for acquisition and maintenance of arterial identity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3609
– volume: 45
  start-page: 10
  year: 2018
  ident: 10.1016/j.isci.2019.08.009_bib39
  article-title: Neurovascular communication during CNS development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.01.023
– volume: 10
  start-page: 84
  year: 2010
  ident: 10.1016/j.isci.2019.08.009_bib6
  article-title: Involvement of the Reck tumor suppressor protein in maternal and embryonic vascular remodeling in mice
  publication-title: BMC Dev. Biol.
  doi: 10.1186/1471-213X-10-84
– volume: 119
  start-page: 2538
  year: 2009
  ident: 10.1016/j.isci.2019.08.009_bib9
  article-title: Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI38079
– volume: 32
  start-page: 1312
  year: 2012
  ident: 10.1016/j.isci.2019.08.009_bib15
  article-title: The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.06222-11
– volume: 158
  start-page: 1145
  year: 2001
  ident: 10.1016/j.isci.2019.08.009_bib46
  article-title: Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)64062-X
– volume: 107
  start-page: 789
  year: 2001
  ident: 10.1016/j.isci.2019.08.009_bib37
  article-title: The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00597-9
– volume: 129
  start-page: 2891
  year: 2002
  ident: 10.1016/j.isci.2019.08.009_bib54
  article-title: beta8 integrins are required for vascular morphogenesis in mouse embryos
  publication-title: Development
  doi: 10.1242/dev.129.12.2891
– volume: 25
  start-page: 339
  year: 2018
  ident: 10.1016/j.isci.2019.08.009_bib50
  article-title: A RECK-WNT7 receptor-ligand interaction enables isoform-specific regulation of Wnt bioavailability
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.09.045
– volume: 124
  start-page: 511
  year: 2019
  ident: 10.1016/j.isci.2019.08.009_bib11
  article-title: Fine-tuning of Sox17 and canonical Wnt coordinates the permeability properties of the blood-brain barrier
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.313316
SSID ssj0002002496
Score 2.1820176
Snippet RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 559
SubjectTerms Developmental Neuroscience
Molecular Neuroscience
Neuroscience
Vascular Remodeling
Title RECK in Neural Precursor Cells Plays a Critical Role in Mouse Forebrain Angiogenesis
URI https://dx.doi.org/10.1016/j.isci.2019.08.009
https://www.ncbi.nlm.nih.gov/pubmed/31445376
https://www.proquest.com/docview/2280542931
https://pubmed.ncbi.nlm.nih.gov/PMC6713797
https://doaj.org/article/6c1a23f119784c9396c9fd836891d8dd
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp15QK2ibliJX6q2KSDJ-HmEFQq2oEAKJm-U4Ng2KErRZDvz7evJY7VKJXnrJIXEenhnb4_jz9xHyzdlMVYV0KbcBUuYtS1WQNoUiB-V87Cxz3Ch8-Utc3LIfd_xuQ-oLMWEjPfBouGPhcltAwNUuxZwGLZwOlQKhdF6pqsLeN455G5Oph2F5DanwBmU5jpigGJrTjpkR3IU7XhHXpQf-TkQjboxKA3n_1uD0d_L5EkO5MSidvyV7UzZJT8ZavCM7vt0nN9dni5-0bikSb8SrV0v8p953S7rwTdPTq8Y-99TSWeWAXneNx_KX3VPvKYp1ligcQU_a-7q7x86w7g_I7fnZzeIincQTUseVXKXOx8lJwRwoESe5LPOAu0F4IWSmyiJYj4dKlM4B94WUXAbwWeaEDoGBBXhPdtuu9R8R_SR8KMuSB-2YdKBjViBL8IGJ3ELgCcln4xk3MYujwEVjZgjZg0GDGzS4QdXLTCfk-_qex5FX49XSp-iTdUnkxB5OxEgxU6SYf0VKQvjsUTOlF2PaEB9Vv_ryr7P7TWx7uKBiWx89YpBKCPW-IE_IhzEc1p8IcaaKVDkJkVuBslWH7Stt_Xvg9xYyB6nlp_9R6c_kDVYFES6FPCS7q-WT_xLTqFV5NLSYP8-cF_c
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RECK+in+Neural+Precursor+Cells+Plays+a+Critical+Role+in+Mouse+Forebrain+Angiogenesis&rft.jtitle=iScience&rft.au=Li%2C+Huiping&rft.au=Miki%2C+Takao&rft.au=Almeida%2C+Gl%C3%ADcia+Maria+de&rft.au=Hanashima%2C+Carina&rft.date=2019-09-27&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=19&rft.spage=559&rft.epage=571&rft_id=info:doi/10.1016%2Fj.isci.2019.08.009&rft.externalDocID=S2589004219302871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon