Research progress of in-situ gelling ophthalmic drug delivery system

Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden. Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms as...

Full description

Saved in:
Bibliographic Details
Published inAsian journal of pharmceutical sciences Vol. 14; no. 1; pp. 1 - 15
Main Authors Wu, Yumei, Liu, Yuanyuan, Li, Xinyue, Kebebe, Dereje, Zhang, Bing, Ren, Jing, Lu, Jun, Li, Jiawei, Du, Shouying, Liu, Zhidong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2019
Shenyang Pharmaceutical University
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden. Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system. Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability (<5%). The designing of a novel approach for a safe, simple, and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem. Over the past decades, several novel approaches involving different strategies have been developed to improve the ocular delivery system. Among these, the ophthalmic in-situ gel has attained a great attention over the past few years. This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system. [Display omitted]
AbstractList Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden. Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system. Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability (<5%). The designing of a novel approach for a safe, simple, and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem. Over the past decades, several novel approaches involving different strategies have been developed to improve the ocular delivery system. Among these, the ophthalmic in-situ gel has attained a great attention over the past few years. This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system.Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden. Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system. Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability (<5%). The designing of a novel approach for a safe, simple, and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem. Over the past decades, several novel approaches involving different strategies have been developed to improve the ocular delivery system. Among these, the ophthalmic in-situ gel has attained a great attention over the past few years. This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system.
Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden. Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system. Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability (<5%). The designing of a novel approach for a safe, simple, and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem. Over the past decades, several novel approaches involving different strategies have been developed to improve the ocular delivery system. Among these, the ophthalmic in-situ gel has attained a great attention over the past few years. This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system. Image, graphical abstract
Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden. Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system. Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability (<5%). The designing of a novel approach for a safe, simple, and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem. Over the past decades, several novel approaches involving different strategies have been developed to improve the ocular delivery system. Among these, the ophthalmic in-situ gel has attained a great attention over the past few years. This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system. Keywords: In-situ gel, Ocular, Drug delivery, Bioavailability, Polymer, Corneal retention
Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden. Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system. Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability (<5%). The designing of a novel approach for a safe, simple, and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem. Over the past decades, several novel approaches involving different strategies have been developed to improve the ocular delivery system. Among these, the ophthalmic in-situ gel has attained a great attention over the past few years. This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system.
Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden. Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system. Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability (<5%). The designing of a novel approach for a safe, simple, and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem. Over the past decades, several novel approaches involving different strategies have been developed to improve the ocular delivery system. Among these, the ophthalmic in-situ gel has attained a great attention over the past few years. This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system. [Display omitted]
Author Liu, Zhidong
Zhang, Bing
Wu, Yumei
Du, Shouying
Liu, Yuanyuan
Lu, Jun
Ren, Jing
Li, Jiawei
Li, Xinyue
Kebebe, Dereje
AuthorAffiliation e School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
b Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
c Department of Experimental Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
a Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
d School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
f School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
AuthorAffiliation_xml – name: e School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
– name: a Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
– name: d School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
– name: f School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
– name: b Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
– name: c Department of Experimental Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
Author_xml – sequence: 1
  givenname: Yumei
  orcidid: 0000-0001-5409-1794
  surname: Wu
  fullname: Wu, Yumei
  organization: Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
– sequence: 2
  givenname: Yuanyuan
  surname: Liu
  fullname: Liu, Yuanyuan
  organization: Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
– sequence: 3
  givenname: Xinyue
  surname: Li
  fullname: Li, Xinyue
  organization: Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
– sequence: 4
  givenname: Dereje
  surname: Kebebe
  fullname: Kebebe, Dereje
  organization: Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
– sequence: 5
  givenname: Bing
  surname: Zhang
  fullname: Zhang, Bing
  organization: Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
– sequence: 6
  givenname: Jing
  surname: Ren
  fullname: Ren, Jing
  organization: Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
– sequence: 7
  givenname: Jun
  surname: Lu
  fullname: Lu, Jun
  organization: School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
– sequence: 8
  givenname: Jiawei
  surname: Li
  fullname: Li, Jiawei
  organization: Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
– sequence: 9
  givenname: Shouying
  surname: Du
  fullname: Du, Shouying
  email: dushouying@263.net
  organization: School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
– sequence: 10
  givenname: Zhidong
  orcidid: 0000-0003-4449-6725
  surname: Liu
  fullname: Liu, Zhidong
  email: lonerliuzd@163.com
  organization: Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32104434$$D View this record in MEDLINE/PubMed
BookMark eNp9UU2L1DAYDrLizq77BzxIj15a89UkBRFkdXVhQRAFbyGTvO2ktM2YtAPz702ddXE97Cnw5vnieS7Q2RQmQOgVwRXBRLztK9PvU0UxURXmFcbqGdpQSklJVf3zDG2IIqrESopzdJVSjzEmTEqi-At0zijBnDO-QR-_QQIT7a7Yx9BFSKkIbeGnMvl5KToYBj91Rdjv5p0ZRm8LF5eucDD4A8RjkY5phvElet6aIcHV_XuJftx8-n79pbz7-vn2-sNdaWsl53JrgWFjrBJNC3gLTlmKFZemJs3W5WTWMEN4I2rXUMyp4pQp2zRMUdm0qmaX6Pak64Lp9T760cSjDsbrP4cQO23i7O0AWoLjqpFKEsa5caYRFAshjJB164zDWev9SWu_bEdwFqY5muGR6OOfye90Fw5a4tyeXMO8uReI4dcCadajTzYXZiYIS9KUZT-miKAZ-vpfrweTvzNkAD0BbAwpRWgfIATrdW7d63Vuvc6tMdd57kxS_5Gsn83sw5rXD09T352okNc6eIg6WQ-TBecj2DnX6Z-i_wbkGMVb
CitedBy_id crossref_primary_10_1080_10717544_2022_2100513
crossref_primary_10_1080_10717544_2023_2185180
crossref_primary_10_4155_bio_2021_0127
crossref_primary_10_1039_D4RA06787H
crossref_primary_10_1016_j_ijpharm_2024_123819
crossref_primary_10_1021_acsanm_3c02125
crossref_primary_10_1002_pat_6079
crossref_primary_10_1080_17425247_2022_2118711
crossref_primary_10_1016_j_colcom_2023_100715
crossref_primary_10_1208_s12249_024_02931_6
crossref_primary_10_1016_j_clae_2024_102352
crossref_primary_10_1159_000514690
crossref_primary_10_1093_toxres_tfaa066
crossref_primary_10_3390_pharmaceutics15082055
crossref_primary_10_1080_02652048_2023_2215326
crossref_primary_10_26599_NR_2025_94907187
crossref_primary_10_3390_ijms22189934
crossref_primary_10_3390_ma14154290
crossref_primary_10_1208_s12249_023_02673_x
crossref_primary_10_3390_gels7030130
crossref_primary_10_18231_j_ijcaap_2024_025
crossref_primary_10_1002_adma_202302431
crossref_primary_10_1016_j_msec_2020_111095
crossref_primary_10_34172_bi_2021_10
crossref_primary_10_3390_polym16202943
crossref_primary_10_33380_2305_2066_2021_10_1_57_66
crossref_primary_10_3390_pharmaceutics13010028
crossref_primary_10_1038_s41598_024_62026_x
crossref_primary_10_1080_09205063_2021_1932359
crossref_primary_10_3390_polym13081340
crossref_primary_10_22159_ijpps_2021v13i9_42405
crossref_primary_10_1016_j_jsps_2020_07_001
crossref_primary_10_1080_10717544_2022_2158964
crossref_primary_10_4155_tde_2023_0031
crossref_primary_10_1007_s11051_022_05403_9
crossref_primary_10_1016_j_jddst_2020_101736
crossref_primary_10_1007_s40005_022_00592_w
crossref_primary_10_1016_j_mtbio_2024_101229
crossref_primary_10_3390_nano14161347
crossref_primary_10_1016_j_bioactmat_2021_07_027
crossref_primary_10_3390_biology9100336
crossref_primary_10_34172_apb_2024_057
crossref_primary_10_1007_s00289_024_05421_8
crossref_primary_10_1080_17425247_2024_2311119
crossref_primary_10_3390_pharmaceutics14030652
crossref_primary_10_1002_slct_202004558
crossref_primary_10_1016_j_clae_2021_02_004
crossref_primary_10_1016_j_jcyt_2021_02_001
crossref_primary_10_1080_10837450_2022_2055063
crossref_primary_10_1007_s40123_021_00365_y
crossref_primary_10_3390_gels10040267
crossref_primary_10_1007_s10971_022_06006_5
crossref_primary_10_1007_s13346_022_01171_0
crossref_primary_10_1139_cjc_2022_0187
crossref_primary_10_3390_gels8120816
crossref_primary_10_1167_tvst_9_3_30
crossref_primary_10_2174_0118744710258313231105072931
crossref_primary_10_3390_gels8110687
crossref_primary_10_1016_j_jddst_2021_103004
crossref_primary_10_1016_j_mehy_2020_110288
crossref_primary_10_3390_pharmaceutics14040747
crossref_primary_10_1007_s13346_025_01797_w
crossref_primary_10_3390_molecules26123552
crossref_primary_10_3390_nano11020278
crossref_primary_10_3390_polym13213649
crossref_primary_10_1016_j_ejpb_2020_09_010
crossref_primary_10_1186_s11671_024_04109_2
crossref_primary_10_3390_pharmaceutics12100999
crossref_primary_10_3390_md20050335
crossref_primary_10_3390_pharmaceutics13020192
crossref_primary_10_2147_DDDT_S309648
crossref_primary_10_1016_j_ijpharm_2020_119184
crossref_primary_10_2147_IJN_S456613
crossref_primary_10_3390_ijms222212368
crossref_primary_10_1016_j_bioadv_2022_212783
crossref_primary_10_1016_j_bioadv_2022_212787
crossref_primary_10_1016_j_jddst_2023_104764
crossref_primary_10_54133_ajms_v7i1_1014
crossref_primary_10_1002_mabi_202100066
crossref_primary_10_3390_nano9010033
crossref_primary_10_1208_s12249_022_02414_6
crossref_primary_10_1177_08839115231167587
crossref_primary_10_2174_0125899775266634231213044704
crossref_primary_10_2147_IJN_S445240
crossref_primary_10_1016_j_ijpharm_2021_120623
crossref_primary_10_1089_jop_2024_0153
crossref_primary_10_3390_pharmaceutics15102508
crossref_primary_10_1016_j_cis_2020_102342
crossref_primary_10_3390_jcm11144195
crossref_primary_10_1039_D0PY00919A
crossref_primary_10_1016_j_ejpb_2020_01_007
crossref_primary_10_1016_j_jiec_2024_03_030
crossref_primary_10_1021_acsinfecdis_3c00299
crossref_primary_10_32947_ajps_v25i1_1105
crossref_primary_10_1016_j_apmt_2025_102602
crossref_primary_10_1016_j_jddst_2021_102739
crossref_primary_10_2174_1872211314666200108094851
crossref_primary_10_1002_adfm_201908476
crossref_primary_10_3390_gels10030161
crossref_primary_10_3390_ph16071001
crossref_primary_10_1371_journal_pone_0248857
crossref_primary_10_3390_md16100373
crossref_primary_10_1016_j_ijbiomac_2019_08_143
crossref_primary_10_17116_oftalma2023139061122
crossref_primary_10_37285_ijpsn_2022_15_5_10
crossref_primary_10_1016_j_ijbiomac_2023_127149
crossref_primary_10_2147_IJN_S360740
crossref_primary_10_2174_0122103031267809231128111259
crossref_primary_10_3389_fchem_2024_1336717
crossref_primary_10_1016_j_heliyon_2020_e05365
crossref_primary_10_1039_C9TB00939F
crossref_primary_10_1016_j_ccr_2022_214919
crossref_primary_10_3390_molecules26185577
crossref_primary_10_1016_j_ijpharm_2020_119093
crossref_primary_10_4155_tde_2023_0076
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_v41_i3_10
crossref_primary_10_1208_s12249_019_1489_6
crossref_primary_10_1016_j_apmt_2023_101867
crossref_primary_10_1080_10717544_2021_1965675
crossref_primary_10_3390_ma13225270
crossref_primary_10_1002_smll_202306222
crossref_primary_10_1177_25158414221112356
crossref_primary_10_3923_ijp_2021_15_27
crossref_primary_10_55544_jrasb_2_3_32
crossref_primary_10_1016_j_exer_2019_107829
crossref_primary_10_1208_s12249_024_02913_8
crossref_primary_10_1016_j_ijpharm_2021_121379
crossref_primary_10_1080_03639045_2020_1821048
crossref_primary_10_1007_s13346_022_01196_5
crossref_primary_10_1016_j_ijpharm_2024_124848
crossref_primary_10_1080_10717544_2019_1609622
crossref_primary_10_1016_j_fhfh_2023_100156
crossref_primary_10_22159_ijap_2022_v14s4_PP20
crossref_primary_10_1016_j_jddst_2022_103327
crossref_primary_10_1007_s13346_023_01503_8
crossref_primary_10_2174_1567201820666230504115446
crossref_primary_10_1089_jop_2023_0161
crossref_primary_10_2174_0122117385266639231029192409
crossref_primary_10_2174_0124681873294344240408061056
crossref_primary_10_3390_ph16030474
crossref_primary_10_3390_pharmaceutics16101325
crossref_primary_10_3390_polym15214336
crossref_primary_10_1186_s12886_024_03360_6
crossref_primary_10_1155_2022_5781446
crossref_primary_10_1080_15376516_2021_1941461
crossref_primary_10_1007_s13346_023_01376_x
crossref_primary_10_1016_j_ijbiomac_2021_02_057
crossref_primary_10_1038_s41598_024_74945_w
crossref_primary_10_3390_gels9120952
crossref_primary_10_3390_pharmaceutics13020151
crossref_primary_10_3897_pharmacia_69_e82847
crossref_primary_10_3390_gels8020082
crossref_primary_10_3389_fbioe_2020_00764
crossref_primary_10_1002_mba2_39
crossref_primary_10_1186_s42269_023_01123_9
crossref_primary_10_3390_ph14111201
crossref_primary_10_1177_11206721231174653
crossref_primary_10_3390_gels9040292
crossref_primary_10_1177_08853282221095395
crossref_primary_10_1016_j_ijpharm_2020_120010
crossref_primary_10_3390_polym16212954
crossref_primary_10_1016_j_jddst_2022_103333
crossref_primary_10_1016_j_msec_2021_112212
crossref_primary_10_3390_pharmaceutics13010001
crossref_primary_10_3390_pharmaceutics12070629
crossref_primary_10_1016_j_jddst_2024_106005
crossref_primary_10_1021_acsbiomaterials_3c00672
crossref_primary_10_22270_jddt_v11i3_S_4874
crossref_primary_10_3390_gels8020116
Cites_doi 10.1517/17425247.2012.665367
10.1021/mp200140e
10.1517/17425247.2013.796360
10.1080/02713683.2017.1302590
10.1016/j.rinphs.2015.06.001
10.1016/j.ejpb.2010.02.011
10.3109/10837450.2015.1026607
10.1016/j.jconrel.2017.09.031
10.2147/IJN.S131850
10.4103/2230-973X.176488
10.1080/03639040701397241
10.1039/C5RA06858D
10.4103/0975-7406.160015
10.1016/j.msec.2017.04.065
10.1016/j.ijpharm.2013.04.018
10.1016/S0142-9612(01)00127-2
10.1016/j.ejps.2017.04.013
10.1016/j.ijpharm.2011.03.043
10.4103/0975-7406.149810
10.2174/1872211308666140926112000
10.1016/j.colsurfb.2015.02.007
10.3109/10837450.2014.910807
10.1016/j.ijpharm.2006.01.029
10.3109/03639045.2013.828221
10.1016/j.ajps.2013.09.002
10.1248/cpb.c14-00451
10.1016/S0168-3659(02)00175-X
10.1002/wnan.1473
10.4103/0975-7406.111824
10.3109/03639041003801885
10.1021/acs.molpharmaceut.7b00291
10.3109/10717544.2014.987333
10.3109/10611860903508788
10.1016/j.ijpharm.2015.01.032
10.2174/1872211309666150724101227
10.3109/03639041003801893
10.1016/j.nano.2009.10.004
10.1016/j.ijpharm.2016.04.021
10.1016/j.ijpharm.2011.03.054
10.1016/j.jconrel.2007.05.009
10.1016/j.drudis.2013.10.001
10.3109/03639045.2012.736515
10.1016/j.ijpharm.2016.02.027
10.1016/S0378-5173(01)00825-0
10.1016/j.jddst.2017.03.005
10.1089/jop.2016.0084
10.1016/j.ejpb.2015.05.017
10.1016/j.carbpol.2016.08.073
10.1007/s10971-015-3897-8
10.1016/j.ijpharm.2012.12.049
10.1080/10717544.2016.1223225
10.1016/j.apsb.2016.09.001
10.2217/nnm-2016-0379
10.4103/0250-474X.100234
10.3109/02652048.2015.1128489
10.1208/s12249-010-9413-0
10.3109/03639045.2013.814061
10.1002/jps.24380
10.1177/0885328211406563
10.15406/japlr.2016.02.00022
10.3762/bjoc.10.308
10.1016/j.ijbiomac.2016.10.035
10.2478/v10007-012-0040-z
10.3109/10837451003774369
10.1016/S0168-3659(00)00329-1
10.1080/10837450.2017.1328693
10.1016/j.ajps.2016.07.001
10.3329/icpj.v1i3.9661
10.1371/journal.pone.0172306
10.1016/j.ijpharm.2011.03.007
10.3797/scipharm.1001-06
10.3109/10717544.2013.838712
10.1081/DDC-120002997
ContentType Journal Article
Copyright 2018 Shenyang Pharmaceutical University
2018 Shenyang Pharmaceutical University. Published by Elsevier B.V.
2018 Shenyang Pharmaceutical University. Published by Elsevier B.V. 2018 Shenyang Pharmaceutical University
Copyright_xml – notice: 2018 Shenyang Pharmaceutical University
– notice: 2018 Shenyang Pharmaceutical University. Published by Elsevier B.V.
– notice: 2018 Shenyang Pharmaceutical University. Published by Elsevier B.V. 2018 Shenyang Pharmaceutical University
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.ajps.2018.04.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2221-285X
EndPage 15
ExternalDocumentID oai_doaj_org_article_7ed4897871344ada9620666a675fdad0
PMC7032175
32104434
10_1016_j_ajps_2018_04_008
S181808761730990X
Genre Journal Article
Review
GroupedDBID ---
-SE
-S~
0SF
4.4
457
5VR
5VS
6I.
9D9
9DE
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABDBF
ABKZE
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
CAJEE
CAJUS
DIK
EBD
EBS
EJD
EOJEC
ESX
FDB
GROUPED_DOAJ
IPNFZ
IXB
KQ8
M41
MK0
NCXOZ
OBODZ
OK1
Q--
RIG
ROL
RPM
SSZ
TCJ
TGQ
TUS
U1G
U5O
0R~
AAYWO
AAYXX
ACUHS
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
AAXDM
NPM
7X8
5PM
ID FETCH-LOGICAL-c587t-bce30aac869fe0bed8c20847a519bd184ca3a14965d9204284238c9938279f853
IEDL.DBID DOA
ISSN 1818-0876
2221-285X
IngestDate Wed Aug 27 01:19:29 EDT 2025
Thu Aug 21 18:21:38 EDT 2025
Fri Jul 11 15:29:07 EDT 2025
Thu Jan 02 22:59:09 EST 2025
Tue Jul 01 00:42:11 EDT 2025
Thu Apr 24 23:20:45 EDT 2025
Fri Feb 23 02:30:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords In-situ gel
Polymer
Drug delivery
Bioavailability
Ocular
Corneal retention
Language English
License This is an open access article under the CC BY-NC-ND license.
2018 Shenyang Pharmaceutical University. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-bce30aac869fe0bed8c20847a519bd184ca3a14965d9204284238c9938279f853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5409-1794
0000-0003-4449-6725
OpenAccessLink https://doaj.org/article/7ed4897871344ada9620666a675fdad0
PMID 32104434
PQID 2366638162
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_7ed4897871344ada9620666a675fdad0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7032175
proquest_miscellaneous_2366638162
pubmed_primary_32104434
crossref_primary_10_1016_j_ajps_2018_04_008
crossref_citationtrail_10_1016_j_ajps_2018_04_008
elsevier_sciencedirect_doi_10_1016_j_ajps_2018_04_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Asian journal of pharmceutical sciences
PublicationTitleAlternate Asian J Pharm Sci
PublicationYear 2019
Publisher Elsevier B.V
Shenyang Pharmaceutical University
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Shenyang Pharmaceutical University
– name: Elsevier
References Paradkar, Parmar (bib0090) 2017; 39
Prausnitz, Jiang, Pate (bib0014) 2007
Liu, Gao, Lu, Zhou (bib0038) 2016; 11
Wang, Che, Guo, Bian, Cheng (bib0052) 2014; 40
Biswas, Majee (bib0013) 2017; 4
Gupta, Malik, Khar, Ali, Bhatnagar, Mittal (bib0081) 2015; 7
Upadhayay, Kumar, Pathak (bib0060) 2016; 15
Pitorre, Gonde, Haury (bib0087) 2017; 266
Almeida, Amaral, Lobao, Lobo (bib0017) 2014; 19
Ye, Yuan, Zhang (bib0009) 2013; 8
Rajoria, Gupta (bib0035) 2012; 2
Zambito, Colo (bib0034) 2011
Sawant, Dandagi, Gadad (bib0051) 2016; 77
Devasani, Dev, Rathod, Deshmukh (bib0023) 2016; 3
Shukr (bib0091) 2016; 33
Kanoujia, Sonker, Pandey, Kymonil, Saraf (bib0062) 2012; 1
Khan, Aqil, Imam, Ali (bib0021) 2015; 20
Liu, Liu, Zhang, Zhang, Huang, Wu (bib0010) 2010; 11
Chen, Li, Zhou (bib0039) 2012; 27
Gadad, Wadklar, Dandghi, Patil (bib0053) 2016; 50
Zhu, Ao, Li (bib0072) 2015; 9
Agrawal, Das, Jain (bib0065) 2012; 9
Banerjee R, Carvalho E. Nanoparticulate in-situ gels of TPGS, gellan and PVA as vitreous humor substitutes.
Hsiue, Hsu, Yang, Lee, Yang (bib0049) 2002; 23
Osswald, Guthrie, Avila, Valio, Mieler, Kang-Mieler (bib0043) 2017; 42
Wei, Xu, Ding, Li, Zheng (bib0027) 2002; 83
Al-Khateb, Ozhmukhametova, Mussin (bib0042) 2016; 502
Gupta, Velpandian, Jain (bib0082) 2010; 18
Addo, Bamiro, Siwale (bib0001) 2016
Li, Zhao, Okeke (bib0022) 2013; 450
Jain, Kumar, Singh, Mullertz, Bar-Shalom (bib0101) 2016; 2
Addo, Yeboah, Siwale (bib0012) 2015; 104
Lin HR, Sung KC. Ophthalmic drug delivery formulations and method for preparing the same.
Chandavarkar NM, Jindal KC, Malayandi R. In-situ gel forming solution for ocular drug delivery.
Tayel, El-Nabarawi, Tadros, Abd-Elsalam (bib0074) 2013; 443
Mishra, Gilhotra (bib0069) 2008; 16
Pang, Li, Pi (bib0059) 2018; 23
Vijaya, Goud (bib0071) 2011; 73
Gupta, Aqil, Khar, Ali, Bhatnagar, Mittal (bib0083) 2015; 7
2003.
Achouri, Alhanout, Piccerelle, Andrieu (bib0020) 2013; 39
Gratieri, Gelfuso, Rocha, Sarmento, de-Freitas, Lopez (bib0048) 2010; 75
Vodithala, Khatry, Shastri, Sadanandam (bib0044) 2010; 1
Yu, Wang, Wang (bib0096) 2015; 480
Huang, Chen, Rupenthal (bib0019) 2017
Mohammed, Chouhan, Anuforom (bib0037) 2017; 78
Gan, Gan, Zhu, Zhang, Zhu (bib0097) 2009; 365
Asasutjarit, Thanasanchokpibull, Fuongfuchat, Veeranondha (bib0055) 2011; 411
Morsi, Ghorab, Refai, Teba (bib0045) 2016; 506
Ammar, Salama, Ghorab, Mahmoud (bib0056) 2010; 36
Makwana, Patel, Parmar (bib0005) 2016; 6
Gupta, Vyas (bib0061) 2010; 78
Almeida, Amaral, Lobao, Sousa Lobo (bib0031) 2013; 10
Gupta, Aqil, Khar, Ali, Bhatnagar, Mittal (bib0093) 2013; 20
Iohara, Okubo, Anraku (bib0050) 2017; 14
Wu, Liu, Peng, Li, Li, Li (bib0058) 2011; 410
2004.
Li, Liu, Liu, Cai, Xin, Liu (bib0041) 2014; 62
Weng, Liu, Jin, Guo, Liang, Hu (bib0018) 2017; 7
Rupenthal, Alany, Green (bib0078) 2011; 8
Miyazaki, Suzuki, Kawasaki, Endo, Takahashi, Attwood (bib0033) 2001; 229
Escobar-Chavez, Lopez-Cervantes, Naik, Kalia, Quintanar-Guerrero, Ganem-Quintanar (bib0032) 2006; 9
Pal, Paulson, Rousseau (bib0036) 2013
Sayed, Hussein, Khaled, Ahmed (bib0092) 2015; 9
Nirmal, Bakliwal, Pawar (bib0070) 2010; 2
Bisht, Mandal, Jaiswal, Rupenthal (bib0004) 2018
Yu, Zhang, Tan (bib0079) 2017; 155
Duan, Cai, Du, Zhai (bib0015) 2015; 128
Kesarla, Tank, Vora, Shah, Parmar, Omri (bib0073) 2016; 23
2013.
Xia E, Smerbeck RV. Reversible gelling system for ocular drug delivery.
Pardeshi, Rajput, Belgamwar (bib0085) 2012; 62
Adeyeye MC, Davis VL, Kotreka UK. In-situ gel ophthalmic drug delivery system of estradiol or other estrogen for prevention of cataracts.
Klouda (bib0029) 2015; 97
Liu, Sun, Fang (bib0088) 2016; 21
Bamiro, Ubale, Addo (bib0007) 2016
Champalal, Sushilkumar (bib0068) 2012; 3
Gupta, Aqil, Khar, Ali, Bhatnagar, Mittal (bib0094) 2013; 5
Singh, Chhabra, Pathak (bib0098) 2014; 40
Bhowmick, Sarkar, Roy (bib0047) 2015; 5
Liu, Li, Nie, Liu, Ding, Pan (bib0075) 2006; 315
Sheikh, Sheikh, Admane (bib0063) 2017; 11
Almeida, Amaral, Lobao (bib0030) 2012; 2
2002.
Kaur, Smitha (bib0006) 2002; 28
Gupta, Aqil, Khar, Ali, Bhatnagar, Mittal (bib0086) 2010; 6
Malavade (bib0016) 2016
Davaran, Lotfipour, Sedghipour, Sedghipour, Alimohammadi, Salehi (bib0080) 2015; 32
Bhowmik, Bain, Ghosh, Chattopadhyay (bib0046) 2011; 16
Ahmed, Aljaeid (bib0095) 2017; 12
Kant, Reddy, M.M, J.S, C (bib0100) 2011; 2
2011.
Morsi, Ibrahim, Refai, El Sorogy (bib0077) 2017; 104
Zhu, Wang, Li (bib0003) 2017
Lin, Sung (bib0057) 2000; 69
Ako-Adounvo, Nagarwal, Oliveira (bib0099) 2014; 8
Laddha, Mahajan (bib0026) 2017; 06
Shastri (bib0040) 2017; 3
Tan, Yu, Pan (bib0011) 2017; 94
Kotreka, Davis, Adeyeye (bib0008) 2017; 12
Fernandez-Ferreiro, Fernandez Bargiela, Varela (bib0066) 2014; 10
Patel, Nakrani, Raval, Navin (bib0028) 2016; 23
Joseph, Venkatraman (bib0002) 2017; 12
Qian, Wang, Li, Zhang, Xu (bib0054) 2010; 36
Sheshala, Kok, Ng, Thakur, Dua (bib0025) 2015; 9
Rupenthal, Green, Alany (bib0064) 2011; 411
Cao, Zhang, Shen, Cheng, Yu, Ping (bib0024) 2007; 120
Basaran, Bozkir (bib0084) 2012; 69
Pandurangan, Bodagala, Palanirajan, Govindaraj (bib0089) 2016; 6
Reed, Li, Wilson, Assamoi (bib0067) 2016; 32
Liu, Yang, Li, Pan, Li (bib0076) 2007; 33
Fernandez-Ferreiro (10.1016/j.ajps.2018.04.008_bib0066) 2014; 10
10.1016/j.ajps.2018.04.008_bib0102
10.1016/j.ajps.2018.04.008_bib0103
10.1016/j.ajps.2018.04.008_bib0104
Sawant (10.1016/j.ajps.2018.04.008_bib0051) 2016; 77
10.1016/j.ajps.2018.04.008_bib0105
Ye (10.1016/j.ajps.2018.04.008_bib0009) 2013; 8
10.1016/j.ajps.2018.04.008_bib0106
Lin (10.1016/j.ajps.2018.04.008_bib0057) 2000; 69
10.1016/j.ajps.2018.04.008_bib0107
Almeida (10.1016/j.ajps.2018.04.008_bib0031) 2013; 10
Pal (10.1016/j.ajps.2018.04.008_bib0036) 2013
Gupta (10.1016/j.ajps.2018.04.008_bib0094) 2013; 5
Gratieri (10.1016/j.ajps.2018.04.008_bib0048) 2010; 75
Qian (10.1016/j.ajps.2018.04.008_bib0054) 2010; 36
Liu (10.1016/j.ajps.2018.04.008_bib0010) 2010; 11
Wu (10.1016/j.ajps.2018.04.008_bib0058) 2011; 410
Wei (10.1016/j.ajps.2018.04.008_bib0027) 2002; 83
Gupta (10.1016/j.ajps.2018.04.008_bib0083) 2015; 7
Yu (10.1016/j.ajps.2018.04.008_bib0096) 2015; 480
Ahmed (10.1016/j.ajps.2018.04.008_bib0095) 2017; 12
Bamiro (10.1016/j.ajps.2018.04.008_bib0007) 2016
Chen (10.1016/j.ajps.2018.04.008_bib0039) 2012; 27
Almeida (10.1016/j.ajps.2018.04.008_bib0030) 2012; 2
Basaran (10.1016/j.ajps.2018.04.008_bib0084) 2012; 69
Upadhayay (10.1016/j.ajps.2018.04.008_bib0060) 2016; 15
Liu (10.1016/j.ajps.2018.04.008_bib0038) 2016; 11
Gupta (10.1016/j.ajps.2018.04.008_bib0093) 2013; 20
Vodithala (10.1016/j.ajps.2018.04.008_bib0044) 2010; 1
Reed (10.1016/j.ajps.2018.04.008_bib0067) 2016; 32
Kotreka (10.1016/j.ajps.2018.04.008_bib0008) 2017; 12
Osswald (10.1016/j.ajps.2018.04.008_bib0043) 2017; 42
Davaran (10.1016/j.ajps.2018.04.008_bib0080) 2015; 32
Almeida (10.1016/j.ajps.2018.04.008_bib0017) 2014; 19
Gadad (10.1016/j.ajps.2018.04.008_bib0053) 2016; 50
Li (10.1016/j.ajps.2018.04.008_bib0022) 2013; 450
Li (10.1016/j.ajps.2018.04.008_bib0041) 2014; 62
Zhu (10.1016/j.ajps.2018.04.008_bib0072) 2015; 9
Pitorre (10.1016/j.ajps.2018.04.008_bib0087) 2017; 266
Ammar (10.1016/j.ajps.2018.04.008_bib0056) 2010; 36
Liu (10.1016/j.ajps.2018.04.008_bib0075) 2006; 315
Iohara (10.1016/j.ajps.2018.04.008_bib0050) 2017; 14
Paradkar (10.1016/j.ajps.2018.04.008_bib0090) 2017; 39
Shukr (10.1016/j.ajps.2018.04.008_bib0091) 2016; 33
Biswas (10.1016/j.ajps.2018.04.008_bib0013) 2017; 4
Morsi (10.1016/j.ajps.2018.04.008_bib0077) 2017; 104
Rupenthal (10.1016/j.ajps.2018.04.008_bib0078) 2011; 8
Klouda (10.1016/j.ajps.2018.04.008_bib0029) 2015; 97
Pandurangan (10.1016/j.ajps.2018.04.008_bib0089) 2016; 6
Zhu (10.1016/j.ajps.2018.04.008_bib0003) 2017
Rajoria (10.1016/j.ajps.2018.04.008_bib0035) 2012; 2
Bisht (10.1016/j.ajps.2018.04.008_bib0004) 2018
Nirmal (10.1016/j.ajps.2018.04.008_bib0070) 2010; 2
Gan (10.1016/j.ajps.2018.04.008_bib0097) 2009; 365
Jain (10.1016/j.ajps.2018.04.008_bib0101) 2016; 2
Makwana (10.1016/j.ajps.2018.04.008_bib0005) 2016; 6
Achouri (10.1016/j.ajps.2018.04.008_bib0020) 2013; 39
Mohammed (10.1016/j.ajps.2018.04.008_bib0037) 2017; 78
Bhowmik (10.1016/j.ajps.2018.04.008_bib0046) 2011; 16
Rupenthal (10.1016/j.ajps.2018.04.008_bib0064) 2011; 411
Tan (10.1016/j.ajps.2018.04.008_bib0011) 2017; 94
Hsiue (10.1016/j.ajps.2018.04.008_bib0049) 2002; 23
Vijaya (10.1016/j.ajps.2018.04.008_bib0071) 2011; 73
Agrawal (10.1016/j.ajps.2018.04.008_bib0065) 2012; 9
Liu (10.1016/j.ajps.2018.04.008_bib0088) 2016; 21
Malavade (10.1016/j.ajps.2018.04.008_bib0016) 2016
Prausnitz (10.1016/j.ajps.2018.04.008_bib0014) 2007
Sheikh (10.1016/j.ajps.2018.04.008_bib0063) 2017; 11
Duan (10.1016/j.ajps.2018.04.008_bib0015) 2015; 128
Kaur (10.1016/j.ajps.2018.04.008_bib0006) 2002; 28
Huang (10.1016/j.ajps.2018.04.008_bib0019) 2017
Champalal (10.1016/j.ajps.2018.04.008_bib0068) 2012; 3
Escobar-Chavez (10.1016/j.ajps.2018.04.008_bib0032) 2006; 9
Asasutjarit (10.1016/j.ajps.2018.04.008_bib0055) 2011; 411
Gupta (10.1016/j.ajps.2018.04.008_bib0061) 2010; 78
Gupta (10.1016/j.ajps.2018.04.008_bib0086) 2010; 6
Laddha (10.1016/j.ajps.2018.04.008_bib0026) 2017; 06
Zambito (10.1016/j.ajps.2018.04.008_bib0034) 2011
Joseph (10.1016/j.ajps.2018.04.008_bib0002) 2017; 12
Shastri (10.1016/j.ajps.2018.04.008_bib0040) 2017; 3
Sayed (10.1016/j.ajps.2018.04.008_bib0092) 2015; 9
Liu (10.1016/j.ajps.2018.04.008_bib0076) 2007; 33
Gupta (10.1016/j.ajps.2018.04.008_bib0082) 2010; 18
Miyazaki (10.1016/j.ajps.2018.04.008_bib0033) 2001; 229
Pardeshi (10.1016/j.ajps.2018.04.008_bib0085) 2012; 62
Khan (10.1016/j.ajps.2018.04.008_bib0021) 2015; 20
Al-Khateb (10.1016/j.ajps.2018.04.008_bib0042) 2016; 502
Pang (10.1016/j.ajps.2018.04.008_bib0059) 2018; 23
Kanoujia (10.1016/j.ajps.2018.04.008_bib0062) 2012; 1
Singh (10.1016/j.ajps.2018.04.008_bib0098) 2014; 40
Addo (10.1016/j.ajps.2018.04.008_bib0001) 2016
Wang (10.1016/j.ajps.2018.04.008_bib0052) 2014; 40
Ako-Adounvo (10.1016/j.ajps.2018.04.008_bib0099) 2014; 8
Weng (10.1016/j.ajps.2018.04.008_bib0018) 2017; 7
Devasani (10.1016/j.ajps.2018.04.008_bib0023) 2016; 3
Yu (10.1016/j.ajps.2018.04.008_bib0079) 2017; 155
Gupta (10.1016/j.ajps.2018.04.008_bib0081) 2015; 7
Sheshala (10.1016/j.ajps.2018.04.008_bib0025) 2015; 9
Addo (10.1016/j.ajps.2018.04.008_bib0012) 2015; 104
Mishra (10.1016/j.ajps.2018.04.008_bib0069) 2008; 16
Morsi (10.1016/j.ajps.2018.04.008_bib0045) 2016; 506
Patel (10.1016/j.ajps.2018.04.008_bib0028) 2016; 23
Bhowmick (10.1016/j.ajps.2018.04.008_bib0047) 2015; 5
Kesarla (10.1016/j.ajps.2018.04.008_bib0073) 2016; 23
Tayel (10.1016/j.ajps.2018.04.008_bib0074) 2013; 443
Cao (10.1016/j.ajps.2018.04.008_bib0024) 2007; 120
Kant (10.1016/j.ajps.2018.04.008_bib0100) 2011; 2
References_xml – volume: 75
  start-page: 186
  year: 2010
  end-page: 193
  ident: bib0048
  article-title: A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery
  publication-title: Eur J Pharm Biopharm
– volume: 18
  start-page: 499
  year: 2010
  end-page: 505
  ident: bib0082
  article-title: Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery
  publication-title: J Drug Target
– reference: . 2003.
– volume: 6
  start-page: 324
  year: 2010
  end-page: 333
  ident: bib0086
  article-title: Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery
  publication-title: Nanomedicine
– volume: 7
  start-page: 9
  year: 2015
  end-page: 14
  ident: bib0083
  article-title: An alternative in situ gel-formulation of levofloxacin eye drops for prolong ocular retention
  publication-title: J Pharm Bioallied Sci
– volume: 2
  start-page: 1
  year: 2012
  end-page: 10
  ident: bib0030
  article-title: Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery
  publication-title: J App Pharm Sci
– reference: . 2011.
– volume: 4
  start-page: 813
  year: 2017
  end-page: 819
  ident: bib0013
  article-title: Niosomes in ocular drug delivery
  publication-title: Eur J Pharmaceut Med Res
– volume: 11
  start-page: 610
  year: 2010
  end-page: 620
  ident: bib0010
  article-title: In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery
  publication-title: AAPS PharmSciTech
– volume: 7
  start-page: 195
  year: 2015
  end-page: 200
  ident: bib0081
  article-title: Physiologically active hydrogel (in situ gel) of sparfloxacin and its evaluation for ocular retention using gamma scintigraphy
  publication-title: J Pharm Bioallied Sci
– volume: 12
  start-page: 683
  year: 2017
  end-page: 702
  ident: bib0002
  article-title: Drug delivery to the eye: what benefits do nanocarriers offer
  publication-title: Nanomedicine (Lond)
– volume: 39
  start-page: 113
  year: 2017
  end-page: 122
  ident: bib0090
  article-title: Formulation development and evaluation of Natamycin niosomal in-situ gel for ophthalmic drug delivery
  publication-title: Journal of Drug Delivery Science & Technology
– volume: 104
  start-page: 1677
  year: 2015
  end-page: 1690
  ident: bib0012
  article-title: Formulation and characterization of atropine sulfate in albumin-chitosan microparticles for in vivo ocular drug delivery
  publication-title: J Pharm Sci
– volume: 50
  start-page: S96
  year: 2016
  end-page: 105
  ident: bib0053
  article-title: Thermosensitive in situ gel for ocular delivery of lomefloxacin
  publication-title: Ind J Pharmaceut Educ Res
– reference: Chandavarkar NM, Jindal KC, Malayandi R. In-situ gel forming solution for ocular drug delivery.
– volume: 7
  start-page: 281
  year: 2017
  end-page: 291
  ident: bib0018
  article-title: Nanotechnology-based strategies for treatment of ocular disease
  publication-title: Acta Pharm Sin B
– volume: 27
  start-page: 391
  year: 2012
  end-page: 402
  ident: bib0039
  article-title: Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation
  publication-title: J Biomater Appl
– volume: 21
  start-page: 576
  year: 2016
  end-page: 582
  ident: bib0088
  article-title: Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: development, characterization, in vitro permeation and in vivo pharmacokinetic studies
  publication-title: Pharm Dev Technol
– volume: 36
  start-page: 1330
  year: 2010
  end-page: 1339
  ident: bib0056
  article-title: Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery
  publication-title: Drug Dev Ind Pharm
– volume: 229
  start-page: 29
  year: 2001
  end-page: 36
  ident: bib0033
  article-title: In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride
  publication-title: Int J Pharm
– volume: 62
  start-page: 1000
  year: 2014
  end-page: 1008
  ident: bib0041
  article-title: Design and evaluation of a Brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery
  publication-title: Chem Pharm Bull (Tokyo)
– volume: 32
  start-page: 574
  year: 2016
  end-page: 582
  ident: bib0067
  article-title: Enhancement of ocular in situ gelling properties of low acyl gellan gum by use of ion exchange
  publication-title: J Ocul Pharmacol Ther
– volume: 128
  start-page: 322
  year: 2015
  end-page: 330
  ident: bib0015
  article-title: Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin
  publication-title: Colloids Surf B Biointerfaces
– volume: 23
  start-page: 457
  year: 2002
  end-page: 462
  ident: bib0049
  article-title: Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide
  publication-title: Biomaterials
– volume: 83
  start-page: 65
  year: 2002
  end-page: 74
  ident: bib0027
  article-title: Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies
  publication-title: J Control Release
– volume: 62
  start-page: 433
  year: 2012
  end-page: 472
  ident: bib0085
  article-title: Solid lipid based nanocarriers: an overview
  publication-title: Acta Pharm
– volume: 3
  start-page: 1
  year: 2017
  end-page: 5
  ident: bib0040
  article-title: Thiolated chitosan: a boon to ocular delivery of therapeutics
  publication-title: MOJ Bioequiv Availab
– volume: 1
  start-page: 43
  year: 2012
  end-page: 49
  ident: bib0062
  article-title: Formulation and characterization of a novel pH-triggered in-situ gelling ocular system containing Gatifloxacin
  publication-title: Int Current Pharmaceut J
– volume: 40
  start-page: 1402
  year: 2014
  end-page: 1410
  ident: bib0052
  article-title: Thermoresponsive ophthalmic poloxamer/tween/carbopol in situ gels of a poorly water-soluble drug fluconazole: preparation and
  publication-title: Drug Dev Ind Pharm
– volume: 6
  start-page: 56
  year: 2016
  end-page: 62
  ident: bib0089
  article-title: Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel
  publication-title: Int J Pharm Investig
– year: 2018
  ident: bib0004
  article-title: Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases
  publication-title: WIREs Nanomed Nanobiotechnol
– reference: Adeyeye MC, Davis VL, Kotreka UK. In-situ gel ophthalmic drug delivery system of estradiol or other estrogen for prevention of cataracts.
– volume: 443
  start-page: 293
  year: 2013
  end-page: 305
  ident: bib0074
  article-title: Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits
  publication-title: Int J Pharm
– volume: 8
  start-page: 193
  year: 2014
  end-page: 201
  ident: bib0099
  article-title: Recent patents on ophthalmic nanoformulations and therapeutic implications
  publication-title: Recent Pat Drug Deliv Formul
– volume: 78
  start-page: 959
  year: 2010
  end-page: 976
  ident: bib0061
  article-title: Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate
  publication-title: Sci Pharm
– volume: 97
  start-page: 338
  year: 2015
  end-page: 349
  ident: bib0029
  article-title: Thermoresponsive hydrogels in biomedical applications: a seven-year update
  publication-title: Eur J Pharm Biopharm
– volume: 2
  start-page: 24
  year: 2012
  end-page: 53
  ident: bib0035
  article-title: In-situ gelling system: a novel approach for ocular drug delivery
  publication-title: Am J PharmTech Res
– volume: 20
  start-page: 662
  year: 2015
  end-page: 669
  ident: bib0021
  article-title: Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: in vitro and
  publication-title: Pharm Dev Technol
– volume: 1
  start-page: 39
  year: 2010
  end-page: 45
  ident: bib0044
  article-title: Development and evaluation of thermoreversible ocular gels of ketorolac tromethamine
  publication-title: Int J Biopharm
– volume: 94
  start-page: 355
  year: 2017
  end-page: 363
  ident: bib0011
  article-title: Bioadhesive chitosan-loaded liposomes: a more efficient and higher permeable ocular delivery platform for timolol maleate
  publication-title: Int J Biol Macromol
– volume: 78
  start-page: 203
  year: 2017
  end-page: 209
  ident: bib0037
  article-title: Thermosensitive hydrogel as an in situ gelling antimicrobial ocular dressing
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 20
  start-page: 306
  year: 2013
  end-page: 309
  ident: bib0093
  article-title: Nanoparticles laden in situ gel of levofloxacin for enhanced ocular retention
  publication-title: Drug Deliv
– volume: 9
  start-page: 237
  year: 2015
  end-page: 248
  ident: bib0025
  article-title: In situ gelling ophthalmic drug delivery system: an overview and its applications
  publication-title: Recent Pat Drug Deliv Formul
– volume: 411
  start-page: 128
  year: 2011
  end-page: 135
  ident: bib0055
  article-title: Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels
  publication-title: Int J Pharm
– volume: 315
  start-page: 12
  year: 2006
  end-page: 17
  ident: bib0075
  article-title: Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin
  publication-title: Int J Pharm
– volume: 16
  start-page: 385
  year: 2011
  end-page: 391
  ident: bib0046
  article-title: Effect of salts on gelation and drug release profiles of methylcellulose-based ophthalmic thermo-reversible in situ gels
  publication-title: Pharm Dev Technol
– start-page: 9
  year: 2016
  end-page: 35
  ident: bib0016
  article-title: Overview of the ophthalmic system
  publication-title: Nano-Biomaterials for ophthalmic drug delivery
– volume: 39
  start-page: 1599
  year: 2013
  end-page: 1617
  ident: bib0020
  article-title: Recent advances in ocular drug delivery
  publication-title: Drug Dev Ind Pharm
– volume: 3
  start-page: 60
  year: 2016
  end-page: 69
  ident: bib0023
  article-title: An overview of in situ gelling systems
  publication-title: Pharmaceut Biolog Evaluat
– volume: 2
  start-page: 00022
  year: 2016
  ident: bib0101
  article-title: Newer trends in in situ gelling systems for controlled ocular drug delivery
  publication-title: J Anal Pharm Res
– volume: 33
  start-page: 71
  year: 2016
  end-page: 79
  ident: bib0091
  article-title: Novel in situ gelling ocular inserts for voriconazole-loaded niosomes: design, in vitro characterisation and in vivo evaluation of the ocular irritation and drug pharmacokinetics
  publication-title: J Microencapsul
– volume: 266
  start-page: 140
  year: 2017
  end-page: 155
  ident: bib0087
  article-title: Recent advances in nanocarrier-loaded gels: which drug delivery technologies against which diseases?
  publication-title: J Control Release
– volume: 11
  start-page: 673
  year: 2016
  end-page: 683
  ident: bib0038
  article-title: In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration
  publication-title: Asian J Pharmaceut Sci
– volume: 9
  start-page: 339
  year: 2006
  end-page: 358
  ident: bib0032
  article-title: Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations
  publication-title: J Pharm Pharm Sci
– volume: 23
  start-page: 2363
  year: 2016
  end-page: 2370
  ident: bib0073
  article-title: Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel
  publication-title: Drug Deliv
– volume: 77
  start-page: 654
  year: 2016
  end-page: 665
  ident: bib0051
  article-title: Formulation and evaluation of sparfloxacin emulsomes-loaded thermosensitive in situ gel for ophthalmic delivery
  publication-title: J Sol-Gel Sci Technol
– volume: 2
  start-page: 28
  year: 2011
  end-page: 44
  ident: bib0100
  article-title: In situ gelling system-An overview
  publication-title: Pharmacologyonline
– volume: 12
  year: 2017
  ident: bib0008
  article-title: Development of topical ophthalmic in situ gel-forming estradiol delivery system intended for the prevention of age-related cataracts
  publication-title: PLoS One
– volume: 9
  start-page: 1427
  year: 2015
  end-page: 1435
  ident: bib0092
  article-title: Improved corneal bioavailability of ofloxacin: biodegradable microsphere-loaded ion-activated in situ gel delivery system
  publication-title: Drug Des Devel Ther
– volume: 120
  start-page: 186
  year: 2007
  end-page: 194
  ident: bib0024
  article-title: Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery
  publication-title: J Control Release
– volume: 69
  start-page: 1137
  year: 2012
  end-page: 1147
  ident: bib0084
  article-title: Thermosensitive and pH induced in situ ophthalmic gelling system for ciprofloxacin hydrochloride: hydroxypropyl-beta-cyclodextrin complex
  publication-title: Acta Pol Pharm
– reference: Lin HR, Sung KC. Ophthalmic drug delivery formulations and method for preparing the same.
– volume: 411
  start-page: 78
  year: 2011
  end-page: 85
  ident: bib0064
  article-title: Comparison of ion-activated in situ gelling systems for ocular drug delivery. part 2: precorneal retention and
  publication-title: Int J Pharm
– volume: 2
  start-page: 1398
  year: 2010
  end-page: 1408
  ident: bib0070
  article-title: In-situ gel: new trends in controlled and sustained drug delivery system
  publication-title: Int J PharmTech Res
– volume: 15
  start-page: 3
  year: 2016
  end-page: 22
  ident: bib0060
  article-title: Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: optimization, ocular irritancy and corneal toxicity
  publication-title: Iran J Pharm Res
– volume: 9
  start-page: 383
  year: 2012
  end-page: 402
  ident: bib0065
  article-title: In situ gel systems as 'smart'carriers for sustained ocular drug delivery
  publication-title: Expert Opin Drug Deliv
– volume: 14
  start-page: 2740
  year: 2017
  end-page: 2748
  ident: bib0050
  article-title: Hydrophobically modified polymer/α-cyclodextrin thermoresponsive hydrogels for use in ocular drug delivery
  publication-title: Mol Pharm
– volume: 410
  start-page: 31
  year: 2011
  end-page: 40
  ident: bib0058
  article-title: Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery
  publication-title: Int J Pharm
– reference: Banerjee R, Carvalho E. Nanoparticulate in-situ gels of TPGS, gellan and PVA as vitreous humor substitutes.
– volume: 36
  start-page: 1340
  year: 2010
  end-page: 1347
  ident: bib0054
  article-title: Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide
  publication-title: Drug Dev Ind Pharm
– year: 2017
  ident: bib0019
  article-title: Overcoming ocular drug delivery barriers through the use of physical forces
  publication-title: Adv Drug Deliv Rev
– start-page: 3191
  year: 2007
  ident: bib0014
  article-title: Ocular drug delivery using microneedles
– volume: 9
  start-page: 3943
  year: 2015
  end-page: 3949
  ident: bib0072
  article-title: A novel in situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: in vitro and in vivo evaluation
  publication-title: Drug Des Devel Ther
– volume: 3
  start-page: P372
  year: 2012
  end-page: P388
  ident: bib0068
  article-title: Current status of ophthalmic in-situ forming hydrogel
  publication-title: Int J Pharma Bio Sci
– volume: 502
  start-page: 70
  year: 2016
  end-page: 79
  ident: bib0042
  article-title: In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery
  publication-title: Int J Pharm
– reference: . 2002.
– volume: 73
  start-page: 615
  year: 2011
  end-page: 620
  ident: bib0071
  article-title: Ion-activated in situ gelling ophthalmic delivery systems of Azithromycin
  publication-title: Indian J of Pharm Sci
– volume: 42
  start-page: 1293
  year: 2017
  end-page: 1301
  ident: bib0043
  article-title: In vivo efficacy of an injectable microsphere-hydrogel ocular drug delivery system
  publication-title: Curr Eye Res
– volume: 155
  start-page: 208
  year: 2017
  end-page: 217
  ident: bib0079
  article-title: A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery
  publication-title: Carbohydr Polym
– volume: 28
  start-page: 353
  year: 2002
  end-page: 369
  ident: bib0006
  article-title: Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery
  publication-title: Drug Dev Ind Pharm
– year: 2017
  ident: bib0003
  article-title: A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/ hyaluronic acid of ketoconazole for ophthalmic delivery
  publication-title: Artif Cells Nanomed Biotechnol
– volume: 365
  start-page: 143
  year: 2009
  end-page: 149
  ident: bib0097
  article-title: Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: In vitro and in vivo results
  publication-title: In J Pharm
– reference: Xia E, Smerbeck RV. Reversible gelling system for ocular drug delivery.
– volume: 506
  start-page: 57
  year: 2016
  end-page: 67
  ident: bib0045
  article-title: Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery
  publication-title: Int J Pharm
– volume: 480
  start-page: 128
  year: 2015
  end-page: 136
  ident: bib0096
  article-title: Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate
  publication-title: Int J Pharm
– volume: 10
  start-page: 1223
  year: 2013
  end-page: 1237
  ident: bib0031
  article-title: Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview
  publication-title: Expert Opin Drug Deliv
– volume: 33
  start-page: 1327
  year: 2007
  end-page: 1331
  ident: bib0076
  article-title: Study on the ocular pharmacokinetics of ion-activated in situ gelling ophthalmic delivery system for gatifloxacin by microdialysis
  publication-title: Drug Dev Ind Pharm
– start-page: 1
  year: 2016
  end-page: 9
  ident: bib0007
  article-title: Background of Ocular Drug Delivery
  publication-title: Ocular drug delivery: Advances, challenges and applications
– volume: 10
  start-page: 2903
  year: 2014
  end-page: 2911
  ident: bib0066
  article-title: Cyclodextrin-polysaccharide-based, in situ-gelled system for ocular antifungal delivery
  publication-title: Beilstein J Org Chem
– start-page: 11
  year: 2016
  end-page: 25
  ident: bib0001
  article-title: Anatomy of the eye and common diseases affecting the eye
  publication-title: Ocular drug delivery: Advances, challenges and applications.
– volume: 5
  start-page: 60386
  year: 2015
  end-page: 60391
  ident: bib0047
  article-title: Effect of carrageenan and potassium chloride on in-situ gelling ophthalmic drug delivery system based on methylcellulose
  publication-title: Rsc Adv
– volume: 32
  start-page: 511
  year: 2015
  end-page: 519
  ident: bib0080
  article-title: Preparation and in vivo evaluation of in situ gel system as dual thermo-/pH-responsive nanocarriers for sustained ocular drug delivery
  publication-title: J Microencapsul
– volume: 16
  start-page: 1
  year: 2008
  end-page: 8
  ident: bib0069
  article-title: Design and characterization of bioadhesive in-situ gelling ocular inserts of Gatifloxacin sesquihydrate
  publication-title: DARU: J Pharmaceut Sci
– volume: 11
  start-page: S616
  year: 2017
  end-page: S624
  ident: bib0063
  article-title: Development and characterization of novel in situ gel of moxifloxacin hydrochloride
  publication-title: Asian J. Pharm.
– volume: 40
  start-page: 1223
  year: 2014
  end-page: 1232
  ident: bib0098
  article-title: Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro
  publication-title: Drug Dev Ind Pharm
– volume: 12
  start-page: 1863
  year: 2017
  end-page: 1875
  ident: bib0095
  article-title: A potential in situ gel formulation loaded with novel fabricated poly(lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole
  publication-title: Int J Nanomedicine
– volume: 6
  start-page: 1
  year: 2016
  end-page: 6
  ident: bib0005
  article-title: Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride
  publication-title: Results Pharma Sci
– reference: . 2004.
– volume: 8
  start-page: 2282
  year: 2011
  end-page: 2290
  ident: bib0078
  article-title: Ion-activated in situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface
  publication-title: Mol Pharm
– start-page: 253
  year: 2011
  end-page: 280
  ident: bib0034
  article-title: Polysaccharides as excipients for ocular topical formulations
  publication-title: Polysaccharides as excipients for ocular topical formulations.
– volume: 23
  start-page: 3712
  year: 2016
  end-page: 3723
  ident: bib0028
  article-title: Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability
  publication-title: Drug Deliv
– volume: 19
  start-page: 400
  year: 2014
  end-page: 412
  ident: bib0017
  article-title: In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations
  publication-title: Drug Discov Today
– volume: 104
  start-page: 302
  year: 2017
  end-page: 314
  ident: bib0077
  article-title: Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide
  publication-title: Eur J Pharm Sci
– volume: 23
  start-page: 231
  year: 2018
  end-page: 239
  ident: bib0059
  article-title: Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits
  publication-title: Pharm Dev Technol
– volume: 450
  start-page: 104
  year: 2013
  end-page: 113
  ident: bib0022
  article-title: Comparison of systemic absorption between ofloxacin ophthalmic in situ gels and ofloxacin conventional ophthalmic solutions administration to rabbit eyes by HPLC-MS/MS
  publication-title: Int J Pharm
– start-page: 347
  year: 2013
  end-page: 348
  ident: bib0036
  article-title: Biopolymers in controlled-release delivery systems
  publication-title: Handbook of biopolymers and biodegradable plastics properties, processing, and applications
– reference: . 2013.
– volume: 06
  start-page: 31
  year: 2017
  end-page: 40
  ident: bib0026
  article-title: An insight to ocular in situ gelling systems
  publication-title: Int J Adv Pharmaceut
– volume: 69
  start-page: 379
  year: 2000
  end-page: 388
  ident: bib0057
  article-title: Carbopol/pluronic phase change solutions for ophthalmic drug delivery
  publication-title: J Control Release
– volume: 8
  start-page: 207
  year: 2013
  end-page: 217
  ident: bib0009
  article-title: Prodrugs incorporated into nanotechnology-based drug delivery systems for possible improvement in bioavailability of ocular drugs delivery
  publication-title: Asian J Pharmaceut Sci
– volume: 5
  start-page: 162
  year: 2013
  end-page: 165
  ident: bib0094
  article-title: Nanoparticles laden in situ gel for sustained ocular drug delivery
  publication-title: J Pharm Bioallied Sci
– ident: 10.1016/j.ajps.2018.04.008_bib0104
– volume: 9
  start-page: 383
  issue: 4
  year: 2012
  ident: 10.1016/j.ajps.2018.04.008_bib0065
  article-title: In situ gel systems as 'smart'carriers for sustained ocular drug delivery
  publication-title: Expert Opin Drug Deliv
  doi: 10.1517/17425247.2012.665367
– volume: 8
  start-page: 2282
  issue: 6
  year: 2011
  ident: 10.1016/j.ajps.2018.04.008_bib0078
  article-title: Ion-activated in situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface
  publication-title: Mol Pharm
  doi: 10.1021/mp200140e
– volume: 69
  start-page: 1137
  issue: 6
  year: 2012
  ident: 10.1016/j.ajps.2018.04.008_bib0084
  article-title: Thermosensitive and pH induced in situ ophthalmic gelling system for ciprofloxacin hydrochloride: hydroxypropyl-beta-cyclodextrin complex
  publication-title: Acta Pol Pharm
– volume: 10
  start-page: 1223
  issue: 9
  year: 2013
  ident: 10.1016/j.ajps.2018.04.008_bib0031
  article-title: Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview
  publication-title: Expert Opin Drug Deliv
  doi: 10.1517/17425247.2013.796360
– volume: 42
  start-page: 1293
  issue: 9
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0043
  article-title: In vivo efficacy of an injectable microsphere-hydrogel ocular drug delivery system
  publication-title: Curr Eye Res
  doi: 10.1080/02713683.2017.1302590
– volume: 3
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0040
  article-title: Thiolated chitosan: a boon to ocular delivery of therapeutics
  publication-title: MOJ Bioequiv Availab
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0005
  article-title: Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride
  publication-title: Results Pharma Sci
  doi: 10.1016/j.rinphs.2015.06.001
– volume: 75
  start-page: 186
  issue: 2
  year: 2010
  ident: 10.1016/j.ajps.2018.04.008_bib0048
  article-title: A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2010.02.011
– start-page: 1
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0007
  article-title: Background of Ocular Drug Delivery
– volume: 21
  start-page: 576
  issue: 5
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0088
  article-title: Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: development, characterization, in vitro permeation and in vivo pharmacokinetic studies
  publication-title: Pharm Dev Technol
  doi: 10.3109/10837450.2015.1026607
– volume: 266
  start-page: 140
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0087
  article-title: Recent advances in nanocarrier-loaded gels: which drug delivery technologies against which diseases?
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2017.09.031
– volume: 12
  start-page: 1863
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0095
  article-title: A potential in situ gel formulation loaded with novel fabricated poly(lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S131850
– volume: 3
  start-page: 60
  issue: 1
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0023
  article-title: An overview of in situ gelling systems
  publication-title: Pharmaceut Biolog Evaluat
– ident: 10.1016/j.ajps.2018.04.008_bib0107
– volume: 6
  start-page: 56
  issue: 1
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0089
  article-title: Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel
  publication-title: Int J Pharm Investig
  doi: 10.4103/2230-973X.176488
– volume: 33
  start-page: 1327
  issue: 12
  year: 2007
  ident: 10.1016/j.ajps.2018.04.008_bib0076
  article-title: Study on the ocular pharmacokinetics of ion-activated in situ gelling ophthalmic delivery system for gatifloxacin by microdialysis
  publication-title: Drug Dev Ind Pharm
  doi: 10.1080/03639040701397241
– volume: 15
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0060
  article-title: Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: optimization, ocular irritancy and corneal toxicity
  publication-title: Iran J Pharm Res
– volume: 5
  start-page: 60386
  issue: 74
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0047
  article-title: Effect of carrageenan and potassium chloride on in-situ gelling ophthalmic drug delivery system based on methylcellulose
  publication-title: Rsc Adv
  doi: 10.1039/C5RA06858D
– volume: 7
  start-page: 195
  issue: 3
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0081
  article-title: Physiologically active hydrogel (in situ gel) of sparfloxacin and its evaluation for ocular retention using gamma scintigraphy
  publication-title: J Pharm Bioallied Sci
  doi: 10.4103/0975-7406.160015
– volume: 32
  start-page: 511
  issue: 5
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0080
  article-title: Preparation and in vivo evaluation of in situ gel system as dual thermo-/pH-responsive nanocarriers for sustained ocular drug delivery
  publication-title: J Microencapsul
– volume: 78
  start-page: 203
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0037
  article-title: Thermosensitive hydrogel as an in situ gelling antimicrobial ocular dressing
  publication-title: Mater Sci Eng C Mater Biol Appl
  doi: 10.1016/j.msec.2017.04.065
– volume: 450
  start-page: 104
  issue: 1-2
  year: 2013
  ident: 10.1016/j.ajps.2018.04.008_bib0022
  article-title: Comparison of systemic absorption between ofloxacin ophthalmic in situ gels and ofloxacin conventional ophthalmic solutions administration to rabbit eyes by HPLC-MS/MS
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2013.04.018
– volume: 23
  start-page: 457
  issue: 2
  year: 2002
  ident: 10.1016/j.ajps.2018.04.008_bib0049
  article-title: Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00127-2
– year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0019
  article-title: Overcoming ocular drug delivery barriers through the use of physical forces
  publication-title: Adv Drug Deliv Rev
– year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0003
  article-title: A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/ hyaluronic acid of ketoconazole for ophthalmic delivery
  publication-title: Artif Cells Nanomed Biotechnol
– volume: 104
  start-page: 302
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0077
  article-title: Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2017.04.013
– ident: 10.1016/j.ajps.2018.04.008_bib0106
– volume: 411
  start-page: 78
  issue: 1-2
  year: 2011
  ident: 10.1016/j.ajps.2018.04.008_bib0064
  article-title: Comparison of ion-activated in situ gelling systems for ocular drug delivery. part 2: precorneal retention and in vivo pharmacodynamic study
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2011.03.043
– start-page: 253
  year: 2011
  ident: 10.1016/j.ajps.2018.04.008_bib0034
  article-title: Polysaccharides as excipients for ocular topical formulations
– volume: 7
  start-page: 9
  issue: 1
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0083
  article-title: An alternative in situ gel-formulation of levofloxacin eye drops for prolong ocular retention
  publication-title: J Pharm Bioallied Sci
  doi: 10.4103/0975-7406.149810
– volume: 8
  start-page: 193
  issue: 3
  year: 2014
  ident: 10.1016/j.ajps.2018.04.008_bib0099
  article-title: Recent patents on ophthalmic nanoformulations and therapeutic implications
  publication-title: Recent Pat Drug Deliv Formul
  doi: 10.2174/1872211308666140926112000
– volume: 128
  start-page: 322
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0015
  article-title: Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2015.02.007
– start-page: 11
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0001
  article-title: Anatomy of the eye and common diseases affecting the eye
– volume: 20
  start-page: 662
  issue: 6
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0021
  article-title: Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: in vitro and ex vivo characterization
  publication-title: Pharm Dev Technol
  doi: 10.3109/10837450.2014.910807
– volume: 315
  start-page: 12
  issue: 1-2
  year: 2006
  ident: 10.1016/j.ajps.2018.04.008_bib0075
  article-title: Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2006.01.029
– volume: 40
  start-page: 1402
  issue: 10
  year: 2014
  ident: 10.1016/j.ajps.2018.04.008_bib0052
  article-title: Thermoresponsive ophthalmic poloxamer/tween/carbopol in situ gels of a poorly water-soluble drug fluconazole: preparation and in vitro-in vivo evaluation
  publication-title: Drug Dev Ind Pharm
  doi: 10.3109/03639045.2013.828221
– volume: 8
  start-page: 207
  issue: 4
  year: 2013
  ident: 10.1016/j.ajps.2018.04.008_bib0009
  article-title: Prodrugs incorporated into nanotechnology-based drug delivery systems for possible improvement in bioavailability of ocular drugs delivery
  publication-title: Asian J Pharmaceut Sci
  doi: 10.1016/j.ajps.2013.09.002
– volume: 62
  start-page: 1000
  issue: 10
  year: 2014
  ident: 10.1016/j.ajps.2018.04.008_bib0041
  article-title: Design and evaluation of a Brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery
  publication-title: Chem Pharm Bull (Tokyo)
  doi: 10.1248/cpb.c14-00451
– volume: 83
  start-page: 65
  issue: 1
  year: 2002
  ident: 10.1016/j.ajps.2018.04.008_bib0027
  article-title: Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies
  publication-title: J Control Release
  doi: 10.1016/S0168-3659(02)00175-X
– year: 2018
  ident: 10.1016/j.ajps.2018.04.008_bib0004
  article-title: Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases
  publication-title: WIREs Nanomed Nanobiotechnol
  doi: 10.1002/wnan.1473
– volume: 5
  start-page: 162
  issue: 2
  year: 2013
  ident: 10.1016/j.ajps.2018.04.008_bib0094
  article-title: Nanoparticles laden in situ gel for sustained ocular drug delivery
  publication-title: J Pharm Bioallied Sci
  doi: 10.4103/0975-7406.111824
– volume: 36
  start-page: 1330
  issue: 11
  year: 2010
  ident: 10.1016/j.ajps.2018.04.008_bib0056
  article-title: Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery
  publication-title: Drug Dev Ind Pharm
  doi: 10.3109/03639041003801885
– volume: 365
  start-page: 143
  issue: 1-2
  year: 2009
  ident: 10.1016/j.ajps.2018.04.008_bib0097
  article-title: Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: In vitro and in vivo results
  publication-title: In J Pharm
– volume: 14
  start-page: 2740
  issue: 8
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0050
  article-title: Hydrophobically modified polymer/α-cyclodextrin thermoresponsive hydrogels for use in ocular drug delivery
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.7b00291
– volume: 23
  start-page: 2363
  issue: 7
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0073
  article-title: Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel
  publication-title: Drug Deliv
  doi: 10.3109/10717544.2014.987333
– volume: 18
  start-page: 499
  issue: 7
  year: 2010
  ident: 10.1016/j.ajps.2018.04.008_bib0082
  article-title: Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery
  publication-title: J Drug Target
  doi: 10.3109/10611860903508788
– volume: 480
  start-page: 128
  issue: 1-2
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0096
  article-title: Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2015.01.032
– start-page: 9
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0016
  article-title: Overview of the ophthalmic system
– volume: 50
  start-page: S96
  issue: 2
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0053
  article-title: Thermosensitive in situ gel for ocular delivery of lomefloxacin
  publication-title: Ind J Pharmaceut Educ Res
– volume: 9
  start-page: 237
  issue: 3
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0025
  article-title: In situ gelling ophthalmic drug delivery system: an overview and its applications
  publication-title: Recent Pat Drug Deliv Formul
  doi: 10.2174/1872211309666150724101227
– volume: 36
  start-page: 1340
  issue: 11
  year: 2010
  ident: 10.1016/j.ajps.2018.04.008_bib0054
  article-title: Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide
  publication-title: Drug Dev Ind Pharm
  doi: 10.3109/03639041003801893
– volume: 6
  start-page: 324
  issue: 2
  year: 2010
  ident: 10.1016/j.ajps.2018.04.008_bib0086
  article-title: Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2009.10.004
– volume: 506
  start-page: 57
  issue: 1-2
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0045
  article-title: Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2016.04.021
– volume: 11
  start-page: S616
  issue: 3
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0063
  article-title: Development and characterization of novel in situ gel of moxifloxacin hydrochloride
  publication-title: Asian J. Pharm.
– volume: 411
  start-page: 128
  issue: 1-2
  year: 2011
  ident: 10.1016/j.ajps.2018.04.008_bib0055
  article-title: Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2011.03.054
– volume: 120
  start-page: 186
  issue: 3
  year: 2007
  ident: 10.1016/j.ajps.2018.04.008_bib0024
  article-title: Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2007.05.009
– volume: 2
  start-page: 1
  issue: 6
  year: 2012
  ident: 10.1016/j.ajps.2018.04.008_bib0030
  article-title: Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery
  publication-title: J App Pharm Sci
– start-page: 347
  year: 2013
  ident: 10.1016/j.ajps.2018.04.008_bib0036
  article-title: Biopolymers in controlled-release delivery systems
– volume: 9
  start-page: 1427
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0092
  article-title: Improved corneal bioavailability of ofloxacin: biodegradable microsphere-loaded ion-activated in situ gel delivery system
  publication-title: Drug Des Devel Ther
– volume: 19
  start-page: 400
  issue: 4
  year: 2014
  ident: 10.1016/j.ajps.2018.04.008_bib0017
  article-title: In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2013.10.001
– volume: 39
  start-page: 1599
  issue: 11
  year: 2013
  ident: 10.1016/j.ajps.2018.04.008_bib0020
  article-title: Recent advances in ocular drug delivery
  publication-title: Drug Dev Ind Pharm
  doi: 10.3109/03639045.2012.736515
– volume: 2
  start-page: 24
  issue: 4
  year: 2012
  ident: 10.1016/j.ajps.2018.04.008_bib0035
  article-title: In-situ gelling system: a novel approach for ocular drug delivery
  publication-title: Am J PharmTech Res
– volume: 502
  start-page: 70
  issue: 1-2
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0042
  article-title: In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2016.02.027
– volume: 06
  start-page: 31
  issue: 02
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0026
  article-title: An insight to ocular in situ gelling systems
  publication-title: Int J Adv Pharmaceut
– volume: 229
  start-page: 29
  issue: 1
  year: 2001
  ident: 10.1016/j.ajps.2018.04.008_bib0033
  article-title: In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride
  publication-title: Int J Pharm
  doi: 10.1016/S0378-5173(01)00825-0
– volume: 2
  start-page: 1398
  issue: 2
  year: 2010
  ident: 10.1016/j.ajps.2018.04.008_bib0070
  article-title: In-situ gel: new trends in controlled and sustained drug delivery system
  publication-title: Int J PharmTech Res
– volume: 39
  start-page: 113
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0090
  article-title: Formulation development and evaluation of Natamycin niosomal in-situ gel for ophthalmic drug delivery
  publication-title: Journal of Drug Delivery Science & Technology
  doi: 10.1016/j.jddst.2017.03.005
– volume: 32
  start-page: 574
  issue: 9
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0067
  article-title: Enhancement of ocular in situ gelling properties of low acyl gellan gum by use of ion exchange
  publication-title: J Ocul Pharmacol Ther
  doi: 10.1089/jop.2016.0084
– volume: 97
  start-page: 338
  issue: Pt B
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0029
  article-title: Thermoresponsive hydrogels in biomedical applications: a seven-year update
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2015.05.017
– volume: 155
  start-page: 208
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0079
  article-title: A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2016.08.073
– volume: 77
  start-page: 654
  issue: 3
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0051
  article-title: Formulation and evaluation of sparfloxacin emulsomes-loaded thermosensitive in situ gel for ophthalmic delivery
  publication-title: J Sol-Gel Sci Technol
  doi: 10.1007/s10971-015-3897-8
– volume: 443
  start-page: 293
  issue: 1-2
  year: 2013
  ident: 10.1016/j.ajps.2018.04.008_bib0074
  article-title: Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2012.12.049
– volume: 23
  start-page: 3712
  issue: 9
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0028
  article-title: Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability
  publication-title: Drug Deliv
  doi: 10.1080/10717544.2016.1223225
– volume: 7
  start-page: 281
  issue: 3
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0018
  article-title: Nanotechnology-based strategies for treatment of ocular disease
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2016.09.001
– volume: 12
  start-page: 683
  issue: 6
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0002
  article-title: Drug delivery to the eye: what benefits do nanocarriers offer
  publication-title: Nanomedicine (Lond)
  doi: 10.2217/nnm-2016-0379
– volume: 73
  start-page: 615
  issue: 6
  year: 2011
  ident: 10.1016/j.ajps.2018.04.008_bib0071
  article-title: Ion-activated in situ gelling ophthalmic delivery systems of Azithromycin
  publication-title: Indian J of Pharm Sci
  doi: 10.4103/0250-474X.100234
– ident: 10.1016/j.ajps.2018.04.008_bib0103
– volume: 33
  start-page: 71
  issue: 1
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0091
  article-title: Novel in situ gelling ocular inserts for voriconazole-loaded niosomes: design, in vitro characterisation and in vivo evaluation of the ocular irritation and drug pharmacokinetics
  publication-title: J Microencapsul
  doi: 10.3109/02652048.2015.1128489
– volume: 11
  start-page: 610
  issue: 2
  year: 2010
  ident: 10.1016/j.ajps.2018.04.008_bib0010
  article-title: In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-010-9413-0
– volume: 40
  start-page: 1223
  issue: 9
  year: 2014
  ident: 10.1016/j.ajps.2018.04.008_bib0098
  article-title: Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study
  publication-title: Drug Dev Ind Pharm
  doi: 10.3109/03639045.2013.814061
– volume: 104
  start-page: 1677
  issue: 5
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0012
  article-title: Formulation and characterization of atropine sulfate in albumin-chitosan microparticles for in vivo ocular drug delivery
  publication-title: J Pharm Sci
  doi: 10.1002/jps.24380
– volume: 27
  start-page: 391
  issue: 4
  year: 2012
  ident: 10.1016/j.ajps.2018.04.008_bib0039
  article-title: Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation
  publication-title: J Biomater Appl
  doi: 10.1177/0885328211406563
– volume: 1
  start-page: 39
  issue: 1
  year: 2010
  ident: 10.1016/j.ajps.2018.04.008_bib0044
  article-title: Development and evaluation of thermoreversible ocular gels of ketorolac tromethamine
  publication-title: Int J Biopharm
– volume: 16
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.ajps.2018.04.008_bib0069
  article-title: Design and characterization of bioadhesive in-situ gelling ocular inserts of Gatifloxacin sesquihydrate
  publication-title: DARU: J Pharmaceut Sci
– volume: 2
  start-page: 00022
  issue: 3
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0101
  article-title: Newer trends in in situ gelling systems for controlled ocular drug delivery
  publication-title: J Anal Pharm Res
  doi: 10.15406/japlr.2016.02.00022
– volume: 3
  start-page: P372
  issue: 3
  year: 2012
  ident: 10.1016/j.ajps.2018.04.008_bib0068
  article-title: Current status of ophthalmic in-situ forming hydrogel
  publication-title: Int J Pharma Bio Sci
– volume: 10
  start-page: 2903
  year: 2014
  ident: 10.1016/j.ajps.2018.04.008_bib0066
  article-title: Cyclodextrin-polysaccharide-based, in situ-gelled system for ocular antifungal delivery
  publication-title: Beilstein J Org Chem
  doi: 10.3762/bjoc.10.308
– volume: 94
  start-page: 355
  issue: Pt A
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0011
  article-title: Bioadhesive chitosan-loaded liposomes: a more efficient and higher permeable ocular delivery platform for timolol maleate
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2016.10.035
– volume: 62
  start-page: 433
  issue: 4
  year: 2012
  ident: 10.1016/j.ajps.2018.04.008_bib0085
  article-title: Solid lipid based nanocarriers: an overview
  publication-title: Acta Pharm
  doi: 10.2478/v10007-012-0040-z
– volume: 16
  start-page: 385
  issue: 4
  year: 2011
  ident: 10.1016/j.ajps.2018.04.008_bib0046
  article-title: Effect of salts on gelation and drug release profiles of methylcellulose-based ophthalmic thermo-reversible in situ gels
  publication-title: Pharm Dev Technol
  doi: 10.3109/10837451003774369
– ident: 10.1016/j.ajps.2018.04.008_bib0102
– volume: 69
  start-page: 379
  issue: 3
  year: 2000
  ident: 10.1016/j.ajps.2018.04.008_bib0057
  article-title: Carbopol/pluronic phase change solutions for ophthalmic drug delivery
  publication-title: J Control Release
  doi: 10.1016/S0168-3659(00)00329-1
– volume: 23
  start-page: 231
  issue: 3
  year: 2018
  ident: 10.1016/j.ajps.2018.04.008_bib0059
  article-title: Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits
  publication-title: Pharm Dev Technol
  doi: 10.1080/10837450.2017.1328693
– volume: 4
  start-page: 813
  issue: 7
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0013
  article-title: Niosomes in ocular drug delivery
  publication-title: Eur J Pharmaceut Med Res
– volume: 11
  start-page: 673
  issue: 6
  year: 2016
  ident: 10.1016/j.ajps.2018.04.008_bib0038
  article-title: In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration
  publication-title: Asian J Pharmaceut Sci
  doi: 10.1016/j.ajps.2016.07.001
– ident: 10.1016/j.ajps.2018.04.008_bib0105
– volume: 1
  start-page: 43
  issue: 3
  year: 2012
  ident: 10.1016/j.ajps.2018.04.008_bib0062
  article-title: Formulation and characterization of a novel pH-triggered in-situ gelling ocular system containing Gatifloxacin
  publication-title: Int Current Pharmaceut J
  doi: 10.3329/icpj.v1i3.9661
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.ajps.2018.04.008_bib0008
  article-title: Development of topical ophthalmic in situ gel-forming estradiol delivery system intended for the prevention of age-related cataracts
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0172306
– volume: 410
  start-page: 31
  issue: 1-2
  year: 2011
  ident: 10.1016/j.ajps.2018.04.008_bib0058
  article-title: Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2011.03.007
– volume: 78
  start-page: 959
  issue: 4
  year: 2010
  ident: 10.1016/j.ajps.2018.04.008_bib0061
  article-title: Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate
  publication-title: Sci Pharm
  doi: 10.3797/scipharm.1001-06
– volume: 20
  start-page: 306
  issue: 7
  year: 2013
  ident: 10.1016/j.ajps.2018.04.008_bib0093
  article-title: Nanoparticles laden in situ gel of levofloxacin for enhanced ocular retention
  publication-title: Drug Deliv
  doi: 10.3109/10717544.2013.838712
– start-page: 3191
  year: 2007
  ident: 10.1016/j.ajps.2018.04.008_bib0014
  article-title: Ocular drug delivery using microneedles
– volume: 9
  start-page: 339
  issue: 3
  year: 2006
  ident: 10.1016/j.ajps.2018.04.008_bib0032
  article-title: Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations
  publication-title: J Pharm Pharm Sci
– volume: 9
  start-page: 3943
  year: 2015
  ident: 10.1016/j.ajps.2018.04.008_bib0072
  article-title: A novel in situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: in vitro and in vivo evaluation
  publication-title: Drug Des Devel Ther
– volume: 28
  start-page: 353
  issue: 4
  year: 2002
  ident: 10.1016/j.ajps.2018.04.008_bib0006
  article-title: Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery
  publication-title: Drug Dev Ind Pharm
  doi: 10.1081/DDC-120002997
– volume: 2
  start-page: 28
  issue: 1
  year: 2011
  ident: 10.1016/j.ajps.2018.04.008_bib0100
  article-title: In situ gelling system-An overview
  publication-title: Pharmacologyonline
SSID ssj0001377184
Score 2.5536666
SecondaryResourceType review_article
Snippet Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden. Delivery of drug to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Bioavailability
Corneal retention
Drug delivery
In-situ gel
Ocular
Polymer
Review
SummonAdditionalLinks – databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPXFBUAoECjIS6oVGm4eTOEdaqCokUCVaaW-WX7ubaklW2-xh_z0zTrLbgNRDj0kcx_GMvxnbM58BPie5zUyhTKhjnYVooXBIJTYL8yxNjFZRqRzt6P78lV_d8h_TbHoAF0MuDIVV9tjfYbpH6_7OpO_NyaqqJr9jSlPGwRyjkiKmThGHUy58Et_0fL_OkhYIv35zGcuH9EKfO9OFeam7FbF2x8IzntIpkw_sk6fxH5mp_93Qf6MpH5inyxfwvPcr2deu6S_hwNVHcHrdEVNvz9jNPs_q_oydsus9ZfX2FXwbAvCYj9dC9GPNjFV1eF-1GzZ3nribNatFu1DLP5Vhdr2ZM-uWFNWxZR0d9DHcXn6_ubgK-_MVQpOJog21cWmklBF5OXORdlaYJEJrpdCr0xY7zahUxUQob8uE5lboegmDDo1IinKGdv41HNZN7d4CE-iWWGF5WkSaO4e1EBQ7Yo6JlS5cAPHQq9L05ON0BsZSDlFmd5IkIUkSMuISJRHAl907q45649HS5ySsXUmizfY3mvVc9nojC2e5wHkzJdByZVWZE5t9rnDWNLPKRgFkg6jlSAuxqurRj38a9ELi8KQ9F1W7ZoOFUqyfNmeTAN50erJrIqVPcZ7yAIqRBo3-YfykrhaeAhxxGueS2bsntvc9PMOrsltKOoHDdr1xH9C5avVHP3r-AmITIcw
  priority: 102
  providerName: Elsevier
Title Research progress of in-situ gelling ophthalmic drug delivery system
URI https://dx.doi.org/10.1016/j.ajps.2018.04.008
https://www.ncbi.nlm.nih.gov/pubmed/32104434
https://www.proquest.com/docview/2366638162
https://pubmed.ncbi.nlm.nih.gov/PMC7032175
https://doaj.org/article/7ed4897871344ada9620666a675fdad0
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLcQp13QYMDCABlp4kKj5cNJnCNsoG4SqAeQerP8VRrUpRWkh_73vGcnpQWpu-ySQ-I4sd-z3-_5Pf9MyPckN5kupA5VrLIQLBQMqcRkYZ6liVYyKqXFiO7tXd5_YH-G2XDlqC_MCfP0wL7jfhTWMA6uDu55ZNLIMkcC8lwC0B0ZaZy3DjZvxZlyqytpAZOuCymDRQqRd63dMeOTu-TTDLm6Y-54TvFsyRWr5Mj714zTR_D5PodyxSjdfCY7LZqkl74Vu2TL1nvkfODpqBc9ev-2u-qlR8_p4I2oevGF_OrS7qjL0oI5j05HtKrDl6qZ00fr6LrpdDZuxnLyt9LUPM8fqbETzOVYUE8CvU8ebq7vf_bD9lSFUGe8aEKlbRpJqXlejmykrOE6icBGScByykCnaZnKGGnkTZmgRwWAi2uAMTwpyhFY9wOyXU9r-5VQDmDEcMPSIlLMWqgFJ2CLfDGxVIUNSNz1qtAt5TiefDERXW7Zk0BJCJSEiJgASQTkYvnOzBNubCx9hcJalkSybHcDVEi0KiT-pUIByTpRixZ3eDwBVVUbP37W6YWAQYmRFlnb6RwKpVA_hmSTgBx6PVn-Im6aYixlASnWNGitDetP6mrsiL9hdgYPMjv6H43-Rj5BU0q_mnRMtpvnuT0BfNWoUzeU4Pp7ePUKW5UhqQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8a4wAXBAxY-DTStMsWNR_O15ENpg62aRKd1Jvl2G6bqSRVlx763_Oek7QLk3bg6q84fp-23_sZ4CCIdaQSqdzczyMXLRSKVKAjN47CQOXSy6ShG93Lq3h4w3-Oo_EOnHa5MBRW2er-Rqdbbd2WDNrVHCyKYvDbpzRlFGYfmRR16vgJPEVvICHpPB-fbA9awgT1r71dxg4u9WiTZ5o4L3m7INhuP7WQp_TM5D0DZXH8e3bqoR_6bzjlPft09hJetI4l-9bM_RXsmPI1HF43yNTrYzbaJlrdHbNDdr3FrF7vwfcuAo_ZgC1Uf6yasKJ074p6xabGInezajGrZ3L-p1BML1dTps2cwjrWrMGDfgM3Zz9Gp0O3fWDBVVGa1G6uTOhJqdI4mxgvNzpVgYfmSqJbl2tcNCVD6ROivM4C2lyh75Uq9GjSIMkmaOjfwm5ZlWYfWIp-iU41DxMv58bgKKSLDUHH-DJPjAN-t6pCtejj9AjGXHRhZreCKCGIEsLjAinhwNGmz6LB3ni09QkRa9OScLNtQbWcipZxRGI0T3HjTBm0XGqZxQRnH0vcNk201J4DUUdq0WNDHKp49ONfO74QKJ906SJLU62wUYjj0-1s4MC7hk82U6T8Kc5D7kDS46DeP_RrymJmMcBRUeNmMnr_n_P9As-Go8sLcXF-9esDPMearDlX-gi79XJlPqGnVeefrST9Be-hJOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+progress+of+in-situ+gelling+ophthalmic+drug+delivery+system&rft.jtitle=Asian+journal+of+pharmceutical+sciences&rft.au=Wu%2C+Yumei&rft.au=Liu%2C+Yuanyuan&rft.au=Li%2C+Xinyue&rft.au=Kebebe%2C+Dereje&rft.date=2019-01-01&rft.issn=2221-285X&rft.eissn=2221-285X&rft.volume=14&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ajps.2018.04.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1818-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1818-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1818-0876&client=summon